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Abstract: Buildings represent a significant portion of global energy consumption. Ventilation units
are complex components, often customized for the specific building, responsible for a large part
of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort.
In order to ensure their correct operation, proper fault detection and diagnostics methods must
be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs
and space requirements. We propose exploiting physical relations inside ventilation units to create
virtual sensors from other sensors’ readings, introducing redundancy in the system. We use two
different measures to detect when a virtual sensor deviates from the physical one: coefficient of
determination for linear models, and acceptable range. We tested our method on a real building at
the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan
speed. We employed linear regression models, statistical models, and non-linear regression models.
All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside
the acceptable range and the coefficient of determination dropped. Our method showed promising
results by introducing redundancy in the system, which can benefit several applications, such as
fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover
thresholds and set up automatic fault detection and diagnostics.

Keywords: fault detection and diagnosis; virtual sensors; HVAC; smart buildings

1. Introduction

In Europe, buildings account for 40% of the total energy used and 36% of the total CO2

emissions [1]. In the United States, the building sector accounted for about 41% of primary energy
consumption in 2010, 44% more than the transportation sector and 36% more than the industrial sector.
Total building primary energy consumption in 2009 was about 48% higher than consumption in 1980,
going from 1290 TW h to 2784 TW h [2].

Modern buildings consist of different subsystems such as heating, ventilation and air-conditioning
(HVAC) and lighting. Each subsystem contains, in turn, several components such as pumps, fans,
ducts, sensors, lamps, wires etc. monitored and managed by a building management system.
All these components are subject to faults, due to damage, wearing over time, misconfiguration,
and communication issues. Faults impact occupancy, maintenance cost and particularly energy
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efficiency. It is estimated that in 2009 just 13 of the most common faults were responsible for over
$3.3 billions in energy loss [3,4].

HVAC load varies depending on building type and location, but they are one of the critical
subsystems and can make up to 50% of the total energy consumption and, therefore, faults involving
them cause large energy loss [4,5]. Research suggests that between 20% to 30% energy saving could be
achieved by re-commissioning malfunctioning HVAC systems [6]. HVAC systems are often customized
for their specific building and, therefore, lack quality system integration [7].

Fault detection and diagnostics (FDD) techniques can be used to monitor building systems and to
detect and diagnose anomalies and faults. FDD has been an active research area for many decades
in fields such as process operations [8], avionics [9] or water distribution [10,11], and in the past few
years has caught the interest in the field of buildings technology [12–14].

Problem Statement

Building energy efficiency and safety cannot be achieved without FDD methods applied to ventilation
units. Hardware redundancy is an effective approach to high-quality FDD; however, duplicating sensors
and other components inside every unit increases deployment and maintenance costs, necessary space,
and complexity. Commercial ventilation units are rarely shipped with hardware redundancy.

In this paper, we propose a mixed model-based and data-driven technique to exploit spatial
relations among different components in ventilation units to create virtual sensors and introduce
redundancy in the system, which can be used to detect and diagnose faults. For each considered sensor,
we train a model to estimate its readings given other sensors in the unit. This allows us to detect and
diagnose faults that cause physical and virtual sensors to deviate from each other. In addition to linear
regression models, covered in previous work [15], in this paper we consider also autoregressive moving
average with exogenous variables (ARMAX) models from statistical analysis and non-linear models
such as support vector machine (SVM) regression and artificial neural network (ANN). We define two
measures to detect when physical and virtual sensors deviate. We apply this technique to a real-world
building and report the results.

The rest of the paper is organized as follows. The state of the art is reviewed in Section 2. The
proposed technique is introduced in Section 3. Section 4 presents the case study and discusses results and
implications. Finally, conclusions are drawn in Section 5.

2. State of the Art

2.1. Fault Detection and Diagnostics

Kim and Katipamula present a comprehensive review of recent FDD methods for building
systems [14]. FDD methods are categorized into three groups depending on the approach: data-driven
methods, model-based methods, and rule-based methods, as shown in Figure 1.

FDD methods for buildings

Data-driven

A model of the system is built
from historical data and used to
predict/validate data from the
system itself.
Common techniques:
– Machine learning
– Artificial neural networks
– Support vector machines

Model-based

A model of the system is built
from first principles and used to
predict/validate data from the
system itself.
Common techniques:
– Parity equations
– Observers
– Kalman filters

Rule-based

A set of rules are defined from
expert knowledge and used to
determine whether the system is
working as expected.
Common techniques:
– Expert systems
– Pattern classifications
– Limits and alarms

Figure 1. Categorization of FDD methods for buildings adapted from Kim and Katipamula [14].
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In data-driven methods, a model of the system under test is trained from historical data and it
is used to validate current data from the system. Several techniques exist, such as machine learning,
artificial neural network (ANN) or support vector machine (SVM). Little to no physical knowledge of
the system is required and the resulting models can be treated as black-box components. For this reason,
data-driven methods are easily applicable to several types of systems with small effort. However,
historical data are necessary to create the model, which rules out the possibility to apply these
techniques to newly deployed systems. These methods require fault-free training data, otherwise
the generated models would recognize faults as correct behavior. To perform proper diagnostics and
identify the precise fault, labelled faulty historical data is usually necessary.

