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Abstract The Duhem model is a simulacrum of a com-

plex and hazy reality: hysteresis. Introduced by Pierre

Duhem to provide a mathematical representation of

thermodynamical irreversibility, it is used to describe

hysteresis in other areas of science and engineering. Our

aim is to survey the relationship between the Duhem

model as a mathematical representation, and hysteresis

as the object of that representation.
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1 Prolegomenon

Citing a reference allows the author of a scientific ar-

ticle to attribute work and ideas to the correct source.

Nonetheless, the process of describing that work and

these ideas assumes some interpretation, at least of

their relative importance. In order to ensure that the

interpretation is reliable, we use, whenever adequate,

a quotation from the reference so that the reader has

a direct access to the cited source. This direct access

is even more important when the source is not easily

available like Ref. [67] or is not written in English like

Refs. [16]–[22] among others, in which case we provide

a translation. This is our approach to the literature re-

view of Section 2.
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In Sections 4–9 we proceed differently since our aim

in these sections is to provide an accurate description of

the results presented in the references under study. Be-

cause of the diversity of notations and nomenclature in

these references, quotations may not be the best way to

transmit that accurate description. Instead, we summa-

rize the references using a unifying framework provided

in Ref. [35]. The references we have chosen in Sections

4–9 are, in our opinion, those that are relevant to the

subject of this study.

Our aim in this work is also to shed light on the

relationships between the concepts introduced in this

paper. To this end, we use a special form of the Duhem

model, the scalar semilinear one, as a case study.

2 Introduction and literature review

A brief history of the Duhem model. The term hys-

teresis was coined by J. A. Ewing in 1881 to describe

a specific relationship between the torsion of a mag-

netized wire and its polarization (although the phe-

nomenon of hysteresis has been known and described

by several authors before that date as shown in the lit-

erature review provided in Ref. [65]).

Quoting from Ewing’s paper[28]: “These curves ex-

hibit, in a striking manner, a persistence of previous

state, such as might be caused by molecular friction.

The curves for the back and forth twists are irreversible,

and include a wide area between them. The change of

polarization lags behind the change of torsion. To this

action . . . the author now gives the name Hysterēsis (. . .

to be behind)”.

In 1887 Lord Rayleigh models the relationship be-

tween a magnetizing force F ∈ [−Fmax, Fmax] and the

corresponding magnetization M using two polynomials
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[59, p. 240]:

M =αF + βF 2
max

(
1− 1

2

(
1− F

Fmax

)2
)

when F is decreasing,

M =αF + βF 2
max

(
−1 +

1

2

(
1 +

F

Fmax

)2
)

when F is increasing,

where α, β and Fmax are constants.

However, the first in-depth study of hysteresis is due

to Pierre Duhem1 in the period 1896–1902. A detailed

review of Duhem’s work on hysteresis may be found

in [67, Chapter IV] so that we provide here only those

elements of that extensive work that are directly related

to the present paper.

To understand the motivation for Duhem’s work

we quote from [67, p. 306]: “take a metallic wire un-

der strain by means of a load. We can take the length

of the wire and its temperature as variables that define

its state. The gravity weight P will represent the ex-

ternal action. At temperature T and under the load P

the wire may be at equilibrium with length l. Give P

infinitely small variations, the length l and temperature

T will also experience infinitely small variations, and

a new equilibrium may be achieved. In this last state,

give the gravity weight and temperature variations equal

in absolute value, but of opposite signs to the previous

ones. The length l should experience a variation equal

to the previous one with opposite sign. However, exper-

imentation shows that this is not the case. In general,

to the expansion of the wire corresponds a smaller con-

traction, and the difference lasts with time.”

This permanent deformation is the subject of a seven-

memoirs research by Duhem, see Refs. [16]–[22]. In his

first memoir submitted to the section of sciences of the

Académie de Belgique on October 13, 1894, and re-

viewed by the mathematician Charles Lagrange in Ref.

[44],2 Duhem writes: “The attempts to make the differ-

ent kinds of permanent deformations compatible with

the principles of thermodynamics have been few up till

now. Only one of these attempts, due to M. Marcel

Brillouin, appears to us worthy of interest.” [16, p. 3].

Duhem analyzes the work of Brillouin and concludes

that it is not compatible with the principles of thermo-

dynamics [16, p. 6] (see also [19, pp. 5–7]).

1 For a detailed study of the life and work of Pierre-
Maurice-Marie Duhem (9 June 1861 – 14 September 1916)
see Refs. [39] or [67].
2 We are indebted to Jean François Stoffel for this informa-

tion.

As an alternative, Duhem starts a theory of per-

manent deformations by considering the simplest case:

that of a system defined by one normal variable x and

its absolute temperature T . Denoting F(x, T ) the in-

ternal thermodynamic potential of the system, Duhem

writes [16, p. 8]: “Let X be the external action to which

this system is subject. The condition of equilibrium of

the system will be

X =
∂F(x, T )

∂x
. (1)

Let (x, T,X) and (x+dx, T +dT,X+dX) be two equi-

libria of the system, infinitely close to each other; owing

to equality [(1)] we get

dX =
∂2F(x, T )

∂x2
dx+

∂2F(x, T )

∂x∂T
dT. ” (2)

Equation (2) does not take into account the fact that

the modifications of equilibria are not reversible. So

Duhem introduces a term f(x, T,X)|dx| to be added

to the right-hand side of Equation (2), where f is a

continuous function of the three variables x, T , and X.

For an isothermal modification (that is when T is main-

tained constant) we get [16, pp. 9–10]:

dX

dx
=

{
f1(x, T,X) for an increasing x,

f2(x, T,X) for a decreasing x,
(3)

where

f1(x, T,X) =
∂2F(x, T )

∂x2
+ f(x, T,X),

f2(x, T,X) =
∂2F(x, T )

∂x2
− f(x, T,X).

(4)

Observe that, when the input is piecewise monotone,

the model (3) is equivalent to the model (5) proposed

in Refs. [3] and [43, p. 282]:

ẋ(t) =

{
φ`
(
x(t), u(t)

)
u̇(t) for u̇(t) ≤ 0,

φr
(
x(t), u(t)

)
u̇(t) for u̇(t) ≥ 0,

(5)

where φ` and φr are functions that satisfy some con-

ditions, the function u is the input (which is x using

Duhem’s notation), the function x the state (which is

X using Duhem’s notation), and t is time.

To the best of our knowledge, the first reference that

called the form (5) “Duhem model” is Ref. [48] in 1993.3

Indeed, the authors of Ref. [43] attributed erroneously

Duhem’s model to Madelung [63, p. 797].4

3 Ref. [48] cites a translation into German of the original
memoir Ref. [16] which is written in French.
4 Quoting from Ref. [48, p. 96]: “the Madelung paper does

not use a differential equation or integral operator. In fact,
Madelung allows nonuniqueness of trajectories through a
point . . . which would make a differential equation model dif-
ficult.”
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Between 1916 when P. Duhem dies and 1993 when

his model of hysteresis is finally attributed to him, Duhem’s

work on hysteresis does not have a relevant impact. Ma-

jor references on hysteresis like Refs. [8], [12] or [56] do

not cite his memoirs. Several authors propose differ-

ent forms of the Duhem model without a direct refer-

ence to Duhem’s memoirs. This is the case of the Cole-

man and Hodgdon model of magnetic hysteresis [12],

the Dahl model of friction [13], the model (5) in Ref.

[3], and a generalized form of the model (5) in Ref. [43,

p. 95]. In 1952, Everett cites briefly Duhem’s work as

follows [24, p. 751]: “From a thermodynamic standpoint

the introduction of an additional variable whose value

depends on the history of the system is sufficient for a

formal discussion (cf. Duhem[ref]). To advance our un-

derstanding of the phenomenon [of hysteresis], however,

a molecular interpretation is desirable.”

A general theory of physics based on a molecular

interpretation was precisely what Duhem rejected. In a

review of his work presented in 1913 for his application

to the Académie des Sciences, Duhem writes that his

“doctrine should note imitate the numerous mechanical

theories proposed by physicists hitherto; to the observ-

able properties that apparatus measure, it will not sub-

stitute hidden movements of hypothetical bodies” [67,

p. 74].

In recent times, Duhem’s phenomenological approach

is becoming more accepted [5,9,46,52,57]. Indeed, “hys-

teretic phenomena arising in structural and mechanical

systems are so complicated that there has been no well-

accepted mathematical model which can describe all ob-

served hysteretic characteristics.” [52, p. 1408]. More-

over, the Preisach model which was believed to describe

the constitutive behavior of magnetic hysteresis, has

shown to be a phenomenological model [49, p. 2].

Several reasons are invoked for the use of Duhem’s

model to describe hysteresis. On the one hand, “differ-

ential equation-based models lead to a particularly sim-

ple phenomenological description” [46, p. C8-545]. On

the other hand, the “Duhem models [sic] . . . have the

advantage that [they] require a small amount of mem-

ory so they are suitable in practical and low cost ap-

plications.” [9, p. 628]. Finally, many phenomenological

models of friction or hysteresis can be seen as particular

cases of a more general form of the Duhem model: this is

the case for example of the Dahl [13], the LuGre [2,11],

or the Maxwell-slip models [30]. Thus “recast [ing] each

model in the form of a generalized . . . Duhem model . . .

provide[s] a unified framework for comparing the hys-

teretic nature of these models.” [57, p. 91].

There are several generalizations of the original Duhem

model (5). The following generalization is proposed in

[43, p. 95]: ẋ(t) = f
(
t, x(t), u(t), u̇(t)

)
. In [64, p. 141]

the terms φ`
(
x(t), u(t)

)
and φr

(
x(t), u(t)

)
in (5) are re-

placed by
[
φ`
(
x, u

)]
(t) and

[
φr
(
x, u

)]
(t) respectively,

where φ` and φr are causal operators. In Ref. [54] Duhem’s

model is generalized as ẋ(t) = f
(
x(t), u(t)

)
g
(
u̇(t)

)
whilst

[64, p. 145] proposes the following form for vector hys-

teresis: ẋ(t) = f
(
x(t), u(t), π(u̇)

)
|u̇(t)| where π(u̇ 6=

0) = u̇/|u̇|.
Why are there different generalized forms of

the Duhem model ? To answer this question we have

to recall the concept of rate independence.5

To the best of our knowledge, the earliest author

to state clearly rate independence is R. Bouc in Ref.

[8], although that property was known before Bouc’s

work. Due to the importance of rate independence in

the study of hysteresis, and the fact that Ref. [8] is not

available in English, we quote from [8, p. 17]:“Consider

the graph with hysteresis of Fig. 1 where F is not a

function of x. To the value x = x0 correspond four

values of F .

Fig. 1: Graph “Force–Displacement” with hysteresis.

. . . If we consider now x as a function of time, the

value of the force at instant t will depend not only on

the value x(t), but also on all past values of function

x since the origin instant where it is defined. If β is

that instant (x(β) = F(β) = 0, β ≥ −∞), then we

denote F(t) = A
(
x(·), t

)
the value of the force at instant

“ t”, where x(·) “represents” the whole function on the

interval [β, t][footnote]. Our aim is to explicit functional

A
(
x(·), t

)
.

To this end, we make the following assumption: the

graph of Fig. 1 remains the same for all increasing func-

5 The term “rate independence” is attributed to Truesdell
and Noll (Section 99, Encyclopedia of Phyics, volume III/3,
1965) by Visintin [64, p. 13]. We read Section 99 of the 2004
edition [62] of the original treatise by Truesdell and Noll but
found no clear evidence of the correctness of the attribution.



4 Fayçal Ikhouane

tion x(·) between 0 and x1, decreasing between the val-

ues x1 and x2, etc. The functional will no longer depend

explicitly on time and we will write F(t) = A
(
x(·)

)
(t).

We can say: If x(tj) and x(tj+1) are two extremal val-

ues, consecutive in time, we have for all t ∈ [tj , tj+1]

A
(
x(·)

)
(t) = fj

(
x(t)

)
,

where fj is a function of only the variable x(t).

We can also say: If φ : R → R is a class C1 func-

tion whose derivative is strictly positive for t ≥ β with

φ(β) = β, and if we consider the function y(t) = x
(
φ(t)

)
which is a “compression” or an “expansion” of x by in-

tervals, then the graphs
(
A
(
y(·)
)
, y
)

and
(
A
(
x(·)

)
, x
)

are identical and we have

A
(
x(·)

)
(t) = A

(
y(·)
)(
φ−1(t)

)
. ”

The exact definition of rate independence varies from

author to author. For example, Visintin requires the

time-scale-change φ to be a strictly increasing time home-

omorphism [64, p. 13] whilst Oh and Bernstein con-

sider that φ is continuous, piecewise C1, nondecreasing,

φ(0) = 0, and limt→∞ φ(t) =∞ [54]. Loosely speaking,

rate independence means that the graph of hysteresis

(output versus input) is invariant with respect to any

change in time scale.

Rate independence is used by Visintin to define hys-

teresis :“Definition. Hysteresis = Rate Independent Mem-

ory Effect.”[64, p. 13]. However, “this definition excludes

any viscous-type memory” [64, p. 13] because it leads

to rate-dependent effects that increase with velocity.

A definition based on rate independence assumes that

“the presence of hysteresis loops is not . . . an essential

feature of hysteresis.” [64, p. 14].

This point of view is challenged by Oh and Bern-

stein who consider hysteresis as a “nontrivial quasi-dc

input-output closed curve” [54, p. 631] and propose a

modified version of the Duhem model which can repre-

sent rate-dependent or rate-independent effects. A char-

acterization of hysteresis systems using hysteresis loops

is also addressed by Ikhouane in Ref. [35] through the

concepts of consistency and strong consistency.

In light of what has been said it becomes clear that,

in Ref. [64], the generalizations of Duhem’s model are

done in such a way that rate independence is preserved,

whilst a definition of hysteresis based on hysteresis loops

in Ref. [54] is compatible with a generalized form of the

Duhem model that may be rate dependent or rate in-

dependent.

Why are there different models of hysteresis?

In Ref. [16] Duhem proposes his model to account for

the irreversibility in the modifications of equilibria ob-

served experimentally in magnetic hysteresis [16, Chap-

ter IV], sulfur [17], red phosphorus [19, Chapter III],

and in different processes of metallurgy [19].

Preisach [56] uses “plausible hypotheses concerning

the physical mechanisms of magnetization” [49, p. 1] to

elaborate a model of magnetic hysteresis. This model

is also proposed and studied by Everett and co-workers

[24]–[27] who postulate “that hysteresis is to be attributed

in general to the existence in a system of a very large

number of independent domains, at least some of which

can exhibit metastability.” [24, p. 753].

Krasnosel’skǐı and Pokrovskǐı point out to the is-

sue of admissible inputs, as “it is by no means clear a

priori for any concrete transducer with hysteresis, how

to choose the relevant classes of admissible inputs” [43,

p. 5]. This is why they introduce the concept of vibro-

correctness which allows the determination of the out-

put of a hysteresis transducer that corresponds to any

continuous input, once we know the outputs that cor-

respond to piecewise monotone continuous inputs [43,

p. 6]. The models that Krasnosel’skǐı and Pokrovskǐı

propose (ordinary play, generalized play, hysteron) are

vibro-correct, although the authors acknowledge the

existence of hysteresis models that may not be vibro-

correct like the Duhem model.6

Hysteresis models based on a feedback interconnec-

tion between a linear system and a static nonlinearity

are proposed in Ref. [55]. The authors study “hysteresis

arising from a continuum of equilibria . . . and hysteresis

arising from isolated equilibria” [55, p 101].

A review of hysteresis models is provided in Ref. [48]

and a detailed study of these (and other) models may

be found in Refs. [7], [10], [14], [37], [49], [64].

In light of what has been said, the diversity of hys-

teresis models is due to the wide range of areas to which

hysteresis is concomitant, and the diversity of methods

and assumptions underlying the elaboration of these

models.

Note that all mathematical models of hysteresis share

a common property: they model hysteresis. This fact

leads us to our next question.

What is hysteresis? A description found in many

papers is that hysteresis “refers to the systems that have

memory, where the effects of input to the system are

experienced with a certain delay in time.” [33, p. 210].

This description is misleading as it applies also to dy-

namic linear systems. Indeed, when the output y is re-

lated to the input u by ẋ = Ax + Bu and y = Cx

which is a possible description of a linear system, the

output is given by y(t) = C
[

exp(tA)x0 +
∫ t
0

exp
(
(t −

τ)A
)
Bu(τ)dτ

]
where x0 is the initial state and t ≥ 0 is

time. We can see that y(t) depends on the integral of a

function that incorporates u(τ) for all τ ∈ [0, t], which

means that the linear system does have memory. How-

6 called the Madelung model in Ref. [43].
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ever, “hysteresis is a genuinely nonlinear phenomenon”

[10, p. vii].

Mayergoyz considers hysteresis as a rate-independent

phenomenon which is “consistent with existing experi-

mental facts.” [49, p. xvi]. However, “for very fast in-

put variations, time effects become important and the

given definition of rate-independent hysteresis fails.”

[49, p. xvi]. Also, “in the existing literature, hysteresis

phenomenon is by and large linked with the formation of

hysteresis loops (looping). This may be misleading and

create the impression that looping is the essence of hys-

teresis. In this respect, the given definition of hysteresis

emphasizes the fact that history dependent branching

constitutes the essence of hysteresis, while looping is a

particular case of branching.” [49, pp. xvi–xvii].

Following Mayergoyz, “All rate-independent hystere-

sis nonlinearities fall into two general classifications:

(a) hysteresis nonlinearities with local memories, and

(b) hysteresis nonlinearities with nonlocal memories.”

[49, pp. xvii]. In a hysteresis with a local memory, the

state or output at time t ≥ t0 is completely defined by

the state or output at instant t0, and the input on [t0, t].

This is the case for example of a hysteresis given by a

differential equation. Hysteresis with a nonlocal mem-

ory is a hysteresis which is not with local memory. This

is the case for example of the Preisach model. “How-

ever, the notion of hysteresis nonlinearities with local

memories is not consistent with experimental facts.”

[49, pp. xix–xx]. Hodgdon, on the other hand, writes

in relation with the use of a special case of the Duhem

model to represent ferromagnetic hysteresis: “These re-

sults are in good agreement with the manufacturer’s dc

hysteresis data and with experiments” [34, p. 220].

In Ref. [54], Oh and Bernstein consider the gener-

alized Duhem model ẋ = f(x, u)g(u̇) and y = h(x, u)

with u the input, y the output and x the state. The au-

thors assume the existence of a unique solution of the

differential equation on the time interval [0,∞[. They

also assume the existence of a T–periodic solution xT
for any T–periodic input uT with one increasing part

and one decreasing part, which means that the graph

{(uT , xT )} is a closed curve. Finally they assume that

when T → ∞ the graph {(uT , xT )} converges with re-

spect to the Hausdorff metric to a closed curve C. If we

can find (a, b1) ∈ C and (a, b2) ∈ C with b1 6= b2, the

curve C is not trivial and the generalized Duhem model

is a hysteresis.

In a PhD thesis advised by Bernstein [15], Drinčić

considers systems of the form ẋ = f(x, u) and y =

h(x, u) for which hysteresis is defined as in Ref. [54].

The system is supposed to be step convergent, that

is limt→∞ x(t) exists for all initial conditions and for

all constant inputs. It is noted that there exists “a

close relationship” [15, p. 6] between the curve C and

the input-output equilibria map, that is the set E ={(
u, h(limt→∞ x(t), u)

)}
where u is constant and

f
(

limt→∞ x(t), u
)

= 0. In particular, the “system . . .

is hysteretic if the multivalued map E has either a con-

tinuum of equilibria or a bifurcation” [15, p. 7].

In Ref. [6] Bernstein states that “a hysteretic sys-

tem must be multistable; conversely, a multistable sys-

tem is hysteretic if increasing and decreasing input sig-

nals cause the state to be attracted to different equilib-

ria that give rise to different outputs.” Multistability

means that “the system must have multiple attracting

equilibria for a constant input value” [6].

In Ref. [50], Morris presents six examples of hys-

teresis systems taken from the areas of electronics, bi-

ology, mechanics, and magnetics; hysteresis being un-

derstood as a “characteristic looping behavior of the

input-output graph” [50, p. 1]. The author explains the

qualitative behavior of these systems from the point

of view of multistability. For “the differential equations

used to model the Schmitt trigger, cellular signaling and

a beam in a magnetic field” it is observed that “these

systems, all possess, for a range of constant inputs, sev-

eral stable equilibrium points.” [50, p. 13]. The author

observes that the systems are rate dependent for high

input rates.

For the play operator, the Preisach model and the

Bouc-Wen model which are rate independent, “these

models present a continuum of equilibrium points.” [50,

p. 13]. These observations lead the author to conclude

that “hysteresis is a phenomenon displayed by forced

dynamical systems that have several equilibrium points;

along with a time scale for the dynamics that is consid-

erably faster than the time scale on which inputs vary.”

[50, p. 13]. Morris proposes the following definition.

“A hysteretic system is one which has (1) multiple

stable equilibrium points and (2) dynamics that are con-

siderably faster than the time scale at which inputs are

varied.” [50, p. 13].

In Ref. [35], Ikhouane considers a hysteresis opera-

tor “H that associates to an input u and initial condi-

tion ξ0 an output y = H(u, ξ0), all belonging to some

appropriate spaces.” [35, p. 293]. It is assumed that the

operatorH is causal and satisfies the property that con-

stant inputs lead to constant outputs. Examples include

all rate-independent models [47, Proposition 2.1], some

rate-dependent models, models with local memory like

the various generalizations of the Duhem model, and

models with nonlocal memory like the Preisach model.

