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ABSTRACT
StackedDRAMmemories have become a reality inHigh-Performance
Computing (HPC) architectures. These memories provide much
higher bandwidth while consuming less power than traditional
off-chip memories, but their limited memory capacity is insufficient
for modern HPC systems. For this reason, both stacked DRAM and
off-chip memories are expected to co-exist in HPC architectures,
giving raise to different approaches for architecting the stacked
DRAM in the system.

This paper proposes a runtime approach to transparently man-
age stacked DRAM memories in task-based programming models.
In this approach the runtime system is in charge of copying the
data accessed by the tasks to the stacked DRAM, without any com-
plex hardware support nor modifications to the application code.
To mitigate the cost of copying data between the stacked DRAM
and the off-chip memory, the proposal includes an optimization
to parallelize the copies across idle or additional helper threads.
In addition, the runtime system is aware of the reuse pattern of
the data accessed by the tasks, and can exploit this information
to avoid unworthy copies of data to the stacked DRAM. Results
on the Intel Knights Landing processor show that the proposed
techniques achieve an average speedup of 14% against the state-
of-the-art library to manage the stacked DRAM and 29% against a
stacked DRAM architected as a hardware cache.

CCS CONCEPTS
• Hardware → Memory and dense storage; • Software and its
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1 INTRODUCTION
For many years, the trend of improving the performance of High-
Performance Computing (HPC) architectures by increasing the
frequency and the number of cores has created a growing gap be-
tween compute capacity andmemory bandwidth. As a consequence,
one of the main challenges in large scale multi-core architectures
is to provide enough memory bandwidth to supply sufficient data
on time to the cores for highly parallel processing. In the last years,
memory specifications like High Bandwidth Memory (HBM) [18] or
Hybrid Memory Cube (HMC) [31] have adopted three-dimensional
integration as a promising solution to the memory bandwidth prob-
lem. This technology allows to stackmultiple layers of DRAM inside
the package, forming amemory structure that provides significantly
higher bandwidth than off-chip memories while consuming less
power. Stacked DRAM memories are already present in commer-
cial processors like the Intel Knights Landing (KNL) [40], and are
expected to be a key element of next-generation HPC architectures.

The main drawback of stacked DRAM memories is the limited
capacity they offer, insufficient to satisfy the memory requirements
of modern HPC systems. For this reason, current and upcoming
processors with stacked DRAM memories still maintain an off-chip
memory, forming a memory system with two types of memories: a
high bandwidth, low capacity stacked DRAM and a low bandwidth,
high capacity off-chip memory. This opens the door to different
approaches for architecting the stacked DRAM in the system, with
clear trade-offs. On the one hand, the stacked DRAM can be archi-
tected as a large hardware cache that lays between the processor
caches and the off-chip memory. This solution capitalizes on the
benefits of stacked DRAM memories without modifying any soft-
ware layer, but reduces the total amount of memory available for
the software and complicates the hardware design of the proces-
sor. On the other hand, the stacked DRAM can be integrated in
the system as a second memory visible to the software, forming a
heterogeneous memory system. This solution reduces the hardware
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complexity and maximizes the memory capacity offered to the soft-
ware. However, it increases the programming complexity of the 
system, since it requires the programs or some software layer to 
explicitly manage the two types of memories.

To overcome the programmability difficulties of complex hetero-
geneous memory systems and architectures, task-based program-
ming models such as OpenMP 4.0 [1] have emerged in the last 
years. In these programming models the programmer exposes the 
available parallelism of the program by dividing the code in tasks 
and by specifying the data and control dependencies between them. 
With this information the runtime system manages the parallel 
execution following a data-flow scheme, scheduling tasks to cores 
and taking care of synchronization between tasks. Decoupling the 
application from the architecture eases programmability and allows 
to leverage the runtime system information to drive optimizations 
in a generic and application-agnostic way [2, 10, 11, 25, 30, 41].

The goal of this paper is to exploit the benefits of stacked DRAM 
memories without affecting the programmability of the system. 
To do so, this paper proposes to leverage the characteristics of 
task-based programming models to give the runtime system the re-
sponsibility of managing the stacked DRAM memory, without any 
intervention from the programmer nor any change in the source 
code of the applications. The data dependence annotations of these 
programming models specify the data that is accessed by the tasks, 
so the runtime system can copy to the stacked DRAM the data 
needed by the tasks before they are executed. This allows to maxi-
mize the number of memory accesses that are served by the stacked 
DRAM, making the most of its high bandwidth and low power 
consumption. In addition, since copying data between the stacked 
DRAM and the off-chip memory has a significant cost, this paper 
proposes two techniques to accelerate the copy operations. The 
first optimization parallelizes the copies of the data across threads, 
using threads that are idle or additional helper threads. The second 
approach leverages the runtime system information on the reuse 
pattern of the data accessed by the tasks to decide when it is worth 
copying the data to the stacked DRAM and when it is better to 
avoid the copy and to operate with the data in the off-chip memory. 
The main contributions of this paper are:

• A novel runtime system design to transparently manage a
heterogeneous memory system formed by a stacked DRAM
and an off-chip memory. These extensions allow task parallel
programs to benefit of such memory organization without
introducing any programming burden.

• Two techniques to mitigate the cost of copying data between
the stacked DRAM and the off-chip memory. The first so-
lution parallelizes the copy operations using idle threads
and helper threads, while the second approach leverages the
information of the data reuse pattern in the runtime system
to avoid unnecessary costly data copies.

• A complete evaluation on the KNL with relevant HPC bench-
marks. The results highlight the importance of the data reuse
pattern for the performance of state-of-the-art techniques.
The proposed runtime approach is able to adapt to the char-
acteristics of the applications and always achieves the best
performance, reaching average speedups of 14% against other
software approaches and 29% against hardware caches.

This paper is organized as follows: Section 2 introduces stacked
DRAM memories and task-based programming models. Section 3
explains the proposed runtime system techniques to manage the
stacked DRAM. Section 4 describes the experimental framework for
the evaluation, which is presented in Section 5. Section 6 discusses
the related work, and Section 7 draws the conclusions of this work.

2 BACKGROUND AND MOTIVATION
This section explains the main properties of stacked DRAM memo-
ries and the ways to architect them in a system. Then it describes
the characteristics of task-based programming models and their
opportunities for managing these memories.

