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Abstract—Scheduling independent tasks in Computational
Grids commonly arises in many Grid-enabled large scale ap-
plications. Much of current research in this domain is focused
on the improvement of the efficiency of the Grid schedulers,
both at global and local levels, which is the basis for Grid
systems to leverage large computing capacities. However, unlike
traditional scheduling, in Grid systems security requirements
are very important to scheduling tasks/applications to Grid
resources. The objective is thus to achieve efficient and secure
allocation of tasks to machines. In this paper we propose a new
model for secure scheduling at the Grid sites by combining
game-theoretic and genetic-based meta-heuristic approaches.
The game-theoretic model takes into account the realistic
feature that Grid users usually perform independently of
each other. The scheduling problem is then formalized as a
noncooperative non-zero sum game with Nash equilibria as
the solutions. The game cost function is minimized, at global
and user levels, by using four genetic-based hybrid meta-
heuristics. We have evaluated the proposed model through a
static benchmark of instances, for which we have measured two
basic metrics, namely the makespan and flowtime. The obtained
results suggest that it is more resilient for the Grid users
(and local schedulers) to tolerate some job delays defined as
additional scheduling cost due to security requirements instead
of taking a risk of allocating at unreliable resources.

Keywords-Computational Grids, Scheduling, Non-
cooperative Games, Nash Equilibrium, Genetic Algorithms,
Min-Min heuristic.

I. INTRODUCTION

Grid Computing systems has emerged as the next gener-
ation of parallel and distributed computing systems based
on large-scale infrastructures. Such systems are currently
comprising different forms by targeting different objectives,
namely, Computational Grids, Desktop Grids, Enterprise
Grids, Scavenging Grids, Data Grids, etc. Computational
Grids were the first to address the resolution of complex
problems from eScience, a family of problems requiring
substantially more computational power, arising in meteo-
rology, industry, physics, medicine, finance, etc., for which
Grid-enabled solutions have made possible to achieve break-
throughs in their resolution times.

Computational Grids primarily address the development
of high-performance applications, running in parallel on

multiple computers, clusters or super-computers connected
by wide-area networks. The objective is thus to achieve
high throughput, minimized makespan and flowtime, among
others. Such applications are usually parallel in nature,
that is, they can be split in many independent or loosely
coupled tasks. For instance, in parameter sweep applications
[Casanova et al., 2000], which arise in many scientific and
engineering fields such as Computational Fluid Dynamics
and Particle Physics, many tasks perform similar compu-
tations for varying input parameters over large parameter
spaces. Despite the easy parallelization of such applications,
achieving the high performance goal is challenging in Com-
putational Grids. Indeed, Computational Grids virtually join
large amount of computational resources but the high degree
of heterogeneity of resources and that of interconnection
networks makes it difficult to achieve high performance
applications. Scheduling is here a must in order to cope in
practice with the heterogeneity and dynamic nature of such
systems.

Most current efforts to scheduling on distributed systems
such as Computational Grids are devoted to achieving the
maximum throughput from the entire system. Development
in Grid systems are having each time more requirements
beyond the high performance Grid. One such requirement,
which only recently has just started to be investigated, is that
of security. Consider for example the following scenario.
A large bank accounting for millions of costumers wants
to periodically process the huge log file of its costumers
activity in the online banking system for detecting aborted
transactions or for studying costumers’ behavior within
the online banking system. The application for processing
the large log file can certainly be easily parallelized and
processed in a Grid system since log files usually follow
regularly sequence data structuring. However, the Bank is
not only concerned with the efficiency of processing for
meeting delivery deadline, but also with a security level
while processing the data on computational nodes of the
Grid system, which could belong to different administrative
domains. Therefore, the Grid scheduler not only should
compute an efficient planning of tasks to Grid nodes but
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also should allocate the tasks to those nodes that assure
the requested level of security. Integrating desired security
levels into scheduling is thus very important for Grid-
enabled applications. Standard security mechanisms such as
sandboxing as well as conventional authentication methods
offered by grid middleware might not be adequate to prevent
from security threats.