In model-based methods, a physical model of the system under test is created from first principles
and it is used to validate current data from the system. This approach does not require training data
and often predictions are more accurate than black-box models. However, accurate models can be
complex and require in-depth knowledge of the system and large effort to be created. Often it is
necessary to perform parameters estimation to improve accuracy, which might require historical data
and, therefore, prevent to use the model with newly deployed systems.

In rule-based methods, expert knowledge gathered from field experts is used to design a set of
rules describing the system’s behavior. No historical data and no detailed physical knowledge of the
system are necessary. Moreover, some faults have effects that can be described by rules, which makes
it possible to precisely identify and diagnose the problem. However, rules can only describe behaviors
up to a certain complexity and they can only cover simple cases. As the number of rules grows, the
possibility of conflicting rules increases and so does the effort to maintain the set of rules.

Yu et al. present a review of FDD techniques for ventilation units [7]. In this case, the authors
classify FDD techniques into four groups: hardware redundancy, software redundancy, signal analysis
and plausibility tests, as shown in Figure 2. Multiple identical sensors and actuators lead to hardware
redundancy, which allows high accuracy and precision, but also to higher deployment and maintenance
costs. In software redundancy, multiple physical sensors are replaced by models obtained by other
sensors in the system. In signal analysis and plausibility tests methods, the steady-state characteristics
and other physical laws in the system are investigated. Software redundancy methods are further
classified in model-based, data-driven, and rule-based, as in general FDD methods.

FDD methods for ventilation units

Hardware
redundancy

Physical duplicated sensors are
introduced in the system to add
redundancy.

Software
redundancy

Models of sensors are created
from existing equipment in the
system to add redundancy.

Data-driven
Model-based

Rule-based

Signal analysis and
plausibility tests

Steady state characteristics and
other physical laws in the sys-
tem are investigated.

Figure 2. Classification of FDD techniques for ventilation units according to Yu et al. [7].

The authors also define a list of desirable characteristics of FDD methods:

1. Quick detection and diagnostics: faults should be identified as soon as possible;
2. Isolability: the ability to distinguish between multiple faults, i.e., performing diagnostics;
3. Robustness: the method should be insensitive to noise and model uncertainties;
4. Novel identifiability: the ability to detect unknown faults;
5. Classification error estimate: the method should make its accuracy explicit, e.g., by having a

confidence range as output;
6. Adaptability: the ability to automatically adapt to changes in the system under test;
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7. Explanation facility: the ability to identify the precise location and cause of faults;
8. Modeling requirements: lower modeling requirements ease implementation and application on

real-time processes;
9. Storage and computational requirements: minimal storage and computational requirements are

necessary for an easy implementation and application on real-time processes;
10. Multiple fault identifiability: the ability to diagnose multiple simultaneous faults.

2.2. Virtual Sensors

Virtual sensors have been used successfully in various fields, both for observing hidden
unmeasured quantities in the system and for validating the system’s status. An example of the
former can be found in [16], where the authors study spark-ignition engines in avionics. They develop
virtual sensors for quantities for which a physical sensor would have been too expensive to deploy,
or too slow at collecting data. They use artificial neural networks to predict measurements from other
sensors’ readings. Other authors use virtual sensors to estimate tire forces in automotive systems [17].
They use Kalman filter, ANN and physical relations between measurable quantities in the system such
as wheel speed.

An example of virtual sensors used for data validation can be found in [18], where the authors
present an approach for sensors data validation and reconstruction and apply it to urban water
distribution systems. Raw data undergoes several tests, from low-level tests checking elementary
properties of signals to high-level tests exploiting spatial consistency between different sensors.

In complex systems, it is not trivial to design effective virtual sensors, due to the large combination
of available inputs but also to the diversity of modeling techniques. While a popular approach is to use
general purpose simulation software, there is research effort to produce software tools able to create
and parametrize modular virtual sensors [19].

Li et al. present a review of virtual sensing techniques in the context of buildings systems [20].
Virtual sensors have been successfully applied to fields such as process control and the automotive
sector for more than two decades, and buildings systems could benefit from their application. e.g.,
many of the FDD techniques proposed for buildings cannot be applied in practice due to sensors not
available in real buildings or not accurate enough. Virtual sensors can be used to overcome these
difficulties and generate high-quality measurements.

Virtual sensing techniques are categorized according to three different criteria as shown in Figure 3:
measurement characteristics-based, modeling methods-based and application purpose-based. In the
measurement characteristics category, virtual sensors can either represent steady-state or transient
measurements. In the former case, the model is based on the assumption that the system responds
instantaneously to input variables, or that the measured quantities change slowly compared to the
system’s dynamics. In the latter case, slower reactions and faster variating input variables are taken
into account.

In modeling method category virtual sensors techniques can be divided into model-based and
data-driven, similarly to FDD methods. In model-based techniques, detailed knowledge about the
system such as mathematical relations between sensors is used to create a model of the sensor.
In data-driven techniques, historical data is used to train a black-box model of the system. Methods
that are based both on physical models and data trained models are called gray-box models.

With respect to application purposes, virtual sensors are either used as backup/redundancy or
observing. In the former case, virtual sensors measure quantities for which other physical sensors
exist. They can be used to validate such physical sensors’ readings together with FDD methods
or to replace them if they fail. In the latter case, virtual sensors measure quantities unknown or
even non-measurable in the system, such as performance or efficiency, and make them available to
client applications.
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Virtual sensing techniques

Measurement
characteristics-based

Virtual sensors can either rep-
resent steady-state or transient
measurements.

