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Abstract

This work shows possibilities and limitations of the re�ned zigzag theory
(RZT) that has been used in di�erent structural (beam, plate and shell) �-
nite elements. The re�ned zigzag theory can deal with composite laminates,
adding only one nodal degree of freedom per spatial dimension of the lam-
inate, obtaining very good accuracy. It assumes that the in-plane displace-
ments have a piece-wise linear shape across the thickness depending on the
shear sti�ness of each composite layer. This paper presents the main aspects
of a beam/shell of revolution element used for the numerical simulations.
The details of the re�ned zigzag theory are given also in order to discuss
some limitationss that occur when dealing with the non-linear phenomenon
of delamination. Two examples are presented and discussed, including di�er-
ent inhomogeneities that show the limitations of the RZT for the treatment
of partially delaminated beams.

Keywords: Composite Laminates, Re�ned zigzag theory, Finite Elements,
Delamination

1. Introduction

The re�ned zigzag theory(RZT), oriented to the treatment of composite
laminates, is an evolution of the zigzag theories proposed from the 80s (an
historical review of these theories can be seen in [2]). The RZT [18]) enhaces
the �rst order shear deformation theory (FSDT), that includes 5 degrees of
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freedom (three displacements of the middle surface of the shell plus the two
in-plane components of the normal rotation) and the hypothesis of linear in-
plane displacements across the thickness, adding only two degrees of freedom
corresponding to the amplitudes of hierarchical in-plane displacements over
the linear approach. This theory leads to constant transverse shear stresses in
each layer (and therefore discontinuous in the thickness of the laminate), but
allows to treat clamped boundary conditions that was a limitation presented
by the initial zigzag theories. The transverse shear stresses computed directly
from shear strains and using the constitutive relationship at each point of the
thickness show in many cases a poor approximation. An accurate recovery
of the shear stresses requires the integration across the laminate thickness
of the in-plane equilibrium equations of the beam or shell, that involve the
computation of stress derivatives between �nite elements. To avoid this,
mixed versions of the RZT have been developed ([13, 17]) where other im-
provements in the de�nition of additional displacements were also included.
The RZT has been implemented, in all cases with linear kinematics, in beam
�nite elements ([10, 15, 3, 14]), in �at plate elements ([18, 4, 12, 21, 1]) and
in double curvature elements ([20]). It has also been implemented including
non-linear kinematics restricted to small elastic strains in double-curved shell
elements ([8]) and in a solid-shell element ([9]). For homogeneous laminates,
i.e. whose topology is maintained throughout the domain, the published re-
sults show a very good approximation to in-plane axial stresses in di�erent
types of sections but mainly of the sandwich type. This allows to obtain
the transverse shear stresses by integration in the transverse direction of the
in-plane equilibrium equations. Naturally a very good approximation to the
axial stresses is associated with an even better approximation to the in-plane
displacements. In general, the approximations do not include variation across
the thickness of the normal displacement except in Reference [1] and collater-
ally in Reference [9]. Besides that, in several of the works cited, a very good
approximation to frequencies and vibration modes in beams and �at plates
has been reported. The use of non-linear kinematics has allowed to compare,
in a few cases, buckling loads with very good accuracy. Another interesting
aspect is the possibility of using this theory (RZT) for delamination prob-
lems. The di�culties that appear then are the lack of homogeneity and the
need to update the transverse interpolation function during the delamination
process ([5, 6]). More recently Groh and Tessler[11] evaluate the behavior of
a partially delaminated beam (without following the delamination process)
using the mixed version of the RZT.

In the present work an implementation of the RZT in a beam/shell of
revolution �nite element is shown. Initially, the shell theory used and the
basic formulation (FSDT) of the beam/shell element are summarized. Next,
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two variants of the RZT are introduced, how it is implemented in the de-
scribed element, and how the formulation of the element is modi�ed for the
case in which there are more than one de�ned sections. Then numerical
simulations show a good correlation with comparisons with solid models and
the limitations that appears when trying to simulate discontinuities due to
delaminations. Finally, some conclusions are summarized.

2. Standard beam/shell �nite element (FSDT)

2.1. Summary of the shell theory

The shell theory considered is a restriction to the two-dimensional case
of the three-dimensional shell theory developed by Simo et al. ([16]). The
con�guration of the shell in R2 is de�ned by (see Figure 1):

a) the middle surface ϕ de�ned by the mapping

ϕ : S̄ −→ R2 (1)

b) the director �eld t de�ned by the mapping

t : S̄ −→ S2. (2)

The vector t de�nes the direction of a �ber across the thickness that
remains straight during the deformation (generalized Kirchho� hypothesis).
The domain S ⊂ R is supposed compact with points characterized by ξ ⊂ S̄.

With these notation, the geometry of the shell can be written as

Φ := {x ∈ R2/x = ϕ+ zt, z ∈ [−h,+h]} (3)

ξS̄
x1

x2

'(ξ)

α

t(ξ)

Figure 1: Basic de�nition of the geometry
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where [−h,+h] de�nes the shell thickness. Using a Cartesian basis {e1, e2}
in R2 we can write

ϕ = ϕiei
ϕ′ξ = ϕi′ξei

t = tiei

(4)

Denoting geometrical variables in the original con�guration Φ0 by ( )0

and de�ning a convective system on both the original and deformed con�g-
urations:

{ϕ0
′ξ, t

0} ≡ {a(0)
1 , a

(0)
2 }

{ϕ′ξ, t} ≡ {a1, a2}
(5)

where the coordinate ξ is associated with convective direction 1. The follow-
ing surface measures can be de�ned over the middle surface

dµ0 = ̄0 dξ dζ
dµ = ̄ dξ dζ

(6)

with
̄0 =

(
ϕ

(0)
′ξ × t(0)