Secure scheduling has been recently addressed in the
Grid computing literature. In [Song et al., 2006], the
authors consider the risk and insecure conditions in Grid
task scheduling caused by software vulnerability and dis-
trusted security policy. Risk-resilient scheduling algorithms
were proposed to assure secure Grid task execution under
such risky conditions. Azzedin and Maheswaran [Azzedin
and Maheswaran, 2002], presented a trust model for Grid
systems and used it to incorporate security requirements
into scheduling algorithms; trust-aware heuristic scheduling
were developed by using known heuristics, namely, Min-
Min, Minimum Completion Time and Sufferage methods.

In this paper we propose a new model for secure Grid
scheduling by combining game-theoretic and meta-heuristic
approaches. We use game-theoretic model to formalize the
scheduling problem as a non-cooperative game. The ratio-
nale behind is that in most realistic scenarios, Grid users
are independent, that is, they independently submit their
tasks/application to the Grid system. The game cost function
is minimized at global and user levels by using four hybrid
heuristics combining GAs and modified Min-Min method.
The proposed model has been evaluated through a static
benchmark of instances, for which we have measured two
metrics, namely makespan and flowtime.

The rest of the paper is organized as follows. In Section II
we introduce a few preliminary concepts on independent
task scheduling and game-theoretic models, specifically on
non-cooperative games. We present the game-theoretical
model of security-assured scheduling in Section III. The
experimental evaluation using a static benchmark is given
in Section IV. We end the paper in Section V with some
conclusions and indications for future work.

II. PRELIMINARIES

A. Independent scheduling in Computational Grids

Independent scheduling in distributed systems is the ver-
sion of scheduling that computes a planning of a given
set of independent tasks to a set of available machines.
The requirement over tasks to be independent (in some
cases, tasks can be considered loosely coupled) is the main
characteristics. This kind of scheduling is very suitable to
address in large scale Grid systems for many reasons. The
absence of dependencies among tasks makes it easier to
preemptive or re-schedule tasks. It will not affect directly
completion of other tasks, or, in case it is not possible to
migrate a task to available machines, the task can be re-
scheduled again. Also the resource characteristics can be

better exploited as independent tasks could vary on the
computation grain (some could be coarse grain and some
others fine grain).

Beyond the need of ensuring high performance Grid-
enabled applications, usually through the makespan, Grid
scheduling seeks also to maximize Grid resource utilization
as well as to achieve QoS of the Grid system, e.g. through
the flowtime of the system. Resource utilization is particu-
larly interesting for Grid systems since such systems could
be conceived as contributory systems and thus incentiveness
to owners’ resources is important. QoS is important in terms
of response time to users who submit tasks/applications to
the Grid system.

In this work we consider the problem formulation based
on the Expected Time to Compute matrix model. In this
model [Ali et al., 2000], it is assumed that we know:

• The estimation of the computational load of each task
(e.g. in millions of instructions). This information is
usually given from task specification or is extracted
from execution traces.

• The computing capacity of each machine (e.g. in mil-
lions of instructions per second, MIPS).

• The estimation of the prior load of each one of the
available machines.

• The entries of the ETC matrix, denoted by ETC[t][r]
indicates the expected time to compute task t in re-
source r. A simple way to compute ETC[t][r] entries
is by dividing the computing load of task t by the
computing capacity of machine r.

B. Game-theoretical models and non-cooperative games

Game theory is playing an important role in computer
science, where it is being used as a means for modeling
interactive computations or multi-agent systems. Recently,
Internet computing is seen as a new domain of applica-
tions of game theory, which in combination with economic
theory can develop algorithms for finding equilibria in
computational markets, computational auctions, Grid and
P2P systems as well as security and information markets.

An important challenge in using game-theoretic models
for Grid scheduling is the large size scale of the Grid system
and the fact that resources cross different administrative
domains. Specifically, the hierarchical relationship among
computers in Internet, namely, global level, inter-site level
and intra-site level should be translated to the game-theoretic
model [Kwok et al., 2007].

One important class of game-theoretic models is that of
non-cooperative games, in which players make decisions
independently. Due the nature of large scale Grid systems,
in which cooperation is difficult to happen at large scale,
this kind of game-theoretic model is a potential model for
integrating security in Grid scheduling.
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Figure 1. The model of security-assured Grid site.