2.1 Stacked DRAMMemories
In recent years stacked DRAM memories have become a promising
solution to aid the bandwidth problems of parallel architectures. Die-
stacking provides significant bandwidth and power consumption
benefits compared to conventional off-chip memories. The Through-
Silicon Via (TSV) interface of die-stacking circumvents the pin-count
limitations of off-chip memories, so the bandwidth to the stacked
DRAM is limited by the parallelism in the memory itself and not
by the interface with the processor. This allows stacked DRAM to
provide a much higher bandwidth than off-chip memories. In terms
of energy per bit, the TSV interface provides an improvement of
two orders of magnitude over DDR3 interfaces [29]. However, the
capacity of stacked DRAMmodules is much lower than the capacity
of off-chip memory modules, so both types of memories co-exist
in current and, expectedly, future systems. In such scenario, the
stacked DRAM can be architected in the system in different ways.

One approach is to architect the stacked DRAM as a large hard-
ware cache between the last-level cache of the processor and the
off-chip memory. This approach, known as DRAM cache, is totally
transparent to the software, so no modifications to the software
stack are required. However, DRAM cache designs face the chal-
lenge of making affordable the access latency, storage and energy
consumption overheads associated with tag management of such a
big cache. Although different designs have been proposed in the
literature1, the most simple and effective approach is to organize
the DRAM cache as a direct-mapped cache with the same block
size as the processor caches, as proposed by the state-of-the-art
Alloy Cache [34] and implemented in the KNL.

Stacked DRAMmemories can also be architected as part of mem-
ory. In this approach the stacked DRAM is mapped to a range of
the physical address space, visible to the software. This increases
the total memory capacity of the system and avoids the tag storage
overheads of DRAM caches. However, the main challenge of this ap-
proach is that the software has to manage an heterogeneous memory
system formed by two memories with different characteristics.

Although some works propose to manage heterogeneous mem-
ory systems in the operating system1, current systems rely on the
programmer to do so. The KNL offers the possibility to expose the
stacked DRAM as a NUMA memory node that is managed with
NUMA libraries (i.e. memkind [16]). These libraries offer command
line options and environment variables to specify the memory in
which the data of the program has to be allocated, but does not
1These proposals are discussed in detail in Section 6



Figure 1: Memory bandwidth measured with the Stream
Triad benchmark on a KNL when configuring the stacked
DRAM as part of memory or as a DRAM cache.

allow to select in which memory each individual data object is allo-
cated. To do so, the programmer has to allocate the variables with a
special form of malloc in the source code. These solutions manage
the heterogeneous memory system statically, that is, allocating data
in the stacked DRAM or in the off-chip memory at the beginning
of the program and not changing the placement of the data during
the execution. In HPC programs, with input sets that exceed the
size of the stacked DRAM, static solutions are not optimal because
only a small portion of the data is served by the stacked DRAM,
while the rest of data is served by the off-chip memory.

A better solution for HPC workloads is to dynamically copy to
the stacked DRAM the data that is going to be accessed by the tasks,
so all the memory accesses in the computation are served by the
stacked DRAM and its benefits are maximized. Unfortunately, this
requires to transform the code of the application, typically applying
tiling to split the computation in blocks and to copy to the stacked
DRAM the data of the block that is going to be computed. These
code transformations are not trivial, and relying on the programmer
to do them imposes a clear programming burden.

2.2 Stacked DRAM Characterization
The existing solutions to manage stacked DRAM memories suffer
from some inefficiencies that are exacerbated when the data set of
the application does not fit in the stacked DRAM.

Figure 1 shows thememory bandwidthmeasuredwith the Stream
Triad benchmark [27] on the KNL for different input set sizes. The
capacity of the stacked DRAM in the KNL is 16 GB. The two lines
show the measured bandwidth when the stacked DRAM is config-
ured as a DRAM cache and when it is configured as part of memory,
using the memkind library to allocate as much data as possible in the
stacked DRAM. It can be observed that, when the stacked DRAM
is configured as part of memory, the measured bandwidth reaches
435 GB/s for any data set size smaller than 16 GB, while the DRAM
cache achieves 360 GB/s for data sets of up to 12 GB. The perfor-
mance differences happen because the latency of the stacked DRAM
varies depending on the configuration. When the stacked DRAM is
configured as part of memory, its latency is slightly higher than the
off-chip memory latency [35] and, when it is configured as a DRAM
cache, the latency is even higher due to the extra circuitry [34].

Figure 1 also shows that, when the data set is bigger than the
size of the stacked DRAM, the performance drops. This happens
because, when the stacked DRAM is configured as part of memory,
only a portion of the data can be allocated in the stacked DRAM.
So, the bigger the data set, the more memory accesses are served

by the off-chip DRAM, causing the performance degradations. The
performance of the DRAM cache also drops gradually as data sets
get bigger. When the data set exceeds 12 GB conflict misses start to
happen in the DRAM cache. The number of DRAM cache misses
augments as the data set gets bigger, reaching a point where all the
memory accesses miss in the DRAM cache and the performance is
limited by the bandwidth of the off-chip memory serving misses.

An important aspect of the stacked DRAM as part of memory
is the cost of copying data between the stacked DRAM and the
off-chip memory. In the KNL, the only way to copy data between
the memories is by means of a memcpy. Thus, copying data requires
one thread to execute loads and stores in a loop to read blocks of
data from one memory, bring them to the CPU, and store them in
the other memory. This mechanism has a significant cost, since it
heavily utilizes resources of the core and the cache hierarchy.

2.3 Task-Based Programming Models
Task-based programming models have become an appealing al-
ternative to face the programmability challenges imposed by the
heterogeneity of current and, expectedly, future HPC architectures.
This tasking model is currently supported by the OpenMP 4.0 [1]
shared memory programming standard.

Task-based data-flow programming models conceive the exe-
cution of a parallel program as a set of tasks with dependences
between them. The programmer adds code annotations to split the
serial code in tasks and to specify what data is read (inputs) and
written (outputs) by each task. Typically, the compiler encapsulates
the tasks in functions that receive by parameter the addresses of
the inputs and outputs. The runtime system manages the execu-
tion of the tasks by means of a Task Dependence Graph (TDG), a
directed acyclic graph where the nodes are tasks and the edges
are dependences between them. Following a decoupled execution
model, threads first execute the application code (creating all the
tasks they encounter) until they reach a global synchronization
point, and then they execute tasks asynchronously. The runtime
system dynamically schedules tasks when all their inputs are ready
and, when the execution of a task finishes, its outputs become ready
for the next tasks. This model decouples the hardware from the
application, enabling many optimizations at the runtime system
level in a generic and application-agnostic way [2, 10, 11, 25, 30, 41].