)
.ϕ

(0)
′ζ

̄ =
(
ϕ′ξ × t

)
.ϕ′ζ

(7)

and ζ the coordinate in the out-of-paper direction, that for the usual 2D
cases, i.e. plane stress, plane strain or shell of revolution leads to ϕ′ζ = e3.
It is useful to de�ne also:

J̄ = ̄ / ̄0 (8)

The deformation gradient at the middle surface (z = 0) that can be
written as

F̄ := ϕ′ξ ⊗ a1(0) + t⊗ a2(0) +ϕ′ζ⊗e3 (9)

allows to compute the Lagrange strains E =1
2

(
FTF− 1

)
leading to

ε1 =
1

2

[
ϕ′ξ ·ϕ′ξ −ϕ

(0)
′ξ ·ϕ

(0)
′ξ

]
(10)

γ = ϕ′ξ · t−ϕ
(0)
′ξ · t

(0) (11)

χ1 = ϕ′ξ · t′ξ −ϕ(0)
′ξ · t

(0)
′ξ (12)

For shells of revolution, the axial strain along the parallel and a second
principal curvature must also be considered

ε3 =
1

2

( x1

x
(0)
1

)2

− 1

 (13)
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χ3 =
sinα(0)

x
(0)
1

− x1 sinα(
x
(0)
1

)2 (14)

The stress resultants can be computed in terms of stress measures de�ned
on the present or the original con�gurations

n1 =
1

̄

∫ +h

−h σ g1 j dz

=
1

̄

∫ +h

−h P g1(0) j0 dz
(15)

m1 = t×1

̄

∫ +h

−h z σ g1 j dz

= t×1

̄

∫ +h

−h z P g1(0) j0 dz = t× m̃1

(16)

l =
1

̄

∫ +h

−h σ g2 j dz

=
1

̄

∫ +h

−h P g2(0) j0 dz
(17)

where g1 = ∂x/∂ξ, g2 = ∂x/∂z, and g1, g2 are the associated contravariant
vectors. σ and P are the Cauchy and �rst Piola-Kirchho� stress tensors
respectively. Besides n1 and m1 are the resultant stress and bending moment
along the line ξ = cte, while l is the across-the-thickness stress resultant.
The vector m̃1 is denoted �director bending moment� and allows to de�ne
the following �e�ective stress resultant�

ñ1 = n1 − λ1m̃1

q̃ = n13 − λ1m̃1 (18)

where λi are obtained from the relation

t′1 = λ1ϕ′1 + λ2t (19)

For shells of revolution the following stress resultants must also be con-
sidered

ñ3 =
1

̄

∫ +h

−h e3 σ e3 j dz

=
1

̄

∫ +h

−h e3 P e3 j0 dz
(20)

m̃3 =
1

̄

∫ +h

−h z e3σ e3 j dz

=
1

̄

∫ +h

−h z e3P e3 j0 dz
(21)
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Using the expressions of internal power per unit length, it can be shown
that the e�ective stress resultants de�ned above (18-21) are conjugated of
the generalized Lagrangian strains (10-14).

ẇ =
∫
A

P : Ḟ dA
=

∫
A

[ñααε̇αα + q̃γ̇ + m̃αακ̇αα] dµ
(22)

Assuming the existence of an internal energy function w, resorting to the
Clausius-Duhem inequality and following standard arguments, hyperelastic
constitutive equations can be formulated in the form

ñα = ρ̄
∂w

∂εα

q̃ = ρ̄
∂w

∂γ

m̃α = ρ̄
∂w

∂χα

(23)

with

ρ̄ =
1

̄

∫ +h

−h
ρj dξ (24)

2.2. Implemented Finite Elements

The beam/shell model de�ned above, that implies C0 continuity and that
can be associated with a �rst order shear deformation theory (FSDT), was
implemented in a simple isoparametric �nite element [7], of two and three
nodes with three degrees of freedom per node (both in-plane displacements
and the rotation of the director). To avoid transverse shear locking reduced
integration is used, with one integration point for the 2-node element and
two integration points for the quadratic 3-node element that can discretize
curved surfaces in more detail.

3. The Re�ned Zigzag Theory RZT and the RZT3

The re�ned zigzag theory (RZT), proposed and developed by Tessler and
coworkers [18], has been implemented in multiple structural �nite elements.
The objective is to substantially improve the FSDT when laminated sections
are considered, particularly sandwich sections, i.e. those composed of two
sti� external layers and a �exible core.

In the FSDT the transverse shear strain γ (z) is constant across the thick-
ness therefore the shear stress τ (z) is discontinuous between two layers with
di�erent shear modulus. To reduce this discontinuity the transverse shear
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strains are modi�ed including (hierarchical) additional in-plane displace-
ments ψ with a zigzag transverse pro�le φ (z) that has constant derivative
βk = φk′z at each layer k:

u1 (z) = uFSDT1 (z) + ψφ (z) (25)

The total shear strain can now be seem as the sum of two components: one
constant η and one discontinuous that lead to two transverse shear stress
components: a discontinuous one and a constant one respectively. The con-
stant strain component η can be seen as a modi�cation of the constant strain
component of the Reissner-Mindling plate theory

η = γ − ψ (26)

which as before leads to a discontinuity of transverse shear stress between
layers. The de�nition of the pro�le function φ (z) from the shear modules of
each layer Gk (k = 1..N with N the number of layers) is based on the idea
that shear stresses are written as the sum of two parts

τ k (z) = Gkη +Gk
(
1 + φk′z

)
ψ

= Gkη +Gk
[(

1 + βk
)]
ψ (27)