III. GAME-THEORETICAL MODEL OF

SECURITY-ASSURED SCHEDULING AT GRID SITE

The security-assured site in Computational Grid can be
modeled as a network of m heterogeneous machines, for
which TrustLevels (TL) are defined. The TL param-
eters are analyzed by a trust manager and they specify
how much user can trust a local resource manager which
maintains machines status and monitors tasks execution.
A task can be successfully completed when a security
assurance condition is satisfied, i.e. (TL ≥ SD), where
SD is a SecurityDemand of the task issued to all available
machines. Both TL and SD parameters were introduced by
Song et al. in [Song et al., 2006]. Similarly as in their work
TrustLevel can be understood as an aggregation of the site
behavior and intrinsic security attributes such as intrusion
detection or firewall. The process of matching TL with SD
reminds the real-life case where the users of some portals
like Yahoo! are required to specify the security level of the
login session. The task failure at the Grid site is usually the
result of its inaccessibility from a security barricade.

A concept of a simple model of security-assured Grid site
is presented in Fig. 1

In this work we consider the Independent Job Scheduling
problem, in which tasks are processed in the batch mode
[Xhafa et al., 2007 b)]. The total number of tasks in the
batch, denoted by n, can be calculated as the sum of tasks
submitted by all users, i.e.:

n =
N∑

l=1

kl, (1)

where N is the number of Grid users and kl is the number
of tasks submitted by the user l for execution at the site
resources.

A schedule of the batch of tasks at the Grid site is defined
as a vector x:

x = [x1, . . . , xkl−1 , . . . , xkl
, . . . , xn]T , (2)

where xj ∈ [1, m] indicates the number of the machine, to
which task j is assigned (j = 1, . . . , kl−1, . . . , kl, . . . , n), n
is the total number of tasks and m is the number of available
machines.

A. Nash strategy for non-cooperative users

Let us assume that Grid users cannot cooperate with each
other. Each of them tries to choose an optimal strategy of
the allocation of his tasks to machines in order to minimize
the total cost of the scheduling of the batch of tasks. We can
then define the scheduling problem at the security-assured
Grid site as an N -player non-cooperative game denoted by
GN = (N ; {Jl}l=1,...N ; {Ql}l=1,...,N ), where:

• N is the number of players (Grid users),
• {J1, . . . , JN}; l = 1, . . . , N are the sets of strategies of

the players,
• {Q1, . . . , QN}; Ql : J1 × . . . × JN → R; ∀l=1,...,N is

the set of users’ cost functions.

The set of strategies of the user l is defined as the
Cartesian product Jl = Ĵkl−1+1×, . . . , Ĵkl

, where:

• Ĵs = {(ETC[s][xs], Pf [s][xs]) : kl−1 + 1 ≤ s ≤ kl ;
1 ≤ xs ≤ m};

• ETC[s][xs] is an element of the ETC matrix and
indicates the expected time to compute the task s in
the resource xs;

• Pf [s][xs] is an element of a Task Failure Probability
matrix (TFP ).

We denote by Pf [s][xs] the probability of the failure of the
task s on machine xs which is modeled by an exponential
distribution given by the following formula:

Pf [j][xj ] =
{

0 , sj ≤ txj

1 − e−α(sj−txj
) , sj > txj

(3)

The failure coefficient α is a fraction number. The neg-
ative exponent indicates failure grows with the difference
(sj − txj ), where sj , (j = 1, . . . , n), are the coordinates of
the security demand vector for all tasks submitted to the
Grid site denoted by ŜD = [s1, . . . , sn] and txj are the
coordinates of a trust level vector for the machines denoted
by T̂ L = [t1, . . . , tm]. The values of sj and txj are real
fractions in the range [0,1] with 0 representing the lowest
and 1 the highest security requirements and the most risky
and fully trusted machine, respectively. The trust manager
is responsible for the verification of the security assurance
condition for a given task-machine pair. A task j can fail on
machine i if this condition is not satisfied, i.e. sj ≥ ti.