Modeling
methods-based

Virtual sensors use different
methods to generate their out-
put.

Data-driven
Model-based

Rule-based

Application
purpose-based

Virtual sensors are either used
as backup/redundancy or ob-
serving.

Figure 3. Categorization of virtual sensing techniques according to Li et al. [20].

On ventilation units specifically, virtual sensors have been used both to measure unknown
quantities and to perform FDD. An example of system monitoring can be found in [21], where the
authors develop a virtual sensor modeling exhaust airflow. Airflow sensors for exhaust duct are rarely
present in ventilation units due to their cost. They use energy balance equation to relate other sensors
in the system with the airflow and propose two different models. While the local errors can be large,
the authors show how the cumulative residuals are small and, therefore, the virtual sensor can be used
to estimate daily averages.

In [22] the authors report how using virtual sensors significantly improves FDD performance for
HVAC systems. They propose a multi-model FDD method that exploits components interdependencies.
They develop Bayesian networks for multiple operating modes, using both physical and virtual sensors
created from system knowledge and historical data.

Other buildings subsystems have been considered for FDD using virtual sensors. The method
proposed in [23] is applied to air conditioners using features decoupling and virtual sensors.
The authors create virtual sensors for several quantities, such as compressor power consumption,
refrigerant flow, condenser exit pressure, exit air humidity and evaporation temperature. Virtual
sensor performances are tested both at steady state and under transients.

A method for FDD on air conditioners is proposed in [24]. The author develops three different
virtual sensors for virtual refrigerant charge sensors using different techniques. Information from
laboratory tests and manufacturers’ data was used to assess the impact of faults on system performance.
A complete implementation was provided for a rooftop air-conditioning unit.

While not part of ventilation units themselves, room-level sensors, i.e., temperature, CO2 level
and relative humidity, are essential to their correct operation. In [25] a data-driven model for virtual
sensors for room-level indoor air conditions is proposed. The authors develop four data mining
techniques, including artificial neural network, support vector machine regression and Pace regression.
The obtained virtual sensors can be used for validation and calibration of physical sensors.

The reviewed state of the art shows that virtual sensors are popular in the field of buildings
systems; however, to our knowledge there is no work so far on employing data-driven virtual sensors
for fault detection and diagnostics application on ventilation units. Most of the work reviewed
covers other buildings subsystems, such as chillers and air-conditioning units [20,23,24], boilers [22],
heat pumps [20] and room-level components [25]. Moreover, in ventilation units, virtual sensors are
usually developed to provide readings for unmeasured quantities [21], and when they are considered
for explicit application for fault detection and diagnostics they are designed using first principles
methods [20]. Other approaches focus on a higher level of diagnostics and require significant expert
knowledge to define fault and symptoms [22]. Therefore, the main contribution of this paper is a specific
fault detection and diagnostics application for ventilation units based on virtual sensors created using a
data-driven approach.
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3. Material and Methods

In this section, we describe the proposed method for FDD on ventilation units based on
virtual sensors.

A ventilation unit is an aggregate of several components, integrated together to provide air
exchange for the building. It is important that every component works correctly, otherwise the
performance of the unit will deteriorate, causing energy loss and reducing comfort level in the building.

Since all components work together, they exhibit common patterns and shared phenomena.
Even if there is no explicit redundancy in the system, i.e., no duplicated sensor or meter, many of the
quantities in the unit are strongly correlated. In this paper, we propose to exploit these relations and
create models to predict a quantity from the surrounding ones, generating a set of virtual sensors. Given
physical sensors available in the ventilation unit S1, S2, . . . , Sn, a virtual sensor S′i measuring the same
quantity of Si is created using a model f (·) that takes other sensors as input, i.e.,

S′i = f (S)
S ( {S1, S2, . . . , Si−1, Si+1, . . . , Sn}.

(1)

For instance, consider a heating system where the following quantities are measured with sensors
or meters: initial temperature T0, heater energy M and final temperature Tf . A virtual sensor for final
temperature could be created using a model of initial temperature and heater energy T′f = f (M, T0).
In principle, virtual sensors can be created for any measure inside the system under test, it is not a
requirement that a real sensor exists.

Different methods can be used to compute the value of a virtual sensor. When detailed knowledge
about the unit is available it is possible to use physical models, e.g., computing airflow using fan
speed and duct size and shape. Otherwise, it is possible to train black-box models using data-driven
techniques such as regression models, artificial neural network or support vector machine.

A ventilation unit contains several sensors necessary to its functions, such as temperature sensors
at various locations, airflow and fan speed at each fan and pump, and energy meters for different
components. However, not all of them are closely related to each other and, therefore, it is important
to carefully design each virtual sensor by choosing quantities that are correlated. e.g., as shown in
Figure 4, fan speed and airflow through the same fan are obviously highly correlated, while inlet air
temperature and extract air temperature are independent on each other.
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Figure 4. Density plots showing correlations between fan speed and airflow, and between inlet and
extract temperatures. Darker colors correspond to more frequent readings. The quantities on the left
plot are highly correlated, while the ones on the right one are essentially independent on each other.
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3.1. Fault Diagnostics

When two correlated sensors, either physical or virtual, deviate, the only possible inference is
that a fault is affecting one of them. To diagnose the faulty one, a third sensor is necessary. Under the
assumption of single simultaneous fault, when in a group of three sensors one deviates from the other
twos, the former is identified as faulty.