The author introduces two changes in time scale: (1)

a linear one which is applied to a given input, and (2) a

-possibly- nonlinear one which is the total variation of

the original input. When the input is composed with the
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linear time-scale change, both the input and the output

are re-scaled with respect to the total variation of the

input, which provides a normalized input independent

of the linear time-scale change, and a normalized out-

put. Consistency is defined as being the convergence of

the normalized outputs in the space L∞ endowed with

the uniform convergence norm. It is shown that consis-

tency implies the convergence to some set of the graphs

output versus input of the hysteresis operator when the

linear time scale varies [35, Lemma 9].

Strong consistency is defined as the property that

the limit of the normalized outputs, seen a parametrized

curve, converges to a periodic orbit which characterizes

the hysteresis loop.

The author does not propose a definition of hys-

teresis, but considers that consistency and strong con-

sistency are properties of a class of hysteresis systems.

Aim of the paper. The aim of the paper is to sur-

vey the research carried out on the Duhem model from

the perspective of its hysteretic properties.

Organization of the paper. Section 4 presents

some results obtained in Ref. [43], namely the con-

cept of vibro-correctness, sufficient conditions to ensure

global solutions of the scalar rate independent Duhem

model, and a study of the continuity of the model seen

as an operator. Section 5 presents a definition of hys-

teresis proposed in Ref. [54] that uses a generalized form

of Duhem’s model as a tool to get that formal defini-

tion. Section 6 presents the concepts of consistency and

strong consistency introduced in Ref. [35]. The tools

and notations of Ref. [35] are also used as a unifying

framework to present the results of the present paper.

Section 7 presents a characterization of the generalized

Duhem model obtained in Ref. [51]. Section 8 summa-

rizes the results obtained in Ref. [40] in relation with

the study of the dissipativity of the Duhem model. Sec-

tion 9 summarizes some results obtained in Ref. [64]

in relation with the existence of a Duhem operator,

its smoothness, and some generalizations of the model.

Section 10 is a note that explores the minor loops of hys-

teresis systems with particular emphasis on the Duhem

model. For ease of reference, some results on the ex-

istence and uniqueness of the solutions of differential

equations are presented in Appendix A.

To illustrate the results obtained in Sections 4–10,

and to analyze the relationships between these results,

we use the scalar semilinear Duhem model as a case

study. The corresponding mathematical analysis is stated

in various lemmas and theorems provided in Section

11, whose proofs are given in B–F. The relationships

between the results obtained in Sections 4–9 are com-

mented upon in Section 12. These comments lead to

the formulation of several open problems in Section 13

and a conjecture in Section 11.9.

3 Terminology and notations

A real number x is said to be strictly positive when x >

0, strictly negative when x < 0, nonpositive when x ≤
0, and nonnegative when x ≥ 0. A function h : R → R
is said to be strictly increasing when t1 < t2 ⇒ h(t1) <

h(t2), strictly decreasing when t1 < t2 ⇒ h(t1) > h(t2),

nonincreasing when t1 < t2 ⇒ h(t1) ≥ h(t2), and non-

decreasing when t1 < t2 ⇒ h(t1) ≤ h(t2).7

An ordered pair a, b is denoted (a, b) whilst the open

interval {t ∈ R | a < t < b} is denoted ]a, b[. The set of

nonnegative integers is denoted N = {0, 1, . . .} and the

set of nonnegative real numbers is denoted R+ = [0,∞[.

The Lebesgue measure on R is denoted µ. We say

that a subset of R is measurable when it is Lebesgue

measurable. Let I ⊂ R+ be an interval, and consider a

function φ : I → Rl where l > 0 is an integer. We say

that φ is measurable when φ is (Mµ, B)–measurable

where B is the class of Borel sets of Rl and Mµ is the

class of measurable sets of R+ [66]. For a measurable

function φ : I → Rl, ‖φ‖I denotes the essential supre-

mum of the function |φ| on I where | · | is the Euclidean

norm on Rl. When I = R+, this essential supremum is

denoted ‖φ‖.
W 1,∞(R+,Rl) denotes the Sobolev space of abso-

lutely continuous functions φ : R+ → Rl. For this class

of functions, we have ‖φ‖ < ∞; the derivative of φ

is denoted φ̇; this derivative is defined almost every-
where and satisfies ‖φ̇‖ < ∞. Endowed with the norm

‖φ‖W 1,∞(R+,Rl) = max
(
‖φ‖, ‖φ̇‖

)
, the vector space

W 1,∞(R+,Rl) is a Banach space [45, pp. 280–281].

L∞(R+,Rl) denotes the Banach space of measur-

able and essentially bounded functions φ : R+ → Rl
endowed with the norm ‖ · ‖.

C0(R+,Rl) denotes the Banach space of continuous

functions φ : R+ → Rl endowed with the norm ‖ · ‖.
∀γ ∈ ]0,∞[, the linear time-scale-change sγ : R+ →

R+ is defined by the relation sγ(t) = t/γ,∀t ∈ R+.

lim
x↑a

sets for lim
x→a
x<a

whilst lim
x↓a

sets for lim
x→a
x>a

.

Let U be a set and let T ∈ ]0,∞[. The function

φ : R+ → U is said to be T–periodic if φ(t) = φ(t +

T ),∀t ∈ R+.

7 In this paper we avoid the words “positive”, “negative”,
“increasing”, “decreasing” as they mean different things in
different books.
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4 A summary of the results obtained in Ref.

[43]

This section presents those results obtained in Ref. [43]

that are relevant to the present paper. This is in partic-

ular the case of the concept of vibro-correctness which

allows to extend the set of admissible inputs from con-

tinuously differentiable to continuous.

4.1 The concept of vibro-correctness

Consider the differential equation [43, p. 95]

ẋ(t) = ζ1
(
t, x(t), u(t), u̇(t)

)
, (6)

x(t0) = x0. (7)

In Equations (6)–(7) the initial time t0 ∈ R and the

initial state x0 ∈ Rn where n > 0 is an integer. Fur-

thermore, the function ζ1 : R × Rn × R × R → Rn is

continuous and the input u ∈ C1
(
[t0,∞[,R

)
. Theorem

10 ensures the existence of at least a solution of (6)–

(7) on some time interval [t0, t
′
0[ where t′0 > t0 may

be finite or infinite. Is it possible to extend the set of

inputs from continuously differentiable to solely contin-

uous? The answer to this question leads to the concept

of vibro-correctness.

Let t1 ∈ ]t0,∞[ and v ∈ C0
(
[t0, t1],R

)
. For any

δ ∈ ]0,∞[ define the set

E(δ, v) =
{
u ∈ C1

(
[t0, t1],R

)
| ‖u− v‖[t0,t1] ≤ δ

}
. (8)

Definition 1 [43, pp. 95–96] The differential equation

(6)–(7) is vibro-correct if for each x0 ∈ Rn and each

input u∗ ∈ C0
(
[t0,∞[,R

)
there exist t1 ∈ ]t0,∞[ and

δ0 ∈ ]0,∞[ such that Propreties (i)–(ii) hold.

(i) ∀u ∈ E(δ0, u∗) the solution x = W(u, x0) of Equa-

tions (6)–(7) exists and is unique on the time inter-

val [t0, t1].

(ii) lim
δ→∞

sup
u,v∈E(δ,u∗)

‖W(u, x0)−W(v, x0)‖[t0,t1] = 0.

In the following we analyze the consequences of vibro-

correctness. Consider a sequence of inputs uk ∈ E(δ0, u∗)

such that limk→∞ ‖uk − u∗‖[t0,t1] = 0. Then, owing to

Proprety (ii) of Definition 1, it follows that

{W(uk, x0)}k∈N is a Cauchy sequence in C0
(
[t0, t1],R

)
.

Thus it converges with respect to the norm ‖ · ‖ to a

function x∗ ∈ C0
(
[t0, t1],R

)
. Note that the function

x∗ is independent of the particular choice of the se-

quence uk owing to Proprety (ii) of Definition 1. Defin-

ing W(u∗, x0) as being x∗ means that the operator W
has been extended to the set of continuous inputs.

Thus, the concept of vibro-correctness allows to ex-

tend the definition of the operator W from the set of

continuously differentiable inputs to that of continuous

inputs.

Another consequence of Property (ii) is the unique-

ness of the solutions of (6)–(7). This means that it is

not necessary to state explicitly in Property (i) that the

differential equation (6)–(7) has a unique solution (this

is what is done in Ref. [43]; see also [43, p. 104]).

Definition 2 [43, p. 98] If we consider only constant

inputs u∗ in Definition 1 then the differential equation

(6)–(7) is said to be vibro-correct on constant inputs.

Theorem 1 [43, p. 98] If the differential equation (6)–

(7) is vibro-correct on constant inputs then we can find

functions ζ2, ζ3 : R × Rn × R → Rn such that for all

(t, x, u, v) ∈ R × Rn × R × R we have ζ1(t, x, u, v) =

ζ2(t, x, u)v + ζ3(t, x, u).

Theorem 1 means that the only differential equa-

tions (6)–(7) that may be vibro-correct are the ones

that have the following form:

ẋ(t) = ζ2
(
t, x(t), u(t)

)
u̇(t) + ζ3

(
t, x(t), u(t)

)
, (9)

x(t0) = x0. (10)

4.2 Global solutions of the scalar rate-independent

Duhem model

Consider the space S(t0, t2) of absolutely continuous

functions u : [t0, t2]→ R such that

‖u‖S = |u(t0)|+
∫ t2

t0

|u̇(t)| dt <∞, (11)

where t2 ∈ ]t0,∞[ is fixed. Consider following differen-

tial equation [43, p. 286]:

ẋ(t) = h`
(
x(t), u(t)

)
u̇(t) for almost all t ∈ [t0, t2]

such that u̇(t) ≤ 0, (12)

ẋ(t) = hr
(
x(t), u(t)

)
u̇(t) for almost all t ∈ [t0, t2]

such that u̇(t) ≥ 0, (13)

x(t0) = x0, (14)

where u ∈ S(t0, t2), and x(t) ∈ R. The functions h`, hr :

R×R→ R are Borel, locally bounded,8 and satisfy the

following unilateral Lipschitz conditions with respect to

the first variable [43, p. 278]:

(x1 − x2)
(
h`(x1, v)−h`(x2, v)

)
≥ −λ(v)(x1 − x2)2,

∀x1, x2 ∈ R,∀v ∈ [au, bu], (15)

(x1 − x2)
(
hr(x1, v)−hr(x2, v)

)
≤ λ(v)(x1 − x2)2,

∀x1, x2 ∈ R,∀v ∈ [au, bu], (16)

8 If the functions h` and hr are continuous then they are
Borel and locally bounded. Continuity is the condition that
appears in Ref. [48].
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where λ : R→ R+ is continuous, au = mint∈[t0,t2] u(t),

and bu = maxt∈[t0,t2] u(t). Observe that (15)–(16) are

the transcription of (133) for the differential equation

(12)–(13). Given that the function λ is continuous, it is

bounded on the interval [au, bu] so that the term λ(v)

in Inequalities (15)–(16) can be replaced by a constant.

Thus there exists a unique solution to (12)–(14) whose

maximal interval of existence is [t0, t2] owing to Lemma

12.

4.3 Continuity of the rate-independent Duhem model

seen as an operator

For any given initial condition x0 ∈ R define the oper-

ator Zx0 : S(t0, t2) → S(t0, t2) that associates to each

input u ∈ S(t0, t2) the solution x of the differential

equation (12)–(14). Then,

Theorem 2 [43, Theorem 29.1] The operator Zx0 is

continuous. Furthermore, let a ∈ ]0,∞[, then

sup{u∈S(t0,t2)| ‖u‖S≤a} ‖Zx0
(u)‖S <∞.

5 A summary of the results obtained in Ref.

[54]

This section presents those results obtained in Ref. [54]

that are relevant to the present paper. In particular,

the authors of Ref. [54] propose a definition that de-

cides whether a given generalized Duhem model is a

hysteresis or not.

5.1 The generalized Duhem model

The generalized Duhem model with input u, state x

and output y consists of a differential equation that

describes the state x as [54]

ẋ(t) = f
(
x(t), u(t)

)
g
(
u̇(t)

)
, for almost all t ∈ R+,

(17)

x(0) = x0, (18)

and an algebraic equation that describes the output y

as

y(t) = h
(
x(t), u(t)

)
,∀t ∈ R+. (19)

In Equations (17)–(19) the input u ∈ W 1,∞(R+,R);9

the function f : Rn × R → Rn×n′ is continuous; n and

n′ are strictly positive integers; the function g : R →
Rn′ is continuous and satisfies g(0) = 0; the function

9 Ref. [54] considers that u is continuous and piecewise C1.
However, the results that we present here are also valid for
inputs belonging to W 1,∞(R+,R).

h : Rn × R → R is continuous; and the initial state

x0 ∈ Rn. The following is assumed in [54, Section II,

p. 633].

Assumption 1 For every (u, x0) ∈W 1,∞(R+,R)×Rn
there exists a unique solution x ∈ W 1,∞(R+,Rn) that

satisfies Equations (17)–(18).

From Assumption 1 we get y ∈ C0(R+,R)∩L∞(R+,R).

Define the operator Ho : W 1,∞(R+,R) × Rn →
C0(R+,R) ∩ L∞(R+,R) by the relation Ho(u, x0) = y;

and the operatorHs : W 1,∞(R+,R)×Rn →W 1,∞(R+,Rn)

by the relation Hs(u, x0) = x.

5.2 Definition of hysteresis according to Ref. [54]

We stress that Ref. [54] does not propose a definition

of hysteresis in general. Instead, the authors of Ref.

[54] propose a definition that decides whether a given

generalized Duhem model is a hysteresis or not (this is

Definition 4). We now present the different steps that

are followed in Ref. [54] to come to Definition 4.

Definition 3 The nonempty set C ⊂ R2 is a closed

curve if there exists T ∈ ]0,∞[, a continuous, piecewise

C1, and T–periodic function η : [0, T ] → R2 such that

η([0, T ]) = C and η(0) = η(T ).

Note that Definition 3 is equivalent to [54, Defini-

tion 2.1]. Let umin, umax ∈ R with umin < umax and let

α1, T ∈ R with 0 < α1 < T . Consider a T–periodic

input u : R+ → [umin, umax] such that

(i) the function u is continuous on R+,

(ii) the function u is continuously differentiable on ]0, α1[

and on ]α1, T [ with ‖u̇‖ <∞,

(iii) the function u is strictly increasing on ]0, α1[ and is

strictly decreasing on ]α1, T [,

(iv) we have u(0) = u(T ) = umin and u(α1) = umax.

Let Λumin,umax,α1,T be the set of all such inputs u, and

define the set

Λ =
⋃

umin<umax
0<α1<T

Λumin,umax,α1,T . (20)

Let γ ∈ ]0,∞[; observe that the input u ◦ sγ is Tγ–

periodic where sγ is a linear time-scale change. The

following is assumed in [54, Definition 2.2].

Assumption 2 Under Assumption 1, for every u ∈ Λ
there exists a unique10 initial condition x0,u ∈ Rn such

that Hs(u, x0,u) is also T–periodic.

10 The uniqueness of x0,u is not asked in [54, Definition 2.2].
However without uniqueness the equality in Condition (i) of
Definition 4 would have no meaning since Cu,γ would not
correspond to a single mathematical object.
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In the following, to simplify the notations, the ini-

tial condition x0,u◦sγ for γ ∈ ]0,∞[ is denoted simply

x0,γ . Note that, owing to the continuity and periodic-

ity of Hs(u ◦ sγ , x0,γ), we have [Hs(u ◦ sγ , x0,γ)] (0) =

[Hs(u ◦ sγ , x0,γ)] (Tγ). This fact, combined with Equa-

tion (19) implies that the output Ho(u◦sγ , x0,γ) is also

Tγ–periodic and that [Ho(u ◦ sγ , x0,γ)] (0) =

[Ho(u ◦ sγ , x0,γ)] (Tγ). Define the closed curve

Cu,γ =
{(
u ◦ sγ(t), [Ho(u ◦ sγ , x0,γ)] (t)

)
, t ∈ [0, Tγ]

}
.

(21)

Now, we introduce the so-called Hausdorff distance.

Let k ≥ 2 be an integer. For any two nonempty compact

sets S1 and S2 in Rk, define the Hausdorff distance dk
by the relation

dk(S1, S2) = max

{
sup
η1∈S1

(
inf
η2∈S2

|η1 − η2|
)
,

sup
η2∈S2

(
inf
η1∈S1

|η1 − η2|
)}

.

(22)

Then, the collection of all nonempty compact subsets

of Rk is a complete metric space with respect to the

Hausdorff distance dk [23, p. 67].

Definition 4 [54, Definition 2.2] Under Assumptions

1 and 2, the operator Ho is a hysteresis if Conditions

(i) and (ii) hold for all (u, x0) ∈ Λ× Rn.

(i) There exists a closed curve Cu ⊂ R2 such that

limγ→∞ d2(Cu, Cu,γ) = 0.

(ii) There exist a, b1, b2 ∈ R with b1 6= b2 such that

(a, b1) ∈ Cu and (a, b2) ∈ Cu.

Remark 1 Condition (i) in Definition 4 states that
limγ→∞ d2(Cu, Cu,γ) = 0. For this reason, it is not nec-

essary that γ ∈ ]0,∞[ in Assumption 2, it suffices that

∃γ0 ∈ ]0,∞[ such that the condition in Assumption 2

holds for all γ ∈ ]γ0,∞[.

Remark 2 Owing to Theorem 1, the generalized Duhem

model (17)–(19) is not vibro-correct when the function

g is not linear. This implies that it cannot be extended

to continuous inputs by the use of the concept of vibro-

correctness [43, p. 279]. If g is linear it is shown in [54,

Proposition 3.2] that, for u ∈ Λ, the state x can be

written as a function of the input u which means that

Condition (ii) of Definition 4 cannot be met.

5.3 Case study

The semilinear Duhem model is used to illustrate Defi-

nition 4 and to analyze the relationship between Defini-

tion 4 and the concept of strong consistency presented

in Section 6. To this end Section 11.5 provides an an-

alytical study of the conditions under which the scalar

semilinear Duhem model is a hysteresis according to

Definition 4. This study is illustrated by numerical sim-

ulations in Section 11.6. Finally the relationship be-

tween Definition 4 and strong consistency is analyzed

in Section 12.1.

6 A summary of the results obtained in Ref.

[35]

This section presents those results obtained in Ref. [35]

that are relevant to the present paper. This is in partic-

uler the case for the concepts of consistency and strong

consistency.

6.1 The normalized input

Let p > 0 be an integer. For u ∈ W 1,∞(R+,Rp), let

ρu : R+ → R+ be the total variation of u on [0, t], that

is ρu(t) =
∫ t
0
|u̇(τ)|dτ ∈ R+, ∀t ∈ R+. The function

ρu is well defined, nondecreasing and absolutely con-

tinuous. Observe that ρu may not be invertible (this

happens when the input u is constant on some interval

or intervals). Denote ρu,max = lim
t→∞

ρu(t) and let

– Iu = [0, ρu,max] if ρu,max = ρu(t) for some t ∈ R+

(in this case the interval Iu is finite),

– Iu = [0, ρu,max[ if ρu,max > ρu(t) for all t ∈ R+ (in

this case the interval Iu may be finite or infinite).

Lemma 1 [35] Let u ∈W 1,∞(R+,Rp) be non constant
11 so that the interval Iu is not reduced to a single point.

Then there exists a unique function ψu ∈W 1,∞(Iu,Rp)
that satisfies ψu ◦ ρu = u. Moreover, the function ψu
satisfies ‖ψ̇u‖Iu = 1 and

µ
({
% ∈ Iu | ψ̇u(%) is not defined or |ψ̇u(%)| 6= 1

})
= 0.

The function ψu is constructed as follows. Let % ∈
Iu, then there exists t% ∈ R+ such that ρu(t%) = % (note

that t% is not necessarily unique as ρu is not necessarily

invertible). Then, u(t%) is independent of the particu-

lar choice of t%, and ψu(%) is defined by the relation

ψu(%) = u(t%) [35].

Lemma 1 shows that the input u has been “normal-

ized” so that the resulting function ψu is such that ψ̇u
has norm 1 with respect to the new time variable %. For

this reason, we call function ψu the normalized input.

For every γ ∈ ]0,∞[ recall the linear time-scale-

change sγ .

Lemma 2 [35] ∀γ ∈ ]0,∞[, Iu◦sγ = Iu and ψu◦sγ =

ψu.

11 u is non constant if ∃t1, t2 ∈ R+ such that u(t1) 6= u(t2).
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6.2 Class of operators

Let Ξ,U, Y be arbitrary sets. Let U be the set of func-

tions u : R+ → U , and Y the set of functions y :

R+ → Y . Consider a function (called operator in this

work) H : U × Ξ → Y. The operator H is said to

be causal if the following holds [64, p. 60]: ∀u1, u2 ∈
U ,∀x0 ∈ Ξ,∀τ ∈ ]0,∞[, if ∀t ∈ [0, τ ], u1(t) = u2(t),

then ∀t ∈ [0, τ ], [H (u1, x0)] (t) = [H (u2, x0)] (t).

Assumption 3 [35] Let Ξ be a set of initial condi-

tions. Consider a causal operator H : W 1,∞(R+,Rp)×
Ξ → L∞(R+,Rm) wherem ∈ N\{0}. For every (u, x0, θ) ∈
W 1,∞(R+,Rp)×Ξ×R+, if u is constant on the interval

[θ,∞[, then H (u, x0) is constant on the same interval

[θ,∞[.

6.3 The normalized output

Lemma 3 [35] Let Ξ be a set of initial conditions.