The elements of the set Jl can be then defined as meta-
vectors xl, such that

xl =

⎡
⎣ ETC[kl−1 + 1][xkl−1+1]; Pf [kl−1 + 1][xkl−1+1]

...
ETC[kl][xkl

]; Pf [kl][xkl
]

⎤
⎦
(4)
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The coordinates of the vector xl are the decision variables
of the user l. The game defined above is a special instance
of a discrete N -persons game, the solution of which can be
Nash equilibrium (see [Edlefsen and Millham, 1972]).

The users’ costs of jobs scheduling at the security-assured
Grid site cannot be limited to the costs of execution of their
tasks and the utilization of the machines. The users have to
”pay” an additional ”fee” for the secure allocation of their
tasks in the machines. Thus the functions Ql for all l ∈
{1, . . . , N} can be defined as the sum of the following three
components:

Ql = Q
(e)
l + Q

(u)
l + Q

(s)
l , (5)

where:

• Q
(e)
l indicates user’s task execution cost,

• Q
(u)
l denotes a resource utilization cost, and

• Q
(s)
l is the cost of security-assured allocation of the

user’s task.

The methods of the calculation of the values of the
functions Q

(e)
l , Q

(u)
l and Q

(s)
l are specified below:

Job execution cost: A job submitted by the Grid user
l is defined as a set of kl independent tasks. The total cost
of the execution of the user’s job can be calculated as the
sum of the expected times of the computation of the user’s
tasks on the machines, to which they are assigned. Thus the
function Q

(e)
l is defined using the following formulae:

Q
(e)
l =

kl∑
j=kl−1+1

ETC[j][xj], (6)

where ETC[j][xj ] is an element of the ETC matrix.
Resource utilization cost: The Grid user utility func-

tion is often reduced to the cost of the resource utilization. It
could be defined as a cost of buying free CPU cycles [Garg
et al., 2009]. In our model the utilization cost for the user l
is defined using the following formula:

Q
(u)
l =

kl∑
j=kl−1+1

(loc makespan− completion[xj]) (7)

where completion[xj] denotes the completion time of the
machine xj in a given schedule x and is calculated in the
following way:

completion[xj ] = ready[xj ] +
∑

p∈{1,...,n}:
x[p]=xj

ETC[p][xj ] (8)

A local makespan, denoted by loc makespan in (7),
can be expressed as a maximal completion time in the
schedule x; locality refers to the optimality of the schedule
with respect to tasks assignment of user l. Note also that

ready[xj ] in (8) is used for the notation of the time of
finishing the execution of tasks previously assigned to the
machine xj , that is when the machine is expected to have
completed prior load.

It follows from Eq. (7) that the utilization cost is minimal
in the case of allocation of the user’s task in the machine
with the maximal completion time, which satisfies the main
resource utilization criterion.

Security-assurance cost: The value of the security-
assurance cost paid by the Grid user depends on the schedul-
ing strategy and the result of the verification of security
condition by the trust manager in a Grid site. We propose
two scheduling strategies, known as risky and preemptive
mode, which were applied also in [Song et al., 2006].

In the risky mode, all risky and failing conditions of re-
sources are ignored by the users. The total cost of scheduling
of the user’s tasks can be increased by the addition of the
values of Q

(s)
l function defined as follows:

Q
(s)
l =

kl∑
j=kl−1+1

Pf [j][xj ] · ETC[j][xj ]. (9)

In the preemptive mode, a task can fail on the machine
with the probability defined by (3) meeting too restricted
security requirements. If a failure is observed the task will
be migrated to the next available machine. If another failure
is observed, the task will be migrated to the next machine
until the task is successfully executed or all machines have
been exhausted. In the worst case, the scheduling of the task
is aborted and it can be resubmitted as a new one in the next
batch of jobs. A Grid user has to “pay” for each task failure.
A failure cost can be calculated as a product of the failure
probability and the expected time of computation of the
task on a inaccessible machine. The security-assurance cost
function for the user l can be then defined in the following
way:

Q
(s)
l =

kl∑
j=1

m(k,j)∑
p=1

(Pf [kl−1 + j][xp] · ETC[kl−1 + j][xp]),

(10)

where m(k,j) is the number of task failures (j =
1, . . . , kl).