Due to cost and space constraints, duplicated sensors are rarely available in ventilation units,
and even less so are triplicated sensors. However, these constraints do not impact virtual sensors,
which can be created without cost using data from other components. Some care is necessary when
choosing the inputs: different virtual sensors should share as few inputs as possible because a fault in
an input impacts all its related virtual sensors.

For instance, consider a heating system with two initial temperature sensors T0, T1, a heater energy
meter M and a final temperature sensor Tf , where two additional virtual sensors for final temperature
were created as

T′f = f (M, T0), T′′f = f (M, T1). (2)

Assuming a single fault scenario, if T′f and T′′f agree on their readings and Tf deviates from them
there are two possible causes:

• Sensor Tf is faulty;
• Heater energy meter M is faulty.

This is because heater energy meter M is used as input in both virtual sensors T′f and T′′f , therefore,
its fault impacts both their output.

3.2. Measuring Deviations from Physical Sensors

To automatically detect a fault, a measure of how much the virtual sensors deviate from the
physical one is necessary. Several tools are available from statistical analysis, e.g., the maximal error or
the norm of residuals. For the first part of the case study, where we use linear regression models to
create virtual sensors, we use the coefficient of determination, or R2 score, which gives an estimate of
how much a linear regression model fits the data [26]. Given a signal yi, i ∈ [1, n] with mean y and its
predictions ŷi the R2 score is defined as

R2 = 1− Sum of squaresresidual
Sum of squarestotal

Sum of squaresresidual =
n

∑
i=1

(yi − ŷi)
2

Sum of squarestotal =
n

∑
i=1

(yi − y)2.

(3)

An R2 score close to 1 indicates that the model is a good fit for the data, while values close to zero
indicates the opposite. Negative values indicate that the model predicts data worse than a constant
horizontal line.

We use the R2 score both to verify that the trained models fit the testing data, i.e., that the designed
model accurately follows the physical sensor, and to validate real-time data from the ventilation unit.
For each period of interest, e.g., every day, the R2 score for each virtual sensor against the physical
sensor is recorded. When the measure is lower than a given threshold the pair virtual/physical sensors,
are flagged as anomalous or faulty.

R2 score is only meaningful for linear regression models and does not yield useful value for
non-linear ones. An alternative option for detecting deviations from the physical sensor is to make the
virtual sensor generate an acceptable range of values. e.g., the acceptable error could be as large as the
largest error obtained when predicting the original training data, or a confidence interval could be
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built from training data. When readings from the physical sensor fall outside the acceptable range the
sensors pair is flagged as anomalous or faulty. This approach is illustrated in Figure 5.

Training Data Testing Data

Confidence Interval Detection

Model

Training Data Testing Data

Confidence Interval Detection

Model

Figure 5. Virtual sensors can generate an expected confidence interval. When readings from the
physical sensor fall outside such interval the sensors pair is flagged as anomalous or faulty.

With both approaches, labelled faulty testing data would be necessary to obtain accurate thresholds.

4. Results and Discussion

In this section, we implement the method presented in Section 3 on a ventilation unit of an existing
building. We detail the ventilation unit structure and its sensors and components (Figures 6 and 7).
Afterwards, we design three virtual sensors based on linear regression models to duplicate the readings
of physical sensors, and we compare physical and virtual readings to detect anomalous behaviors.
Finally, we design additional virtual sensors based on statistical and non-linear regression models.

O
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R
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m

Inlet Supply

Exhaust Extract

Heat
Exchanger Shaft

Fan

Airflow
qexhaust

Filter

Humidity
Hextract

Temperature
Textract

Pressure
pextract

Temperature
Tinlet

Filter

Temperature
Tpost-HX

Fan

Airflow
qpost-HX

Temperature
Tsupply

Pressure
psupply

Heater

Pump

Figure 6. Diagram of a ventilation unit in building OU44. Inlet air enters the unit from bottom-left,
passes through the heat-exchanger and through the heater, before entering the main shaft and supplying
individual rooms. From the rooms it enters again the main shaft, goes through the heat-exchanger
to heat up inlet air, and finally is pushed outside the building. Several sensors, shown by arrows,
are available in the unit.



Sensors 2018, 18, 3931 9 of 21

Heater

Pump Water Flow
qwater

Temperature
TIncoming

Temperature
TOutgoing

Figure 7. Diagram of a heating loop in building OU44. Hot water is used to heat up the air before it
enters the main shaft. Several sensors, shown by arrows, are available in the loop.

4.1. Building OU44

In this paper, we present Odense undervisning building 44 (OU44) as a case study [27]. It was
built in 2015 at the University of Southern Denmark, campus Odense, and it is mainly used for teaching.
It has three floors plus a basement and it contains classrooms, study zones, offices, and auditoriums.
It has four nearly identical ventilation units, each serving one corner of the building, or roughly
20 thermal zones.

A ventilation unit consists of a large air loop, as shown in Figure 6. Inlet air enters the building,
goes through a heat-exchanger (HX), then is heated to an appropriate indoor temperature and pushed
to the supply shaft, which is connected by variable air volumes (VAVs) units to individual rooms.
In the same way, exhaust air is collected from individual rooms in the extract shaft, it goes through
the heat-exchanger and it is pushed outside. The heat-exchanger recovers heat from exhaust air and
transfers it to inlet air, reducing the energy required by the heater. Air pressures in supply and extract
shafts are kept at constant values 130 Pa and 40 Pa, which cause air to flow in the rooms. Two fans in
the ventilation unit generate the required airflows to maintain the pressure setpoints.