This paper proposes to exploit the characteristics of task-based
programming models to manage stacked DRAM memories in the
runtime system without affecting programmability. A key charac-
teristic of task-based programming models is that the inputs and
outputs of the tasks specify the data they access. The runtime sys-
tem can leverage this information to copy to the stacked DRAM
the data that is accessed by the tasks before they are executed. As a
result, the memory accesses to the inputs and outputs of the tasks
are served by the stacked DRAM, maximizing its bandwidth and
power consumption benefits. Another characteristic of task-based
programming models is that the runtime system is in charge of
managing the threads that participate in the parallel execution. This
allows the runtime system to accelerate the copies of the data by
parallelizing them, using either threads that are idle or additional
helper threads specifically devoted to perform the copy operations.
The runtime system is also aware of the reuse pattern of the data
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Figure 2: Components of the runtime system and extensions
to manage stacked DRAMmemories (shaded in gray).

that is accessed by the tasks, which can be used to avoid unworthy
data copies. In particular, the runtime system can decide to avoid
copying to the stacked DRAM data that is only going to be accessed
by a single task. Instead, the task performs the computation access-
ing data in the off-chip memory, saving a copy operation that is
more costly than the off-chip memory accesses themselves.

3 STACKED DRAM MANAGEMENT IN TASK
RUNTIME SYSTEMS

This section presents the design of a task-based runtime system to
manage the stacked DRAM of a heterogeneous memory system.

3.1 Overview
The goal of this paper is to efficientlymanage the stackedDRAMof a
heterogeneous memory system without affecting programmability.
To achieve this goal, the runtime system dynamically maps to the
stacked DRAM the data that is going to be used by the tasks. This
approach maximizes the amount of memory accesses served by the
stacked DRAM, making the most of its advantages in performance
and power consumption. The proposal does not introduce any
programming burden, as no modifications in the source code of the
applications are required.

Themain data structure of the design is a directory that tracks the
data mapped to the stacked DRAM, enabling the runtime system to
manage this memory as a software cache. Before a task is executed,
the runtime system is in charge of copying the inputs and outputs of
the task to the stacked DRAM. The directory is used to check if the
data is already present in the stacked DRAM or if it has be copied
from the off-chip memory. This may require replacing some data of
the stacked DRAM to make room for the new data and triggering
copies of data between the stacked DRAM and the off-chip memory.

Since the copies of data can have a significant cost, we propose
two optimizations to mitigate their associated overheads. The first
optimization consists on parallelizing the data copies among multi-
ple threads, using threads that are idle or additional helper threads.
The second optimization avoids mapping to the stacked DRAM
data that is not reused, as the cost of copying the data between
the two memories is higher than the cost of accessing data in the
off-chip memory during the execution of a single task.

3.2 Data Structures
Figure 2 shows the data structures of the proposed runtime system,
with the extensions to manage the stacked DRAM shaded in gray.
The non-shaded data structures are the main parts of a generic
runtime system for task-based programmingmodels, which consists
of a representation of the TDG, the threads that participate in the
execution, and a ready queue where the threads request tasks.

We add a memory pool to represent the stacked DRAM in the
runtime system. Thememory pool is allocated in the stacked DRAM
when the program starts, and the runtime system stores its initial
address, its size in bytes, and the amount of used and unused bytes.

The directory is the most important data structure for the man-
agement of the stacked DRAM. The directory is formed by a set of
entries that associate blocks of data in the off-chip memory with
its corresponding blocks of data in the stacked DRAM. To do so,
each directory entry contains the address of the data in the off-chip
memory, the address of the data in the stacked DRAM, the size of
the data, a dirty flag to indicate whether the data in the stacked
DRAM has been modified, a used counter to indicate how many
executing tasks access the data in the stacked DRAM, and two
pointers to two copy descriptors that describe the parameters of
the copies of data into the stacked DRAM (CopyIn) and out of the
stacked DRAM (CopyOut). We implement the directory with a C++
hash map using the off-chip address as key.

The copy descriptors store the attributes of the copies of data
that need to be performed. Each copy descriptor contains the source
address, the destination address, the size in bytes, a finished flag to
indicate that the copy has finished, and a chunk offset that keeps
the amount of bytes that has already been copied. This last field is
used to split the copy in multiple chunks, so it can be parallelized.

Additional data structures are introduced in the runtime system
to perform optimizations. The helper threads and the Global Copy
List are used for the parallelization of copies of data, while the
Reuse Tracker is used for the reuse-aware bypass of the stacked
DRAM. These optimizations and their data structures are explained
in detail in Sections 3.4 and 3.5. In the next section, we describe the
basic operational model without such optimizations.

3.3 Operational Model
The aforementioned data structures are operated during diverse
phases of the execution of a task parallel program.

When the program starts, the runtime system allocates and ini-
tializes all its internal data structures. To initialize the stacked
DRAM memory pool the runtime system assumes that the whole
capacity of the stacked DRAM is available, although the system
administrator or the user can use an environment variable to adjust
the amount of stacked DRAM memory that the runtime system can
manage. A buffer of the specified size is allocated in the stacked
DRAM and used as the stacked DRAM memory pool. The initial
address of the memory pool is set to the starting address of the
buffer, the size and the unused bytes fields are set to the specified
size, and the used bytes field is set to zero.

When a task is scheduled for execution, its inputs and outputs
are mapped to the stacked DRAM. For each input and output of
the task, its address is looked up in the directory, which can lead to
several situations. Figure 3 shows a scheme of the possible cases.
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Figure 3: Scheme of the possible situations that can arise for
data being mapped to the stacked DRAM.

1 -HIT : If a matching directory entry is found, the stacked DRAM
already contains the data being mapped. The used counter of the
directory entry is incremented by one and, if the data being mapped
is an output, the dirty flag is set. The stacked DRAM address is
passed by parameter to the task, so it will access the stacked DRAM.

