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Abstract

Crowdsourced data in science might be severely error-prone due to the inexperience of anno-

tators participating in the project. In this work, we present a procedure to detect specific

structures in an image given tags provided by multiple annotators and collected through a

crowdsourcing methodology. The procedure consists of two stages based on the Expectation-

Maximization (EM) algorithm, one for clustering and the other one for detection, and it

gracefully combines data coming from annotators with unknown reliability in an unsupervised

manner. An online implementation of the approach is also presented that is well suited to

crowdsourced streaming data. Comprehensive experimental results with real data from the

MalariaSpot project are also included.

Keywords: Crowdsourcing; unreliable annotators; unsupervised method; online EM

algorithm; MalariaSpot.

1. Introduction

The term crowdsourcing was coined by J. Howe and M. Robinson in 2005 when analyz-

ing how businesses were using internet to outsource work to individuals. In a crowdsourcing

methodology, an entity broadcasts an open call for contributions to solve a problem, and indi-

viduals submit inputs which become property of the entity. This methodology has enormous5

potential in science because it allows large data sets to be analyzed in a timely and accurate

manner by leveraging a network of human analysts or annotators instead of relying on a re-

duced number of experts. A representative sample of crowdsourcing projects from disciplines

as diverse as astronomy, biology, and linguistics, among others, can be found in the Zooniverse

platform at https://www.zooniverse.org. Typically, in these projects, annotators are asked ei-10

ther to classify images into binary or multiple classes, or to identify specific structures in an

image. For instance, the Snow Spotter project presents landscape pictures and annotators are
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asked whether there is snow on top of the trees or not, i.e., a binary classification task. An

example of multiple classification can be found in the Notes of Nature project in which images

of labeled butterflies are shown to annotators who transcribe the country handwritten in the15

label. Instead, in the Microscope Masters project, annotators pick out proteins in electron mi-

croscopy images for biological molecule reconstruction. Inevitably, crowdsourcing methodology

is severely error-prone since annotators are usually non-experts, or may even be malicious, a

fact that motivates robust techniques to process the collected data.

This paper focuses on the problem of identifying structures in an image. In particular, it20

uses crowsourced data of the MalariaSpot project [1] as an illustrative application in which

annotators are asked to identify malaria parasites in digitized images of blood smears. The

gold standard approach to diagnose this infection is microscopic examination of Giemsa-stained

thick and thin blood films for counting malaria parasites. Reliable detection of malaria parasites

in microscopic images demands trained technicians, resulting in a very expensive and time25

consuming task. Therefore, automated methods for identification and counting of malaria

parasites in an unsupervised manner are highly valued (see [2] for a comprehensive review).

Automated processes based on image processing techniques already exist in the literature, e.g.,

[3, 4, 5, 6, 7], and mostly analyze thin blood films where parasites remain inside red blood

cells so that they can be identified more easily. Still, the use of thick blood films is preferred30

by microscopists since detection and counting of parasites is more reliable due to the higher

concentration [8]. However, in general, image processing techniques with thick blood films tend

to erroneously identify many artifacts as parasites since these are not inside a blood cell any

longer. Still, existing contributions based on image processing techniques using thick blood

films can be found in [9, 10] but, unlike the approach proposed in this paper, both of them are35

supervised methods. The MalariaSpot project advocates a completely different methodology for

malaria diagnosis described in [11] and based on algorithms that process crowdsourced data.

Through a dedicated on-line gaming platform, the MalariaSpot project offers digitized thick

blood images through the web to volunteers who, after a short training period, deliver their

inputs to be processed in a centralized manner by a simple algorithm.40

In this paper, we propose a robust technique to process crowdsourced data provided by

annotators with unknown reliability who are asked to identify specific structures in an image,

as in the MalariaSpot project in which annotators spot parasites in images. The proposed

technique also rates annotators according to their performance so that data provided by unreli-

able annotators is judiciously combined, e.g., [12]. The errors made by annotators are basically45

of two different natures. Some of them are isolated randomly located errors, whereas others

correspond to an artifact erroneously tagged by several annotators. With the aim of processing

the tags of the annotators while discarding these errors, the proposed approach consists of two
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steps: an unsupervised clustering stage and a detection stage both based on the Expectation-

Maximization (EM) algorithm [13]. In the first stage, the data provided by all annotators is50

processed in a joint manner so that different clusters are identified and annotators are ranked.

Specifically, the probability density function (pdf) of the data provided by annotators is mod-

eled as a mixture of an unknown number of Gaussian components plus a uniformly distributed

random variable (rv), which models the annotators’ isolated errors as outliers. Unlike previous

works for clustering, e.g., [14, 15, 16, 17], the proposed EM-based clustering algorithm not only55

estimates the number of Gaussian components and the parameters of the Gaussian plus non-

Gaussian mixture density, but also annotators’ reliability. In the detection stage, a decision is

made, on each cluster identified in the clustering step, on whether it corresponds to one of the

desired structures or not, taking into account annotators’ reliability. When known, the true

labels of the clusters are referred to as ground truth. The detection algorithm is inspired by60

[18, 19] which are prominent works on latent variable models applied to crowdsourcing. In sum-

mary, the clustering algorithm jointly ranks annotators and discards randomly located errors

to cluster the data, whereas the detection stage aims at rejecting artifacts erroneously tagged

by several annotators.