Each Grid user tries to minimize his cost function in the
game. Let us denote by minQl, (l = 1, . . .N), the minimal
value of the function Ql calculated in the following way:

minQl = min
xl∈Jl

{Ql(x1, ..., xn)} (11)

The objective of the players of the game is to minimize
a game cost function Q : J1 × · · · × JN → R defined in the
following formulae:

Q(x1, ...., xn) =
N∑

l=1

([Ql(x1, ..., xn) − minQl]) (12)
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Figure 2. Two-steps procedure of finding of the Nash equilibria in non-
cooperative N -person game.

The game cost function has non-negative values and the
result of its global minimization is the Nash equilibrium
( [Pavlidis et al., 2005], [Edlefsen and Millham, 1972]).
The Nash equilibrium can be interpreted as a steady state
of a strategic game, in which each player holds correct
expectations concerning the other players behavior.

B. Optimization approach for solving the Grid users’ game

The problem of finding the Nash equilibria of a finite
strategic game remains challenging especially in a real-
life approaches. It follows from Eq. (12) that we need to
minimize first the cost functions of all players and then
we can compute the values of the function Q. Thus the
procedure of the minimization of the game cost function
in the non-cooperative N -person game is composed of two
cooperated units:

• Main unit - which solves the problem of the global
level minimization of the Q function,

• Subordinate unit - which solves the problems of the
local level minimization of the users’ cost functions Ql.

The general schema of the Nash equilibria search strategy is
presented in Fig. 2. We applied it for solving the N -matrix
game with Grid users as players.

Genetic Algorithms (GAs) have proved to be one of the
fastest meta-heuristics in finding the optimal schedules in the
case of high resource diversification in the Grid environment
and large number of tasks in the batches. We propose four
GA-based hybrid meta-heuristics, introduced in Table I as
the global and local optimizers in the main and subordinate
units.

Table I
FOUR RISK-RESILIENT HYBRID META-HEURISTICS FOR

SECURE-ASSURED JOB SCHEDULING AT THE GRID SITE.

Hybrid Main Subordinate
Meta-heuristic unit unit
RGA-GA RGA QGA
RGA-Min RGA Min
PGA-GA PGA QGA
PGA-Min PGA Min

Each of them is defined as a combination of two GA
schedulers - Risky Genetic Algorithm (RGA) and Preemptive
Genetic Algorithm (PGA)- in the main unit- and two user’s
level local optimizers - Queued Genetic Algorithm (QGA)
and a modified Min-Min heuristic(Min) - in the subordinate
unit. The detailed analysis of all applied algorithms is
presented in the following two subsections.

C. GA-based schedulers in the main unit

Several implementations of GSs for independent schedul-
ing have been proposed in the literature. In this work, we
have used the GA implementation in [Xhafa et al., 2007 a)].
The general template of that GA-based scheduler is defined
in Alg. 1.

Algorithm 1 Genetic Algorithm template

1: Generate the initial population P 0 of size μ;
2: Evaluate P 0;
3: while not termination-condition do
4: Select the parental pool T t of size λ; T t :=

Select(P t);
5: Perform crossover procedure on pars of individuals in

T t with probability pc; P t
c := Cross(T t);

6: Perform mutation procedure on individuals in P t
c with

probability pm; P t
m := Mutate(P t

c );
7: Evaluate P t

m ;
8: Create a new population P t+1 of size μ from individ-

uals in P t and/or P t
m ; P t+1 := Replace(P t; P t

m)
9: t := t + 1;

10: end while
11: return Best found individual as solution;

Based on the results of the tuning process of GA operators
performed in [Xhafa et al., 2007 a)] we used linear ranking
selection, cycle crossover (CX) and re-balancing mutation
as an appropriate combination of such operators for our
algorithm. We also applied LJFR-SJFR (Longest Job to
Fastest Resource – Shortest Job to Fastest Resource) as an
initialization procedure and elitist generational replacement
method.

The above GA implementation can be directly applied
to scheduling in the risky mode, where a fitness function
is defined as the game cost function Q and the security-
assurance costs of the users are calculated using Eq. (9). We
will denote this algorithm by RGA according to the notation
introduced in the previous section.

