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Abstract. In the context of neutron science, Bayesian inference methods have been recently
implemented within the MANTID framework [Monserrat D et al. 2015 J. Phys. Conf. Ser.
663 012009 (2015)]. In this contribution, we highlight the advantages of this software package
for robust data analysis and subsequent model selection. To this end, we use the celebrated
Rosenbrock function to illustrate its merits and strengths relative to classical fitting algorithms.
We also introduce the latest additions implemented in MANTID, with a view to increasing its
user friendliness as well as stimulating wider use. These include simulated-annealing schemes
to reduce the need for initial guesses, as well as new options for multidimensional fitting.

1. Reverend Bayes to the Rescue
Data fitting is very often a key step in the scientific method. In the context of neutron
science, the analysis of Quasielastic Neutron Scattering (hereafter QENS) data is a good case
in point, as the measured response almost invariably consists of the cumulative contribution
of partially overlapping signals convolved with the instrument resolution in the presence of
(typically) unwanted features such as backgrounds and/or so-called ‘spurions.’ In this situation,
a robust analytical description of a given experimental data set requires the use of several and
often complex spectral functions, whose precise number and associated line shapes carry vital
information on the nature of the underlying properties of the material under investigation. In
the language of data analysis and statistics, we are faced with a problem in model selection.

Using the conceptual framework originally introduced by Sivia and Skilling [1], previous
work has focused on the development of a Fitting Algorithm for Bayesian Analysis of DAta
(FABADA) [2, 3]. This algorithm uses an adaptive Markov Chain Monte Carlo (MCMC)
method to effect Bayesian model selection, and it is applicable to any type of data. More
recently, FABADA has been implemented within the MANTID framework [4], as described
in more detail in Refs. [5, 6, 7]. Beyond its well-established applicability to analyse QENS
experiments [8, 9, 10], FABADA in MANTID (hereafter FIM) has also found recent use in
the interpretation of Compton and mass-selective neutron-scattering data, techniques which in
many respects suffer from a similar degree of spectral congestion as QENS [11, 12].

In what follows, we outline the primary advantages of FIM in its current incarnation, as well
as give a brief description of the most recent additions to this software package.

http://creativecommons.org/licenses/by/3.0
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Figure 1. Contours of Rosenbrock function (left) and FIM converged-chain points (right) for
that function described in the main text (for a = 1 and b = 100). A and B are fitting parameters
of fitting function f(x|A,B).

2. Advantages of FABADA in MANTID – A Quick Dive
FIM aims to provide a user-friendly platform to implement Bayesian analysis with an emphasis
on neutron-scattering data of any kind. In addition, the MANTID framework contains a plethora
of features for the further visualisation and analysis of FIM output, including its much-needed
integration with other neutron-focused algorithms and data workflows.

On a more technical front, FIM uses the natural tendency of adaptive MCMC methods
to explore the entire parameter space with a (mathematically proven!) [2, 13] tendency to
reach the global minimum irrespective of dimensionality. The method also yields a histogram
for the a posteriori Bayesian parameter distributions, not just the optimal values available
in widely used minimisation packages based on linear or non-linear methods, e.g., Levenberg-
Marquardt algorithms. This feature is a crucial one, as it enables rigorous model selection
via an assumption-free analysis of the underlying Probability Density Functions (PDFs). Such
an analysis can deal quite naturally with any general χ2 landscape, including multimodal and
asymmetric PDFs. These PDFs typically challenge the realm of applicability of classical fitting
algorithms, particularly when dealing with sparse data as those arising from low-count-rate
techniques. FIM can deal with these cases by simply replacing the associated cost function by
suitable alternatives, and work is underway to automate these possibilities.

Figure 1 illustrates the current capabilities of FIM using the Rosenbrock function Ra,b(x, y) =
(x− a)2 + b(x2 − y)2. This seemingly simple function is widely used to test the robustness and
reliability of minimisation algorithms to reach global minima. Standard minimisers including
non-linear ones like Levenberg-Marquardt can struggle with this case owing to the non-convex
nature of the χ2 landscape, whereas FIM easily samples parameter space as well as can identify
the valley minimum via the use of simulated annealing techniques, as explained in more detail
below.