= Gkη + τ̄ k (z)

and to enforce the continuity of the component τ̄ k (z) at each interface be-
tween layers (there are N − 1 interfaces), that leads to

Gk
[(

1 + βk
)]

= Ḡ

βk =
Ḡ

Gk
− 1 (28)

where Ḡ results from the condition
∫ +h

−h βdz = 0 (with 2h the total thickness

and hk the thickness of each layer)∫ +h

−h
βkdz =

N∑
k=1

(
Ḡ

Gk
− 1

)
hk = Ḡ

N∑
k=1

hk
Gk
− 2h = 0 (29)

then

Ḡ =
2h∑N
k=1

hk
Gk

(30)

This original version of the RZT leads to a stress τ (z) that is the sum of
a discontinuous term (associated with η) and a constant term τ̄ , which makes

7



K=3

K=1

K=2

h

h

section

z

τ
0 100000 200000 300000 400000

-10

0

10

FSDT
RZT-c
RZT
RZT3-c
RZT3

z

φ
-0.002 0 0.002
-10

0

10

RZT
RZT3

z

(a) (b) (c)

Figure 2: (a)Section, (b)Pro�le of τ and (c)function φ in FSDT, RZT and RZT3

it impossible to simultaneously satisfy continuity and boundary conditions.
The achievement of the RZT is to go from a FSDT with constant γ (z) and
where the shearing force is taken only by the sti� layers (in a sandwich
section) to a major contribution of the core to support the shearing force
due to the component τ̄ . The main advantage of the RZT is that the pro�le
φ (z) makes it possible to better �t the axial stresses σx (z). This leads to a
more realistic bending sti�ness, which in turn allows to obtain a transverse
shear stress pro�le with very good accuracy if it is computed by integration
across the thickness of the in-plane equilibrium equations and not through
the usual way of kinematics relations plus constitutive equations.

The Figure 2 shows what happens in an asymmetrical sandwich section
with a very �exible core and a bottom layer with a transverse modulus of
elasticity three times that of the top layer. The example corresponds to
a cantilever beam with a constant shearing force (see Figure 3 and Table
1). The stress pro�le corresponds to half length where the in�uence of the
boundary conditions is quite low. For the FSDT, where the pro�le shows
strong discontinuities, all the shearing force is held in equilibrium by the sti�
layers proportionally to each shear modulus Gk. Two pro�les are shown for
the RZT, one corresponding to the continuos part τ̄ (RZT-c) and the total
one (RZT). Clearly it does no satis�es the null stress boundary conditions
at the external surfaces but in contrast with the FSDT the core contributes
substantially to equilibrate the shearing force.

A very interesting aspect presented in [13] is the de�nition of a new zigzag
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function. In that work the continuous part τ̄ k (z) is improved such that
besides being continuous is variable and nulli�es at the external surfaces. In
that way if η ∼= 0 a more accurate approximation is obtained and, for sections
far from boundary restrictions, a direct computation (i.e. without integration
of equilibrium equation) of the shear stresses can be found reliable.

Obtaining the new function φ (z), which we will denote as RZT3, begins
from proposing for the additional displacement the form:

ua (z) =
[
z2χ0 + z3ω0 + vk (z)

]
ψ = φ (z)ψ (31)

where v (z) is piece-wise linear (zigzag), and is just a part of the new φ (z).
Two terms than in�uences all the thickness have been added: one quadratic
z2χ0 and the other cubic z3ω0. The shear stresses are written in the same
form as in the original RZT (with η = γ − ψ)

τ k (z) = Gkη +Gk
[
(1 + v′z)ψ + 2zχ0ψ + 3z2ω0ψ

]
= Gkη + τ̄ k (z) (32)

To rede�ne the zigzag function φ (z) the following additional conditions
are enforced: at the external surfaces is asked (2 new conditions with respect
to the original version)

τ̄ k (z = ±h) = 0 (33)

(Note that component τ̄ k (z) is nulli�ed, but the total shear stress there
τ k (z = ±h) = G1−Nη is only zero if η = 0) then(

1 + vN′z
)

+ 2hχ0 + 3h2ω0 = 0 (34)(
1 + v1′z

)
− 2hχ0 + 3h2ω0 = 0 (35)

alternatively adding and subtracting, two uncoupled expressions are obtained
for χ0 and ω0 (

2 + vN′z + v1′z
)

+ 6h2ω0 = 0 (36)(
vN′z −+v1′z

)
+ 4hχ0 = 0 (37)

solving

χ0 = −
(
vN′z − v1′z

)
4h

(38)

ω0 = −
(
2 + vN′z + v1′z

)
6h2

(39)
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Introducing this new de�nition of the additional displacements in (25) the
shear stress is written as:

τ k (z) = Gkη +Gk
[
(1 + v′z)− 2zχ0 − 3z2ω0

]
ψ

= Gkη + τ̄ k (z) (40)

Similarly to the original RZT at each interface (N − 1 conditions) the
continuity of component τ̄ is imposed

τ̄ k (zk)− τ̄ k+1 (zk) = 0

Gk
[(

1 + vk′z
)

+ 2zkχ0 + 3z2kω0

]
−Gk+1

[(
1 + vk+1

′z

)
+ 2zkχ0 + 3z2kω0

]
= 0

vk′z
1−Gk+1/Gk

+
vk+1
′z

1−Gk/Gk+1
+ 2zkχ0 + 3z2kω0 + 1 = 0

(41)

Note that this condition of continuity can not be enforced in this way if the
shear modulus of the adjacent layers is the same. In that case the condition
can be written simple as

vk′z − vk+1
′z = 0 (42)

Finally the condition that the additional displacement is zero at each external
surface (with v0 = v (z = −h))

φ (z = −h) = φ (z = h) = 0 (43)

φ (z = −h) = h2χ0 − h3ω0 + v0 (44)

φ (z = h) = h2χ0 + h3ω0 + v0 (45)

Thus N + 3 conditions are enforced, where the unknowns are χ0, ω0, the
vk′z (k = 1..N) and v0.