Heaters, shown in Figure 7, use a hot-water loop, provided by a district-heating system, to heat
air inside the ventilation unit.

Several sensors, shown as arrows in Figures 6 and 7 are available inside ventilation units and
heating loops: air temperature at several positions, airflows through the two fans, supply and extract
pressure, incoming and outgoing water temperature, and water flow through the pump. In addition to
that, several meters measure the activity of fans and water pump: fan speed ωexhaust/post-HX, fan current
iexhaust/post-HX and voltage Vexhaust/post-HX, fan power and electrical consumption, and pump electrical
consumption.

Ventilation units only function during working hours, i.e., from Monday to Friday from 7 a.m. to
6 p.m. in local time. At night and during weekends they are shut down.

4.2. Results Using Linear Regression Models

Three sensors were considered for monitoring in a ventilation unit: post-heat-exchanger
temperature, airflow, and fan speed. For each of them, two different models were constructed using
other sensors as inputs, as shown in Table 1. Linear regression models were used under the assumption
that inputs and outputs obey linear relations, at least locally [28]. Since the periodicity of the system’s
behavior is one week, models were trained over a week-long historical data from Monday 13 March
2017 to Sunday 19 March 2017 and tested over two weeks from Monday 27 March 2017 to Sunday
9 April 2017. This period was one of the longest ones with continuously available data for every
sensor in each ventilation unit. Training and testing periods were within the same month, therefore,
no significant seasonal variation that could influence the models was expected. Additional care should
be taken when this assumption does not hold, e.g., in this particular case a teaching building could be
configured to operate differently during summer vacations.

For both training and testing phases, raw data from the building management system was
resampled to a common, fixed period of 10 min. This step was necessary because the various sensors
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inside the ventilation unit do not report at the same exact time. Regression models, on the other hand,
require readings from different time-series to be simultaneous. No other preprocessing operations
were performed. In particular, no faults were artificially added to data.

Another virtual sensor was also constructed, i.e., Effort (eff ), which is proportional to an estimate
of the power requested to the ventilation unit and, therefore, to the airflow. By design, fans produce
airflow to maintain constant shaft pressure, which in turn depends on how many VAV units are open
in the building. When a VAV unit is open it makes air flowing from the supply shaft through the room
to the extract shaft, which results in pressure loss. Fans will then increase their speed to make up for
such loss. Effort is an aggregate count of those units, which makes it effectively a virtual sensor for an
unknown quantity in the ventilation unit, and is defined as

eff = ∑
i∈VAV units

τi

τi = openness ratio of VAV unit i

q ∝ eff ∆p.

(4)

Table 1. Virtual sensors definitions for linear regression models.

Model Name Output Inputs

Model A Tpost-HX Tinlet, Textract, qpost-HX
Model B Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
Model C qpost-HX eff (Equation (4))
Model D qpost-HX ωpost-HX
Model E ωpost-HX qpost-HX
Model F ωpost-HX ipost-HS, Vpost-HX

Table 2 shows the coefficients obtained for models with multiple input variables. Most variables
have coefficients significantly larger than their standard deviation, therefore, they are significant in
their relative models. Two exceptions are water flow and incoming water temperature in Model B,
whose contributions are smaller.

Table 2. Coefficients for linear regression models.

Variable Coefficient

Model A (Tpost-HX)
Tinlet 0.49 ± 0.012
Textract 0.23 ± 0.017
qpost-HX 9.86 × 10−2 ± 1.404 × 10−2

Model B (Tpost-HX)
Tinlet 0.68 ± 0.021
Tincoming −0.05 ± 0.027
Toutgoing −0.16 ± 0.014
qwater 0.03 ± 0.026

Model C (qpost-HX)
eff 2375 ± 90.2

Model D (qpost-HX)
ωpost-HX 2766 ± 25.0

Model E (ωpost-HX)
qpost-HX 85.2 ± 0.770

Model F (ωpost-HX)
ipost-HX 14.84 ± 1.308
Vpost-HX 71.58 ± 1.308
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The three charts in Figure 8 show results for Tpost-HS, qpost-HX and ωpost-HX virtual sensors.
Data obtained from physical sensors are plotted against data obtained from the two corresponding
linear regression virtual sensors defined in Table 1. Deviation from a single virtual sensor is enough
to detect a fault but not to isolate and identify the faulty source, therefore, two virtual sensors were
used for each physical one. R2 scores between physical and predicted readings, which measure how
much physical and virtual sensors agree, were computed over daily data as defined in Equation (3)
and are shown in Table 3. Low R2 scores, indicating that models deviate from the physical sensors,
are highlighted in boldface.
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Figure 8. Comparison between physical sensors and linear regression model-based virtual sensors
for post heat-exchanger temperature, airflow, and fan speed during working hours (from 8 a.m. to
5 p.m.) over two weeks. Outside working hours and during weekends the ventilation system is shut
down. The virtual sensors follow the physical ones except in two cases. On Friday in the first week the
temperature sensor oscillates strongly and deviates from the two virtual sensors. On Tuesday in the
second week the virtual sensors Model B consistently overestimates the sensors readings.
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Table 3. Prediction R2 score for virtual sensors. Low scores are highlighted in boldface.