Assume that the operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm) is causal and satisfies Assumption 3. Let

(u, x0) ∈W 1,∞(R+,Rp)×Ξ. Then, there exists a unique

function ϕu ∈ L∞(Iu,Rm) that satisfies ϕu ◦ ρu =

H (u, x0). Moreover, we have ‖ϕu‖Iu ≤ ‖H (u, x0)‖. If

H (u, x0) is continuous on R+, then ϕu is continuous

on Iu and we have ‖ϕu‖Iu = ‖H (u, x0)‖.

The function ϕu, called normalized output, is con-

structed as follows. Let % ∈ Iu, then there exists a not

necessarily unique t% ∈ R+ such that ρu(t%) = %. Then,

[H (u, x0)] (t%) is independent of the particular choice

of t%, and ϕu(%) is defined by the relation ϕu(%) =

[H (u, x0)] (t%) [35].

Note that the correct notation for function ϕu is

ϕu,x0,H to stress that this function depends also on the

initial condition x0 and on the operator H. However,

in the definition of consistency (Definition 5), neither

the initial condition x0 nor the operator H vary, which

justifies the simplified notation.

6.4 Definition of consistency

The concept of consistency is introduced in Ref. [35] as

follows.12 Consider that the input u is composed with

12 In the proof of [54, Proposition 5.1] Oh and Bernstein
use as input u ◦ sγ where u ∈ Λ, and obtain by a lim-
iting process a rate-independent semilinear Duhem model.
In Ref. [35], Ikhouane extends this idea to causal operators
H : W 1,∞(R+,Rp) × Ξ → L∞(R+,Rm) that satisfy As-
sumption 3, and to inputs that belong to W 1,∞(R+,Rp).

the time-scale-change sγ where γ ∈ ]0,∞[. Then, con-

sider the set

Su,γ =
{(
u ◦ sγ(t), [H (u ◦ sγ , x0)] (t)

)
, t ∈ R+

}
(23)

which is the outputH (u ◦ sγ , x0) versus the input u◦sγ
(observe that the initial condition x0 does not vary with

γ). Using the notations of Sections 6.1 and 6.3 we get

ψu◦sγ ◦ρu◦sγ = u◦sγ and ϕu◦sγ ◦ρu◦sγ = H (u ◦ sγ , x0)

for all γ ∈ ]0,∞[. Thus, the set Su,γ can be rewritten

as

Su,γ =
{(
ψu◦sγ ◦ ρu◦sγ (t), ϕu◦sγ ◦ ρu◦sγ (t)

)
, t ∈ R+

}
,

(24)

which leads to

Su,γ =
{ (
ψu◦sγ (%), ϕu◦sγ (%)

)
, % ∈ Iu◦sγ

}
. (25)

Using Lemma 2 it follows from Equation (25) that

Su,γ =
{ (
ψu(%), ϕu◦sγ (%)

)
, % ∈ Iu

}
. (26)

Observe that, in the expression (26) of the set Su,γ , the

only term that depends on γ is the function ϕu◦sγ ∈
L∞(Iu,Rm).

Definition 5 [35] Let Ξ be a set of initial conditions.

Consider a causal operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm) that satisfies Assumption 3. Let (u, x0) ∈
W 1,∞(R+,Rp)× Ξ. The operator H is said to be con-

sistent with respect to (u, x0) if there exists a function

ϕ?u ∈ L∞(Iu,Rm) such that limγ→∞ ‖ϕu◦sγ − ϕ?u‖Iu =

0.

Define the set S?u by the relation

S?u =
{(
ψu(%), ϕ?u(%)

)
, % ∈ Iu

}
. (27)

Recall that the Hausdorff distance dp+m is defined

by Equation (22).

Lemma 4 [35] Let Ξ be a set of initial conditions.

Assume that the operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm) is causal and satisfies Assumption 3. If

H is consistent with respect to (u, x0) then

limγ→∞ dp+m
(
S̄u,γ , S̄?u

)
= 0, where X̄ is the closure of

the set X.

The converse of Lemma 4 is not true in general [35,

Example 2].

Definition 6 13 Let Ξ be a set of initial conditions.

Consider a causal operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm) that satisfies Assumption 3. We say that

H is rate independent with respect to linear time-scale

changes if ∀(u, x0, γ) ∈ W 1,∞(R+,Rp) × Ξ × ]0,∞[ we

have H(u ◦ sγ , x0) = H(u, x0) ◦ sγ almost everywhere.

13 Definition 6, Assumption 4, and Proposition 1 do not ap-
pear in Ref. [35].
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Assumption 4 Let Ξ be a set of initial conditions.

Consider a causal operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm)∩C0(R+,Rm) that satisfies Assumption 3.

Assume thatH is consistent with respect to all (u, x0) ∈
W 1,∞(R+,Rp)×Ξ.

The new element that Assumption 4 introduces is

that the output H(u, x0) is assumed to be continuous.

Proposition 1 Under Assumption 4, let the operator

H? : W 1,∞(R+,Rp)×Ξ → L∞(R+,Rm)∩C0(R+,Rm)

be defined by the relation H?(u, x0) = ϕ?u ◦ρu. Then H?
is causal, satisfies Assumption 3, and is rate indepen-

dent with respect to linear time-scale changes.

Proof Straightforward.

Under Assumption 4 write the operator H as

H = H? +H†, (28)

H† = H−H?. (29)

For any (u, x0, γ) ∈W 1,∞(R+,Rp)×Ξ × ]0,∞[ we have

H†(u ◦ sγ , x0) = H(u ◦ sγ , x0)−H?(u, x0) ◦ sγ . On the

other hand,H(u◦sγ , x0) = ϕu◦sγ ◦ρu◦sγ andH?(u, x0)◦
sγ = ϕ?u ◦ ρu◦sγ . By Lemma 3 it follows that

∥∥H†(u ◦
sγ , x0)

∥∥ = ‖ϕu◦sγ −ϕ?u‖Iu . Since the operator H is con-

sistent by Assumption 4 it follows that limγ→∞ ‖ϕu◦sγ−
ϕ?u‖Iu = 0. We thus conclude that

lim
γ→∞

∥∥H†(u ◦ sγ , x0)
∥∥ = 0. (30)

The interpretation of Equations (28)–(30) is post-

poned to Section 12.1.3.

6.5 Definition of strong consistency

Observe that, in Definition 5 of consistency, the input

u may be periodic or not. However, to characterize the

hysteresis loop of the operator H, the input u needs

to be periodic. For this reason, Ref. [35] introduces the

concept of strong consistency (this is Definition 7) in

relation with periodic inputs.14

Lemma 5 [35] Let T ∈ ]0,∞[. If u ∈W 1,∞(R+,Rp) is

non constant and T–periodic, then Iu = R+ and ψu ∈
W 1,∞(R+,Rp) is ρu (T )–periodic.

14 To the best of our knowledge, proposing a formal def-
inition of hysteresis based on the existence of a hysteresis
loop was first done by Oh and Bernstein in Ref. [54] for the
generalized Duhem model, and for inputs belonging to Λ.
Ikhouane used a different perspective to generalize this idea
to causal operators H : W 1,∞(R+,Rp)× Ξ → L∞(R+,Rm)
that satisfy Assumption 3, and to periodic inputs that belong
to W 1,∞(R+,Rp) [35].

Definition 7 [35] Let Ξ be a set of initial conditions

and let x0 ∈ Ξ. Let u ∈ W 1,∞(R+,Rp) be such that

the input u is non constant and T–periodic where T ∈
]0,∞[. Consider an operator H : W 1,∞(R+,Rp)×Ξ →
L∞(R+,Rm) that is causal and that satisfies Assump-

tion 3. Assume furthermore that the operator H is con-

sistent with respect to (u, x0). For any nonnegative in-

teger k, define the function ϕ?u,k ∈ L∞
(

[0, ρu (T )] ,Rm
)

by ϕ?u,k (%) = ϕ?u
(
ρu (T ) k+%

)
,∀% ∈ [0, ρu (T )]. The op-

erator H is said to be strongly consistent with respect

to (u, x0) if there exists ϕ◦u ∈ L∞
(

[0, ρu (T )] ,Rm
)

such

that limk→∞ ‖ϕ?u,k − ϕ◦u‖[0,ρu(T )] = 0.

Definition 8 [35] Let Ξ be a set of initial conditions

and x0 ∈ Ξ. Let T ∈ ]0,∞[. Let u ∈ W 1,∞(R+,Rp)
be non constant and T–periodic. Consider an operator

H : W 1,∞(R+,Rp) × Ξ → L∞(R+,Rm) that is causal

and that satisfies Assumption 3. Assume furthermore

that the operator H is strongly consistent with respect

to (u, x0). We call hysteresis loop of the operator H
with respect to (u, x0) the set

Gu =
{(
ψu (%) , ϕ◦u (%)

)
, % ∈ [0, ρu (T )]

}
. (31)

Note that the hysteresis loop Gu may be indepen-

dent of the initial condition x0 (see for example Section

11.3).

Observe that some operators may be strongly con-

sistent but do not describe a hysteresis, like any static

nonlinearity y = f(u) where f is a function. This is why

the following definition is useful for the characterization

of hysteresis systems.

Definition 9 15 Let Ξ be a set of initial conditions.

Consider a causal operator H : W 1,∞(R+,Rp) × Ξ →
L∞(R+,Rm) that satisfies Assumption 3. Let T ∈ ]0,∞[

and u ∈ W 1,∞(R+,Rp) be a non constant and T–

periodic input. Let x0 ∈ Ξ. We say that the operator H
has a nontrivial hysteresis loop with respect to (u, x0)

if Conditions (i) and (ii) hold.

(i) The operator H is strongly consistent with respect

to (u, x0).

(ii) µ
({
%1 ∈ Iu | ∃%2 ∈ Iu such that ψu(%1) = ψu(%2)

and ϕ◦u(%1) 6= ϕ◦u(%2)
})
6= 0.

The operator H has a trivial hysteresis loop with re-

spect to (u, x0) if Condition (i) holds and Condition

(ii) does not hold.

15 Definition 9 does not appear in Ref. [35]. Compare with
Condition (ii) of Definition 4.
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6.6 Case study

The semilinear Duhem model is used to illustrate the

concepts of consistency and strong consistency (Sec-

tions 11.1, 11.2, 11.3, 11.4), and to analyze the relation-

ship between these concepts and Definition 4 (Section

12.1).

7 A summary of the results obtained in Ref.

[51]

This section presents those results obtained in Ref. [51]

that are relevant to the present paper. In particular,

Ref. [51] characterizes the function g that appears in

Equation (17).

Consider the generalized Duhem model (17)–(18)

under Assumption 1. Let λ ∈ ]0,∞[.

Assumption 5 The limits limw↓0
g(w)
wλ

and limw↑0
g(w)
|w|λ

exist, are finite, and at least one of them is nonzero.

Assumption 5 implies that λ is unique, and the func-

tion g is said to be of class λ.

Assumption 6 There exists a continuous function Q :

R+×R+×R+ → R+ such that ‖x‖ ≤ Q(|x0|, ‖u‖, ‖u̇‖)
for each initial state x0 and each input u ∈W 1,∞(R+,R).

Under Assumptions 1, 5, and 6 we have the follow-

ing.

Lemma 6 Suppose that the operator Hs (see Section

5.1) is consistent with respect to (u, x0) for each initial

state x0 and each input u ∈W 1,∞(R+,R), and suppose

that function g is of class λ ∈ ]0,∞[. Then the following

holds.

(i) If λ ∈ ]0, 1[ then f(·, ·)g(·) is identically zero.

(ii) If λ ∈ ]1,∞[ then ϕ?u (see Section 6.4) is identically

x0.

(iii) If λ = 1, let qu = ϕ?u ◦ ρu (see Section 6.1) then

qu(t) = x0 +

∫ t

0

f
(
qu(τ), u(τ)

)
ĝ
(
u̇(τ)

)
dτ,∀t ∈ [0,∞[

(32)

ĝ (ϑ) =


ϑ lim
w↓0

g (w)

w
ϑ ≥ 0,

|ϑ| lim
w↑0

g (w)

|w|
ϑ < 0.

(33)

Proof (i) follows from Lemma 12 and Remark 14 in Ref.

[51], whereas (ii) and (iii) are given in [51, Lemma 12].

Lemma 6 says that if λ 6= 1 then the correspond-

ing generalized Duhem model does not represent a hys-

teresis behavior.16 Thus, the existence of limw↓0
g(w)
w

and limw↑0
g(w)
|w| is a necessary condition for the gen-

eralized Duhem model to represent a hysteresis. This

necessary condition has been derived from the concept

of consistency presented in Section 6.4. Note that this

condition has been assumed for the semilinear Duhem

model proposed in Ref. [54] (see Equation (68) along

with Equations (66)–(67)).

8 A summary of the results obtained in Ref.

[40]

This section presents those results obtained in Ref. [40]

that are relevant to the present paper. This is the case

for the dissipativity of a special form of the Duhem

model. The concept of dissipativity/passivity is treated

in [42, chapter 6] as an abstracted form of energy dissi-

pation which makes this concept relevant to the study

of hysteresis.

8.1 The scalar rate-independent Duhem model

The following scalar rate-independent Duhem model is

considered in Ref. [40]:

ẋ(t) = f1
(
x(t), u(t)

)
u̇(t) for almost all t ∈ [0,∞[

such that u̇(t) ≥ 0, (34)

ẋ(t) = f2
(
x(t), u(t)

)
u̇(t) for almost all t ∈ [0,∞[

such that u̇(t) ≤ 0, (35)

x(0) = x0, (36)

where x0 ∈ R is the initial condition, functions f1, f2 ∈
C1(R2,R), and the input u ∈ AC(R+,R): the set of

absolutely continuous functions defined from R+ to R.

To ensure the existence and uniqueness of the solutions

of the differential equation on the time interval [0,∞[,

the following unilateral Lipschitz condition is assumed:

(x1 − x2)
(
f1(x1, v)− f1(x2, v)

)
≤ λ1(v)(x1 − x2)2,

∀x1, x2, v ∈ R, (37)

(x1 − x2)
(
f2(x1, v)− f2(x2, v)

)
≥ −λ2(v)(x1 − x2)2,

∀x1, x2, v ∈ R, (38)

16 Indeed, if λ ∈ ]0, 1[, Equations (17)–(18) lead to x(t) =
x0,∀t ∈ R+. If λ ∈ ]1,∞[, ϕ?u is identically x0 which implies
that ϕ◦u is identically x0. In both cases the operator Hs has
a trivial hysteresis loop with respect to all inputs and initial
states (see Definition 9).
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where λ1, λ2 : R → R+ are bounded on any bounded

interval.17 Using Lemma 12, Inequalities (37)–(38) en-

sure that x ∈ AC(R+,R).

8.2 Definition of dissipativity

Define the operator Φ : AC(R+,R) × R → AC(R+,R)

by the relation Φ(u, x0) = x where x is the solution of

the differential equation (34)–(36).

Definition 10 [40] The operator Φ is said to be dissi-

pative with respect to the supply rate ẋu if there ex-

ists a nonnegative function ς : R2 → R+ such that

∀(u, x0) ∈ AC(R+,R)× R we have

dς
(
x(t), u(t)

)
dt

≤ ẋ(t)u(t), for almost all t ∈ R+, (39)

where x = Φ(u, x0).

8.3 Sufficient conditions for the dissipativity of the

scalar rate-independent Duhem model

Define the functions F1, F2 : R2 → R by the relations

F1 =
f1 − f2

2
; F2 =

f1 + f2
2

. (40)

Assumption 7 [40] The implicit function v 7→ {x1 ∈
R | F1(x1, v) = 0} admits a unique solution x1 = fan(v)

where fan ∈ C1(R,R).

Such a function fan is called an anhysteresis func-

tion and the corresponding graph
{(
v, fan(v)

)
| v ∈ R

}
is called an anhysteresis curve.

For every (x0, u0) ∈ R2, let ωΦ,1(·, x0, u0) : [u0,∞[→
R be the solution z of z(v) − x0 =

∫ v
u0
f1
(
z(σ), σ

)
dσ,

for all v ∈ [u0,∞[. Similarly, let ωΦ,2(·, x0, u0) : ] −
∞, u0] → R be the solution z of the integral equation

z(v)− x0 =
∫ v
u0
f2
(
z(σ), σ

)
dσ, for all v ∈ ]−∞, u0].

Define the function ωΦ(·, x0, u0) : R→ R as follows:

ωΦ(v, x0, u0) =

{
ωΦ,2(v, x0, u0) ∀v ∈ ]−∞, u0[,

ωΦ,1(v, x0, u0) ∀v ∈ [u0,∞[.
(41)

Define the function Ω that characterizes the inter-

section between ωΦ(·, x0, u0) and fan(·) as follows. The

function Ω : R2 → R is an intersecting function that

corresponds to ωΦ and fan if Properties (i)–(iv) hold.

17 The condition that functions λ1, λ2 are bounded on any
bounded interval does not appear in Ref. [40]. However, with-
out this condition there is no guarantee that the maximal in-
terval of existence of the solutions of (34)–(36) is [0,∞[, see
Section 4.2. In [43, p. 278] it is considered that λ1 = λ2 is
continuous so that the local boundedness condition holds.

(i) ωΦ
(
Ω(x0, u0), x0, u0

)
= fan

(
Ω(x0, u0)

)
,∀(x0, u0) ∈

R2,

(ii) Ω(x0, u0) ≥ u0 whenever x0 ≥ fan(u0),

(iii) Ω(x0, u0) < u0 whenever x0 < fan(u0),

(iv)
dΩ
(
x(t),u(t)

)
dt exists for almost all t ∈ R+, and for all

u ∈ AC(R+,R) where x = Φ(u, x0).

Define the function ς : R2 → R by

ς(x1, v) = x1v +

∫ Ω(x1,v)

v

ωΦ
(
σ, x1, v

)
dσ

−
∫ Ω(x1,v)

0

fan(σ) dσ, ∀(x1, v) ∈ R2.

(42)

Theorem 3 [40] Suppose that

(i) There exists an intersecting function Ω that corre-

sponds to ωΦ and fan,

(ii) F1(x1, v) ≥ 0 whenever x1 ≤ fan(v), and F1(x1, v) <

0 otherwise.

Then ∀(u, x0) ∈ AC(R+,R) × R, the function t 7→
ς
(
x(t), u(t)

)
is right differentiable and satisfies Inequal-

ity (39) where x = Φ(u, x0). Moreover, if f1 ≥ 0 and

f2 ≥ 0 then ς ≥ 0 and Φ is dissipative with respect to

the supply rate ẋu.

A sufficient condition for the existence of an inter-

secting function is provided in the following lemma.

Lemma 7 [41] Assume that fan is strictly increasing

and that there exists ε ∈ ]0,∞[ such that ∀(x1, v) ∈ R2

we have

(i) f1(x1, v) < dfan(v)
dv − ε whenever x1 > fan(v), and

(ii) f2(x1, v) < dfan(v)
dv − ε whenever x1 < fan(v).

Then there exists an intersecting function Ω ∈ C1(R2,R)

corresponding to ωΦ and fan such that for all (u, x0) ∈

AC(R+,R) × R the derivative
dΩ
(
x(t),u(t)

)
dt exists for

almost all t ∈ R+.

8.4 Extension of the results obtained in Ref. [40]

Similar results are given in Ref. [40] when the equa-

tion F1(x1, v) = 0 has a unique solution in the form

v = gan(x1). The dissipativity property (39) of the

scalar rate-independent Duhem model means that it

has a counterclockwise input-output dynamics [1]. A

dual result for clockwise input-output dynamics is pro-

vided in Ref. [53].
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8.5 Case study

The scalar rate-independent semilinear Duhem model

is used in Section 11.7 to illustrate the concept of dissi-

pativity. To this end, the results of Ref. [40] are used to

derive explicit conditions on the model parameters to

ensure dissipativity. These conditions are illustrated by

numerical simulations in Section 11.8. The relationship

between dissipativity and orientation of the hysteresis

loop is commented upon in Section 12.3.

9 A summary of the results obtained in Ref.

[64]

This section presents those results obtained in Ref. [64]

that are relevant to the present paper. In particular,

a local Lipschitz property of the Duhem model is pro-

vided.

The following scalar rate-independent Duhem model

is considered in [64, Chapter V].

ẋ(t) = f1
(
x(t), u(t)

)
u̇(t) for almost all t ∈ R+

such that u̇(t) ≥ 0, (43)

ẋ(t) = f2
(
x(t), u(t)

)
u̇(t) for almost all t ∈ R+

such that u̇(t) ≤ 0, (44)

x(0) = x0, (45)

where x0 ∈ R is the initial condition, and the functions

f1, f2 ∈ C0(R2,R). Let T ∈ [0,∞[.18

Theorem 4 [64, Theorem 1.1] Assume that f1, f2 fulfil

the following one-sided Lipschitz conditions

(x1 − x2)
(
f1(x1, v)− f1(x2, v)

)
≤ λ0(v)(x1 − x2)2,

∀x1, x2, v ∈ R, (46)

(x1 − x2)
(
f2(x1, v)− f2(x2, v)

)
≥ −λ0(v)(x1 − x2)2,

∀x1, x2, v ∈ R, (47)

where λ0 : R→ R+ is continuous. Then,

(i) For any u ∈ W 1,1
(
[0, T ],R

)
and any x0 ∈ R there

exists a unique x ∈W 1,1
(
[0, T ],R

)
such that Equa-

tions (43)–(45) hold. That is, we can define an op-

erator M : W 1,1
(
[0, T ],R

)
× R → W 1,1

(
[0, T ],R

)
by the relation M(u, x0) = x.

(ii) For any u ∈ C1
(
[0, T ],R

)
we have x ∈ C1

(
[0, T ],R

)
.

Moreover, for any x0 ∈ R, the mapping M(·, x0) is

continuous in W 1,1
(
[0, T ],R

)
with respect to either

the strong and the weak topology.