2 - MISS FREE SPACE: If a match is not found in the directory
and the size of the data being mapped is smaller than the unused
bytes of the stacked DRAM memory pool, a new directory entry is
created. The fields of the directory entry are initialized as follows:
the off-chip memory address is set to the address of the data being
mapped; the stacked DRAM address is set to the stacked DRAM
memory pool starting address plus the used bytes; the size is set to
the size of the input or output being mapped; the dirty flag is set if
the data being mapped is an output; and the used counter is set to
one. Then, if an input is being mapped, a copy descriptor is created
to copy the data from the off-chip memory to the stacked DRAM.
The source address of the copy descriptor is set to the address of the
input being mapped, the destination address is set to the stacked
DRAM address of the directory entry, the size is set to the size of
the input being mapped, and the finished flag and the chunk offset
are set to zero. A pointer to the copy descriptor is stored in the
CopyIn field of the directory entry. Then, the used and unused bytes
of the stacked DRAM memory pool are respectively incremented
and decremented by the size of the data being mapped. Finally, the
stacked DRAM address is passed by parameter to the task.

3 - MISS REPLACE: If a match is not found in the directory and
the size of the data being mapped is larger than the unused bytes
of the stacked DRAM memory pool, a directory entry is replaced
from the stacked DRAM to make room for the data being mapped.
The directory is sequentially traversed, and the first entry with the
same size as the data being mapped and with the used counter set
to zero is selected as a victim for the replacement. If the directory
entry has the dirty flag set, a copy descriptor is created to write
back the data from the stacked DRAM to the off-chip memory. The
source address, the destination address and the size of the copy
descriptor are respectively set to the stacked DRAM address, the
off-chip memory address, and the size of the directory entry, and a
pointer to the copy descriptor is stored in the CopyOut field of the

directory entry. Then the fields of the directory entry are modified
to reflect the mapping with the new data. To do so, the off-chip
memory address is set to the address of the input or output being
mapped, the dirty flag is set if an output is being mapped, and the
used counter is set to one. Finally, if an input is beingmapped, a copy
descriptor is created to copy the data from the off-chip memory to
the stacked DRAM. The source address of the copy descriptor is set
to the address of the input being mapped, the destination address is
set to the stacked DRAM address of the directory entry, the size is
set to the size of the input being mapped, and the finished flag and
the chunk offset are set to zero. A pointer to the copy descriptor is
stored in the CopyIn field of the directory entry and the stacked
DRAM address is passed to the task.

4 - MISS FULL: If a match is not found in the directory, all the
directory entries ares used, and there is no space available in the
stacked DRAM pool, the data cannot be mapped to the stacked
DRAM because its whole capacity is devoted to data being accessed
by running tasks. In this situation the data is not mapped to the
stacked DRAM and the off-chip memory address is passed by pa-
rameter to the task, so it will access the data in the off-chip memory.

After mapping the data of a task to the stacked DRAM, the
copies of data specified in the copy descriptors take place. To do
so, each input and output of the task is looked up in the directory,
and the two copy descriptor pointers of the matching entry are
retrieved. The CopyOut is processed before the CopyIn. For each
copy descriptor a memcpy takes place using the source address, the
destination address and the size specified in the copy descriptor.
The chunk and the finished flag of the copy descriptor are used only
when the copies are parallelized across threads, as explained in the
next section. When the copies of data finish the copy descriptors
are destroyed and the execution of the task starts.

Finally, when a task finishes its execution, the address of each
input and output is looked up in the directory and the used counter
of the matching directory entry is decremented.

3.4 Parallelization of Copies of Data
Copying data between the stacked DRAM and the off-chip memory
is a costly operation, as explained in Section 2.2. An approach to
mitigate the overheads of the copies of data is to parallelize them
across multiple threads. To do so, the copies of data are split in
chunks and threads are allowed to copy different chunks in parallel.
Chunks can be requested by threads that are idle or by additional
helper threads that can only perform this specific duty. To enable
this technique, several extensions are introduced in the runtime
system. Two environment variables are also added to adjust the
size of the chunks and the number of helper threads.

The Global Copy List is added to the runtime system to keep the
in-flight data copies. When data is mapped to the stacked DRAM
and a copy descriptor is created, a pointer to the copy descriptor is
inserted in the Global Copy List.

The behaviour of the threads is slightly changed to enable the
parallel data copies. As explained in the previous subsection, before
a task is executed, a memcpy is performed for every copy descriptor
of the inputs and outputs of the task. In order to parallelize the
copies, instead of performing a single memcpy for each copy descrip-
tor, the thread iterates on a loop while the finished flag of the copy



descriptor is unset. In every iteration of the loop, the thread re-
quests a chunk of the copy, which consists on computing the source 
and destination addresses for the chunk (adding the chunk offset 
to the source and destination addresses of the copy), incrementing 
the chunk offset by the chunk size, performing the memcpy of the 
chunk and, if the copied chunk is the last chunk of the copy, setting 
the finished flag. Once the finished flag is set, the thread exits the 
loop and is ready to proceed with the next copy descriptor.

Idle threads and helper threads can request chunks of any in-
flight copy, effectively parallelizing it . To  do  so, idle and helper 
threads request a chunk of the copy descriptor at the head of the 
Global Copy List. If the requested chunk is the last chunk of the 
copy, the idle or helper thread removes the copy descriptor from 
the Global Copy List, but does not perform any action on the copy 
descriptor pointers of the directory entries. This is done by the 
thread that will execute the task, as explained in the previous para-
graph, and is used as a synchronization mechanism to ensure that 
the parallel copies of data have finished before the task is executed.

3.5 Reuse-Aware Bypass
Another way to mitigate the overheads of the copies of data is to 
avoid the copies that will not be amortized. In particular, if the data 
is only accessed once, the cost of copying the data is higher than 
the benefits of accessing the stacked DRAM instead of the off-chip 
memory during the computation. For this reason, we propose a 
mechanism that allows tasks to access data in the off-chip memory 
when copying the data to the stacked DRAM is not worth.

The Reuse Tracker is added to the runtime system to track the 
data reuse pattern of the application. The Reuse Tracker keeps, for 
every block of data declared as input or output of any task, a reuse 
counter that counts the number of tasks that read or write it.

The Reuse Tracker is updated when tasks are created and ex-
ecuted. At task creation, the address of each input and output is 
looked up in the Reuse Tracker and its corresponding reuse counter 
is incremented by one. When a task finishes its execution, its input 
and output addresses are looked up in the Reuse Tracker and the 
reuse counters of the matching entries are decremented by one.