The main difference between RGA and Preemptive GA
is the method of the evaluation of the population. In the
preemptive mode this procedure is extended by scanning the
population in order to verify the security condition. If task
failure is observed, the cost function of the task ”owner”
is updated according to Eq. (10). In case of the failure of
some task on all machines, the task is removed from the
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batch (and from all schedules in the population) and several
algorithm parameters, like the length of the chromosomes,
the number of the decision variables of the task ”owner”,
as well as the structure of the ETC and TFP matrices are
updated.

D. Local schedulers in the subordinate unit

We used two modifications of the well-known Grid
schedulers for the local minimization of the players’ cost
functions. The first, named as Queued Genetic Algorithm,
is a simple extension of the RGA applied independently for
each user’s cost function Ql as fitness. The GA operations
are executed on sub-schedules of the length kl labeled just
by the tasks submitted by a given user. The RGA procedure
is executed sequentially for the queue of users.

The second method, denoted by Min, is a modification of
Min-Min heuristic [Freund et al., 1998]. This method starts
by computing a matrix of the users’ costs of the allocation
and execution of an individual task on a given machine,
named task cost and denoted by task cost[j][i] for any
task j and machine i based on the ETC[j][i], Pf [j][i] and
ready[i] values:

task cost[j][i] = ETC[j][i] · (1 + Pf [j][i])+
+(mj − (ETC[j][i] + ready[i]))

(13)
where mj = max{(ETC[j][i] + ready[i]); j = 1, . . . , m}

For any task j assigned by a given user, the machine xj

with a minimal task cost is computed by traversing the j-th
row of the task cost matrix. Then, a task k with the minimal
task cost is chosen and mapped to the corresponding ma-
chine xk (previously computed). Next, the task k is removed
from set of users tasks and the values task cost[j][i] for
each j in Tasks and machine xk are updated. The process is
repeated while there remain tasks to be assigned by the user
(see Alg. 2). An experimental evaluation on the performance
of the original Min-min method can be found in [Xhafa et
al., 2007 b)]. As can be seen from Alg. 2, a double minimum
(hence the name of Min-Min method) is computed in this
method by first scanning the task cost matrix through rows
and then by columns.

IV. EXPERIMENTAL ANALYSIS FOR STATIC SCHEDULING

We have conducted a preliminary experimental evaluation
of the proposed hybrid meta-heuristics implementations for
the problem of minimization of the game cost function
defined by Eq. (12). We found it useful to initially use
a static benchmark in our experimental study. The main
reason is that the dynamic schedulers can run the static
methods for scheduling tasks sampled in particular batches.
We defined two basic metrics for measuring the effectiveness
of scheduling, namely makespan and flowtime. The objective
is thus to identify which of the proposed four meta-heuristic
approaches performs best in minimizing the game cost
function.

Algorithm 2 Min algorithm.
1: for all task j ∈ Tasks do
2: for all machine i ∈ Machines do
3: Compute task cost[j][i] according to Eq. (13)
4: end for
5: end for
6: repeat
7: for all user l ∈ Users do
8: repeat
9: for all task jl ∈ Taskl do

10: compute a minimal cost task and identify the
machine on which it is achieved;

11: end for
12: Select task k with the lowest value of the mini-

mal task cost;
13: Map k to the machine xk for which the minimal

task cost has been previously computed;
14: Delete k from Taskl;
15: Update task cost[j][i], ∀j ∈ Tasks and i = xk;
16: until (Taskl �= φ)
17: end for
18: until (Users �= φ)

A. Benchmark instances and Experimental setup

Our experiments were performed on a subset of the bench-
mark of static instances, which are classified into different
types of ETC matrices, according to task heterogeneity, ma-
chine heterogeneity and consistency. Each instance consists
of 512 tasks and 16 machines and is labelled by u x yyzz.0
as in [Braun et al., 2001] (in the notation, hi means high,
and lo means low):

• u means uniform distribution (used in generating the
matrix).

• x means the type of consistency (c–consistent, i–
inconsistent and s – semi-consistent).

• yy indicates the heterogeneity of the tasks.
• zz indicates the heterogeneity of the resources.