18 Since all the results of this section are proved for a finite
time interval, Ref. [64] considers that the differential equa-
tion (43)–(44) holds almost everywhere on that finite time
interval. We consider that the differential equation (43)–(44)
holds almost everywhere on R+ to simplify the discussion of
Section 12.2 without loss of generality.

Proposition 2 [64, Proposition 1.3] Assume that ∀R >

0,∃L(R) > 0 | ∀(xi, vi) ∈ R2(i = 1, 2) we have the

following. If |vi| ≤ R, then
∣∣fj(x1, v1) − fj(x2, v2)

∣∣ ≤
L(R)

(
|v1 − v2|+ |x1 − x2|

)
, (j = 1, 2).

Then, ∀x0 ∈ R, in any ball BR(0) of W 1,∞([0, T ],R
)
,

the operator M(·, x0) is Lipschitz continuous with re-

spect to the metric of W 1,∞([0, T ],R
)
. That is ∀R >

0,∃l(R, T ) > 0 | ∀u1, u2 ∈ W 1,∞([0, T ],R
)

such that

‖ui‖W 1,∞([0,T ],R) ≤ R, i = 1, 2, we have
∥∥M(u1, x0) −

M(u2, x0)
∥∥
W 1,∞([0,T ],R) ≤ l(R, T )‖u1−u2‖W 1,∞([0,T ],R).

It is shown in [64, Theorem 1.5] that the operator

M can be extended to an operator M̄ : C0
(
[0, T ],R

)
∩

BV
(
[0, T ],R

)
×R→ C0

(
[0, T ],R

)
∩BV

(
[0, T ],R

)
where

BV is the space of functions that have bounded total

variation.

Duhem’s model (43)–(45) is generalized as follows

[64, Section V.2].

ẋ(t) =
[
F1(x, u)

]
(t)u̇(t) for almost all t ∈ ]0, T [

such that u̇(t) ≥ 0, (48)

ẋ(t) =
[
F2(x, u)

]
(t)u̇(t) for almost all t ∈ ]0, T [

such that u̇(t) ≤ 0, (49)

x(0) = x0, (50)

where Fi : C0
(
[0, T ],R

)2 → C0
(
[0, T ],R

)
, i = 1, 2 are

causal operators. Sufficient conditions are considered

for the existence of the operator M. The smoothness

properties ofM are studied along with the extension of

M to an operator M̃ : C0
(
[0, T ],R

)
∩BV

(
[0, T ],R

)
×

R→ C0
(
[0, T ],R

)
∩BV

(
[0, T ],R

)
.

Also, Duhem’s model (43)–(45) is generalized to in-

clude vector inputs in [64, Section V.3]. Let N ∈ N\{0}
and set

SN−1 = {v ∈ Rn | |v| = 1}, π(v) =

{
v/|v| if v 6= 0,

0 if v = 0.

Let f :
(
RN
)2 × SN−1 → RN be continuous, and let

(u, x0) ∈ C1
(
[0, T ],RN

)
× RN . Consider the model

ẋ(t) = f
[
x(t), u(t), π

(
u̇(t)

)]
|u̇(t)|,∀t ∈ ]0, T [, (51)

x(0) = x0. (52)

Sufficient conditions are provided for the existence of

an operatorM that is causal, rate independent, fulfils a

semigroup property, and is piecewise monotone in some

sense. An extension of model (51)–(52) following the

lines of model (48)–(50) is also proposed.

Section 12.2 provides comments on the relationship

between Proposition 2 and the effect of noise on the

hysteresis loop of the Duhem model.
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10 A note on minor loops

The minor loops of the Duhem model have not been

studied formally in the available literature. However,

their behavior is important as evidenced by the large

number of published works dedicated to their study

both from an experimental point of view, and from a

mathematical point a view for the Preisach model (see

for example Ref. [49] and the references therein).

For this reason, we provide in this section the formal

definition of a minor loop and analyze the behavior of

the minor loops of the scalar semilinear Duhem model

in Section 11.9. The material provided in this section

may be used as a platform to attract mathematicians

to the formal analysis of the minor loops of the Duhem

model.

In magnetic hysteresis, when magnetization M is

plotted against magnetic field H the following is ob-

served. The curve
(
H(t),M(t)

)
follows the path P1 →

P2 when H increases with time t (see Figure 2). Then

the path P2 → P3 is followed when H decreases. What

is important to note is that, when H increases again

from the point P3, the path followed by
(
H(t),M(t)

)
ends precisely at the point P2 (see for example Ref.

[31]).

H(t)

M
(t
)

P
1

P
3

P
2

Fig. 2: The path P1 → P2 is part of the major loop. The path
P2 → P3 → P2 is a minor loop.

The loop formed by the path P2 → P3 → P2 is

called a minor loop. It occurs in electromagnetic devices

when the input is periodic but not exactly sinusoidal.

The distortion of the input generates minor loops when

hysteresis is involved which causes energy losses. This

fact explains the interest of analyzing the behavior of

minor loops.

In what follows we formalize mathematically the be-

havior observed in Figure 2.

Let umin,1, umin,2, umax,1, umax,2 ∈ R such that umin,1 ≤
umin,2 < umax,1 ≤ umax,2 and at least one of the fol-

lowing holds: umin,1 6= umin,2 or umax,1 6= umax,2. Let

α1, α2, α3, T ∈ R with 0 < α1 < α2 < α3 < T . Con-

sider a T–periodic input u : R+ → [umin,1, umax,2] such

that

(i) the function u is continuous on R+,

(ii) the function u is continuously differentiable on ]0, α1[,

]α1, α2[, ]α2, α3[, and ]α3, T [ with ‖u̇‖ <∞,

(iii) the function u is strictly increasing on ]0, α1[, strictly

decreasing on ]α1, α2[, strictly increasing on ]α2, α3[,

and strictly decreasing on ]α3, T [,

(iv) we have u(0) = u(T ) = umin,1, u(α1) = umax,1,

u(α2) = umin,2, u(α3) = umax,2.

Let Mumin,1,umin,2,umax,1,umax,2,α1,α2,α3,T be the set of all

such inputs u, and let Ξ be a set of initial conditions. In

this section, we consider an operatorH : W 1,∞(R+,R)×
Ξ → L∞(R+,Rm)∩C0(R+,Rm) that is causal and that

satisfies Assumption 3. We assume that H is consistent

with respect to all (u, x0) ∈ W 1,∞(R+,R) × Ξ and is

strongly consistent with respect to all periodic inputs

u ∈W 1,∞(R+,R) and all initial states x0 ∈ Ξ.

For u ∈ Mumin,1,umin,2,umax,1,umax,2,α1,α2,α3,T define

%i = ρu(αi), i = 1, 2, 3. Then we have

%1 = umax,1 − umin,1, (53)

%2 = %1 + umax,1 − umin,2, (54)

%3 = %2 + umax,2 − umin,2, (55)

ρu(T ) = %4 = %3 + umax,2 − umin,1. (56)

The function ψu ∈W 1,∞(R+,R) in %4–periodic by Lemma

5, and can be determined using Lemma 1 as

ψu(%) = %+ umin,1,∀% ∈ [0, %1], (57)

ψu(%) = − %+ %1 + umax,1,∀% ∈ [%1, %2], (58)

ψu(%) = %− %2 + umin,2,∀% ∈ [%2, %3], (59)

ψu(%) = − %+ %3 + umax,2,∀% ∈ [%3, %4]. (60)

Define

%5 = umax,1 − umin,2 + %2 ∈ ]%2, %3],

%6 = umin,2 − umin,1 ∈ ]0, %1[,

%7 = %3 + umax,2 − umin,2 ∈ ]%3, %4[.

Then ψu(%1) = ψu(%5) = umax,1 and ψu(%2) = ψu(%6) =

ψ(%7) = umin,2. Figure 3 illustrates what has been ex-

posed up till now.

Assumption 8

∀(u, x0) ∈ Mumin,1,umin,2,umax,1,umax,2,α1,α2,α3,T × Ξ we

have ϕ◦u(%1) = ϕ◦u(%5).

Definition 11 Under Assumption 8 define the sets

Vu =
{(
ψu(%), ϕ◦u(%)

)
, % ∈ [0, %1] ∪ [%5, %4]

}
, (61)

Nu =
{(
ψu(%), ϕ◦u(%)

)
, % ∈ [%1, %5]

}
. (62)
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0

umin,1

umin,2

umax,1

umax,2

̺1 ̺2 ̺3 ̺4̺5̺6 ̺7

Fig. 3: ψu(%) versus %.

The set Vu is called the major loop and the set Nu a

minor loop (see Figure 4).

Depending on the particular field in which hystere-

sis is observed, minor loops may have some additional

properties that may be formalized mathematically. As

an example, for magnetic hysteresis Assumption 8 holds

[31], and we observe that if umax,1 < umax,2 then for all

(u, x0) ∈Mumin,1,umin,2,umax,1,umax,2,α1,α2,α3,T ×Ξ, Prop-

erties (i)–(ii) hold.

(i) Vu ∩Nu =
{(
ψu(%1), ϕ◦u(%1)

)
=
(
ψu(%5), ϕ◦u(%5)

)}
.

(ii) ϕ◦u(%6) < ϕ◦u(%2) < ϕ◦u(%7) or ϕ◦u(%7) < ϕ◦u(%2) <

ϕ◦u(%6).

Property (i) says that the major loop and the minor

loop intersect at only one point when umax,1 < umax,2.

Property (ii) says that the minor loop is located inside

the major loop. Both conditions are the transcription

of experimental observations in magnetic hysteresis (see

for example [4, Figure 7]).

Note that the hysteresis loop Gu of Equation (31) is

such that Gu = Vu ∪Nu. Figure 4 provides an example

of a minor loop and a major loop that correspond to

the normalized input of Figure 3.

The concepts introduced in this section are applied

to the scalar semilinear Duhem model in Section 11.9.

11 Case study: the semilinear Duhem model

In this section we use the semilinear Duhem model to

illustrate the concepts presented in this paper, and to

analyze the relationships between these concepts. Sec-

tion 11.1 presents the model. In Section 11.2 we provide

sufficient conditions for the consistency of the model.

Section 11.3 focuses on the study of the strong consis-

tency of the semilinear Duhem model. The results of

Sections 11.2 and 11.3 are illustrated by numerical sim-

ulations in Section 11.4. In Section 11.5 we specialize

ψu(̺1) = umax,1ψu(̺2) = umin,2

ϕ
◦

u
(̺6)

ϕ
◦

u
(̺7)

ϕ
◦

u
(̺2)

Major loop

Minor loop

Fig. 4: Hysteresis loop ϕ◦u(%) versus ψu(%) for % ∈
[0, %4]. Black: major loop Vu. Grey: minor loop Nu. The
marker ◦ corresponds to the point

(
ψu(%1), ϕ◦u(%1)

)
=(

ψu(%5), ϕ◦u(%5)
)
. The marker 2 corresponds to the point(

ψu(%2), ϕ◦u(%2)
)
.

into the scalar version of the semilinear Duhem model.

Section 11.5 provides the conditions under which the

scalar semilinear Duhem model is a hysteresis accord-

ing to Definition 4. The results of Section 11.5 are illus-

trated by numerical simuations in Section 11.6. The re-

lationship between Definition 4 and strong consistency

is commented upon in Section 12.1. Section 11.7 an-

alyzes the dissipativity of the scalar rate-independent

semilinear Duhem model. The results of Section 11.7

are illustrated by numerical simulations in Section 11.8.

The relationship between dissipativity and orientation

of the hysteresis loop is commented upon in Section

12.3. The minor loops of the scalar semilinear Duhem

model are studied and commented upon in Section 11.9.

11.1 The semilinear Duhem model: definition and

global existence of solutions

The semilinear Duhem model is a special case of the

generalized Duhem model (17)–(19). It is called so be-

cause, although the model may be nonlinear with re-

spect to the input, the state appears linearly both in

the state equation (63) and in the output equation (65).

The semilinear Duhem model has been proposed in Ref.

[54] as:

ẋ(t) = g1
(
u̇(t)

)(
A1x(t) +B1u(t) + E1

)
+ g2

(
u̇(t)

)(
A2x(t) +B2u(t) + E2

)
for almost all t ∈ R+, (63)

x(0) = x0, (64)

y(t) = Cx(t) +Du(t),∀t ∈ R+. (65)

In Equations (63)–(65) the matrix A1 ∈ Rn×n where n

is a strictly positive integer, A2 ∈ Rn×n, B1 ∈ Rn×1,
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B2 ∈ Rn×1, E1 ∈ Rn×1, E2 ∈ Rn×1, C ∈ R1×n, and

D ∈ R. We consider that C 6= (0, . . . , 0) to avoid having

a linear process y = Du that does not describe hystere-

sis. We consider that u ∈ W 1,∞(R+,R) whereas the

properties of y : R+ → R and x : R+ → Rn will be

analyzed in Theorem 5. The functions g1 : R → R and

g2 : R → R are continuous and satisfy g1(w) = 0 for

w ≤ 0, g2(w) = 0 for w ≥ 0. Define

ḡ1(w) =
g1(w)

|w|
,∀w 6= 0, (66)

ḡ2(w) =
g2(w)

|w|
,∀w 6= 0. (67)

As in Ref. [54] we assume that19

lim
w↓0

ḡ1(w) = 1 and lim
w↑0

ḡ2(w) = −1. (68)

In Equation (63), the functions g1(u̇) and g2(u̇) are

measurable [60, Theorem 1.12(d)]. Thus, the differen-

tial equation (63) can be seen as a linear time-varying

system that satisfies all the assumptions of [29, Theo-

rem 3]. This implies that a unique absolutely continuous

solution of (63) exists on R+.

As noted in Ref. [54], the semilinear Duhem model is

rate independent when g1(w) = max(0, w) and g2(w) =

min(0, w),∀w ∈ R.

11.2 Consistency of the semilinear Duhem model

This section presents the results obtained in Ref. [35] in

relation with the consistency of the semilinear Duhem

model.

Theorem 5 [35] Consider the semilinear Duhem model

(63)–(65). Assume that both matrices A1 and −A2 are

stable20 and have a common Lyapunov matrix P =

PT > 0 (that is AT1 P + PA1 < 0 and −AT2 P − PA2 <

0). Then, x ∈W 1,∞(R+,Rn) and y ∈W 1,∞(R+,R).

In Equations (63)–(65) consider the operators H ′s :

L∞(R+,R)×W 1,∞(R+,R)× Rn → W 1,∞(R+,R) and

H ′o : L∞(R+,R)×W 1,∞(R+,R)×Rn →W 1,∞(R+,R)

such that H ′s(u̇, u, x0) = x, and H ′o(u̇, u, x0) = y.

Observe that the operators H ′s and H ′o are causal

owing to the uniqueness of the solutions of (63)–(64).

Consider the left-derivative operator ∆− defined on

W 1,∞(R+,R) by [∆−(u)](t) = limτ↑t
u(τ)−u(t)

τ−t . The op-

erator ∆− is causal as [∆−(u)](t) depends only on the

19 If lim
w↓0

ḡ1(w) = a1 6= 0 and lim
w↑0

ḡ2(w) = −a2 6= 0, the con-

stants a1 and a2 are incorporated into the matrices A1 and
A2 respectively.
20 A matrix is stable if all its eigenvalues have strictly neg-
ative real parts.

values of u(τ) for τ ≤ t. We also have ∆−(u) = u̇ almost

everywhere since u ∈ W 1,∞(R+,R) so that ∆−(u) ∈
L∞(R+,R), that is ∆− : W 1,∞(R+,R)→ L∞(R+,R).

Consider the operators Hs,Ho : W 1,∞(R+,R) ×
Rn →W 1,∞(R+,R) defined by the relations

Hs(u, x0) = H ′s (∆−(u), u, x0) = x,

Ho(u, x0) = H ′o (∆−(u), u, x0) = y.

Then Hs and Ho are causal. Observe also that Hs and

Ho satisfy Assumption 3. These facts mean the the op-

erators Hs and Ho belong to the class of operators of

Section 6.2 so that the definitions and results of Sec-

tions 6.3–6.5 apply.

To study the consistency of the operators Hs and

Ho we follow the steps given in Section 6.4. If instead

of u the input is u ◦ sγ where γ ∈ ]0,∞[ then Equation

(63) becomes

ẋγ(t) = g1
(
u̇γ(t)

)(
A1xγ(t) +B1uγ(t) + E1

)
+ g2

(
u̇γ(t)

)(
A2xγ(t) +B2uγ(t) + E2

)
for almost all t ≥ 0 (69)

where uγ = u ◦ sγ . The initial state remains the same

for all γ as explained in Section 6.4 so that Equation

(64) becomes

xγ(0) = x0. (70)

Given % ∈ Iu there exists a not necessarily unique

t%,γ ∈ R+ such that ρu◦sγ (t%,γ) = %. Since the oper-

ator Hs belongs to the class of operators of Section 6.2

it follows that xγ(t%,γ) is independent of the particular

choice of t%,γ [35]. Thus, a function xu◦sγ : Iu → Rn can

be defined by the relation xu◦sγ (%) = xγ(t%,γ) so that

xu◦sγ ◦ ρu◦sγ = xγ (recall that by Lemma 2 we have

Iu◦sγ = Iu). We call the function xu◦sγ the normalized

state.

Also, if instead of u the input is u◦sγ then Equation

(65) becomes

yγ(t) = Cxγ(t) +Du ◦ sγ(t),∀t ∈ R+. (71)

Given % ∈ Iu there exists a not necessarily unique t%,γ ∈
R+ such that ρu◦sγ (t%,γ) = %. Since the operator Ho
belongs to the class of operators of Section 6.2 it follows

that yγ(t%,γ) is independent of the particular choice of

t%,γ . Thus, the normalized output ϕu◦sγ : Iu → Rn
is defined by the relation ϕu◦sγ (%) = yγ(t%,γ) so that

ϕu◦sγ ◦ρu◦sγ = yγ . Taking into account that ψu◦sγ = ψu
by Lemma 2 we get

ϕu◦γ(%) = Cxu◦γ(%) +Dψu(%),∀% ∈ Iu. (72)

Finally, given % ∈ Iu there exists a not necessarily

unique t% ∈ R+ such that ρu(t%) = %. Since the operator
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∆− belongs to the class of operators of Section 6.2 it fol-

lows that u̇(t%) is independent of the particular choice of

t%. This implies that a function vu : Iu → R can be de-

fined almost everywhere by the relation vu(%) = u̇(t%).

The function vu ∈ L∞(Iu,R) by Lemma 3 and we have

vu ◦ ρu = u̇. We call function vu the normalized input-

derivative. More about vu in B.

Theorem 6 [35] Consider the semilinear Duhem model

(63)–(65). Assume that both matrices A1 and −A2 are

stable and have a common Lyapunov matrix P = PT >

0. Then, for all γ ∈ ]0,∞[, xu◦sγ ∈W 1,∞(R+,Rn) and

ϕu◦sγ ∈W 1,∞(Iu,R). Moreover

xu◦sγ (σ) = x0 +

∫ σ

0

ḡ1

(
vu(%)

γ

)[
A1xu◦sγ (%)

+B1ψu(%) + E1

]
+ ḡ2

(
vu(%)

γ

)[
A2xu◦sγ (%)

+B2ψu(%) + E2

]
d%, ∀σ ∈ Iu.

(73)

Also ∃ !x?u ∈ W 1,∞(Iu,Rn) such that limγ→∞ ‖x?u −
xu◦sγ‖Iu = 0 which means that the operator Hs is con-

sistent with respect to all (u, x0) ∈ W 1,∞(R+,Rn) ×
Rn; and ∃ !ϕ?u ∈W 1,∞(Iu,R) such that limγ→∞ ‖ϕ?u −
ϕu◦sγ‖Iu = 0 which means that the operator Ho is con-

sistent with respect to all (u, x0) ∈W 1,∞(R+,Rn)×Rn.

We have:

dx?u
d%

(%) =
ψ̇u(%) + 1

2

(
A1x

?
u(%) +B1ψu(%) + E1

)
+
ψ̇u(%)− 1

2

(
A2x

?
u(%) +B2ψu(%) + E2

)
for almost all % ∈ Iu, (74)

x?u(0) = x0, (75)

ϕ?u(%) = Cx?u(%) +Dψu(%),∀% ∈ Iu. (76)

11.3 Strong consistency of the semilinear Duhem

model

This section presents the results obtained in Ref. [35]

in relation with the strong consistency of the semilinear

Duhem model.

To study the strong consistency of the operators Hs
and Ho we follow the steps given in Section 6.5. Con-

sider an input u that is non constant and T–periodic

where T ∈ ]0,∞[. For any nonnegative integer k, define

x?u,k ∈W 1,∞( [0, ρu (T )] ,Rm
)

by

x?u,k (%) = x?u
(
ρu (T ) k + %

)
,∀% ∈ [0, ρu (T )] , (77)

and define ϕ?u,k ∈W 1,∞( [0, ρu (T )] ,Rm
)

by

ϕ?u,k (%) = ϕ?u
(
ρu (T ) k + %

)
,∀% ∈ [0, ρu (T )] . (78)

Theorem 7 [35] Consider the semilinear Duhem model

(63)–(65). Assume that the matrices A1 and −A2 are

both stable and have a common Lyapunov matrix P =

PT > 0. Let (u, x0) ∈ W 1,∞(R+,Rn) × Rn be such

that u is non constant and T–periodic. Then there ex-

ists a unique function x◦u ∈ W 1,∞([0, ρu(T )],Rn
)

such

that limk→∞ ‖x?u,k − x◦u‖[0,ρu(T )] = 0 which means that

the operator Hs is strongly consistent with respect to

(u, x0). Also ∃ ! ϕ◦u ∈ W 1,∞([0, ρu(T )],R) such that

limk→∞ ‖ϕ◦u,k − ϕ◦u‖[0,ρu(T )] = 0 which means that the

operator Ho is strongly consistent with respect to (u, x0).