Tpost-HX qpost-HX ωpost-HX
Date Model A Model B Model C Model D Model E Model F

2017-03-27 0.955 0.782 0.371 0.987 0.988 0.997
2017-03-28 0.989 0.804 0.04 0.98 0.977 0.997
2017-03-29 0.839 0.217 0.368 0.992 0.992 0.995
2017-03-30 0.894 0.729 0.681 0.956 0.956 0.996
2017-03-31 −1.162 −1.995 0.572 0.852 0.908 0.996
2017-04-03 0.86 0.442 0.87 0.967 0.968 0.997
2017-04-04 0.886 −0.474 0.644 0.983 0.984 0.997
2017-04-05 0.774 0.57 0.8 0.944 0.953 0.996
2017-04-06 0.73 0.654 0.622 0.988 0.989 0.997
2017-04-07 0.802 0.537 0.772 0.904 0.932 0.996

For temperature two models are used, one (Model A) exploiting knowledge about the
heat-exchanger interactions, using inlet temperature, extract temperature and airflow, i.e.,

Heat = c (Tpost-HX − TInlet)(ρ ∆t qpost-HX)

= c (TExhaust − TExtract)(ρ ∆t qExhaust),
(5)

where c, ρ and ∆t are respectively air specific heat, air density and time step, and other symbols
indicate quantities measured by sensors as shown in Figure 6. The other one (Model B) relies on
similar but less structured relations between inlet temperature, water flow and temperature difference
in the heater. The former predicts temperature value much more accurately than the latter. Table 3
shows that both models deviate significantly from the physical sensor on 31 March 2017, and Model B
deviates also on 4 April 2017. Readings from the physical sensors are shown in Figure 9 with respect
to the two models’ error ranges, which corresponds to the predictions plus the maximal training error.
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Figure 9. Comparison between physical sensors and acceptable ranges obtained from linear regression
model-based virtual sensors for post heat-exchanger temperature during working hours (from 8 a.m.
to 5 p.m.) for selected days. The sensors readings fall inside the acceptable ranges except on 31 March
2017, when they deviate significantly. The anomalous trend is not present neither in previous or
following days. On 4 April 2017, most models consistently overestimate the physical sensors, but their
trends are similar.

On 31 March 2017, the physical sensor’s readings oscillate strongly, in contrast with the two virtual
sensors which have a smoother behavior and fall outside the models’ error ranges. Since the two
models share an input variable, i.e., inlet temperature, this situation could be caused by a fault in the
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physical post heat-exchanger temperature sensor or in the inlet temperature sensor. Figure 10 shows
the readings for all involved sensors over the faulty period. All measures except post heat-exchanger
temperature have smooth trends and behave similarly to the previous day. Inlet temperature rises more
than the first day, but it is consistent with outdoor temperature measurements from the local weather
station. This suggests that post heat-exchanger temperature is indeed the faulty sensor. The anomalous
behavior only lasts for a single day; therefore, this event cannot be classified as a sensor failure, and it
could be due to an external disturbance. A further on-site investigation would be necessary to finally
identify the precise nature of this event.
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Figure 10. Trends of input and output variables of models A and B on Thursday 30 March 2017 and
Friday 31 March 2017. Input variables have similar trends over the two days, but the output variable,
post heat-exchanger temperature, exhibits fast oscillation during the second day. Inlet temperature,
the shared input variable between the two models, behave similarly over the two days, following the
outdoor temperature measured at the local weather station. During the second day the hot water flow
is zero, and incoming temperature is equal to outgoing temperature.

The situation on 4 April 2017 is less extreme. Model B consistently overestimate the physical
sensor’s readings, but the overall trend is similar and, moreover, all the readings fall inside the model’s
error range. Therefore, this event could be classified as a false alarm. Using a more accurate model
instead of Model B could reduce the frequency of false alarms.
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For airflow two models are used, one using only effort as input (Model C) and one using only
fan speed as input (Model D). Airflow and fan speed follow the fan laws and are proportional to each
other [29], which could also be inferred from Figure 4, and as expected predictions for this model are
nearly exact.

Model C is less accurate, and its R2 score on Tuesday 28 March 2017 is very low, which suggests a
fault in the virtual sensor’s input, i.e., ventilation effort, since Model D agrees with the physical sensor
on the same day. Ventilation effort is produced by aggregating several independent streams with
frequent periods of missing data, which can indeed cause the model to deviate from the physical sensor.
Moreover, ventilation effort does not take into account the size of each room and the corresponding
VAV dampers, which reduces the model’s accuracy. Readings from the physical sensors are shown in
Figure 11 with respect to the two models’ error ranges, which corresponds to the predictions plus the
maximal training error.

For fan speed two models are used, one using airflow as input (Model E) and one using fan
current and voltage as inputs (Model F). Fan speed is proportional to airflow due to fan laws, and also
proportional to the fan power consumption, which in turn depends on current and voltage W = VI.
The former model is nearly exact, for the same reasons explained when discussing Model C. The latter
model estimates the power used by the fan, which in turn is correlated with the fan speed, and produces
accurate results as well.
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Figure 11. Comparison between physical sensors and acceptable ranges obtained from model-based
virtual sensors for post heat-exchanger airflow during working hours (from 8 a.m. to 5 p.m.) for
selected days. On Tuesday 28 March 2017 Model C deviates significantly from the physical sensor,
but readings always fall inside the acceptable range for the entire period.