The information in the Reuse Tracker is used when the inputs 
and outputs of a task are mapped to the stacked DRAM, introducing 
minor changes to the basic operation explained in Section 3.3. An 
input or output is always mapped to the stacked DRAM if the data 
is already there (case 1, HIT) or if the data is not present in the 
stacked DRAM but there is space available in the stacked DRAM 
memory pool (case 2, MISS FREE SPACE). If these two cases do not 
happen, the Reuse Tracker is consulted before trying to replace any 
unused data in the stacked DRAM to make room for the new data. 
The address of the data being mapped is looked up and, if the reuse 
counter of the matching entry is equal to one, the stacked DRAM is 
bypassed and no replacement is attempted. The same address being 
mapped is passed by parameter to the task, so it will access the data 
in the off-chip memory during the execution. If the reuse counter 
of the data being mapped is higher than one the basic operation 
continues normally, trying to replace some unused data from the 
stacked DRAM (case 3, MISS REPLACE) and not mapping the data 
to the stacked DRAM if all its capacity is occupied with data that is 
being used by other running tasks (case 4, MISS FULL).

3.6 Additional Considerations
The proposed runtime system mechanisms assume that the blocks
of data specified as task inputs and outputs present either complete
or no overlap. This is done in accordance with the OpenMP 4.0
specification, that does not allow inputs and outputs with partial
overlap. Other task-based programming models like OmpSs allow
partially overlapped inputs and outputs, and propose runtime sys-
tem mechanisms to support them in systems with multiple address
spaces [8]. Similar mechanisms could be added to our design.

The proposed design does not include any defragmentation
mechanism for the stacked DRAM. Note that, in HPC applications,
the computation is usually split in equally-sized blocks, so the size
of the inputs and outputs of the tasks is very regular. Thus, when
a block of data is mapped to the stacked DRAM, it is very likely
that an unused block of the same size will be found in the directory,
so the equally-sized blocks can be replaced without causing any
fragmentation. Our design leaves the data in the off-chip memory
in case there are no unused blocks with the same size as the data
being mapped, but defragmentation mechanisms could be added.

4 EXPERIMENTAL FRAMEWORK
The proposed ideas have been evaluated on an Intel Xeon Phi 7250
processor [40]. Its memory system consists of a 96 GBDDR4 off-chip
memory at 1200MHz and a 16 GB MCDRAM stacked memory at
7200MHz. The processor contains 68 cores running at 1.4GHz, and
each core has a 2-wide out-of-order pipeline with SMT support for
4 hardware threads, 512-bit vector units (AVX-512), and private L1
data and instruction caches of 32 KB each. The KNL is organized in
34 tiles, where each tile contains 2 cores, a 1 MB L2 cache shared by
the 2 cores of the tile, and a portion of the distributed tag directory
for the cache coherence protocol. The 34 tiles are interconnected
with a 2D mesh configured in Quadrant clustering mode.

The KNL runs a Linux operating system with kernel version
3.12.64. The runtime system for the task-based programming model
is Nanos [13] 0.12a (rev. 46307e2), which natively supports the
OpenMP 4.0 task constructs. The benchmarks are compiled with
the Mercurium [4] 2.0.0 (rev. 76f98c4) source-to-source compiler,
using Intel ICC 17.0.1 as a backend compiler. The Intel MKL library
is used for the mathematical kernels of the benchmarks.

A set of representative HPC benchmarks, shown in Table 1,
are used in the evaluation. The benchmarks are programmed in
OpenMP 4.0, using annotations to specify the tasks and their inputs
and outputs. Chol calculates a Cholesky decomposition of a triangu-
lar matrix from a symmetric and positive definite matrix. DGEMM
performs a dense matrix multiplication of two square matrices. LU
calculates a LU decomposition of a sparse matrix as the product
of a lower triangular matrix and an upper triangular matrix. QR
computes a factorization of a matrixA as a productA = Q ·R, where
Q is orthogonal and R is upper triangular. SMI computes the inverse
of a real, positive definite, symmetric matrix. Gauss solves the sta-
tionary heat diffusion problem using the Gauss-Seidel method with
a 4-element stencil, following a wave-front parallelization strategy.
Jacobi solves the stationary heat diffusion problem using the Jacobi
method with a 5-element stencil, using two matrices and an embar-
rassingly parallel algorithm. RedBlack solves the stationary heat
diffusion problem with a 4-element stencil using two sub-iterations



Table 1: Benchmark parameters

Benchmark Reuse Small input Large input
Size Tasks Scal Size Tasks Scal

Chol ✓ 8 5984 64 72 1198144 64
DGEMM ✓ 6 4352 64 54 112896 64

LU ✓ 8 91018 256 32 91018 256
QR ✓ 6 93536 64 80 597620 64
SMI ✓ 8 17952 64 72 3594432 64
Gauss x 8 208192 256 72 237792 192
Jacobi x 9 210176 64 64 430592 64

RedBlack x 8 208192 192 72 237792 192
Stream x 12 10496 64 30 10496 64

with embarrassing parallelism. Stream is a benchmark to measure
memory bandwidth, from which we evaluate the Triad test.

Table 1 shows the setup of the benchmarks. The table contains
a Reuse column that specifies if the data accessed by the tasks is
reused inside the parallel regions of the program. Chol, DGEMM,
QR, SMI and LU contain a single parallel region where the whole
computation takes place, and the same piece of data is accessed
multiple times by different tasks inside the parallel region. Gauss,
Jacobi, RedBlack and Stream are iterative algorithms where every
iteration consists of a parallel region, and the same piece of data is
only accessed once by a single task inside each parallel region.

Table 1 also shows the benchmark parameters for the two input
sets used in the evaluation, including the size of the data set (in
GB) and the number of tasks. The large input set does not fit in
the stacked DRAM, which is the most representative case for HPC
applications, while the small input set fits fits in the stacked DRAM.

For each benchmark and input set we explore different task gran-
ularities running with different numbers of threads (16, 32, 64, 128,
192 and 256). We study the parallel executions with visual perfor-
mance analysis tools and we select the best scaling task granularity.
The scalability is reflected in the Scal column of Table 1, which
shows the best performing number of threads for each benchmark
and input set. It can be observed that all the benchmarks achieve
good scalability, reaching its highest performance at 64 threads in
6 of the 9 benchmarks. The other 3 benchmarks benefit from the
SMT capabilities of the cores and scale up to 192 or 256 threads.