We have x◦u(0) = x◦u
(
ρu(T )

)
, ϕ◦u(0) = ϕ◦u

(
ρu(T )

)
, and

dx◦u
d%

(%) =
ψ̇u(%) + 1

2

(
A1x

◦
u(%) +B1ψu(%) + E1

)
+
ψ̇u(%)− 1

2

(
A2x

◦
u(%) +B2ψu(%) + E2

)
for almost all % ∈ [0, ρu(T )], (79)

ϕ◦u(%) = Cx◦u(%) +Dψu(%),∀% ∈ [0, ρu(T )]. (80)

Note that the initial condition x◦u(0) may be different

from x0.

Special cases21

Special case 1. We consider that u ∈ Λumin,umax,α1,T

(see Equation (20)). In this case it is possible to find

the explicit expression for the initial condition x◦u(0).

Indeed, from Equation (79) it comes that

dx◦u
d%

(%) = A1x
◦
u(%) +B1ψu(%) + E1,∀% ∈

]
0, ρu(α1)

[
.

(81)

The differential equation (81) gives

x◦u
(
ρu(α1)

)
= eρu(α1)A1x◦u(0)

+ eρu(α1)A1

∫ ρu(α1)

0

e−%A1
(
B1ψu(%) + E1

)
d%.

(82)

On the other hand, using Lemma 1 and the fact that

u ∈ Λumin,umax,α1,T it comes that

ψu(%) = %+ umin,∀% ∈ [0, ρu(α1)], (83)

ψu(%) = −%+ 2umax − umin,∀% ∈ [ρu(α1), ρu(T )],

(84)

ρu(α1) = umax − umin, (85)

ρu(T ) = 2(umax − umin). (86)

21 These special cases of are not studied in Ref. [35].
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Combining Equations (83), (82) and (85) we get

x◦u(umax − umin) = e(umax−umin)A1x◦u(0)

+
(
−A−11 (umax − umin)−A−21

+A−21 e(umax−umin)A1

)
B1

+
(
−A−11 +A−11 e(umax−umin)A1

)
×
(
B1umin + E1

)
. (87)

Note that the matrix A1 is invertible as it is stable.

Also, the differential equation (79) gives

x◦u
(
ρu(T )

)
= e−

(
ρu(T )−ρu(α1)

)
A2x◦u

(
ρu(α1)

)
− e−ρu(T )A2

∫ ρu(T )

ρu(α1)

e%A2
(
B2ψu(%) + E2

)
d%. (88)

Combining Equations (84)–(88) it comes that

x◦u
(
2(umax − umin)

)
= e(umin−umax)A2x◦u(umax − umin)

+B2

[
−A−22 + 2(umax − umin)A−12

+A−22 e(umin−umax)A2 (89)

−A−12 e(umin−umax)A2(umax − umin)
]

+
(
−A−12 +A−12 e(umin−umax)A2

)
×
(
B2(2umax − umin) + E2

)
.

Note that the matrix A2 is invertible as −A2 is sta-

ble. From Theorem 7 it follows that that x◦u
(
2(umax −

umin)
)

= x◦u(0) owing to Equation (86). This equality

combined with Equations (89) and (87) gives

x◦u(0) = θ = D−10 N0, (90)

N0 = e(umin−umax)A2

[(
−A−11 (umax − umin)−A−21

+A−21 e(umax−umin)A1

)
B1

+
(
−A−11 +A−11 e(umax−umin)A1

)(
B1umin + E1

)]
+
[
−A−22 + 2(umax − umin)A−12

+A−22 e(umin−umax)A2

−A−12 e(umin−umax)A2(umax − umin)
]
B2

+
(
−A−12 +A−12 e(umin−umax)A2

)
×
(
B2(2umax − umin) + E2

)
,

D0 = In − e(umin−umax)A2 · e(umax−umin)A1 ,

where In is the n× n identity matrix.

Special case 2. We consider that u ∈ Λumin,umax,α1,T

and n = 1. Our aim is to study the conditions for which

the hysteresis loop of the scalar semilinear Duhem model

is not trivial (see Definition 9).

To this end, combining Equations (81), (83) and (85)

we get

ξ̇1(ν) = A1ξ1(ν) +B1ν + E1, ∀ν ∈ ]umin, umax[, (91)

where ξ1 : [umin, umax] → R is defined by the relation

ξ1(ν) = x◦u(%) with ν = % + umin and % ∈ [0, ρu(α1)].

Similarly, for % ∈ [ρu(α1), ρu(T )] we get

ξ̇2(ν) = A2ξ2(ν) +B2ν + E2, ∀ν ∈ ]umin, umax[, (92)

where ξ2 : [umin, umax] → R is defined by the relation

ξ2(ν) = x◦u(%) with ν = −%+ 2umax − umin.

Solving the differential equations (91) and (92) we

get for all ν ∈ [umin, umax]

ξ1(ν) = − B1

A1
ν − E1

A1
− B1

A2
1

(93)

+

(
B1

A1
umin +

E1

A1
+
B1

A2
1

+ θ

)
eA1(ν−umin),

ξ2(ν) = − B2

A2
ν − E2

A2
− B2

A2
2

(94)

+

(
B2

A2
umin +

E2

A2
+
B2

A2
2

+ θ

)
eA2(ν−umin).

The hysteresis loop Gu of the operator Ho with re-

spect to (u, x0) is independent of the initial state x0
and is given by (see Definition 8):

Gu =
{(
ν, Cξ1(ν) +Dν

)
, ν ∈ [umin, umax]

}
∪
{(
ν, Cξ2(ν) +Dν

)
, ν ∈ [umin, umax]

}
.

(95)

Lemma 8 Consider the semilinear Duhem model (63)–

(65) with n = 1, A1 < 0 and A2 > 0. Then, Proposi-

tions (i) and (ii) are equivalent.

(i) For all (u, x0) ∈ Λumin,umax,α1,T×R, the operator Ho
has a trivial hysteresis loop with respect to (u, x0).

(ii) Equalities (96) and (97) hold.

A−12 B2 = A−11 B1, (96)

B1A
−1
1

(
A−12 −A

−1
1

)
− E1A

−1
1 + E2A

−1
2 = 0. (97)

Proof See Appendix E.

11.4 Illustration of the consistency and strong

consistency of the scalar semilinear Duhem model

We consider the semilinear Duhem model with the fol-

lowing parameters: n = 1, A1 = −1, A2 = 1, B1 = 1,

B2 = −1, E1 = 0, E2 = 0, C = 1, D = 0. The function

g1 : R→ R is defined by the relations ∀x ∈ R, g1(x) = 0

if x ≤ 0, and g1(x) = x + x2 if x ≥ 0. The function
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g2 : R→ R is defined by the relations ∀x ∈ R, g2(x) = 0

if x ≥ 0, and g2(x) = x if x ≤ 0.

Consider the 2–periodic input u defined as follows:

u(t) = t,∀t ∈ [0, 1], and u(t) = 2−t,∀t ∈ [1, 2] (see Fig-

ure 5). Observe that, since ρu is the identity function,

0 1 2 4 5 6
0

0.2

0.8

1

Time t

In
p
u
t
u
(t
)

Fig. 5: u(t) versus t.

we have vu = u̇ almost everywhere so that in the differ-

ential equation (73) we have vu(%) = 1,∀% ∈ ]0, 1[ and

vu(%) = −1,∀% ∈ ]1, 2[. The following values of γ are

considered: γ = 1, γ = 10 and γ = 100. The differen-

tial equation (73) is solved using Matlab solver ode23s

for the three values of γ and with the initial condition

x0 = 0. For each value of γ we obtain the corresponding

xu◦γ which, in this case, is equal to ϕu◦γ as C = 1 and

D = 0 (see Equation (72)). Figure 6 provides the plot

of function ϕu◦γ(%) versus time % for γ = 1, γ = 10 and

γ = 100 (dotted). The same figure provides the plot of

function ϕ?u(%) versus time % (solid). The plot of ϕ?u has

been obtained by solving the differential equation (74)

using Matlab solver ode23s, and taking into account

that ψu = u and that the initial condition ϕ?u(0) is also

x0 = 0 (see Equation (75)). Since C = 1 and D = 0

we have ϕ?u = x?u (see Equation (76)). We can see that

the plots ϕu◦γ(%) versus % converge to the plot ϕ?u(%)

versus % as γ increases which is predicted by Theorem

6.

Now that ϕ?u has been computed, the functions ϕ?u,k
where k ∈ N are determined using Equation (78). Fig-

ure 7 provides the plots of function ϕ?u,k(%) versus %

for k = 0, k = 1 and k = 2 (dotted). The same figure

provides the plot of the function ϕ◦u(%) versus time %

(solid). The plot of ϕ◦u is obtained by solving the dif-

ferential equation (79) using Matlab solver ode23s, and

taking into account that ψu = u. The initial condition

x◦u(0) is obtained from Equation (90). Note that we

have ϕ◦u = x◦u as C = 1 and D = 0 (see Equation (80)).

As predicted by Theorem 7 it can be seen that the plots
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Fig. 6: Dotted: ϕu◦sγ (%) versus % for γ = 1, γ = 10 and
γ = 100. Solid: ϕ?u (%) versus % (labeled as γ =∞). Note that
the plot that corresponds to γ = 100 is practically equal to
the one that corresponds to γ =∞.

ϕ?u,k(%) versus % converge to the plot ϕ◦u(%) versus % as

k increases.
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Fig. 7: Dotted: ϕ?u,k (%) versus % for k = 0, k = 1 and k = 2.

Solid: ϕ◦u (%) versus % (labeled as k =∞). Note that the plot
that corresponds to k = 2 is practically equal to the one that
corresponds to k =∞.

The hysteresis loop of the operator Ho with respect

to (u, x0), that is the set
{(
ψu(%), ϕ◦u(%)

)
, % ∈ [0, 2]

}
(see Equation (31)), is plotted in Figure 8. It can be

seen that the hysteresis loop is not trivial as predicted

by Lemma 8 since Equality (97) does not hold.

We now use the value E2 = 2 instead of E2 = 0

so that both Equalities (96) and (97) hold. Lemma 8

predicts that the hysteresis loop is trivial as can be

observed in Figure 9.
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Fig. 8: ϕ◦u (%) versus ψu(%) for % ∈ [0, 2].
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Fig. 9: ϕ◦u(%) versus ψu(%) for % ∈ [0, 2].

11.5 Hysteresis property -according to Definition 4- of

the scalar semilinear Duhem model

In this section we focus on the scalar version of the

semilinear Duhem model (63)–(65), that is we consider

that n = 1. We also consider that A1 < 0 and A2 > 0

so that Theorem 5 applies.

Our aim is to check whether the scalar semilinear

Duhem model is a hysteresis according to Definition 4.

To this end, we need to check whether Assumptions 1

and 2 hold as a prerequisite for Definition 4. Owing to

Theorem 5 we can see that x ∈ W 1,∞(R+,R) so that

Assumption 1 is satisfied.

Now, we have to check whether Assumption 2 is sat-

isfied. To this end, let γ ∈ ]0,∞[ and u ∈ Λumin,umax,α1,T ;

recall that the input u◦ sγ is Tγ–periodic where sγ is a

linear time-scale change. Assumption 2 will be satisfied

if we can find a unique initial condition x0,γ ∈ R such

that Hs(u ◦ sγ , x0,γ) is also Tγ–periodic.

When the semilinear Duhem model is rate indepen-

dent, x0,γ is independent of γ. In this case Ref. [54] pro-

vides the expression of x0,γ (see [54, Equations (4.9)–

(4.14)]) which means that Assumption 2 is satisfied.

However, Ref. [54] provides no proof that Assump-

tion 2 is satisfied for the rate-dependent semilinear Duhem

model. Instead, another argument is used in the proof of

[54, Proposition 5.1] to check whether the rate-dependent

semilinear Duhem model is a hysteresis according to

Definition 4 (or equivalently [54, Definition 2.2]). As

shown in Section 12.1.3, that argument does not imply

necessarily that Assumption 2 is satisfied.

In what follows we prove that Assumption 2 is satis-

fied for both the rate-independent and the rate-dependent

scalar semilinear Duhem model.

Theorem 8 Consider the semilinear Duhem model (63)–

(65) with n = 1, A1 < 0, A2 > 0. Let u ∈ Λumin,umax,α1,T .

Then, ∃γ0 > 0 such that ∀γ ∈ ]γ0,∞[ there exists a

unique x0,γ ∈ R such that Hs(u ◦ sγ , x0,γ) is also Tγ–

periodic.

Proof See Appendix C.

Theorem 8 shows that Assumption 2 is satisfied (see

Remark 1). Our objective now is to prove that Condi-

tions (i) and (ii) of Definition 4 are met. We start with

Condition (i).

The authors of Ref. [54] provide no proof that Con-

dition (i) of Definition 4 is satisfied for the rate-dependent

semilinear Duhem model (for the rate-independent model,

the proof is trivial). To prove that Condition (i) is met

we start by finding the explicit expression of the set

Cu,γ of Equation (21). Let γ ∈ ]γ0,∞[ where γ0 is given

by Equation (139). From Equations (21) and (169) it

follows that

Cu,γ =
{(
u(σ), Cz̄γ(σ) +Du(σ)

)
, σ ∈ [0, T ]

}
. (98)

where z̄γ is defined in Appendix C, Equation (166).

Define the function h1 : [0, α1]→ R by

h1(σ) =

z̄γ(0) +

∫ σ

0

γ
g1

(
u̇(τ)
γ

) (
B1u(τ) + E1

)
exp

(
γA1

∫ τ
0
g1

(
u̇(t)
γ

)
dt
)dτ


× exp

(
γA1

∫ σ

0

g1

(
u̇(τ)

γ

)
dτ

)
,∀σ ∈ [0, α1].

(99)

It can be checked that h1 satisfies the following differ-

ential equation

ḣ1(σ) = γg1

(
u̇(τ)

γ

)(
A1h1(σ) +B1u(σ) + E1

)
,∀σ ∈ ]0, α1[,

h1(0) = z̄γ(0).

(100)

Owing to the uniqueness of the solutions of (167) it

comes that

z̄γ(σ) = h1(σ),∀σ ∈ [0, α1]. (101)
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A similar argument on the interval [α1, T ] shows that

z̄γ(σ) =

z̄γ(α1) +

∫ σ

α1

γ
g2

(
u̇(τ)
γ

) (
B2u(τ) + E2

)
exp

(
γA2

∫ τ
α1
g2

(
u̇(t)
γ

)
dt
)dτ


× exp

(
γA2

∫ σ

α1

g2

(
u̇(τ)

γ

)
dτ

)
,∀σ ∈ [α1, T ].

(102)

Owing to the T–periodicity of z̄γ we have z̄γ(T ) =

z̄γ(0). This fact along with Equations (99), (101), and

(102) gives

z̄γ(0) = x0,γ =
N

D
, (103)

where

N = exp

[∫ α1

0

γA1g1

(
u̇(τ)

γ

)
dτ +

∫ T

α1

γA2g2

(
u̇(τ)

γ

)
dτ

]

×
∫ α1

0

γ
g1

(
u̇(τ)
γ

) (
B1u(τ) + E1

)
exp

(
γA1

∫ τ
0
g1

(
u̇(t)
γ

)
dt
)dτ

+ exp

[
γA2

∫ T

α1

g2

(
u̇(τ)

γ

)
dτ

]

×
∫ T

α1

γ
g2

(
u̇(τ)
γ

) (
B2u(τ) + E2

)
exp

(
γA2

∫ τ
α1
g2

(
u̇(t)
γ

)
dt
)dτ,

D = 1− exp

[
γA1

∫ α1

0

g1

(
u̇(τ)

γ

)
dτ

+γA2

∫ T

α1

g2

(
u̇(τ)

γ

)
dτ

]
.

Define the function z̄ : [0, T ]→ R by

z̄(σ) = ξ1
(
u(σ)

)
,∀σ ∈ [0, α1], (104)

z̄(σ) = ξ2
(
u(σ)

)
,∀σ ∈ [α1, T ], (105)

where the functions ξ1 and ξ2 are given by Equations

(93) and (94) respectively. It can checked that z̄(T ) =

z̄(0) = θ where θ is given by Equation (90). Define the

closed curve

Cu =
{(
u(σ), Cz̄(σ) +Du(σ)

)
, σ ∈ [0, T ]

}
. (106)

Theorem 9 lim
γ→∞

d2(Cu,γ , Cu) = 0.

Proof See Appendix D.

Recall that the operator Ho that characterizes the

scalar semilinear Duhem model associates to each input

u ∈W 1,∞ (R+,R) and each initial condition x0 ∈ R the

output y ∈W 1,∞ (R+,R) given by Equation (65). The-

orem 9 shows that Condition (i) of Definition 4 holds

for the operator Ho. Now it remains to check whether

Condition (ii) of Definition 4 also holds.

Lemma 9 Consider the semilinear Duhem model (63)–

(65) with n = 1, A1 < 0 and A2 > 0. Then Condition

(ii) of Definition 4 holds for the operator Ho if and

only if at least one of the equalities (107)–(108) does

not hold.

A−12 B2 = A−11 B1, (107)

B1A
−1
1

(
A−12 −A

−1
1

)
− E1A

−1
1 + E2A

−1
2 = 0. (108)

Proof The proof is similar to that of Lemma 8 mutatis

mutandis (See Appendix E).

Lemma 9 has not been derived in Ref. [54].

As a conclusion for the present section, when n = 1,

A1 < 0, and A2 > 0, the operator Ho is a hysteresis

according to Definition 4 if and only if at least one of

the equalities (107)–(108) does not hold.

11.6 Illustration of the hysteresis property -according

to Definition 4- of the semilinear Duhem model

We consider the same scalar semilinear Duhem model

as in Section 11.4, that is we consider that

ẋ(t) = g1
(
u̇(t)

)(
− x(t) + u(t)

)
+ g2

(
u̇(t)

)(
x(t)− u(t)

)
for almost all t ∈ R+,

x(0) = x0,

y(t) = x(t),∀t ∈ R+.

We take as initial condition x0 = 0, and as input the

2–periodic function u defined as follows: u(t) = t, ∀t ∈
[0, 1], and u(t) = 2 − t, ∀t ∈ [1, 2] (see Figure 5). Let

γ ∈ ]0,∞[ and consider the output Ho(u ◦ sγ , x0) = xγ
which is the solution of the differential equation (140).

We take γ = 1 and solve (140) using Matlab solver

ode23s. The resulting solution is plotted against the

input u ◦ sγ in Figure 10 (dotted).

The value x0,γ is computed using Equation (103);

we get x0,γ ' 0.4979. The fact that x0,γ 6= x0 explains

why the set
{(
u ◦ sγ(t), [Ho(u ◦ sγ , x0)](t)

)
, t ∈ R+

}
is

not a closed curve. We now solve the differential equa-

tion (140) taking as initial condition x(0) = x0,γ . The

obtained solution is plotted against the input u ◦ sγ
in Figure 10 (solid). We can see that the set Cu,γ ={(
u ◦ sγ(t), [Ho(u ◦ sγ , x0,γ)](t)

)
, t ∈ R+

}
is a curve which

is closed as predicted by Theorem 8.

In Figure 10 observe that the point
(
u◦sγ(t), [Ho(u◦

sγ , x0)](t)
)

gets closer to the closed curve Cu,γ as t →
∞. This is a consequence of the uniform convergence of

zm to z̄γ on the interval [0, T ] (see the proof of Theorem

8).

Now we plot the closed curve Cu,γ for γ = 1, γ = 10

and γ = 100 (see Figure 11). The closed curve Cu is
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Fig. 10: Dotted: [Ho(u ◦ sγ , x0)] (t) versus u ◦ sγ(t) for γ =
1, t ∈ [0, 6]. Solid: Cu,γ , that is [Ho(u ◦ sγ , x0,γ)] (t) versus
u ◦ sγ(t), for γ = 1 and t ∈ [0, 2].

plotted using Equation (106) and the explicit expres-

sions of the functions ξ1 and ξ2 provided in Equations

(93)–(94). We observe that Cu,γ gets closer to the closed

curve Cu as γ increases as predicted by Theorem 9 which

shows that Condition (i) of Definition 4 is fulfiled.

Regarding Condition (ii) of Definition 4, observe

that Equation (108) does not hold in our case. Thus,

using Lemma 9, it follows that Condition (ii) of Defi-

nition 4 holds. This fact can be observed in Figure 11

since to any input value ν ∈ ]umin, umax[ = ]0, 1[ corre-

spond two different values ξ1(ν) (• marker) and ξ2(ν)

(? marker).
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Fig. 11: Cu,γ for γ = 1, γ = 10, and γ = 100. Solid with
markers: Cu. Note that Cu,100 is practically Cu. The markers
• on Cu correspond to ξ1 ◦ u versus u. The markers ? on Cu
correspond to ξ2 ◦ u versus u.

11.7 Dissipativity of the scalar rate-independent

semilinear Duhem model

The aim of this section is to apply the results of Ref.

[40] provided in Section 8 to study the dissipativity of

the scalar semilinear Duhem model. To this end, we

follow Section 8 by considering the model

ẋ(t) =
(
A1x(t) +B1u(t) + E1

)
u̇(t)

for almost all t ∈ [0,∞[ such that u̇(t) ≥ 0, (109)

ẋ(t) =
(
A2x(t) +B2u(t) + E2

)
u̇(t)

for almost all t ∈ [0,∞[ such that u̇(t) ≤ 0, (110)

x(0) = x0, (111)

y(t) = Cx(t) +Du(t),∀t ∈ R+, (112)

where A1, A2, B1, B2, E1, E2, C,D ∈ R are the model

parameters, x0 ∈ R is the initial condition, the function

u ∈ AC(R+,R) is the input, the function x : R+ →
R is the state, and the function y : R+ → R is the

output. Note that Inequalities (37)–(38) hold for any

values of A1 and A2. This fact ensures the existence

and uniqueness of solutions of the differential equation

(109)–(111) on R+ so that x, y ∈ AC(R+,R).