The Figure 2.b also shows the shear stress pro�le using this approach. It
can be seen that in the sti� external layers the stress begins practically from
zero at the external surfaces (η is very low at the second part of the beam)
and grows until a value that is practically constant in the core. Figure 2.d
shows the functions φ (z) for both versions of the RZT. Although they look
as the same function, the quadratic and cubic terms allow to adjust the null
stress conditions at the external surfaces. Additionally, note that the φ (z) of
the original RZT is null for one layer sections (one single material) or when
there is no change in the value of Gk between layers, as can be deduced from
the expressions (28) and (30). For such cases a special technique has been
proposed in [19] to obtain a non-zero φ (z). In contrast the RZT3 leads for
one material sections to a parabolic variation of the continuous τ̄ without
resorting to any special technique.
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4. Implementation of the RZT3 in a beam/shell element

In the convective system the con�guration (3) can now be written as:

Φ := {x ∈ R2/x = ϕ+ zt + ψφ (z) a1, z ∈ [−h,+h]} (46)

and, in order to keep the implementation simple, small strains are assumed,
in such a way that the contributions of the base element (FSDT) can be added
directly with those resulting from the additional displacements (ψφ (z) a1).

4.1. Model with a geometrically and mechanically constant section in the

beam span

The strains involved are

εk1 =
[
1, z, φk

]  ε1
χ1

ψ′1

 = Spε̂p (47)

γk1z =
[
1, βk

] [ γ
ψ

]
= Stε̂t (48)

The internal strain energy per unit length of the beam, associated with
the stresses in the cross section normal to a1, results from integrating in the
area of the cross section:

w1 =
1

2

∫
A

(
εk1σ

k
1 + γk1zτ

k
1z

)
dA

=
1

2

∫
A

(
ε̂Tp STpE

kSpε̂p + ε̂Tt STt G
kStε̂t

)
dA (49)

=
1

2

∫
A

ε̂Tp
 1

z
φk

Ek
[
1, z, φk

]
ε̂p + ε̂Tt

[
1
βk

]
Gk
[
1, βk

]
ε̂t

 dA

=
1

2

∫
A

ε̂TpEk

 1 z φk

z z2 zφk

φk zφk
(
φk
)2
 ε̂p + ε̂Tt G

k

[
1 βk

βk
(
βk
)2 ] ε̂t

 dA

De�ning

Dp =

∫
A

Ek

 1 z φk

z z2 zφk

φk zφk
(
φk
)2
 dA (50)

and

Ds =

∫
A

Gk

[
1 βk

βk
(
βk
)2 ] dA (51)
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Thus the expression of the internal strain energy can be written

w1 =
1

2

(
ε̂Tp Dpε̂p + ε̂Tt Dtε̂t

)
(52)

that allows to de�ne the stress resultants

σ̂ =

[
σ̂p
σ̂t

]
=

[
Dp 0
0 Dt

] [
ε̂p
ε̂t

]
(53)

4.2. Finite element models for non-homogeneous laminates

The implementation of the RZT is based on the idea of hierarchical de-
grees of freedom ψ associated with shape functions φ. That is to say that the
nodal hierarchical degrees of freedom ψi are on the one hand associated with
nodal-shaped functions N i (ξ) in the plane of the laminate (or axial direction
of the beam ) and on the other hand to the function φ (z) in the transverse
direction. When a single laminate exists, i.e. when the section is the same
along the beam or shell (homogeneous laminate), the function φ (z) is unique
throughout the domain.

When the properties of the laminate change along the beam or shell,
the function φ (z) is no longer the same for the entire model. Since the
nodal unknowns are the amplitudes ψi and they multiply to the φ (z), if
the latter are not the same at both elements sharing the node, the �nite
element model is not conforming any longer, that is to say, the continuity
is lost, since the displacements cease to be the same on both sides of the
interface between elements. A �non-conforming� model, in this case, leads to
inconsistent results.

It is then necessary to modify the transverse interpolation in order to
maintain a continuous model. A case where the properties of the section
change is when it presents some kind of damage. For example, to simulate
the delamination of an interlaminar section, a scalar damage model has been
used [5], which involves degrading the (longitudinal and transverse) modulus
of elasticity of the material of a very thin layer. This change in the properties
of a layer requires modifying the associated function φ (z).

A distinctive aspect of the FEM is that in each element e there is a single
�material� or a single �section� and as we have seen the function φ de�ned
by the RZT depends on the properties of the materials. Then, it can be
said, that each element has a function φe associated with the corresponding
laminate. Then, to deal with this case, two conceptually simple options are
proposed, which consist in supposing that in the interface between elements
the function φ associated with node n results from:

a) the average of the properties of the sections associated with the elements
adjacent to the node φn = f

(
Ḡ
)
.
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b) the average of the functions associated with the elements adjacent to the
node

In this way it can be assumed that the in-plane additional displacements
result from the interpolation (for a two-node element)

ua (ξ, z) = N1 (ξ)φ1 (z)ψ1 +N2 (ξ)φ2 (z)ψ2 (54)

where the Nn (ξ) are the linear Lagrange polynomials

N1 (ξ) = 1
2

(1− ξ)
N2 (ξ) = 1

2
(1 + ξ)

(55)

whereas the transverse interpolation functions will be, for the case a)

φ1 (z) = f
(
1
2

[
Gl1 (z) +Gr1 (z)

])
φ2 (z) = f

(
1
2

[
Gl2 (z) +Gr2 (z)

]) (56)

where GlI (z) and GrI (z) are the mechanical properties of the sections on
the left (l) and on the right (r) of node I.