4.3. Results Using Other Models

While linear regression models were able to detect unusual behavior of post-heat-exchanger
temperature sensor, in some cases they did not accurately predict the values of physical sensors.
Four additional models were created, as shown in Table 4: two using ARMAX method from statistical
analysis [30], and two using non-linear regression methods support vector machine (SVM) [31] and
artificial neural network (ANN) [32]. The two approaches augmented linear regression models along
two different directions: ARMAX models are linear models over exogenous variables, but they take
the endogenous variable’s recent trend into account; ANN and SVM models can instead perform
non-linear regression by projecting input data to higher dimensional spaces through non-linear
transformations and then performing linear regression. ANN and SVM have both been successfully
used in FDD [12–14].
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Table 4. Virtual sensors definitions for other models.

Model Name Output Inputs

SVM Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
ANN Tpost-HX Tinlet, qwater, Tincoming, Toutgoing
ARMAX A Tpost-HX Tpost-HX, Tinlet, Textract, qpost-HX
ARMAX B Tpost-HX Tpost-HX, Tinlet, qwater, Tincoming, Toutgoing

4.3.1. ARMAX Models

Models ARMAX A and ARMAX B were trained using post-heat-exchanger temperature as
endogenous variable and input sensors from respectively models A and B as exogenous variables.
Models SVM and ANN were trained using the same inputs as Model B. As for linear regression models,
they were trained over a week-long historical data from Monday 13 March 2017 to Sunday 19 March
2017 and tested over two weeks from Monday 27 March 2017 to Sunday 9 April 2017. As for the
experiment with linear regression models, raw data was resampled to a common, fixed period of
10 min.

In ARMAX models data belonging to nights and weekends were removed, i.e., the dataset
consisted of continuous working hours. Working and non-working hours correspond to significantly
different operation profiles, and since ARMAX methods predict future values based on recent history,
they would not perform well when predicting across both. Two different model should instead be
created, one for each profile. Since the ventilation system is turned off during non-working hours,
in this paper we ignored this case, but in more complex situations where working hours are not
fixed, e.g., they depend on the weekday, it would be necessary to split the dataset into distinct parts
corresponding to each profile.

Data sampling period was 10 min, model orders were set to (p, q, d) = (20, 2, 0) and prediction
horizon was set to one working day, i.e., 10 h. Virtual sensors readings are shown against physical
sensors readings in Figure 12. The virtual sensors follow closely the physical sensor, except on Friday
31 March 2017 and on Monday 3 April 2017. During the former day, the physical sensor strongly
oscillates while the virtual sensors predict a regular trend, in agreement the linear regression virtual
sensors. On the latter day, the virtual sensors seem to fail to capture the rising and falling trend from
the physical sensor, predicting a straighter line.
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Figure 12. Comparison between physical sensors and ARMAX model-based virtual sensors for post
heat-exchanger temperature, airflow, and fan speed during working hours (from 8 a.m. to 5 p.m.)
over two weeks. Outside working hours and during weekends the ventilation system is shut down.
The virtual sensors follow the physical ones except in one case. On Friday in the first week the
temperature sensor oscillates strongly and deviates from the two virtual sensors.
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Readings from the physical sensor are shown in Figure 13 with respect to the two models’ error
ranges, which corresponds to the predictions plus the maximal training error. On Friday 31 March
2017, the physical sensor’s readings fall far outside the acceptable range, which suggests a fault in the
sensors pair. On Monday 3 April 2017, despite the trends being different, all readings fall inside the
acceptable range.
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Figure 13. Comparison between physical sensors and acceptable ranges obtained from ARMAX
model-based virtual sensors for post heat-exchanger temperature during working hours (from 8 a.m.
to 5 p.m.) for selected days. The sensors readings fall inside the acceptable ranges except on Friday 31
March 2017, when they deviate significantly. The anomalous trend is not present neither in previous or
following days. On Tuesday 4 April 2017, most models consistently overestimate the physical sensors,
but their trends are similar.

4.3.2. Non-Linear Regression Models

Model SVM uses support vector machine regression with radial basis function kernels and
parameters set to C = 100, γ = 0.04. Model ANN uses an artificial neural network with 200 hidden
layer neurons. Parameters for both models were optimized over the training periods. Only working
hours were considered, as with the other models. Both models use the inputs as the Model B described
in Table 1.

Virtual sensors readings are shown against physical sensors readings in Figure 14. The virtual
sensors follow closely the physical sensor, except on Friday 31 March 2017 and on Tuesday 4 April
2017. During the former, day the physical sensor strongly oscillates while the virtual sensors predict
a more regular trend, in agreement the linear regression virtual sensors. Model SVM also predict
oscillations, but significantly weaker than the physical sensor. On the latter day, the virtual sensors
consistently overestimate the physical one, as it happens with Model B.