Observe that the functions g1, g2 : R → R in (63)

are defined by g1(v) = max(0, v) and g2(v) = min(0, v)

for all v ∈ R. Thus, it follows from Ref. [54] that the

semilinear Duhem model (109)–(112) is rate indepen-

dent.

Define the operators Φ,Φ1 : AC(R+,R)× R→
AC(R+,R) by Φ(u, x0) = x and Φ1(u, x0) = y. Note

that, if Φ is dissipative with respect to the supply rate

ẋu, then there exists a nonnegative function ς : R2 →
R+ such that ∀(u, x0) ∈ AC(R+,R) × R, Inequality

(39) holds. If C > 0 and D ≥ 0 define the function

ς1 : R2 → R+ by

ς1(Cx1 +Dv, v) = Cς(x1, v) +
1

2
Dv2,∀(x1, v) ∈ R2.

(113)

Then, it can be checked that Inequality (39) holds for

ς1 and Φ1, that is Φ1 is dissipative with respect to the

supply rate ẏu.

Lemma 10 Consider the model (109)–(112). Suppose

that

A1 < 0, A2 > 0, B1 > 0, C > 0, D ≥ 0, (114)

A−12 B2 = A−11 B1, (115)

B1A
−1
1

(
A−12 −A

−1
1

)
− E1A

−1
1 + E2A

−1
2 < 0. (116)

Then, the intersecting function Ω is obtained explicitly

by Equation (203). The function ς is obtained explicitly

by Equations (204)–(205), and is such that Inequality
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(39) holds for any (u, x0) ∈ AC(R+,R)× R. However,

ς is not nonnegative. If ∀t ∈ R+, u(t) ∈
[

1
A1
, 1
A2

]
then

∀t ∈ R+, ς
(
x(t), u(t)

)
≥ 0.

Proof See Appendix F.

From Inequality (39) it follows that ς
(
x(t), u(t)

)
−

ς
(
x(0), u(0)

)
≤
∫ t
0
ẋ(τ)u(τ)dτ for all t ∈ R+. If ∀t ∈

R+, ς
(
x(t), u(t)

)
≥ 0 then, for all t ∈ R+ we have

−ς
(
x(0), u(0)

)
≤
∫ t
0
ẋ(τ)u(τ)dτ which means that the

curve t 7→
(
u(t), x(t)

)
is counterclockwise [1].

Theorem 3 provides sufficient conditions for the func-

tion ς to be nonnegative: f1 ≥ 0 and f2 ≥ 0. For the

model (109)–(112) these sufficient conditions do not

hold. Lemma 10 says that the curve t 7→
(
u(t), x(t)

)
is counterclockwise when the input u is small enough.

Remark 3 Note that the condition f1 ≥ 0 and f2 ≥ 0

for the curve t 7→
(
u(t), x(t)

)
to be counterclockwise has

also been proposed by Duhem in 1896. Indeed, in [16,

p. 11] Duhem assumes that “if (x,X) and (x+ dx,X +

dx) are two infinitely close equilibria relatively to the

same temperature T of the system, dx and dX have

always the same sign:

dX dx > 0. (117)

. . . inequality (117) translates geometrically as follows:

All upward lines go up from left to right;

All downward lines go down from right to left.”

In Duhem’s notations, x is the input and X the output

so that Condition (117), which is the same as dX
dx > 0,

is equivalent to f1 > 0 and f2 > 0 using the notations

of Ref. [40].

Remark 4 In Ref. [58] sufficient conditions are provided

for the rate-independent semilinear Duhem model to

have counterclockwise dynamics. However, unlike Ref.

[40], these conditions depend on the explicit solution

of the model, which may not be easy to translate into

conditions on the model’s parameters.

11.8 Illustration of the dissipativity of the scalar

rate-independent semilinear Duhem model

Consider the model (109)–(112) with parameters A1 =

−1, A2 = 1, B1 = 1, B2 = −1, E1 = E2 = 0, C =

1, D = 0. With these values the relations (114)–(116)

hold. The anhysteresis function is given by fan(v) = v,

and it is possible to find the intersecting function Ω

explicitly. We get

Ω(x0, u0) =

{
u0 + log(x0 − u0 + 1) if x0 ≥ u0,
u0 − log(−x0 + u0 + 1) if x0 ≤ u0,

(118)

where log sets for the natural logarithm. The function

ωΦ in (41) is given by

ωΦ(σ, x1, v) =

{
σ − 1 + (x1 − v + 1)ev−σ if σ ≥ v,
σ + 1 + (x1 − v − 1)eσ−v if σ ≤ v,

(119)

and the function ς in (42) is given by

ς(x1, v) =


x1v − v − log(x1 − v + 1)− v2

2 + x1

if x1 ≥ v,
x1v + v − log(−x1 + v + 1)− v2

2 − x1
if x1 ≤ v.

(120)

We take as initial condition x0 = 0. Now, consider

the 2–periodic input u defined as follows: u(t) = t,∀t ∈
[0, 1], and u(t) = 2 − t, ∀t ∈ [1, 2] (see Figure 5). Note

that ∀t ∈ R+, u(t) ∈
[

1
A1
, 1
A2

]
= [−1, 1]. The curve x(t)

(= y(t)) versus u(t) is plotted in Figure 12. As predicted

by Lemma 10 it can be seen that t 7→
(
u(t), x(t)

)
is

counterclockwise.
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Fig. 12: y(t) (= x(t)) versus u(t)

Now take as new input the 2–periodic function u

defined as follows: u(t) = t − 3,∀t ∈ [0, 1], and u(t) =

−1 − t,∀t ∈ [1, 2] (see Figure 13). Observe that the

input is not in the interval [−1, 1]. The curve t 7→(
u(t), y(t)

)
is provided in Figure 14. It can be seen that

t 7→
(
u(t), y(t)

)
is not counterclockwise.

11.9 Minor loops of the scalar semilinear Duhem

model

In this section we apply the concepts introduced in Sec-

tion 10 to the scalar semilinear Duhem model.
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Fig. 14: y(t) versus u(t)

Lemma 11 Consider the semilinear Duhem model (63)–

(65) with n = 1, A1 < 0, A2 > 0. If Assumption 8

holds, then Equalities (96)–(97) hold, and ∀(u, x0) ∈
Λ×R the operator Ho has a trivial hysteresis loop with

respect to (u, x0) (see Definition 9).

Proof See Appendix G.

To illustrate Lemma 11 consider the semilinear Duhem

model of Section 11.4 with E2 = 0, and the input u =

ψu given by Equations (209)–(212) for α = 0.5 (see

Figure 15).

The corresponding hysteresis loop is the set{(
ψu(%), ϕ◦u(%))

)
, % ∈ [0, %4 = 3]

}
where ϕ◦u obeys Equa-

tions (79)–(80), and the initial condition is given by

Equation (234). The hysteresis loop is provided in Fig-

ure 16. Observe that ψu(%1) = ψu(%3 = %5) and that

ϕ◦u(%1) 6= ϕ◦u(%3). This is due to the fact that Equality

(97) does not hold so that Assumption 8 is not valid by

Lemma 11.

We now use the value E2 = 2 instead of E2 = 0

so that both equalities (96) and (97) hold, which is a

necessary condition for Assumption 8 to hold. We con-

sider the input u ∈ Λ of Figure 5. The corresponding

0 2 4 6 8 10
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0.2

0.8

1

̺

ψ
u
(̺
)

Fig. 15: ψu(%) versus % for % ∈ [0, 3]. We have %1 = 1, %2 =
1.5, %3 = %5 = 2, %4 = 3.
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Fig. 16: ϕ◦u(%) versus ψu(%) for % ∈ [0, %4]. The marker ◦
corresponds to the point

(
ψu(%1), ϕ◦u(%1)

)
whilst the marker

? corresponds to the point
(
ψu(%3 = %5), ϕ◦u(%3 = %5)

)
.

hysteresis loop is reported in Figure 9: it is a line. This

means that the operator Ho has a trivial hysteresis loop

with respect to (u, x0) as predicted by Lemma 11.

Lemma 11 says that the scalar semilinear Duhem

model cannot represent the hysteresis behavior observed

in magnetic hysteresis. Indeed, to produce minor loops

that satisfy Assumption 8, the hysteresis loop of the

model should be trivial.

This observation leads to the following conjecture.

Conjecture 1 Consider the generalized Duhem model

(17)–(19). Assume that the corresponding operatorsHo
and Hs are consistent with respect to all (u, x0) ∈
W 1,∞(R+,R) × Rn and are strongly consistent with

respect to all periodic inputs u ∈ W 1,∞(R+,R) and

all initial states x0 ∈ Rn. If Assumption 8 holds, then

∀(u, x0) ∈ Λ×Rn, the operators Ho and Hs have a triv-

ial hysteresis loop with respect to (u, x0) (see Definition

9).
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If true, the conjecture would mean that the Duhem

model -in its generalized form- is not able to describe

the minor loops in magnetic hysteresis.

However, in several engineering problems, the Duhem

model is not used to reproduce the behavior of minor

loops in magnetic hysteresis. For example, in control

problems, it is not necessary to have an accurate model

that describes the controlled process with precision. In-

stead, an approximate model may be appropriate if it

captures some essential features of the controlled plant,

and at the same time, is simple enough to allow the

design of a relatively simple controller (see for example

Ref. [36]).

12 Relationships between concepts

In this section we explore the connections that exist be-

tween the concepts presented in this paper. We use the

case study of the semilinear Duhem model to illustrate

these connections and motivate the open problems pro-

posed in Section 13.

12.1 Relationship between Definition 4 and strong

consistency

In this section we compare the definitions of hysteresis

loop implied by Definition 4 and the concept of strong

consistency.

12.1.1 Comments on Definition 4

We have seen in Section 5.2 that Ref. [54] proposes a

definition that aims to decide whether a given general-

ized Duhem model is a hysteresis or not. According to

Definition 4 we have to proceed as follows.

(i) Check whether Assumption 1 holds.

(ii) Check whether Assumption 2 holds.

(iii) Check whether Condition (i) of Definition 4 holds.

(iv) Check whether Condition (ii) of Definition 4 holds.

In the process of checking Assumption 2 we do not need

to find the explicit expression of the initial condition

x0,γ . Indeed, the concept of Cauchy sequence can be

used to prove the existence of x0,γ without actually

having to find the explicit expression of x0,γ . This is

what has been done in the proof of Theorem 8.

Similarly it is not necessary to get the explicit ex-

pression of the closed curve Cu to check Condition (i)

of Definition 4. Again, the concept of Cauchy sequence

may be used to prove the convergence of the sets Cu,γ ,

although this is not how we proceed in the proof of

Theorem 9. However, if we do not have the explicit ex-

pression of Cu,γ then it may be difficult to prove this

convergence.

Knowing the explicit expression of Cu,γ is equivalent

to knowing the explicit expression of the initial condi-

tion x0,γ . Indeed, for the generalized Duhem model (17)

the closed curve Cu,γ is characterized by the same dif-

ferential equation (17) where the input u is replaced by

u ◦ sγ , and the initial condition x0 is replaced by x0,γ .

Let us illustrate that statement. To prove that Con-

dition (i) of Definition 4 holds for the scalar semilinear

Duhem model we have demonstrated Equality (174).

This equality is obtained thanks to the explicit expres-

sion (103) of the initial condition x0,γ . That explicit ex-

pression is derived from the explicit solution (99) and

(102) of the differential equation (167). We get an ex-

plicit solution because the differential equation (167) is

linear with respect to the state.

To sum up, the linearity with respect to the state in

the differential equation that describes the scalar semi-

linear Duhem model, is crucial to prove that Condition

(i) of Definition 4 holds. For a generalized Duhem model

(17) that does not enjoy this linearity property it may

not be easy to check analytically whether Condition (i)

of Definition 4 holds.

12.1.2 Comments on strong consistency

To check whether a given generalized Duhem model

is strongly consistent we have first to check whether

it is consistent. The analysis of the consistency of the

semilinear Duhem model is provided in Section 11.2,

and it uses both the linearity with respect to the state,

and the fact that the initial condition in Equation (70)

does not change with γ. For the generalized Duhem

model (17) that may not be linear with respect to the

state, Lemma 6 provides sufficient conditions that pro-

vide the expression of the corresponding rate indepen-

dent Duhem model. However, ensuring these sufficient

conditions may not be easy if the model is nonlinear

with respect to the state.

Also checking the strong consistency of the semi-

linear Duhem model in Section 11.3 is made possible

because it is not necessary to find the explicit expres-

sion of the initial state x◦u(0). Instead, the concept of

Cauchy sequence is used in Ref. [35] to prove the de-

sired convergence property. Again, the linearity of the

model is used to derive a Lyapunov function which al-

lows mathematical analysis. For the generalized Duhem

model, finding a Lyapunov function may not be easy if

the model is nonlinear with respect to the state.
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12.1.3 Relationship between the hysteresis loop derived

from Definition 4 and the one derived from strong

consistency

The hysteresis loop derived from Definition 4 is the set

Cu defined as the limit of the sets Cu,γ with respect

to Hausdorff distance d2 as γ → ∞. The hysteresis

loop derived from strong consistency is the set Gu of

Equation (31).

Do we have Cu = Gu?

For the scalar semilinear Duhem model the answer is

positive. Indeed, the set Cu is given by Equation (106)

and the set Gu is given by Equation (95). It can be

checked that, for the scalar semilinear Duhem model,

we have Cu = Gu.

However, for the generalized Duhem model, at the

time of the submission of the present paper we do not

know whether the sets Cu and Gu are equal or not.

This statement leads to formulating Open problem 1 in

Section 13.1.

Note that the authors of Ref. [54] assume tacitly

that, for the semilinear Duhem model, we have Cu = Gu
(see the proof of [54, Proposition 5.1]).

For the Preisach model, defining the concept of a

hysteresis loop is simple because the model does not

have a transient response under the usual conditions.

This means that the hysteresis loop is simply the graph

output versus input. For the -possibly- rate-dependent

generalized Duhem model, the output contains typi-

cally a transient term and a steady-state term. This is

why there are two possibilities for defining a hysteresis

loop: as the set Cu or as the set Gu. From the discussion

of Sections 12.1.1 and 12.1.2, it is not clear which of

these two definitions is easier to check from the point

of view of the mathematical analysis.

The following comment sheds more light on the ques-

tion.

Consider an operator H that satisfies Assumption

4. From Equation (30) it comes that the operator H† is

such that
(
H†
)?

= 0. This implies that the hysteresis

loop ofH† with respect to all (u, x0) ∈W 1,∞(R+,Rp)×
Ξ is trivial (see Definition 9).

From Equations (28)–(29) it follows that the oper-

ator H has been decomposed into the sum of two oper-

ators:

(i) An operator H? that is rate independent with re-

spect to linear time-scale changes,

(ii) and an operator H† such that the output H†(u ◦
sγ , x0) vanishes when γ →∞ (loosely speaking, the

output vanishes when the frequency of the input

goes to zero).

The decomposition (28)–(29) is compatible with ex-

perimental observations of hysteresis processes. Indeed,

quoting from [64, p. 14]: “in several cases the rate in-

dependent component prevails, provided that evolution

is not too fast.” Additionally, the hysteresis loop of the

operator H† is trivial (loosely speaking, H† does not

represent a hysteresis behavior).

For all these reasons, we call Equations (28)–(29)

the canonical decomposition of the operator H, the op-

erator H? the rate-independent component of H, and

the operator H† the nonhysteretic component of H.

This canonical decomposition was possible owing to

the use of the concept of consistency.

12.2 Relationship between the Lipschitz property and

the effect of perturbations

In this section we analyze the effect of a perturbation

of the input and the initial condition on the hysteresis

loop.

Consider a causal operator H : W 1,∞(R+,Rp) ×
Ξ → L∞(R+,Rm) where Ξ is a Banach space. Suppose

thatH satisfies Assumption 3, is consistent with respect

to all (u, x0) ∈W 1,∞(R+,Rp)×Ξ, and is strongly con-

sistent with respect to all periodic inputs u ∈W 1,∞(R+,Rp)
and all initial states x0 ∈ Ξ.

Let the T–periodic input u ∈ W 1,∞(R+,Rp) and

the initial state x0 ∈ Ξ be given. The hysteresis loop

of the operator H with respect to (u, x0) is the set Gu
defined by Equation (31).

Let ε ∈W 1,∞(R+,Rp) be a function that represents

a perturbation of the input, and ε ∈ Ξ a vector that

represents a perturbation of the initial condition. The

perturbed input v = u+ε ∈W 1,∞(R+,Rp) may not be

periodic which means that H may not have a hysteresis

loop when v is the input. The perturbed initial state is

x′0 = x0 + ε. The perturbed output that corresponds to

(v, x′0) is H(v, x′0). To evaluate the effect of (ε, ε) on Gu
we need the following assumptions.

Assumption 9 Iv = R+.

Assumption 10 For any (w, y0) ∈W 1,∞(R+,Rp)×Ξ
the function H(w, y0) is continuous on R+. That is H :

W 1,∞(R+,Rp)×Ξ → L∞(R+,Rm) ∩ C0(R+,Rm).

Since the operator H is consistent with respect to

(v, x′0) there exists a function ϕ?v as in Definition 5.

Combining Assumptions 9, 10 and Lemma 3 it comes

that ϕ?v ∈ L∞(R+,Rm) ∩ C0(R+,Rm). For all k ∈
N define the function ϕ?v,k ∈ C0

(
[0, ρv (T )] ,Rm

)
by

ϕ?v,k (%) = ϕ?v
(
ρv (T ) k + %

)
,∀% ∈ [0, ρv (T )]. Define the

set

Pv,k =
{(
ψv(%), ϕ?v,k(%)

)
, % ∈ [0, ρv(T )]

}
. (121)
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Note that Pv,k and Gu are compact owing to Assump-

tion 10. Thus we can define

q(u, x0, ε, ε) = lim sup
k→∞

dp+m(Pv,k,Gu) (122)

where dp+m is the Hausdorff distance defined by Equa-

tion (22). The quantity q(u, x0, ε, ε) measures the effect

of the perturbation (ε, ε) on the hysteresis loop Gu.

Our aim now is to apply these concepts to the scalar

rate-independent Duhem model (43)–(45) where the

output is the state x. To do so we need to change the

time variable from t to %. Following the same steps as

in Section 11.2 and using the same set of notations,

Equation (43) becomes

vu(%)ẋu◦sγ (%) = vu(%)f1
(
xu◦sγ (%), ψu(%)

)
,

for almost all % ∈ R+.
(123)

We can eliminate vu(%) since, by Lemma 13, the func-

tion vu is nonzero almost everywhere on R+. Note that

Equation (123) is independent of γ so that we use the

simplified notation xu instead of xu◦sγ . Thus, for the in-

put u and the initial state x0 the scalar rate-independent

Duhem model (43)–(45) in terms of t–variable can be

written in terms of %–variable as

ẋu(%) = f1
(
xu(%), ψu(%)

)
, (124)

for almost all % ∈ R+ such that ψ̇u(%) = 1,

ẋu(%) = f2
(
xu(%), ψu(%)

)
, (125)

for almost all % ∈ R+ such that ψ̇u(%) = −1,

xu(0) = x0. (126)

Observe that ϕ?v = ϕv = xv so that dp+m(Pv,k,Gu) in-

cludes terms of the form |ϕv,k(%1)−ϕ◦u(%2)| for (%1, %2) ∈
[0, ρv(T )]× [0, ρu(T )] by Equation (22). Note that ϕv,k
obeys Equations (124)–(125) with u substituted by v

and with the initial condition xv
(
kρv(T )

)
. Also ϕ◦u obeys

Equations (124)–(125) with the initial condition x◦u(0).

It is to be noted that we cannot use Proposition 2 to get

a bound on |ϕv,k(%1)− ϕ◦u(%2)| because the initial con-

ditions xv
(
kρv(T )

)
and x◦u(0) may be different. This

means that, in order to evaluate the effect of pertur-

bations on the hysteresis loop of the model (43)–(45),

Proposition 2 needs to be enhanced to take into account

different initial conditions.

This observation leads to formulating Open Prob-

lem 2 in Section 13.2.

We now consider the effect of perturbations on the

hysteresis loop of the generalized Duhem model (17).

Observe that, from Equation (122) it comes that the

quantity q(u, x0, ε, ε) depends on ϕ?v and ϕ◦u which obey

Equations (124)–(125) by Lemma 6. This means that

there is no need to look for an extension of Proposition

2 to the generalized Duhem model.

12.3 Relationship between dissipativity and

orientation of the hysteresis loop

For the scalar rate-independent Duhem model (34)–

(36), dissipativity is the property of Definition 10. Dis-

sipativity is studied in Ref. [40] mainly because of its

interest in control. In this section, we focus on the re-

lationship between dissipativity and the orientation of

the hysteresis loop, as this orientation is easy to obtain

experimentally.

At the time of the submission of this paper, we

do not know whether a dissipative model (34)–(36) is

strongly consistent. This observation leads to the for-

mulation of Open Problem 3 in Section 13.3.

If the model (34)–(36) is dissipative and strongly

consistent, then the hysteresis loop is oriented counter-

clockwise [1].

Theorem 3 provides sufficient conditions to ensure

dissipativity. One of these conditions is f1 ≥ 0 and f2 ≥
0. For the scalar semilinear rate-independent Duhem

model, the conditions f1 ≥ 0 and f2 ≥ 0 do not hold so

that Theorem 3 could not be used directly to study the

dissipativity of the model. Instead, an ad-hoc analysis

combined with Theorem 3 showed that, when the input

is small in some sense, the hysteresis loop is counter-

clockwise (see Lemma 10).