While for case b) they are

φ1 (z) = 1
2

(
φl1 (z) + φr1 (z)

)
φ2 (z) = 1

2

(
φl2 (z) + φr2 (z)

) (57)

with φlI and φrI the pro�le functions computed with the properties or the
sections of element to the left and to the right of node I.

The additional axial strain results

ε1φ = − 1

L
φ1 (z)ψ1 +

1

L
φ2 (z)ψ2

While the additional shear strain at the element center is

γφ =
∂ua
∂z

=
1

2
β1 (z)ψ1 +

1

2
β2 (z)ψ2 (58)

Then the total strains can be written as

εk1 =
[
1, z, φ1, φ2

] 
ε1
χ1

− 1
L
ψ1

1
L
ψ2

 = Spε̄p (59)

γk1z =
[
1, β1, β2

]  γ
1
2
ψ1

1
2
ψ2

 = Stε̄t (60)
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Some di�erences appear with respect to the formulation with homoge-
neous section, since now, for practical implementation purposes, the contri-
butions of each node, and therefore of each function of transverse interpola-
tion φ, are split.

The relevant stress components can be written in the form

σk1 = Ekεk1 = EkSpε̄p (61)

τ k1z = Gkγk1z = GkStε̄t (62)

That replaced into the internal strain energy per unit length, allows to inte-
grate in the section (compare with eq. (49)):

w1 =
1

2

∫
A

(
εk1σ

k
1 + γk1zτ

k
1z

)
dA

=
1

2

∫
A

(
ε̄pTSpTEkSpε̄p + ε̄tTStTGkStε̄t

)
dA (63)

=
1

2

∫
A

ε̄Tp


1
z
φ1

φ2

Ek
[
1, z, φ1, φ2

]
ε̄p + ε̄Tt

 1
β1

β2

Gk
[
1, β1, β2

]
ε̄t

 dA

Then the expression of internal strain energy per unit length can be written
as

w1 =
1

2

(
ε̄pTDpε̄p + ε̄tTDtε̄t

)
(64)

where the following matrices have been de�ned

Dp =

∫
A

Ek


1 z φ1 φ2

z z2 zφ1 zφ2

φ1 zφ1 (φ1)
2

φ1φ2

φ2 zφ2 φ1φ2 (φ2)
2

 dA (65)

Dt =

∫
A

Gk

 1 β1 β2

β1 (β1)
2

β1β2

β2 β1β2 (β2)
2

 dA (66)

That allows to de�ne the stress resultants

σ̄ =

[
σ̄p

σ̄t

]
=

[
Dp 0
0 Dt

] [
ε̄p

ε̄t

]
(67)
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where now

[
σ̄p

σ̄t

]
=



N
M
M1

φ

M2
φ

Q
Q1
φ

Q2
φ


[
ε̄p

ε̄t

]
=



ε1
χ1

− 1
L
ψ1

1
L
ψ2

γ
1
2
ψ1

1
2
ψ2


(68)

from which additional stress resultants are the average of the values in σ̄ and
the associated strains result from adding the contributions in ε̄;

[
σ̂p
σ̂t

]
=


N
M

1
2
M1

φ + 1
2
M2

φ

Q
1
2
Q1
φ + 1

2
Q2
φ


[
ε̂p
ε̂t

]
=


ε1
χ1

1
L

(ψ2 − ψ1)
γ

1
2

(ψ1 + ψ2)

 (69)

This proposal ensures continuity of the displacements, that is to say a C0

conforming approach, but uses within a element a function φ that depends
on the mechanical properties of the adjacent element. Individually in each
element a function φe (z) is de�ned dependent on the mechanical properties
of the section (which are a function of the level of damage in the case of
delamination) that satis�es the continuity of the component τ̄ e (z). But
this property disappears when combining the functions of two elements with
di�erent properties (eq. 57) or using properties that are not strictly those of
the element (eq. 56). This is what happens in the case of an element with
contiguous elements (left and/or right) with di�erent mechanical properties.
It must then be pointed out that:

• That in such element e the pro�le functions have to be combined using
(56) or (57) that depend in a non-linear way on the properties of the
material

• That the properties of the material associated with the element (and
its level of damage) are kept

• And consequently that combination of φ between elements and the use
of the element material will lead to a discontinuous τ̄ function and the
properties used in its de�nition will be lost.

5. Examples

In the examples presented below, comparisons will be made between the
2D beam/shell element described in Section 2 (of two nodes B2) including the
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re�ned zigzag theory (RZT3) and results obtained using a two-dimensional
solid element (four-node quadrilateral Q4). The objective is to use the sim-
plest possible con�gurations (one-dimensional in the case of the beam) so
that the comparisons and the aspects that are intended to be shown are easy
to visualize. We intend to compare two things: a) Overall structural behav-
ior, including displacements, vibration frequency and buckling loads and b)
Local stress states, including axial stress and shear stress pro�les. On the
other hand, we seek to evaluate the behavior of the RZT in case of an abrupt
change in the properties of the section, which is what happens on the delam-
ination front. Examples with some similar characteristics have been studied
in Reference [11] to evaluate possibilities of the mixed RZT for the study of
delamination. Here some of their conclusions will be contrasted with present
results.