All 512 tasks are divided into 16 sets of 32 elements.
Each set belongs to one of 16 Grid users. The settings of
all general parameters are presented in Table II. Table III
reports key parameters for three GAs used in experiments:
RGA, PGA and QGA.

Performance Metrics Evaluated: To evaluate the
scheduling performance, the following performance metrics
are used:

• Flowtime: Let Fj denotes the time when task j final-
izes. The flowtime can be calculated using the following
formulae:

Flowtime =
∑

j∈Task

Fj (14)
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Table II
GENERAL SIMULATION PARAMETER SETTING.

Parameter Value setting

Total number of tasks 512
Number of machines 16
Number of users 16
Number of tasks assigned
by individual user 32
Task security demand (sj) 0.6 - 0.9, uniform distribution
Resource trust levels (tj ) 0.3 - 1.0, uniform distribution
Failure coefficient α = 3

Table III
SETTINGS OF GAS KEY PARAMETERS IN THE MAIN AND SUBORDINATE

UNITS.

Parameter PGA and RGA QGA
settings settings

Population size 60 40
Crossover Prob. 0.8 0.8
Mutation Prob. 0.2 0.2
Stopping criterion 3000 iterations 1000 iterations

Flowtime is usually considered as a QoS criterion as
it expresses the response time to the submitted task
execution requests of Grid users.

• Makespan: Makespan is one of the basic metrics of
a Grid systems performance: the smaller the value
of makespan, the faster is the execution of tasks in
the Grid system. Makespan can be calculated by the
following formulae:

Makespan = max
j∈Tasks

Fj (15)

The aim is to minimize both flowtime and makespan over
the set of all possible schedules for a Grid configuration.

B. Computational results

We present in Table IV computational results obtained
for the static benchmark using the four meta-heuristic imple-
mentations. In order to avoid biased results, each experiment
was repeated 30 times and averaged values of makespan and
flowtime are reported.

Analysis of the results: From the average makespan
values shown in Table IV we can observe that PGA-GA
outperforms RGA hybrids (i.e RGA-GA and RGA-Min) for
all instances and PGA-Min performs better only for two
instances of the benchmark.

Similarly as in the case of makespan, for flowtime PGA-
GA outperforms the two meta-heuristics designed for the
scheduling in the risky mode for all types of ETC matrices
and it is worse than PGA-Min only for two instances of the
benchmark.

We can conclude from our simple experimental analysis
that GA-based hybrid meta-heuristics work better in the
preemptive mode than in risky mode for all three groups of
instances (consistent, semi-consistent and inconsistent ETC

matrices). The differences in results obtained by RGA and
PGA hybrids are rather significant, while the results for the
algorithms of the same class are of the same rank. It means
that satisfying the security policy can be one of the crucial
criterion in the optimization of the users’ cost functions in
our approach, and in consequence, in the approximation of
an optimal schedule.

The obtained s.d. values are small and show that the
variation in results do not surpass the range of 1-1.5 %,
which means that all algorithms are stable and the total cost
of scheduling did not change significantly in each trial.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach for secure
independent task scheduling in Computational Grids. Our
approach combines game-theoretic and Genetic Algoritms-
based meta-heuristics. The former is used to model the
scheduling problem as a non-cooperative non-zero sum
game with Nash equilibria as the solutions while the later
are used to minimize game cost function, at global and user
levels. We have evaluated the proposed model through a
static benchmark of instances in the literature, for which
we have measured the makespan and flowtime values. The
computational results showed that it is more resilient for
the Grid users (and local schedulers) to tolerate some job
delays defined as additional scheduling cost due to security
requirements instead of taking a risk of allocating at unreli-
able resources.

The results obtained for four hybrid meta-heuristics in
our approach are worse than those achieved by some GA-
based schedulers in the case of just job execution cost as
objectives (see [Xhafa et al., 2007 a)]). Also the execution
of the proposed algorithms takes more time comparing with
standard GA-based schedulers. The main reason is that the
optimization two-level procedure is complex. We want to
simplify it in our future work by changing the rules of
the game (allowing to make some coalitions of users) and
modifying the cost functions to make them more adapted
to realistic scenarios. We also plan to evaluate the proposed
approach in a dynamic environment using a Grid simulator.
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