The question of how to generalize Lemma 10 to en-

compass the model (34)–(36) leads to formulating Open

Problem 4 in Section 13.4.

Note that there is no need to generalize Lemma 10 to

encompass the generalized Duhem model (17) since the

hysteresis loop is characterized by the rate-independent

Duhem model (124)–(125).

13 Open problems

13.1 Open Problem 1

The motivation for Open Problem 1 is provided in Sec-

tion 12.1.3.

Consider that the generalized Duhem model (17)–

(19) satisfies Assumption 1 so that we can define the

operators Ho and Hs of Section 5.1. Suppose that As-

sumption 2 holds and that Conditions (i) and (ii) of

Definition 4 hold for all (u, x0) ∈ Λ× Rn.

Furthermore, suppose that the operatorsHo andHs
are strongly consistent with respect to all (u, x0) ∈ Λ×
Rn.

(i) Find sufficient conditions that ensure Cu = Gu for

all (u, x0) ∈ Λ× Rn.

(ii) Find a generalized Duhem model such that there

exist an input u ∈ Λ and an initial condition x0 ∈
Rn that satisfy Cu 6= Gu.
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13.2 Open Problem 2

The motivation for Open Problem 2 is provided in Sec-

tion 12.2.

Consider the scalar rate-independent Duhem model

(43)–(45) where the output is the state x. Suppose that

Assumption 1 holds so that we can define the operator

Hs of Section 5.1. Let u, v ∈W 1,∞(R+,R) and x0, x
′
0 ∈

R.

(i) Find sufficient conditions that provide an upper bound

on ‖Hs(u, x0) −Hs(v, x′0)‖W 1,∞([0,T ],R) for some fi-

nite real number T > 0. Can we obtain an up-

per bound that is a continuous function of
(
‖u −

v‖W 1,∞([0,T ],R), |x0−x′0|
)

and that becomes the bound

obtained in Proposition 2 when x0 = x′0?

(ii) Let T ∈ ]0,∞[ and assume that u is T–periodic.

Find an upper bound on q(u, x0, ε, ε) as tight as pos-

sible.

(iii) Find sufficient conditions so that if |x0− x′0|+ ‖u−
v‖W 1,∞([0,T ],R) is small then q(u, x0, ε, ε) is small.

(iv) Generalize the obtained results to the vector rate-

independent Duhem model (32)–(33).

13.3 Open Problem 3

The motivation for Open Problem 3 is provided in Sec-

tion 12.3.

Consider the scalar rate-independent Duhem model

(34)–(36) where the output is the state x. Suppose that

Assumption 1 holds so that we can define the operator

Hs of Section 5.1. Suppose that we can find a non-

negative function ς : R2 → R such that ∀(u, x0) ∈
W 1,∞(R+,R)× R Inequality (39) holds.

(i) Can we conclude that Hs is strongly consistent with

respect to all periodic inputs u ∈W 1,∞(R+,R) and

all initial states x0 ∈ R?

13.4 Open Problem 4

The motivation for Open Problem 4 is provided in Sec-

tion 12.3.

Consider the scalar rate-independent Duhem model

(34)–(36) where the output is the state x. Suppose that

Assumption 1 holds so that we can define the opera-

tor Hs of Section 5.1. Suppose that all conditions of

Theorem 3 hold except f1 ≥ 0 and f2 ≥ 0.

(i) Find a set S as large as possible of pairs (u, x0) ∈
W 1,∞(R+,R)× R for which (i)–1 and (i)–2 hold.

(i)–1. The operator Hs is strongly consistent with re-

spect to all (u, x0) ∈ S.

(i)–2. The curve % 7→
(
ψu(%), ϕ◦u(%)

)
is counterclock-

wise for all (u, x0) ∈ S.

(ii) Generalize the obtained results to the vector rate-

independent Duhem model (32)–(33).

14 Epilogue

More research is needed to better understand Duhem’s

model seen as a class of differential equations, and also

as a representation of hysteresis. In particular, it is im-

portant to get answers to the open problems -and to

the conjecture- proposed in this paper.

A On the existence and uniqueness of solutions

of differential equations

In this section we present some existence and uniqueness the-
orems for the solutions of ordinary differential equations. To
this end, let D be a domain, that is an open connected subset
of R×Rn where n > 0 is an integer. Let (t0, x0) ∈ D and let
a, b ∈ ]0,∞[. Define the parallelepiped Qa,b by

Qa,b = {(t, w) ∈ R× Rn | |t− t0| ≤ a, |w − x0| ≤ b} . (127)

We say that the map F : D → Rn satisfies the Carathéodory
conditions on the domain D if Conditions (i)–(iii) hold on any
parallelepiped Qa,b ⊂ D [61, p. 68].
(i) The function F is defined and continuous in w for almost

all t;
(ii) the function F is measurable in t for each fixed w;

(iii) for each Qa,b ⊂ D there exists a measurable function
mQa,b

∈ L1
(
[t0 − a, t0 + a],R

)
such that

|F (t, w)| ≤ mQa,b
(t), ∀w ∈ Rn and for almost all

t ∈ [t0 − a, t0 + a] satisfying (t, w) ∈ Qa,b.
(128)

Now, consider the differential equation

ẋ(t) = F
(
t, x(t)

)
, (129)

x(t0) = x0, (130)

where F : D → Rn satisfies the Carathéodory conditions on
the domain D ⊂ R× Rn and (t0, x0) ∈ D.

Theorem 10 [61, p. 68] The differential equation (129)–(130)
has a solution on some nonempty open interval I 3 t0, in
the sense that there exists an absolutely continuous function
x : I → Rn such that the following properties (i)–(iii) are
satisfied.
(i) The initial condition (130) holds;

(ii) ∀t ∈ I we have
(
t, x(t)

)
∈ D;

(iii) and the differential equation (129) is satisfied almost ev-
erywhere in I.

A lower bound on the size of the interval I is obtained by
solving the inequality∫ t0+c

t0−c
mQa,b

(t) dt ≤ b, (131)

where a, b ∈ ]0,∞[ are chosen so that (t0, x0) ∈ Qa,b ⊂ D.

Observe that the function c →
∫ t0+c
t0−c

mQa,b
(t) dt is contin-

uous and is zero at c = 0. This implies that there exists
at least a 0 < c ≤ a such that (131) holds. Then we have
]t0 − c, t0 + c[⊂ I [61, p. 69].
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Theorem 11 [61, p. 70 and p. 80] Assume that F : D → Rn
satisfies the Carathéodory conditions on the domain D. Let x
be a solution of the differential equation (129)–(130) defined
on some interval I. Then x may be extended as a solution of
(129)–(130) to a maximal interval of existence ]ω−, ω+[ and(
t, x(t)

)
→ ∂D as t→ ω±, where ∂D is the boundary of D.

Theorem 12 [29, p. 5] Assume that F : D → Rn satisfies
the Carathéodory conditions on the domain D. Assume that
there exists a function l ∈ L1

(
J,R+

)
for every finite interval

J ⊂ R which satisfies the following. For almost all t ∈ R and
∀w1, w2 ∈ Rn such that (t, w1), (t, w2) ∈ D we have∣∣F (t, w1)− F (t, w2)

∣∣ ≤ l(t)|w1 − w2|. (132)

Then in the domain D there exists at most one solution to
the differential equation (129)–(130).

The local Lipschitz condition (132) can be relaxed as fol-
lows [29, p. 5].(
F (t, w1)− F (t, w2)

)
· (w1 − w2) ≤ l1(t)|w1 − w2|2,

for almost all t ≥ t0, (133)(
F (t, w1)− F (t, w2)

)
· (w1 − w2) ≥ −l2(t)|w1 − w2|2,

for almost all t ≤ t0, (134)

where the product is understood as the scalar product if
F (t, w1), F (t, w2), w1, w2 are vectors; the functions l1, l2 ∈
L1
(
J,R+

)
for every finite interval J ⊂ R, and w1, w2 ∈ Rn

are such that (t, w1), (t, w2) ∈ D.
Finally we provide a result we could not find in the liter-

ature, and which is useful to the present paper.

Lemma 12 Suppose that the application F : R × R → R
satisfies the Carathéodory conditions on the domain R2. As-
sume that there exists k ∈ [0,∞[ such that(
F (t, w1)− F (t, w2)

)
· (w1 − w2) ≤ k|w1 − w2|2,

for almost all t ≥ t0, ∀w1, w2 ∈ R.
(135)

Then the differential equation (129)–(130) has exactly one
solution defined on [t0,∞[.

Proof From Theorems 10, 11, and 12 it follows that there
exists a unique solution x to the differential equation (129)–
(130) defined on a maximal interval of existence [t0, ω+[ where
ω+ ∈ ]t0,∞]. Assume that ω+ < ∞, and let w ∈ R be
fixed. It comes from Theorem 11 that ∃ tw ∈ ]t0, ω+[ such
that ∀t ∈ [tw, ω+[ we have |x(t)| > |w|. Consider the case
∀t ∈ [tw, ω+[, x(t) > |w| ≥ w (a similar proof holds for the
case ∀t ∈ [tw, ω+[, x(t) < −|w|). Then Inequality (135) leads
to

F (t, x(t)) ≤ F (t, w)+k
(
x(t)−w

)
, for almost all t ∈ [tw, ω+[.

(136)

Integrating both sides of (136) on the time interval [tw, t] it
follows that

|x(t)| = x(t) = x(tw) +

∫ t

tw

F (s, x(s)) ds

≤ C + k

∫ t

tw

|x(s)| ds,∀t ∈ [tw, ω+[, (137)

C = x(tw) +

∫ ω+

tw

|F (s, w)| ds+ k|w|(ω+ − tw) <∞.

Using Gronwall’s lemma [32, p. 24] it comes from Inequality
(137) that

|x(t)| ≤ Cet−tw ≤ Ceω+−tw , ∀t ∈ [tw, ω+[. (138)

Inequality (138) contradicts the fact that |x(t)| → ∞ as t→
ω+.

B Proof of Lemma 13

Lemma 13 Let u ∈ W 1,∞(R+,R) be non constant. There
exists a unique function vu ∈ L∞ (Iu,R) that is defined by
vu ◦ ρu = u̇. Moreover, ‖vu‖Iu ≤ ‖u̇‖ and vu is nonzero
almost everywhere on Iu.

Proof The operator ∆− defined in Section 11.2 is causal and
satisfies Assumption 3. Using Lemma 3 it follows that vu ∈
L∞ (Iu,R) and ‖vu‖Iu ≤ ‖u̇‖. Now, define the following sets:

A = {% ∈ Iu | vu(%) = 0},
B = {t ∈ R+ | u̇(t) = 0},
B1 = {t ∈ R+ | ρ̇u(t) is not defined at t},
B2 = {t ∈ R+ | u̇(t) is defined, ρ̇u(t) is defined, and

|u̇(t)| 6= ρ̇u(t)},
C = {t ∈ R+ | ρ̇u(t) = 0}.

Since ρu is absolutely continuous on R+, we get from [45,
Corollary 3.41] that µ(B1) = 0. Since u̇ ∈ L∞ (R+,R) we get
from [45, Lemma 3.31] that ρ̇u = |u̇| almost everywhere on
R+, which implies that µ(B2) = 0. Also, from [45, Corollary
3.14] it follows that µ

(
ρu(C)

)
= 0. Since ρu is absolutely

continuous on R+, and since µ(B1) = µ(B2) = 0 it follows
from [45, Corollary 3.41] that µ

(
ρu(B1)

)
= µ

(
ρu(B2)

)
= 0.

Now, observe that B ⊂ C ∪ B1 ∪ B2, thus ρu(B) ⊂ ρu(C) ∪
ρu(B1) ∪ ρu(B2) which implies that µ

(
ρu(B)

)
= 0. Since

A = ρu(B) it follows that µ(A) = 0.

C Proof of Theorem 8

We get from Equation (68) that ∃δ1 > 0 such that ∀w ∈
(0, δ1) we have |ḡ1(w)− 1| < 1

2
, and ∃δ2 > 0 such that ∀w ∈

(−δ2, 0) we have |ḡ2(w) + 1| < 1
2

. Define

γ0 =
‖u̇‖

min(δ1, δ2)
. (139)

Observe that 0 < γ0 < ∞ since u ∈ Λumin,umax,α1,T . Let
γ ∈ ]γ0,∞[ be fixed, and define xγ = Hs(u ◦ sγ , x0). From
Equations (63) and (64) we get

xγ(t) = x0 +

∫ t

0

g1
(
u̇γ(τ)

)(
A1xγ(τ) +B1uγ(τ) + E1

)
+ g2

(
u̇γ(τ)

)(
A2xγ(τ) +B2uγ(τ) + E2

)
dτ,∀t ∈ R+

(140)

where uγ = u ◦ sγ . Consider the change of variable τ ′ = τ
γ

,

then

xγ(t) = x0 + γ

∫ t

γ

0

g1

(
u̇(τ ′)

γ

)[
A1xγ(γτ ′) +B1u(τ ′) + E1

]
+ g2

(
u̇(τ ′)

γ

)
×
[
A2xγ(γτ ′) +B2u(τ ′) + E2

]
dτ ′,

∀t ∈ R+.
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(141)

Define σ = t
γ

and z : R+ → R by z(σ) = xγ(γσ), ∀σ ∈ R+;

then

z(σ) = x0 + γ

∫ σ

0

g1

(
u̇(τ ′)

γ

)(
A1z(τ

′) +B1u(τ ′) + E1

)
+ g2

(
u̇(τ ′)

γ

)(
A2z(τ

′) +B2u(τ ′) + E2

)
dτ ′,

∀σ ∈ R+.

(142)

For any m ∈ N define zm : [0, T ]→ R by

zm(σ) = z(σ +mT ), ∀σ ∈ [0, T ]. (143)

The objective of the following analysis is to show that the se-
quence {zm}m∈N converges in the Banach space C0 ([0, T ],R)
endowed with the norm ‖ · ‖[0,T ]. To this end, we prove that
{zm}m∈N is a Cauchy sequence. For any m1,m2 ∈ N define

zm1,m2
= zm1

− zm2
. (144)

Owing to the T–periodicity of both u and u̇ it follows from
Equations (142)–(144) that

żm1,m2
(σ) = γ

(
A1g1

(
u̇(σ)

γ

)
+A2g2

(
u̇(σ)

γ

))
zm1,m2

(σ),

∀σ ∈ ]0, α1[ ∪ ]α1, T [. (145)

Let σ ∈ (0, α1) then u̇(σ) ≥ 0 since u ∈ Λumin,umax,α1,T . We
study two cases: u̇(σ) > 0 and u̇(σ) = 0.

Case u̇(σ) > 0. Since 0 < u̇(σ)

γ
< ‖u̇‖

γ0
≤ δ1 it follows

that
∣∣∣ḡ1 ( u̇(σ)γ )

− 1
∣∣∣ < 1

2
which, using Equation (66), leads

to

3A1

2
u̇(σ) ≤ γA1g1

(
u̇(σ)

γ

)
≤
A1

2
u̇(σ). (146)

Case u̇(σ) = 0. In this case, Inequality (146) holds by
definition of the function g1. That is we have

3A1

2
u̇(σ) ≤ γA1g1

(
u̇(σ)

γ

)
≤
A1

2
u̇(σ), ∀σ ∈ ]0, α1[. (147)

Similarly, it can be shown that

3A2

2
u̇(σ) ≤ γA2g2

(
u̇(σ)

γ

)
≤
A2

2
u̇(σ), ∀σ ∈ ]α1, T [. (148)

Now, define the function V : [0, T ]→ R by

V (σ) =
1

2
z2m1,m2

(σ), ∀σ ∈ [0, T ]. (149)

Then, V is continuous on [0, T ] and is C1 on ]0, α1[ ∪ ]α1, T [.
From Equation (145) we obtain

V̇ (σ) = 2γ

(
A1g1

(
u̇(σ)

γ

)
+A2g2

(
u̇(σ)

γ

))
V (σ),

∀σ ∈ ]0, α1[ ∪ ]α1, T [. (150)

Combining Equations (150), (147) and (148) it follows that

V̇ (σ) ≤ A1u̇(σ)V (σ), ∀σ ∈ ]0, α1[, (151)

V̇ (σ) ≤ A2u̇(σ)V (σ), ∀σ ∈ ]α1, T [. (152)

Define the continuous function W : [0, α1] → R as being the
solution of the following differential equation

Ẇ (σ) = A1u̇(σ)W (σ), ∀σ ∈ ]0, α1[, (153)

W (0) = V (0). (154)

Integrating (153)–(154) gives

W (σ) = V (0) exp

(
A1

γ

(
u(σ)− umin

))
, ∀σ ∈ [0, α1]. (155)

Using the Comparison Lemma [42, p. 102] it comes from Equa-
tions (151), (153), (154), and (155) that

V (α1) ≤W (α1) = V (0) exp
(
A1 (umax − umin)

)
. (156)

Using a similar argument on the interval [α1, T ] it follows
that

V (T ) ≤W (α1) exp
(
A2 (umin − umax)

)
. (157)

As a conclusion, we have proved that

V (T ) ≤ rV (0), (158)

0 < r = exp
(
(A1 −A2)(umax − umin)

)
< 1, (159)

‖V ‖[0,T ] ≤ V (0). (160)

Note that (160) is due to the inequality V̇ (σ) ≤ 0, ∀σ ∈
]0, α1[ ∪ ]α1, T [ because of Inequalities (151)–(152).

Combining Equations (158), (149), (144), and (143) we
get[
z
(
(m1 + 1)T

)
− z
(
(m2 + 1)T

)]2
≤ r

[
z
(
m1T

)
− z
(
m2T

)]2
,

∀m1,m2 ∈ N. (161)

An argument by induction shows that from (161) we get

V (0) =
1

2

[
z
(
m1T

)
− z
(
m2T

)]2
≤

1

2
rmin(m1,m2)

[
z (0)− z

(
|m2 −m1|T

)]2
≤ 2rmin(m1,m2)‖z‖2, ∀m1,m2 ∈ N.

(162)

Observe that, owing to Theorem 5, we have ‖z‖ <∞. Hence,
from Equations (162), (160), (149), (144), and (159) it comes
that {zm}m∈N is a Cauchy sequence. Therefore there exists
z∞ ∈ C0 ([0, T ],R) such that limm→∞ ‖zm − z∞‖[0,T ] = 0.
Thus we get limm→∞ |zm(0)− z∞(0)| = 0 and
limm→∞ |zm(T )− z∞(T )| = 0. Note that zm(0) = z(mT )
and zm(T ) = z

(
(m + 1)T

)
by (143). Take m1 = m and

m2 = m+ 1 in Inequality (162). Then we get
limm→∞

∣∣z(mT )− z
(
(m+ 1)T

)∣∣ = 0. All these facts show
that we have

z∞(0) = z∞(T ). (163)

Combining Equations (142) and (143) it comes that

zm(σ) = zm(0) + γ

∫ σ

0

g1

(
u̇(τ)

γ

)[
A1zm(τ) +B1u(τ) + E1

]
+ g2

(
u̇(τ)

γ

)(
A2zm(τ) +B2u(τ) + E2

)
dτ,

∀σ ∈ [0, T ],∀m ∈ N. (164)

Note that ‖zm‖ ≤ ‖z‖ < ∞. Also,
∣∣∣ u̇(τ)γ ∣∣∣ ≤ ‖u̇‖γ0

so that, by

the continuity of the functions g1 and g2 we have
∣∣∣g1 ( u̇(τ)γ )∣∣∣ ≤
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k1 and
∣∣∣g2 ( u̇(τ)γ )∣∣∣ ≤ k2, where k1, k2 ∈ R+ are independent

of τ and m. This means that the term under the integral in
Equation (164) is bounded by a constant independent of τ
and m. Using the Lebesgue Dominated Convergence Theo-
rem it follows from (164) that

z∞(σ) = z∞(0) + γ

∫ σ

0

g1

(
u̇(τ)

γ

)[
A1z∞(τ) +B1u(τ) + E1

]
+ g2

(
u̇(τ)

γ

)[
A2z∞(τ) +B2u(τ) + E2

]
dτ,

∀σ ∈ [0, T ]. (165)

Define z̄γ : R+ → R by

z̄γ(σ +mT ) = z∞(σ), ∀σ ∈ [0, T ], ∀m ∈ N. (166)

Then it comes from Equations (166), (165) and (163) that z̄γ
is T–periodic and

z̄γ(σ) = z̄γ(0) + γ

∫ σ

0

g1

(
u̇(τ)

γ

)[
A1z̄γ(τ) +B1u(τ) + E1

]
+ g2

(
u̇(τ)

γ

)[
A2z̄γ(τ) +B2u(τ) + E2

]
dτ,

∀σ ∈ R+. (167)

As a conclusion, we have proved that there exists

x0,γ = z̄γ(0) (168)

such that

Hs(u ◦ sγ , x0,γ) = z̄γ ◦ sγ (169)

is Tγ–periodic.
To prove the uniqueness of x0,γ we use an argument simi-

lar to the one used for the proof of the existence. Take γ > γ0
and suppose that there exists x′0,γ such that Hs(u◦ sγ , x′0,γ)
is Tγ–periodic. Define z̄′γ : R+ → R by z̄′γ = Hs(u◦sγ , x′0,γ)◦
s 1

γ
. Then, z̄′γ(0) = x′0,γ and z̄′γ satisfies Equation (167) with

z̄γ replaced by z̄′γ . Considering the difference ε = z̄γ − z̄′γ it
follows that ε satisfies Equation (145) with zm1,m2

replaced
by ε. A function V can be defined as in Equation (149) with
zm1,m2

replaced by ε which leads to Inequality (158). Since
V (0) = V (T ) owing to the T–periodicity of V , it follows that
V (0) = 0 as V is nonnegative. Thus x′0,γ = x0,γ .