5 EVALUATION
5.1 Performance Results
This section evaluates the performance of the proposed techniques.
We first consider input sets that do not fit in the stacked DRAM.

Figure 4 shows the speedup of the proposed mechanisms with
respect to state-of-the-art solutions. Six bars are presented per
benchmark: Off-chip allocates all the data in the off-chip memory
and does not use the stacked DRAM; Cache manages the stacked
DRAM as a hardware cache; PoM configures the stacked DRAM
as part of memory and the benchmarks use the memkind library to
allocate as much data as possible in the stacked DRAM; Runtime
uses the ideas proposed in this paper to manage the stacked DRAM
in the runtime system without including any optimization; Run-
time+ParCopies manages the stacked DRAM in the runtime system
with support for parallel data copies; and Runtime+Reuse manages
the stacked DRAM in the runtime system and bypasses the stacked
DRAM for non-reused data. All results are normalized against PoM.

Figure 4: Performance when allocating all data in the off-
chip memory (Off-chip), configuring the stacked DRAM as
a cache (Cache) or part of memory (PoM), and managing it
in the runtime system (Runtime) with parallel data copies
(Runtime+ParCopies) or with reuse-aware bypass of copies
(Runtime+Reuse). All results are normalized to PoM.

Off-chip achieves worse performance than PoM in all the evalu-
ated benchmarks (22% on average) due to the lower bandwidth of
the off-chip memory. In the case of Cache, it outperforms PoM in
all benchmarks with reuse (11% on average), but suffers significant
performance degradation in the benchmarks without reuse (42%
on average). As shown in Section 2.2, the attained bandwidth in
cache mode is below the bandwidth of the external memory for
large data sets with no reuse, as discussed in Section 2.2 (Figure 1).

For the three runtime-based approaches, Figure 4 shows two
clear trends depending on the data reuse pattern of the benchmarks.
For those with data reuse (Chol, DGEMM, LU, QR, and SMI), the
three runtime-based approaches clearly outperform PoM, achieving
speedups between 11% and 35%. These speedups are granted by the
ability of the runtime system to dynamically copy to the stacked
DRAM the data that is going to be accessed by the tasks, reducing
their execution time. The first time an input or output is accessed
by a task, the runtime system maps it to the stacked DRAM, paying
the cost of the data copy. Then the following tasks that reuse this
data already find it in the stacked DRAM and can capitalize on its
benefits without any added cost. These operations add very modest
performance overheads, as less than 1% of the total execution time
is spent mapping inputs and outputs to the stacked DRAM, and
less than 6% is spent copying data between the two memories. In
addition, the overheads of the copies are reduced when they are
parallelized, providing performance gains of up to 6% over Runtime
in DGEMM. The next subsection evaluates in depth the effect of
parallelizing the copies and adding helper threads.

For benchmarks without data reuse (Gauss, Jacobi, RedBlack and
Stream), Figure 4 shows that PoM and Runtime+Reuse achieve the
same performance, while the other two runtime-based approaches
(Runtime and Runtime+ParCopies) perform significantly worse, up
to 37% in Stream. This happens because, when data is not reused,
there is no benefit from copying them to the stackedDRAM.As such,
the Runtime approach is slower than PoM due to these unworthy
copies of data, that add significant overheads in Jacobi (17%) and
Stream (63%). Parallelizing data copies achieves some performance
improvements in these benchmarks, 4% on average, but it is still
slower than PoM and Runtime+Reuse. The best option in these
benchmarks is to bypass the stacked DRAM and avoid any data
copy. The ability of Runtime+Reuse to detect non-reused data allows
it to identify such situation without any programmer intervention.



Figure 5: Stacked DRAM hit, miss and bypass ratios. Misses
are mapped to the stacked DRAM if there is available space
(MissSpace) orwith a replacement (MissReplacement). If the
whole stacked DRAM is in usage (MissFull) or the data is not
reused (Bypass), accesses are served by the off-chipmemory.

In order to better explain the presented performance numbers,
Figure 5 reports the percentage of bytes specified in the inputs and
outputs of all the tasks that are served by the stacked DRAM. This
figure characterizes the different situations that can happen during
the map operation in the runtime system (described in Section 3):
the data already is in the stacked DRAM (Hit, case 1); the data is
not in the stacked DRAM but there is space available (MissSpace,
case 2); the data is not in the stacked DRAM and some other data
is replaced (MissRepl, case 3); the data is not in the stacked DRAM
and the whole capacity is occupied with data used by running tasks
(MissFull, case 4); and finally the data has no reuse and the stacked
DRAM is bypassed (Bypass). The figure includes results for the
three Runtime variants and for PoM. To obtain the measurements
for PoM, we emulate its behaviour in the runtime system. To do so,
inputs and outputs are mapped to the stacked DRAM as long as
there is space available in the pool and, when the stacked DRAM
becomes full, the runtime system never replaces any data. Instead,
inputs and outputs are served by the stacked DRAM if they hit in
the directory, and are served by the off-chip memory otherwise.
This effectively emulates the behaviour of PoM and achieves the
same performance in all the benchmarks.

Figure 5 shows that, for the benchmarks with data reuse, PoM
presents hit ratios between 28% and 48%, while the rest of the
data is served by the off-chip memory. The three runtime-based
approaches achieve higher hit ratios, from 59% to 85%. For these
benchmarks, Runtime+Reuse never bypasses the stacked DRAM
because all the data is used by multiple tasks.

For benchmarks without data reuse, PoM and Runtime+Reuse
offer the same performance, while the other approaches perform
worse. The best option in these cases is to always bypass the stacked
DRAM to avoid any copy of data. As shown in Figure 5, Run-
time+Reuse and PoM bypass the stacked DRAM for any data that
does not hit in the directory. In contrast, the other two runtime ap-
proaches do unworthy replacements of data in the stacked DRAM.