5.1. Cantilever beam with constant shear

The �rst example considered is a cantilever beam with a load at its free
end, i.e. with a constant shearing force, as outlined in the Figure 3. A width
b = 20mm has been assumed. The section is an asymmetric sandwich com-
posed of isotropic materials. The properties of the materials are indicated in
the Table 1 where the thickness of each layer and the corresponding material
are also indicated. Two sections are described, in the second case a thin layer
(0.01mm) in the union between the core and the upper layer is replaced by
a damaged material (2d) with very low rigidity in order to simulate a total
or partial delamination.

F

L = 100:05

evaluation

sections

Figure 3: Analyzed beam

For the comparison a load F = 20.01N is considered , that is a shearing
force per unit width T = 1.0005kN/m and an average shear stress over the
cross-section of τave = 0.05MPa. As reference a model with 4-noded solid
elements (Q4) was used, including 400 divisions along the beam span and
37 across the thickness, 12 in each external layer and 12 in 16mm of the
thickness of the core plus 1 element in the sublayer of thickness 0.01mm. To
avoid an �ad-hoc� distribution of the load over the nodes at the free edge, the
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Mat E[GPa] G[GPa]

1 730 292
2 0.73 0.292

2d 0.73× 10−6 0.292× 10−6

3 219 87.6

Mat Thick.
3 2.00
2 16.01
1 2.00

Mat Thick.
3 2.00

2d 0.01
2 16.00
1 2.00

(a) (b) (c)

Table 1: (a) Properties of the materials involved, (b) undamaged laminate and (c) damaged
laminate

vertical displacements of those nodes are prescribed to have a single value.
For the beam element (B2) a �ne mesh of 400 elements was considered, with
the same axial distribution as the mesh of solids, although a much coarser
mesh leads to the same results. To compare the results obtained with both
models, four sections have been selected, indicated in Figure 3, designated
by 1-4 and located respectively at 1: L

16
, 2:L

8
, 3:L

4
and 4:L

2
of the �xed support.

5.1.1. Original undamaged beam

For the beam model (B2) the vertical displacement of the center of the free
edge results uB2

z = 0.01805mm and for the solid model uQ4
z = 0.01808mm,

with a di�erence of only 0.2 %. For a uniform density δ = 4 × 103kg/m3

and maintaining the condition that all the nodes at the free edge move the
same vertical value, the fundamental period obtained are TB2 = 3.0982ms
and TQ4 = 3.1042ms respectively, also with a di�erence of 0.2% which is
congruent with the slightly lower sti�ness of the solid model.

The Figure 4 shows the pro�les of horizontal displacements and axial
stresses for the four sections mentioned. The displacement pro�les of the
solid model are slightly curved in the zone closest to the support where some
discrepancies with the beam model can be seen. These di�erences disappear
as one moves away from the support. With respect to the axial stresses
they are practically coincident between both models at the four sections
analyzed. This is very important because it allows us to think that it is
possible to evaluate shear stresses by integration in the z-direction of the axial
equilibrium equation. Besides, the pro�les closest to the support indicate a
local bending of the lower layer with a sign change in the stresses, while in
the more distant sections there are only tensile stresses in the lower layer.

The Figure 5.a shows the pro�les of transverse shear stresses for the four
mentioned sections obtained with the solid model and with the beam model
by integration of the axial equilibrium equation using the computed axial
stresses. The pro�le changes a lot in the �rst half of the beam then remains
practically constant. In the vicinity of the support the shearing force is taken
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Figure 4: Pro�les of horizontal displacements and axial stresses

mainly by the rigid layers, where the highest shear stresses τmaxxz occurs. Near
the support the results are coincident in the core area but the reference model
(Q4) indicates that the lower layer takes less shear than what the beam model
indicates (and vice versa for the upper layer). An excellent agreement from
x
L

= 1
8
on can be seen, and as one moves towards the free edge, the shearing

force is mainly taken by the �exible core.
Figure 5.b shows the pro�les of transverse shear stresses computed using

the �nite element standard based on displacements, that is, obtaining strains
from the displacements and using the constitutive equations. In this �gure
there are two sets of curves, �k + c� indicates kinematic plus constitutive
and �c� is the continuous part of the RZT3, that is, without including the
strain measure η. From this graph it can be concluded that:

• For all pro�les, in the core zone the τxz computed by the RZT3 is almost
independent of η and coincide with the solid model

• The in�uence of η decreases markedly when moving away from the �xed
support and is almost null at half the beam.

• the total shear stress (k + c) gives an average value over the outer
layers but does not approximate correctly the variation in those layers.

It can be said that the warping restriction imposed by the �xed support
is what precludes the �exible central part from contributing to support the
shearing force. In the section closest to the support, the shearing force is
taken by the rigid outer layers, where a parabolic variation of the shear
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Figure 5: Pro�les of shear stresses for the undamaged beam

stresses similar to what occurs in a section of homogeneous material is ob-
served for both layers. For the sections away from the support, shear strains
can develop in the central part.

For the case of the undamaged beam, an example with the same ratios be-
tween dimensions and between properties of the materials has been analyzed
in Reference [11] with identical shear stress pro�les.

5.1.2. Damaged beam along its entire length

In this case the vertical displacement of the center of the free edge results
uB2
z = 0.18027 mm for the beam model and uQ4

z = 0.18794mm for the solid
model, with a di�erence above 4% that is explained below. The fundamental
period now results TB2 = 8.470ms and TQ4 = 8.704ms and a di�erence of
2.7%.