Readings from the physical sensor are shown in Figure 15 with respect to the two models’ error
ranges, which corresponds to the predictions plus the maximal training error. On Friday 31 March
2017, the physical sensor’s readings fall far outside the acceptable range, which suggests a fault in
the sensors pair. On Monday 3 April 2017, despite virtual sensors overestimate the physical ones,
all readings fall inside the acceptable range.
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Figure 14. Comparison between physical sensors and non-linear regression model-based virtual
sensors for post heat-exchanger temperature, airflow, and fan speed during working hours (from 8 a.m.
to 5 p.m.) over two weeks. Outside working hours and during weekends the ventilation system is shut
down. The virtual sensors follow the physical ones except in two cases. On Friday in the first week the
temperature sensor oscillates strongly and deviates from the two virtual sensors. On Tuesday in the
second week the virtual sensors ANN and SVM consistently overestimate the sensors readings.
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Figure 15. Comparison between physical sensors and acceptable ranges obtained from non-linear
regression model-based virtual sensors for post heat-exchanger temperature during working hours
(from 8 a.m. to 5 p.m.) for selected days. The sensors readings fall inside the acceptable ranges except
on Friday 31 March 2017, when they deviate significantly. The anomalous trend is not present neither
in previous or following days. On Tuesday 4 April 2017, most models consistently overestimate the
physical sensors, but their trends are similar.

5. Conclusions and Future Directions

5.1. Conclusions

We proposed a technique to exploit relations between physical quantities inside a ventilation
unit to create virtual sensors, introducing, therefore, virtual redundancy. We applied this technique
to ventilation units in a real building, creating virtual sensors for each of three existing sensors:
temperature, airflow, and fan speed. We applied our method to one of the ventilation units in an
existing building and we noted how on a particular day all virtual sensors for temperature, regardless
of the model and input sensors used, deviated from the physical sensor. Its trend was, therefore,
detected as anomalous.
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Virtual sensors can be developed using a multitude of diverse models, with varying accuracy in
predicting physical quantities in the system. At first, we employed linear regression models, under the
assumption that the related quantities obey linear relations, at least locally. Afterwards, we used
ARMAX methods from statistical analysis, where the current value of a sensor was predicted from its
history together with the input sensors. Finally, we developed two virtual sensors using non-linear
models such as SVM regression and ANN.

We proposed two different techniques to measure deviations between physical and virtual sensors.
R2 score estimates how good a linear model fits some data. For non-linear models, the R2 score is
meaningless, therefore, we also used acceptable ranges obtained from the maximal training error.
The virtual sensors predicted the values of physical sensors with satisfactory accuracy, and large
deviations corresponded to actual anomalous behavior.

Contrary to physical redundancy, virtual redundancy does not increase cost and complexity
but carries similar advantages, and several applications can profit from it. e.g., fault detection and
diagnostics (FDD) methods, such as the one proposed in this paper, and automatic FDD methods
can compare duplicated signals and detect when they diverge from each other. Fault-tolerant control
can be achieved by duplicating a physical sensor with a virtual one, so that the system can continue
functioning even if it fails. Sensors fusion enhances readings from a physical sensor with readings
from other ones, improving measurement accuracy. Expensive physical sensors can be replaced by
virtual ones in constrained systems, reducing costs and complexity.

In modern buildings, what sensors should be included in a ventilation unit is currently an open
question. Sensors can be expensive and increase the construction complexity of a ventilation unit;
however, they are necessary for its correct operation and useful for diagnostics. Virtual sensors are a
promising technique that can decrease cost and complexity without compromising functionality or
decreasing reliability.

The proposed methodology suffers, however, from some limitations. Data must be available both
to create the virtual sensors’ models and to monitor the ventilation unit. Therefore, a system for data
collection and storage must be set in place, which could be difficult for older buildings. Data collection
should be reliable, i.e., periods of missing data, or ‘data holes’ should be rare, and readings should
be validated to ensure the models correctly represent the system. Choosing inputs for virtual sensors
model is challenging, and so is choosing the type of model. Complex models can be accurate, but also
difficult to develop and can have parameters to estimate, while simple models may not be able to
reproduce the entire dynamics of the system.

5.2. Future Directions

While the application of the presented method for FDD on ventilation units using virtual sensors
yielded promising results, more work is necessary to design and implement an automatic FDD
framework. Automatic FDD is necessary to reduce operation cost and increase energy efficiency of
buildings [33]. Moreover, comprehensive experiments should be set up to assess the actual benefits of
this method [34].

We performed manual FDD by noticing how for one day the R2 score between physical and virtual
temperature sensors changed abruptly and significantly, and physical sensors’ readings fell outside
the acceptable range, which suggested a fault. However, a proper threshold system must be set up to
achieve automatic FDD. This can be achieved by using expert knowledge and a training set of labelled
faulty historical data, or by generating faulty data using simulations. Moreover, the temperature
sensor exhibited faulty behavior only for a single day during the first week, while it appeared to work
correctly for the rest of the testing period. Therefore, a threshold system should also be used to decide
whether a significant but short-lived deviation is a fault.
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We developed virtual sensors using linear and non-linear regression models, together with
statistical analysis techniques. Better performance could be achieved by using more advanced methods,
such as simulation using energy models of the ventilation units [35]. Moreover, to decide what inputs
to use for virtual sensors, we reasoned about the physical relations between quantities inside the
ventilation unit. While this approach might lead to accurate results, it could be ineffective for more
complex systems. An automatic method could be employed to automatically select inputs and design
effective virtual sensors, such as the one presented in [19].

We used regression models to predict data during a period close to the one used for training,
under the assumption that the system’s behavior did not change significantly. When extending the
prediction to other periods, this assumption might not hold anymore, and seasonal variations must be
taken into account.

Finally, in this paper we applied the proposed methodology to sensors in a ventilation unit.
Other buildings subsystems could benefit from virtual sensors, e.g., heating loops, lighting, or
room-level equipment. Additional work would be necessary to identify inputs and models and
to extend the methodology to each of such subsystems.
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