Gauss and RedBlack scale up to 192 threads with coarse task
granularities, so the inputs and outputs of the in-flight tasks exceed
the capacity of the stacked DRAM. For this reason, in Runtime and
Runtime+ParCopies, 79% of the inputs and outputs are not copied
to the stacked DRAM due to lack of space. As a consequence, the
three runtime approaches behave like PoM in Gauss and RedBlack,
achieving the same performance. We observe that, with suboptimal
task granularities that fit in the stacked DRAM, results for Gauss
and RedBlack follow the same trend as Jacobi and Stream.

(a) Speedup

(b) Percentage of copied bytes

Figure 6: Speedup and percentage of bytes copied by the com-
pute threads with parallel copies and helper threads.

All together, Runtime+Reuse achieves the best performance re-
sults with an average 1.14x speedup over PoM. One the one hand,
PoM delivers good performance in benchmarks without reuse, as
copying the data to the stacked DRAM is not worth in these cases.
On the other hand, Cache and Runtime dynamically copy the data
accessed by the tasks to the stacked DRAM, which significantly im-
proves performance of benchmarks with reuse. Runtime+ParCopies
reduces the cost of the copy operations and further increases the
performance gains of Runtime. Finally, Runtime+Reuse appears as
a general and efficient solution for all the benchmarks, given its
ability to efficiently manage the stacked DRAM according to the
characteristics of any application.

5.2 Performance of Parallel Data Copies
Figure 6 presents an extensive experimental campaign to evaluate
the parallelization of data copies. The two plots show results for
executions with 16, 32, 64, 128 and 192 compute threads, separated
by vertical lines. For each number of compute threads, the X axis
considers adding 0, 8, 16, 32, 64, 128 and 192 helper threads (without
exceeding the maximum 272 threads of the KNL). Figure 6a shows
the speedup of each configuration with respect to the same number
of compute threads and no copy threads, and Figure 6b shows the
percentage of bytes copied by the compute threads.

The parallelization of the copies of data and the addition of helper
threads achieve important performance improvements, specially
for executions with up to 64 threads in total. Results show that,
when 16 or 32 compute threads are used, adding up to 32 helper
threads achieves average speedups of 14% and 7%, respectively. In
these cases, the performance of Chol, DGEMM, Jacobi, LU and SMI
improves by 10% to 20%, and Stream achieves a maximum speedup
of 1.6x with 16 compute threads and 32 helper threads. As shown in



Figure 7: Performance with input sets that fit in the stacked
DRAM. All results are normalized to PoM.

Figure 6b, these speedups are obtained because most of the copies
are done by the helper threads, from 70% to 99% of the total copied
bytes in most benchmarks. Gauss and RedBlack have very little
copies of data so the performance gains are very low.

The performance improvements are not so relevant when the
total number of threads exceeds 64. This can be observed in the
results that use 64 compute threads with 32 or more helper threads,
or 32 compute threads with 64 or more helper threads. In these cases
the parallel copies provide very little benefits and can even degrade
performance, even though the percentage of bytes copied by the
helper threads is still large. This happens because the KNL has 68
cores with support for 4 hardware threads per core so, when the
total amount of threads grows past 68, the threads start competing
for functional units, cache ports and other microarchitectural re-
sources of the cores. This slows down all the phases of the program,
including the execution of the tasks, the copies of data and other
runtime system phases. When using 128 or 192 compute threads,
the effects of adding helper threads are not very relevant. This hap-
pens because, even without adding helper threads, the resources
of the cores are already contended. Moreover, some benchmarks
do not scale past 64 threads, so some executions are dominated by
runtime system and synchronization overheads.

As a conclusion, parallelizing the data copies achieves important
performance gains, from 10% to 20% in many benchmarks when
using up to 64 threads. These speedups are granted by the ability
of the helper threads to perform a large percentage of the copies,
from 70% to 99% of the total bytes. However, this optimization is
not so effective in executions with more than 64 threads due to the
contention in the microarchitectural resources of the cores.

5.3 Performance with Small Input Sets
Next we study the performance when the input sets fit in the
stacked DRAM. Figure 7 shows the results of Off-chip,Cache, PoM
and Runtime. The other runtime solutions (Runtime+ParCopies and
Runtime+Reuse) show the same performance as Runtime, and are
obviated for clarity. All results are normalized to PoM.

The most important conclusion from Figure 7 is that our propos-
als achieve the same performance as PoM. PoM statically allocates
the whole data set in the stacked DRAM with no overhead, while
Runtime only adds a 1% overhead to automatically manage the
stacked DRAM at runtime. Cache obtains an average slowdown of
5% due to the reduced performance in LU and Stream. Off-chip is
the worse approach, with an average 44% slowdown with respect
to PoM. Thus, even in the most advantageous scenario for PoM, the
proposed runtime system solutions provide the same performance.

6 RELATEDWORK
6.1 DRAM Caches
DRAM caches can be categorized in two classes.

Block-based DRAM caches like the one in the KNL store data
and tags using a cache block granularity (i.e. 64 bytes), aiming to
maximize the effective capacity of the cache and to efficiently ex-
ploit temporal locality. The main problem of this class of DRAM
caches is the storage requirements for the tags, that are too large to
be placed in SRAM, so they have to be stored in the stacked DRAM.
This limits the final capacity of the DRAM cache and imposes serial
tag-data accesses, increasing the hit latency and complicating the
design of set-associative caches. To overcome the latency problem,
the Loh-Hill Cache [24] stores both tags and cache blocks in the
same DRAM row, so a single row access can serve the tag and the
block access. The Alloy Cache [34] collocates the tag and the block
together to further reduce the access latency. Sim et al. [39] intro-
duce a hit/miss predictor for the DRAM cache and the ATCache [17]
accelerates tag accesses by means of a SRAM-based tag cache.

Page-based DRAM caches use a page granularity to reduce the
storage overhead of tags. However, multi-gigabyte DRAM caches
still require a tag store of tens of megabytes, so the tags still need
to be stored in the stacked DRAM. Page-based DRAM caches suffer
from very highmiss latencies, as replacing data at a page granularity
is a costly operation, and from making a suboptimal utilization of
the cache capacity and of the off-chip bandwidth if only parts of the
pages are accessed. To tackle these problems, CHOP [21] improves
the efficiency of a page-based DRAM caches by caching hot pages
only. The Footprint Cache [20] and the Unison Cache [19] track
which blocks of the page have been accessed and selectively fetch
only those blocks that are likely to be used in the future.