Figure 6 shows the pro�les of horizontal displacements and axial stresses
for the four sections mentioned. The displacement pro�les are very similar
in both models, slightly displaced to the left in the case of the beam model
due to its larger sti�ness. The RZT allows capturing the discontinuity in
the weak layer, dividing the section into two parts where a linear approxima-
tion of the horizontal displacements seems appropriate. Regarding the axial
stresses, although they look similar, there are some di�erences especially in
the part closest to the support. This is important because it implies that
when computing shear stresses by integration of the equilibrium equation,
di�erences between both model will be found. Clearly all the pro�les indi-
cate a local bending, with almost identical values of tensiles and compression
stresses, of each sti� layer �independent� one of the other.
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Figure 6: Pro�les of horizontal displacements and axial stresses in the damaged beam

Figure 7.a shows the pro�les of transverse shear stresses for the four
mentioned sections obtained with the solid model and with the beam model
by integration of the equilibrium equations from the axial stresses. Naturally
shear stresses not only cancel out on the external surfaces but also on the
weak layer. In the solid model it can be seen that the shearing force is
mainly taken by the rigid layers with a low contribution of the core, that
is even smaller in the vicinity of the support. The beam model in contrast
predicts the same pro�le for all sections, so just one curve is included in
the plot. This is because the RZT function φ has spent its potential in
predicting the discontinuity and does not have the additional possibility to
correctly approximate the distribution of axial stresses in the area near the
�xed support. This is also seen in Figure 7.b where now the continuous
component of the shear stress is practically zero (not shown) and only the
part associated with the strain measure η is relevant (just section 1 shown).

This also explains the larger sti�ness of the beam model. In a section with
a very weak layer the RZT leads to a practically constant shear strain across
the thickness, just as it happens with the FSDT in an undamaged section
where it is necessary to use a shear correction factor (SCF). The RZT does
not use SCF, so in this case it is sti�er (4%) than the solid model.

From these plots it can be concluded that for a section that includes a
very weak layer:

• The RZT substantially improves the FSDT capturing the discontinuity,
but it is sti�er than the solid model

• The shear stresses away from the kinematic restriction (�xed support)
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Figure 7: Transverse shear stress pro�les in the damaged beam

can be accurately determined by integration of the equilibrium equa-
tion.

• The RZT predicts a constant pro�le of shear stresses along the beam,
controlled exclusively by the strain measure η and therefore discontin-
uous

In the paper by Groh and Tessler, a beam clamped at both ends with a
normal traction load of sinusoidal variation and a shear traction load of
cosinusoidal variation applied on the external surfaces with di�erent value,
whose resultant is an axial component and a moment is studied. The cross-
section is asymmetric with a much weaker thin central layer (h / 100). In
this example, on one hand, the maximum relationship between modules is
of the order of 10−3 (in this work is 10−9), on the other hand the geometric
con�guration (bi-clamped) and loads (variable shear) do not allow to observe
the aspects described here.

5.1.3. Partially damaged beam

Finally we consider the case in which the �rst half of the beam is undam-
aged and that in the second half the union between the core and the upper
layer is damaged. For the beam model the point of union of the two sections
is critical. Three formulations to model the change of section in the beam
are used, the two conforming models mentioned in the previous section and
the non-conforming model. Figure 8.a shows the vertical displacement of the
beam axis with the three beam models plus those obtained with a solid model
used as reference results. It can be seen that the non-conforming model leads
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Figure 8: Partially damaged beam (a) transverse displacement of the axis (b) additional
displacement in the upper border of the core

to unacceptable results, while the two conforming models give almost iden-
tical results and show a sti�er behavior than expected. This larger sti�ness
is associated with the important restriction imposed by the continuity of the
additional variable ψ. The isolated point (reference �Undamaged�) denotes
the vertical displacement of the original undamaged beam axis at x = L

2
. It

can be seen in the reference solid model, that the damage of the second half
implies a stress redistribution and a greater displacement at half of the beam
than in the undamaged case. In contrast in the conforming beam models
this displacement is smaller. Figure 8.b shows the additional displacement
φ (z = 8.005)ψ that occurs at the top border of the core. In the case of
the reference model (Q4) this value is obtained by subtracting from the dis-
placement of the point the weighted average of the bottom and top surface
displacements of the section. The strong discontinuity that appears in the
non-conforming model can be observed.

The other aspect that must be considered is that, in the case of a delam-
ination process, on the delamination front or tip of crack there is a stress
concentration that can hardly be captured with a beam model. It was shown
above that for a discontinuity in the section the RZT leads, using kinematic
equations, to a constant shear strain in the section and, using the consti-
tutive equations, to constant shear stress in each layer. Figure 9 compares
the stress pro�les at two sections located symmetrically with respect to the
section change, at a distance d = L

160
. The references �Q� indicates results

obtained with solid elements and �B� obtained with beam elements, while �U�
(undamaged section) indicates the section to the left of the section change
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Figure 9: Partially damaged beam. Pro�les of σx and τxz

and �D� (section Damaged) indicates the section to the right of the section
change. Figure 9.a compares the pro�les of axial stresses. It can be seen
that the solid model has, as expected, a gradual change between one section
and the other, while the beam model indicates extremely abrupt changes
with inversion of the sign of the stresses. The results with the solid model
are much more alike the fully damaged beam that can not transmit shear
stresses between the lower and upper part. In the Figure 9.b the pro�les of
shear stresses are shown. Again, few changes between pro�les in the solid
model are seen, with a strong concentration (in the undamaged part) at the
coordinate z of the layer where damage exists. While in the beam model the
shear stresses (obtained by integration of the equilibrium equations) show a
parabolic distribution in each sti� layer and very low values in the core and
is not able to predict the stress concentration present in the solid model.