D Proof of Theorem 9

Let γ ∈ ]γ0,∞[ where γ0 is given by Equation (139). From
Equation (147) it follows that

3A1

2

(
umax−umin

)
≤
∫ τ

0

3A1

2
u̇(t)dt ≤

∫ τ

0

γA1g1

(
u̇(t)

γ

)
dt,

(170)

and∣∣∣∣γA1g1

(
u̇(τ)

γ

)∣∣∣∣ ≤ 3|A1|
2
‖u̇‖, ∀τ ∈ ]0, α1[. (171)

Also, From Equation (148) it follows that

3A2

2

(
umin−umax

)
≤
∫ τ

α1

3A2

2
u̇(t)dt ≤

∫ τ

α1

γA2g2

(
u̇(t)

γ

)
dt,

(172)

and∣∣∣∣γA2g2

(
u̇(τ)

γ

)∣∣∣∣ ≤ 3A2

2
‖u̇‖, ∀τ ∈ ]α1, T [. (173)

Equations (170)–(173) show that we can apply the Lebesgue
Dominated Convergence Theorem in (103) so that we get

lim
γ→∞

z̄γ(0) = z̄(0) = θ. (174)

Observe that using the same theorem we can show that
∀σ ∈ [0, T ] we have limγ→∞ |z̄γ(σ) − z̄(σ)| = 0. However,
this simple convergence does not imply Theorem 9; we need
to prove the uniform convergence of z̄γ to z̄ on the interval
[0, T ]. This is the aim of the following analysis.

Inequalities (170)–(173) along with Equations (99), (101)
and (102) lead to

‖z̄γ‖[0,T ] ≤ c1, ∀γ ∈ ]γ0,∞[ (175)

where c1 ∈ R+ is independent of γ.
On the other hand, it can be checked that Equations (93),

(94), (90), (104), (105) lead to

˙̄z(σ) = u̇(σ) (A1z̄(σ) +B1u(σ) + E1) , ∀σ ∈ ]0, α1[, (176)

˙̄z(σ) = u̇(σ) (A2z̄(σ) +B2u(σ) + E2) , ∀σ ∈ ]α1, T [. (177)

Define the function V : [0, T ]→ R by the relation

Vγ(σ) =
1

2

(
z̄(σ)− z̄γ(σ)

)2
, ∀σ ∈ [0, T ]. (178)

Take σ ∈ ]0, α1[, then it comes from Equations (167) and
(176) that

V̇γ(σ) =
(
z̄(σ)− z̄γ(σ)

)[
u̇(σ)

(
A1z̄(σ) +B1u(σ) + E1

)
− γg1

(
u̇(σ)

γ

)(
A1z̄γ(σ) +B1u(σ) + E1

)]
=
(
z̄(σ)− z̄γ(σ)

)(
B1u(σ) + E1

)(
u̇(σ)− γg1

(
u̇(σ)

γ

))
+A1

(
z̄(σ)− z̄γ(σ)

)(
u̇(σ)− γg1

(
u̇(σ)

γ

))
z̄(σ)

(179)

+ 2A1γg1

(
u̇(σ)

γ

)
Vγ(σ), ∀σ ∈ ]0, α1[, ∀γ > γ0.

Let ε > 0. From Equations (66) and (68) it follows that ∃δε >
0 such that ∀w ∈ ]0, δε[ we have |ḡ1(w)− 1| < ε

‖u̇‖ . Thus,

∃γε = min
(
γ0,
‖u̇‖
δε

)
such that ∀γ > γε we have∣∣∣∣γg1 ( u̇(σ)

γ

)
− u̇(σ)

∣∣∣∣ ≤ ε, ∀σ ∈ ]0, α1[. (180)

Combining Equations (178)–(180) along with Inequalities (175)
and (147) it comes that

V̇γ(σ) ≤ A1u̇(σ)Vγ(σ) + c2ε
√
Vγ(σ), ∀σ ∈ ]0, α1[, ∀γ > γε.

(181)

where c2 ∈ R+ is independent of γ. Define the continuous
function W : [0, α1] → R+ as the solution of the following
differential equation

Ẇ (σ) = A1u̇(σ)W (σ) + c2ε
√
W (σ), ∀σ ∈ ]0, α1[, (182)

W (0) = V (0). (183)
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Integrating (182)–(183) gives

W (σ) = eA1u(σ)
(√

V (0)e−
A1
2
umin +

c2

2
ε

∫ σ

0

e−
A1
2
u(τ)dτ

)2
,

∀σ ∈ [0, α1],

≤ eA1umin

(√
V (0)e−

A1
2
umin +

c2

2
ε

∫ α1

0

e−
A1
2
u(τ)dτ

)2
,

∀σ ∈ [0, α1]. (184)

Using the Comparison Lemma [42, p. 102] it follows from
(181)–(184) that

Vγ(σ) ≤ eA1umin

(√
V (0)e−

A1
2
umin +

c2

2
ε

∫ α1

0

e−
A1
2
u(τ)dτ

)2
,

∀σ ∈ [0, α1], ∀γ > γε. (185)

Equations (185), (174) and (178) show that
limγ→∞ ‖Vγ‖[0,α1] = 0. A similar argument on the interval
[α1, T ] shows that limγ→∞ ‖Vγ‖[0,T ] = 0. The uniform con-
vergence of z̄γ (restricted to the interval [0, T ]) to z̄ has thus
been demonstrated, which completes the proof.

E Proof of Lemma 8

(i) ⇒ (ii). From Equation (80) and C 6= 0 it comes that
∀%1, %2 ∈ [0, ρu(T )] we have ϕ◦u(%1) = ϕ◦u(%2) ⇔ x◦u(%1) =
x◦u(%2). Condition (i) implies that ∀ν ∈ [umin, umax] we have

ξ1(ν) = ξ2(ν). Therefore ∀ν ∈ ]umin, umax[ we have ξ̇1(ν) =

ξ̇2(ν). Thus we get from (91)–(92) that

ξ1(ν) = ξ2(ν) =
B1 −B2

A2 −A1
ν +

E1 − E2

A2 −A1
, ∀ν ∈ ]umin, umax[.

(186)

Consider the functions f1, f2, f3,0 : ]umin, umax[ → R de-
fined by ∀ν ∈ ]umin, umax[, f1(ν) = 1, f2(ν) = ν, f3(ν) =
eA1(ν−umin), and 0(ν) = 0. Then Equation (186) along with
(93)–(94) lead to

(
E1 − E2

A2 −A1
+
E1

A1
+
B1

A2
1

)
f1 +

(
B1 −B2

A2 −A1
+
B1

A1

)
f2

−
(
B1

A1
umin +

E1

A1
+
B1

A2
1

+ θ

)
f3 = 0,

(187)

(
E1 − E2

A2 −A1
+
E2

A2
+
B2

A2
2

)
f1 +

(
B1 −B2

A2 −A1
+
B2

A2

)
f2

−
(
B2

A2
umin +

E2

A2
+
B2

A2
2

+ θ

)
f3 = 0.

(188)

Consider the vector space of functions {p : ]umin, umax[→ R}
with its usual binary operations of vector addition and scalar
multiplication. Then the functions f1, f2, f3 are linearly in-
dependent vectors so that, owing to Equations (187)–(188),

we must have

E1 − E2

A2 −A1
+
E1

A1
+
B1

A2
1

= 0, (189)

B1 −B2

A2 −A1
+
B1

A1
= 0, (190)

B1

A1
umin +

E1

A1
+
B1

A2
1

+ θ = 0, (191)

E1 − E2

A2 −A1
+
E2

A2
+
B2

A2
2

= 0, (192)

B1 −B2

A2 −A1
+
B2

A2
= 0, (193)

B2

A2
umin +

E2

A2
+
B2

A2
2

+ θ = 0. (194)

Simple calculations show that Equations (189)–(194) lead to
(96)–(97).

(ii)⇒ (i). It can be checked that Equations (96)–(97) lead
to (189)–(194) so that the opertor Ho has a trivial hysteresis
loop with respect to all (u, x0) ∈ Λumin,umax,α1,T × R.

F Proof of Lemma 10

Using Equation (40) the functions F1, F2 : R2 → R are given
by

F1(x1, v) =
A1 −A2

2
x1 +

B1 −B2

2
v +

E1 − E2

2
, (195)

F2(x1, v) =
A1 +A2

2
x1 +

B1 +B2

2
v +

E1 + E2

2
. (196)

Then Assumption 7 holds since A1 6= A2. The anhysteresis
function is

fan(v) = −
B1

A1
v +

E2 − E1

A1 −A2
, ∀v ∈ R (197)

where (114) has been used. For every pair (x0, u0) ∈ R2, let
ωΦ,1(·, x0, u0) : [u0,∞) → R be the solution z of z(σ) −
x0 =

∫ σ
u0
A1z(τ) + B1τ + E1 dτ , for all σ ∈ [u0,∞[ and let

ωΦ,2(·, x0, u0) : ]−∞, u0]→ R be the solution z of z(σ)−x0 =∫ σ
u0
A2z(τ) +B2τ + E2 dτ , for all σ ∈ ]−∞, u0]. Then

ωΦ,1(σ, x0, u0) =
A1B1u0 +A1E1 +B1

A2
1

e(σ−u0)A1

−
A1B1σ +A1E1 +B1

A2
1

+ e(σ−u0)A1x0, ∀σ ∈ [u0,∞[, (198)

ωΦ,2(σ, x0, u0) =
A2B2u0 +A2E2 +B2

A2
2

e(σ−u0)A2

−
A2B2σ +A2E2 +B2

A2
2

+ e(σ−u0)A2x0, ∀σ ∈ ]−∞, u0]. (199)

Equations (198)–(199) are valid since A1 6= 0 and A2 6= 0.
Define the function ωΦ(·, x0, u0) by Equation (41). Then, the
intersecting function Ω should satisfy

ωΦ
(
Ω(x1, v), x1, v

)
= fan

(
Ω(x1, v)

)
, ∀(x1, v) ∈ R2. (200)
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Define

M1 =
(
B1A

−1
1

(
A−1

2 −A−1
1

)
− E1A

−1
1 + E2A

−1
2

) A2

A1 −A2
,

(201)

M2 =
(
B1A

−1
1

(
A−1

2 −A−1
1

)
− E1A

−1
1 + E2A

−1
2

) A1

A1 −A2
.

(202)

Note thatM1 > 0 andM2 < 0 owing to (114)–(116). Combin-
ing (197)–(200) and (114)–(116) it follows from the definition
of function Ω (in Section 8.3) that

Ω(x1, v) =

 v − 1
A1

log
(

1 + x1−fan(v)

M1

)
if x1 ≥ fan(v),

v − 1
A2

log
(

1− fan(v)−x1

M2

)
if x1 ≤ fan(v),

(203)

where log sets for the natural logarithm. The function ς in
Equation (42) can be determined explicitly as

ς(x1, v) = x1v −
1

A1
x1 +

E1

A1
v +

B1

2A1
v2 −M1Ω(x1, v)

+
E2 − E1

A1(A1 −A2)
if x1 ≥ fan(v), (204)

ς(x1, v) = x1v −
1

A2
x1 +

E2

A2
v +

B1

2A1
v2 −M2Ω(x1, v)

+
E2 − E1

A2(A1 −A2)
if x1 ≤ fan(v). (205)

It can be checked that

ς(x1, v) = −
B1

2A1
v2 if x1 = fan(v). (206)

The fact that Inequality (39) holds for any input u ∈ AC(R+,R)
and any initial condition x0 ∈ R follows from Theorem 3.
However, ς is not nonnegative: it can be checked that for any
fixed x1 we have limv→±∞ ς(x1, v) = −∞.

The aim of the following analysis is to show that ∀(x1, v) ∈
R×

[
1
A1
, 1
A2

]
we have ς(x1, v) ≥ 0. To this end, observe that,

from (114) and (206), we have

ς(x1, v) ≥ 0 whenever x1 = fan(v). (207)

Now, fix v ∈
[

1
A1
, 1
A2

]
. From (203)–(204) and (114)–(116) it

follows that

lim
x1→∞

ς(x1, v) =∞. (208)

Suppose that there exists x2 ∈ ]fan(v),∞[ such that ς(x2, v) <
0. Then, from (207)–(208) it follows that ς(·, v) should have
a minimum at x3 ∈ ]fan(v),∞[ such that ς(x3, v) < 0. A
necessary condition for this to happen is ∂ς

∂x1
(x3, v) = 0. It

can be checked from Equation (204) that this last equality
cannot hold. A similar argument can be used for Equation
(205).

G Proof of Lemma 11

Observe that, for Theorem 5 to hold, it is needed that A1 and
−A2 are both stable. Since n = 1, this condition translates
into A1 < 0 and A2 > 0 so that the results of Theorems 5, 6,
and 7 apply.

The proof is done in two steps. In Step 1 we consider
a specific T–periodic input u ∈ W 1,∞(R+,R) and an arbi-
trary initial condition x0. Using Theorem 7 it follows that the
function ϕ◦u that characterizes the hysteresis loop satisfies the
differential state equation (79) and the output equation (80).
The aim of Step 1 is to find the initial state x◦u(0) since the
latter may be different from x0. In Step 2 we use the knowl-
edge of x◦u(0) to prove that, if Assumption 8 holds, then the
relations (251)–(252) hold.

STEP 1. Let α ∈ ]0, 1[; define %1 = 1, %2 = 2 − α,
%3 = 3− 2α, %4 = 4− 2α. Note that 0 < %1 < %2 < %3 < %4.
We consider the %4-periodic input u : R+ → R defined on the
interval [0, %4] by

u(%) = %, ∀% ∈ [0, %1], (209)

u(%) = 2− %, ∀% ∈ [%1, %2], (210)

u(%) = 2α− 2 + %,∀% ∈ [%2, %3], (211)

u(%) = 4− 2α− %,∀% ∈ [%3, %4]. (212)

Observe that u(0) = 0, u(%1) = 1, u(%2) = α, u(%3) = 1,
u(%4) = 0, and that u ∈ W 1,∞(R+,R). Observe also that
|u̇(%)| = 1 for almost all % ∈ R+ so that ρu is the iden-
tity function which gives ψu = u. Let x0 ∈ R and consider
the scalar semilinear Duhem model with input u and initial
condition x0 (Equations (63)–(65)). Since all conditions of
Theorem 7 hold, we get from Equality (80) that

ϕ◦u(%) = Cx◦u(%) +Du(%), ∀% ∈ [0, %4], (213)

where x◦u satisfies the differential equation (79). To find the
initial condition x◦u(0) we compute x◦u(%k), k = 1, . . . , 4 as
a function of x◦u(0) and we use the fact that, by Theorem
7, we have x◦u(0) = x◦u(%4). We start by computing x◦u(%1)
as a function of x◦u(0). In the interval [0, %1], the differential
equation (79) becomes

dx◦u
d%

(%) = A1x
◦
u(%) +B1u(%) + E1, ∀% ∈ ]0, %1[. (214)

Equation (214) can be solved explicitly and it gives

x◦u(%1) = e%1A1x◦u(0) + e%1A1

∫ %1

0

e−τA1 (B1u(τ) + E1) dτ.

(215)

Taking into account Equation (209) it follows that

x◦u(1) = eA1x◦u(0) + β11, (216)

β11 = A−1
1

[ (
−1−A−1

1 +A−1
1 eA1

)
B1 +

(
−1 + eA1

)
E1

]
.

(217)

In the interval [%1, %2], the differential equation (79) becomes

dx◦u
d%

(%) = −A2x
◦
u(%)− u(%)B2 − E2, ∀% ∈ ]%1, %2[. (218)

Equation (218) can be solved explicitly and it gives

x◦u(%2) = e−(%2−%1)A2x◦u(%1)

− e−%2A2

∫ %2

%1

eτA2 (u(τ)B2 + E2) dτ. (219)

Taking into account Equation (210) it follows that

x◦u(%2) = e(α−1)A2x◦u(1) + β21e
A2α + β22α+ β23, (220)

β21 = A−1
2 e−A2

(
B2(1 +A−1

2 ) + E2

)
, (221)

β22 = −A−1
2 B2, (222)

β23 = −A−1
2

(
A−1

2 B2 + E2

)
. (223)
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In the interval [%2, %3], the differential equation (79) becomes

dx◦u
d%

(%) = A1x
◦
u(%) +B1u(%) + E1, ∀% ∈ ]%2, %3[. (224)

Equation (224) can be solved explicitly and it gives

x◦u(%3) = e(%3−%2)A1x◦u(%2)

+ e%3A1

∫ %3

%2

e−τA1 (B1u(τ) + E1) dτ.
(225)

Taking into account Equation (211) it follows that

x◦u(%3) = e(1−α)A1x◦u(%2) + β31αe
−A1α + β32e

−A1α + β33,

(226)

β31 = A−1
1 B1e

A1 , (227)

β32 = A−1
1 eA1

(
A−1

1 B1 + E1

)
, (228)

β33 = A−1
1

(
−(1 +A−1

1 )B1 − E1

)
. (229)

In the interval [%3, %4], the differential equation (79) becomes

dx◦u
d%

(%) = −A2x
◦
u(%)− u(%)B2 − E2, ∀% ∈ ]%3, %4[. (230)

Equation (230) can be solved explicitly and it gives

x◦u(%4) = e−(%4−%3)A2x◦u(%3)

− e−%4A2

∫ %4

%3

eτA2 (u(τ)B2 + E2) dτ. (231)

Taking into account Equation (212) it follows that

x◦u(%4) = e−A2x◦u(%3) + β41, (232)

β41 = −A−1
2

[
B2

(
−e−A2 −A−1

2 e−A2 +A−1
2

)
+ E2

(
1− e−A2

) ]
. (233)

Now we use the relation x◦u(0) = x◦u(%4) to find x◦u(0) using
Equations (216)–(217), (220)–(223), (226)–(229) and (232)–
(233). We get

x◦u(0) =
β51 + β52e(A2−A1)α + β53αe−A1α + β54e−A1α

1 + β55e(A2−A1)α
,

(234)

β51 = β33e
−A2 + β41, (235)

β52 = β21e
A1−A2 + β11e

A1−2A2 , (236)

β53 = β22e
A1−A2 + e−A2β31, (237)

β54 = β23e
A1−A2 + e−A2β32, (238)

β55 = −e2(A1−A2). (239)

Note that, since 0 < α < 1, A1 < 0 and A2 > 0 it follows
that 0 < e(2−α)(−A2+A1) < 1 so that the denominator in
Equation (234) is nonzero.

STEP 2. By Assumption 8 it follows that ϕ◦u(%1) =
ϕ◦u(%3). This means that x◦u(1) = x◦u(%3) because C 6= 0.
Since x◦u(0) has been computed explicitly, x◦u(1) and x◦u(%3)
are available explicitly using Equations (216)–(217) and (226)–
(229) respectively. We get

x◦u(1) =
eA1

1 + β55e(A2−A1)α
·
(
β51 + β52e

(A2−A1)α

+ β53αe
−A1α + β54e

−A1α
)

+ β11,

(240)

x◦u(%3) =
e2A1−A2

1 + β55e(A2−A1)α
·
(
β51e

(A2−A1)α

+ β52e
2(A2−A1)α + β53αe

(A2−2A1)α

+ β54e
(A2−2A1)α

)
+ β61e

(A2−A1)α

+ β62αe
−A1α + β63e

−A1α + β33,

(241)

where

β61 =
(
β21 + β11e

−A2
)
eA1 , (242)

β62 = β22e
A1 + β31, (243)

β63 = β23e
A1 + β32. (244)

Our aim in the following analysis is to find the conditions
under which we have x◦u(1) = x◦u(%3) for all inputs u that
satisfy the relations (209)–(212). This means finding the con-
ditions under which we have x◦u(1) = x◦u(%3) for all α ∈ ]0, 1[.
In the equality x◦u(1) = x◦u(%3) we multiply both terms with
1 +β55e(A2−A1)α so that we get from Equalities (240)–(244)
that

β71 + β72e
(A2−A1)α+ β73αe

−A1α + β74e
−A1α = 0,

∀α ∈ ]0, 1[,
(245)

where

β71 = eA1β51 + β11 − β33, (246)

β72 = eA1β52 + β11β55 − e2A1−A2β51 − β61 − β55β33,
(247)

β73 = eA1β53 − β62, (248)

β74 = eA1β54 − β63. (249)

Consider the functions f1, f2, f3, f4,0 : ]0, 1[→ R defined by
∀α ∈ ]0, 1[, f1(α) = 1, f2(α) = e(A2−A1)α, f3(α) = αe−A1α,
f4(α) = e−A1α, and 0(α) = 0. Then Equation (245) can be
written as

β71 · f1 + β72 · f2 + β73 · f3 + β74 · f4 = 0. (250)

Consider the vector space of functions {p : ]0, 1[ → R} with
its usual binary operations of vector addition and scalar mul-
tiplication. Then the functions f1, f2, f3, f4 are linearly inde-
pendent vectors so that, owing to Equation (250), we have
β71 = β72 = β73 = β74 = 0 since βij is independent of α for
all possible i and j.

We start by solving Equation β73 = 0. Combining Equa-
tions (248), (237), (243), (222), and (227) it comes that

A−1
2 B2 = A−1

1 B1. (251)

Now we solve Equation β71 = 0. Combining Equations
(251), (246), (235), (229), (233), and (217) it follows that

B1A
−1
1

(
A−1

2 −A−1
1

)
− E1A

−1
1 + E2A

−1
2 = 0. (252)

It can be checked that Equalities (251)–(252) imply that
β71 = β72 = β73 = β74 = 0.

Lemma 11 follows from Lemma 8.
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15. B. Drinčić. Mechanical Models of Friction That Exhibit

Hysteresis, Stick–Slip, and the Stribeck Effect, PhD the-
sis, University of Michigan, 2012.
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