6.2 Software Management of Heterogeneous
Memory Systems

Some works propose to manage heterogeneous memory systems
at the Operating System (OS) level. A naive policy is to allocate
pages in the stacked DRAM and, once it is full, allocate pages in
the off-chip DRAM. A more sophisticated approach is to migrate
pages from the off-chip DRAM to the stacked DRAM based on
some heuristic, which arises some problems. First, the OS has very
limited information on how the pages are accessed, as it only has a
single accessed bit per page in the page table and does not know
how recently or how many times the pages are accessed. This
problem can be solved by extending the page table and the TLBs to
measure the page hotness [28]. The second problem is the cost of
page migrations, which require to trigger an interrupt, to copy the
page to the stacked DRAM (potentially copying a dirty page back
to the off-chip memory), to update the page table, and to invalidate
the TLB entries for that page. Sim et al. [38] introduce an extra
level of address translation from physical addresses into DRAM
addresses, which allows the hardware to swap pages between the
stacked DRAM and the off-chip memory without OS intervention.

Khaldi et al. [22] propose to automate the allocation of data ob-
jects at compile time. In this approach the compiler analyses the
code to detect frequently used data and memory access patterns, it



uses this information to calculate a priority value for each data ob-
ject, and then it generates the appropriate functions calls to allocate 
the data objects in the stacked DRAM or in the off-chip memory. 
Other works propose to automatically allocate the most suitable 
data objects to the stacked DRAM at runtime. Servat et al. [37] 
present a framework of runtime libraries and tools that generates 
a profile of the execution, calculates the best distribution of data 
objects in the memory system, and allocates them accordingly in 
future executions. RTHMS [32] uses a similar approach to provide 
programmers with recommendations on data placement.

6.3 Task-Based Programming Models
The ideas proposed in this paper apply to runtime-managed task-
based programming models that specify data dependencies between 
tasks. It has been shown in the literature that these programming 
models offer great potential for managing complex memory or-
ganizations with multiple address spaces, such as heterogeneous 
systems with accelerators or multi-node clusters. OmpSs [8, 9, 33] 
extends OpenMP with pragmas to specify the device where tasks 
can be executed and the inputs and outputs of the tasks that require 
copies of data. The address spaces of the nodes and the GPUs are 
managed by the runtime system as software caches, and a central-
ized directory tracks all the data in all the caches. Asynchronous 
data transfers are supported by the underlying libraries (GASNet for 
multi-node clusters and the CUDA runtime for GPUs). StarPU [3] 
applies a very similar model to support accelerators such as GPUs 
or the Cell SPUs, but offers a lower-level API to the programmer 
instead of pragmas. CnC-HC [36] and CnC-CUDA [14] extend CnC 
with constructs to specify the data accessed by the tasks, and the 
underlying runtime systems Habanero-C and Habanero-Java per-
form the data transfers [15]. Sequoia [23] generates code for the 
data transfers between tasks at compile time, so it does not need 
a directory to manage the data at runtime. Legion [5] extends Se-
quoia by providing a mapping interface for the programmer to 
control the data transfers when tasks start and finish. Similarly, 
PaRSEC [7] allows the programmer to describe the distribution of 
data and tasks across the system as a way to control the amount 
of communication. In Cilk [6] tasks communicate data by means 
of explicit calls in the application code, and the runtime system 
uses system-dependent libraries (e.g. Strata active-message library 
on the CM5) to trigger data transfers when needed. OCR [26] is a 
generic runtime system that offers a low-level API to higher-level 
programming models, including abstractions to manage data by 
means of a globally accessible shared name space of data objects. 
OCR relies on the higher-level programming models to map applica-
tion data to the OCR data objects and to perform the data transfers 
between address space, if needed.

Charm++ has some preliminary support to manage stacked 
DRAM memories [12]. There are numerous and important differ-
ences between our approach and the one proposed by Charm++. 
A big difference is that Charm++ requires the programmer to ex-
plicitly indicate the tasks that have to map its data to the stacked 
DRAM, so the runtime system does not decide whether the data of 
a task should be mapped to the stacked DRAM or not. This is im-
portant because, if the stacked DRAM is full, the tasks are blocked 
until some free space is available. In this paper we propose that

the runtime system manages the stacked DRAM without any pro-
grammer intervention, and it automatically decides to map data to
the stacked DRAM or to allow tasks to access the off-chip memory
when the stacked DRAM is full or the data is not reused. Another
important difference is that Charm++ relies on prefetching data
to the stacked DRAM using helper threads. The main problem of
prefetching is that a big part of the stacked DRAM has to be devoted
to prefetch buffers, limiting the amount of data that can be accessed
by the in-flight tasks. This imposes a severe limitation either to the
number of tasks that can be executed in parallel or to the granu-
larity of the tasks. In the evaluation, Charm++ only considers two
benchmarks running with 64 threads (counting helper and compute
threads) and restricts the working set size of the in-flight tasks to
2 to 8 GB. In such scenario, their results show similar trends to
the ones we observe with the parallel copies when using 16 and 32
compute threads (Figure 6a). In this paper we use 9 benchmarks,
we explore different task granularities and number of threads, and
we observe that the best performance is achieved using 64 to 256
compute threads, and that the working set size of the in-flight tasks
occupies most of the capacity of the stacked DRAM. In this scenario,
adding helper threads is not so effective because of the resource
contention in the SMT cores, and we propose a reuse-aware bypass
policy that adapts to the characteristics of the applications and
always achieves the best performance.

7 CONCLUSIONS
This paper proposes a runtime approach to transparently manage
stacked DRAM memories of heterogeneous memory systems with-
out affecting programmability. The proposed techniques leverage
the runtime system of task-based programming models to dynami-
cally copy to the stacked DRAM the data that is going to be accessed
by the tasks. The proposal includes two optimizations to overcome
the cost of copying data between the stacked DRAMand the off-chip
memory. The first optimization parallelizes the data copies across
idle threads or additional helper threads. In the second optimization
the runtime system exploits the data reuse pattern information to
avoid copying unworthy data to the stacked DRAM. Results on the
Intel Knights Landing processor show that the performance of state-
of-the-art approaches heavily depends on the data reuse pattern
of the applications. The proposed runtime approach automatically
adapts to the characteristics of each application and always pro-
vides the best performance, achieving average speedups of 14% and
29% against a stacked DRAM managed as part of memory and as a
hardware cache, respectively.
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