In the work of Groh and Tessler the same beam above mentioned is stud-
ied, but now the thin weaker layer includes a partial delamination in 1/10
of its length. The original elastic modulus of the material is roughly 1/10 of
the modulus of the rest of the layers in the laminate, while for the degraded
material its elastic properties are reduced to 1/100 of the pristine ones. The
results presented are very good compared to the reference solution obtained
with solid elements. However, the stress pro�les do not correspond strictly
to the points along the beam where section changes, so it can not be assured
that in those points the stresses will be obtained accurately with the RZT.
Besided, they mention modeling problems involved due to the discontinuity
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in cross sections and the need to employ strategies to handle it. For this
reason , in this paper raises the requirement to enrich the formulation in or-
der to be able to assess with some precision the stresses on the delamination
front in order to establish a strategy to follow a delamination process.

5.2. Buckling of a cylinder under axial load

In this example, the behavior of a cylinder clamped at both ends and
subjected to axial load is studied. The radius of the cylinder is R = 10m and
the total length L = 20m while the thickness is t = 250mm with a section
de�ned by a symmetric sandwich laminate with the material properties indi-
cated in the Table 2 and the stacking sequence in Table 3 where the principal
direction of the laminate is the direction tangent to the parallel.

Mat. E1 E2 E3 ν12, ν13 ν23 G12, G13, G13

1 50 10 10 0.05 0.25 5

2 0.01 0.01 0.07585 0.01 0.01 0.0225

Table 2: Material Properties (EI and GIJ en GPa) for buckling problem

Mat. Thick.[mm] Orient.[degrees]

1 12.5 0

1 12.5 90

2 200.0 0

1 12.5 90

1 12.5 0

Table 3: Laminate stacking sequence for buckling problem

Only the lower half of the cylinder has been modeled by imposing sym-
metry conditions at middle length. This arbitrarily restricts the bifurcation
mode to such symmetry but this is irrelevant for the purposes of the compar-
ison. The discretization with one-dimensional 2-node elements B2 includes
meshes of 100, 200 and 400 elements, while meshes with two-dimensional
elements Q4 include 20 elements in the thickness (6 in each outer layer and
8 for the core) and 100, 200 , 400, 800, 1600 and 3200 divisions in the axial
direction in order to obtain a converged solution for comparison.

Figure 10 shows the convergence in the critical load and the number of
half waves as a function of the discretization in the axial direction. The shell
of revolution element converges very fast and even with the coarsest dis-
cretization of 100 elements the results are very good. Also with the coarsest
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Figure 10: Convergence in buckling load and mode

discretization but with 50 3-noded elements, the same results as those ob-
tained with the �nest discretization using 2-node elements are found (6.974
[MN/m] and 13 half waves). Besides, as expected, the two-dimensional el-
ement converges much more slowly but does to a lower critical load value
(6.761 [MN / m]) and the same number of half waves. This result shows
three aspects:

• A well known one, which indicates that a solid model requires a very �ne
discretization (a very high number of elements) to obtain a converged
solution. Notice that in this case the discretization is 2D and therefore
easy to use, but that in general most of the problems require a 3D
discretization.

• The shell model including the RZT converges much faster, that is, with
discretizations that are 1 order of magnitude smaller in the length, and
in addition is 1D, so that the amount of degrees of freedom involved is
at least 2 orders of magnitude less.

• The FSDT + RZT model can not capture all the details of the behavior
through thickness, which leads to slightly sti�er results but with values
representative of the structural behavior.

Figure 11 shows the buckling mode of the cylinder for solid and shell models.
The �gure also includes the buckling mode that occurs in a cylinder where
the inner layer and the core have been separated (delaminated) along 1

20
of

their length L in the central zone (in this case due to the characteristics
of the element in axisymmetric form, that is to say along all the parallel).
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(a) (b) (c)

Figure 11: Buckling modes (a) Q4, (b) B2 (c) Q4 with a delamination of L/20

The buckling mode in such case is local, which can not be captured by the
shell model including the RZT which can only capture discontinuities in the
displacements in the plane of the shell.

6. Conclusions

The objective of this paper is to study the in�uence of discontinuities
of the cross section in the behavior of the re�ned zigzag theory (RZT). For
this purpose, a two-dimensional shell element (curved beam and shell of
revolution) and the basic aspects of the RZT are initially presented. Then
an example with and without discontinuities is detailed analyzed. Besides the
performance of the RZT in a buckling problem is studied. The conclusions
that are obtained from the study for sandwich sections are:

• For beams without discontinuities in the section:

� The stress states obtained in the usual FEM way (kinematics plus
constitutive equations) are very good in areas away from those
points with kinematic restrictions (supports).
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� Even at such points the axial stresses are obtained with very good
accuracy, which allows computing the shear stresses by integration
in the transverse direction of the equation of equilibrium in the
axial direction

• For beams with discontinuities in the section:

� The RZT allows to represent the discontinuity in the in-plane
displacement (not in the normal direction).

� The RZT loses the ability to correctly represent the axial strain
across the section, so that the precision in computing the shear
stresses by integration and the bending sti�ness decreases.

� The strain measure η = γ − ψ is dominant, leading to a sti�er
model than expected with uniform states of transverse strain and
therefore discontinuous shear stresses.

• For beams with an abrupt change of the properties of the section (beam
partially damaged):

� A �non-conforming� approach leads to inconsistent behavior.

� The conforming approaches introduce a signi�cant restriction so
the behavior becomes sti�er. Then in the case that is of particular
interest here, i.e. when a thin layer has a very low modulus of
elasticity associated with a degradation or damage process, none
of the described conforming options leads to acceptable results.

� The axial stresses are not determined correctly in the discontinuity
so they can not be used to obtain a reasonable approximation for
shear stresses.

� It is not possible to capture the stress concentration that occurs
in a discontinuity.

• Shell buckling

� The models with beam/shell elements converge rapidly and lead
to very good results.

� For partially damaged sections it is not possible to predict that
the results will be correct.
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