3. Latest Additions
3.1. Simulated Annealing
All fitting algorithms require an initial guess of all parameters, and this condition can cause
serious convergence issues. FIM depends far less strongly on this choice, as MCMC methods
have the tendency to explore the entire parameter space with little bias – i.e., parameter sets
characterised by a higher cost function (typically the χ2) have a non-zero probability, thus
enabling escape from local minima. In this situation, any χ2 barrier towards the global minimum
may be overcome provided enough time is spent exploring parameter space.



3

1234567890 ‘’“”

ICANS XXII IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1021 (2018) 012012  doi :10.1088/1742-6596/1021/1/012012

−5 0 5 10 15

0

200

400

600

800

1,000

Parameter A

χ
2

Figure 2. Simulated annealing in FIM: (left) χ2 landscape; (center) convergence of classical
fitting algorithms (black, local minimum) and FIM (red, absolute minimum) using an annealing
temperature of 10; and (right) resulting PDF from FIM, showing its clear multimodal character.

To accelerate this process, FIM has been modified to include a simulated annealing option
that allows for efficient jumps across χ2 barriers of arbitrary height. In essence, this procedure
works by multiplying the cost function by a constant that serves to flatten χ2 features, therefore
enabling an easier exploration of the landscape. This procedure is particularly useful when an
initial guess is unavailable. In addition, it can quantify how robust parameter estimates for the
location of the minimum are using the associated PDFs. These notions find a familiar analogy
in thermal physics, where such a constant may be considered the temperature of the system
dictating the total number of accessible states. In this vein, the fusion temperature of a given
minimum in χ2 space can be used to define a quantitative criterion for the robustness of a fit –
in many respects, this is quite a profound connection between energy landscapes (the realm of
physics) and χ2 distributions (the realm of statistics). Figure 2 provides a simple illustration of
simulated annealing in FIM. The model has been constructed to have the χ2 landscape shown on
the left, characterised by the presence of both a global and a metastable basin. The center panel
shows how a sophisticated classical fitting algorithm such as Levenberg-Marquard gets stuck
in the latter, whereas FIM can reach the global minimum without much difficulty. The figure
on the right shows the associated PDF obtained with FIM, illustrating its intrinsic multimodal
character.

3.2. Multidimensional Fitting
The ability to perform multidimensional fits with FIM has also been developed and preliminary
tests have been performed. Using this option, it is possible to fit data collected as a function of
several variables in a simultaneous fashion, e.g., spatial dimensions or momentum- and energy-
transfers, or parametrically as a function of external stimuli such as temperature or pressure. As
example, Fig. 3 shows the uncertainties from a FIM fit to a two-dimensional Gaussian. Amongst
a number of applications, we anticipate that this fresh addition to FIM will enable the use of
the entire dynamic structure factor to implement model selection, as recently demonstrated in
Ref. [8].

4. Outlook
Following its introduction in 2015, FIM continues to grow and evolve. Simulated annealing and
multidimensional fitting constitute the latest additions to this software package and extensive
testing of these capabilities is currently underway. Looking further into the future, extensions
to FIM include: dealing with sparse, low-count-rate data in a statistically rigorous fashion;
the definition of quantitative criteria for a systematic analysis of the information content (and
associated correlation) of the underlying PDFs; the development of a library of models starting
with those typically used for the analysis of QENS and Compton data; or the use of genetic
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Figure 3. A snap shot of the uncertainties of two fitting parameters, A and B, obtained after
multidimensional fitting with FIM to a two dimensional function. The value of χ2 is presented
by colour map. See text for more details.

algorithms to increase overall efficiency. All in all, the primary objective behind these efforts is
to develop a multi-purpose state-of-the-art tool for the intuitive and robust analysis of complex
neutron data.
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