The main contributions of this paper are the following. Firstly, an unsupervised algorithm65

for the clustering stage is presented that is similar to our previous work in [20] albeit updated

to deal with real data from the MalariaSpot project. Secondly, the complete procedure of

clustering and detection, taking into account annotators’ performance, is presented using a

harmonized notation, which gracefully enables information from the clustering to the detection

stage to be conveyed. Further, an online implementation of the complete procedure of clustering70

and detection is developed, which is of great interest in crowdsourced projects where streaming

data are usually available. Whereas existing online EM algorithms, e.g., [21, 22, 23], assume a

fixed set of parameters, in our setup the set of parameters to estimate increases as new data are

available which poses an additional challenge. Finally, both the batch and the online proposed

techniques are assessed not only with synthetic data but also with comprehensive numerical75

tests on real data from the MalariaSpot project1. Although out of the scope of this paper, the

described techniques might also be used to process similar data provided not by annotators but

instead by automated individual methods with unknown reliability.

The rest of this paper is organized as follows. Section 2 defines notation and introduces

the data model. Section 3 presents the unsupervised clustering algorithm and the associated80

1The full batch procedure was partially published in [24, 25] without the harmonized notation and with very

limited experimental results. A preliminary simpler version of the online implementation of the detection stage

with a fixed set of parameters was also included in [25].
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annotators rating problem. Simulation results using synthetic data are included in this section

for the sake of clarity. Then, Section 4 describes the procedure to transfer the results of the

clustering stage to the detection stage, and Section 5 presents the detection algorithm. The

online implementation of the whole procedure, i.e., clustering and detection, is presented in

Section 6. Section 7 shows results using real data of the MalariaSpot project and Section 885

concludes this paper. For the interested readers, Appendix A includes an illustrative description

of the complete procedure with images from the MalariaSpot project.

Notation: Lowercase bold letters, x, denote vectors; uppercase bold letters, X, represent

matrices; and calligraphic uppercase letters, X , stand for sets. Sets of elements will be denoted

with braces; for instance, {µm : m = 1, · · · ,M} is the set of vectors {µ1, · · · ,µM}. RD90

stands for the D-dimensional real Euclidean space; x> is the transpose of vector x; |X| is the

determinant of matrix X; and E[·] stands for expectation.

2. Collected Data Model

The data provided by annotators when identifying structures in an image are modeled

statistically as a density mixture as follows. Consider a set of R annotators indexed by r =95

1, . . . , R. Each one provides Nr instances of a D-dimensional vector2, denoted by xr,i ∈ RD.

The ith instance of annotator r is modeled as

xr,i = ar,i

M∑
m=1

δ(zr,i −m)wm + (1− ar,i)u (1)

where δ(·) denotes the Kronecker delta function; for r = 1, · · · , R and i = 1, · · · , Nr, scalar

ar,i ∈{0, 1} is an i.i.d Bernoulli random variable (rv) ar,i∼Bern(pr) where pr ∈ [0, 1], and scalar

zr,i ∈ {1, . . . ,M} is an i.i.d discrete rv distributed as Pr{zr,i =m}= πm, where
∑M
m=1 πm = 1;100

vector wm ∈ RD is an i.i.d. Gaussian rv distributed as wm ∼ N (µm,Σm), where µm is

the mean, Σm is the covariance matrix, and M is the number of Gaussian components; and

u ∈ RD is a random vector with probability density function (pdf) denoted by fU (u) and whose

components are uniformly distributed as u(d)∼ Unif[Umin
d ,Umax

d ] for d = 1,· · ·, D, 3. The pdf

of wm is given by105

fΩ(wm;µm,Σm) =
1√

(2π)D|Σm|
exp

{
−1

2
(wm − µm)>Σ−1m (wm − µm)

}
(2)

Further, we assume that different instances are independent, and that all rv’s in (1) are inde-

pendent as well.

2If instances correspond to clicks on an image, then D = 2.
3In the described crowdsourcing setup, the support corresponds to the image dimension.
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For convenience, we define the set of observed variables X := {xr,i} for r = 1, · · · , R and

i = 1, · · · , Nr, and similarly the sets of latent or hidden variables A := {ar,i} and Z := {zr,i},

all three sets with cardinality N :=
∑R
r=1Nr.110

The model in (1) is a mixture of M Gaussians plus a uniformly distributed rv with proba-

bilities that depend on the annotator. The Gaussian components account for the clusters and

the uniformly distributed rv for annotator errors or outliers. Note that ar,i = 1 implies that the

ith instance provided by annotator r corresponds to the Gaussian component of the index given

by zr,i ∈ {1, . . . ,M}. Conversely, when ar,i = 0, the instance is deemed to be an outlier and115

modeled as a uniformly distributed rv. Therefore, probability pr can be seen as a measure of

annotators’ reliability since the lower pr is, the higher the probability that annotator r provides

an outlier.

The following sections 3-5 present the clustering and detection algorithms based on the

Expectation-Maximization (EM) algorithm [13, 26] using a unified notation for the sake of120

clarity.

3. Robust Clustering of Crowdsourced Data

The objective of the unsupervised clustering stage is, given X and without knowing the

ground truth, to estimate the set of unknown parameters of the model in (1) gathered in vector

θ defined as125

θ:=[M ;µ1;...;µM ;vec(Σ1);...;vec(ΣM );π1; ...;πM ;p1;...;pR] (3)

These parameters are the number of Gaussian components or clusters M ; the mean vector of

the Gaussian components or cluster centroids {µm : m = 1, · · ·,M}; the covariance matrices of

the Gaussian components {Σm : m = 1, · · ·,M}; the probability of each Gaussian component

{πm : m = 1, · · ·,M}; and annotators’ reliability {pr : r = 1, · · ·, R}. We advocate a maximum

likelihood (ML) estimate of θ and, therefore, we require the likelihood function of the instances

X given by

f(X ;θ) =

R∏
r=1

Nr∏
i=1

(
pr

M∑
m=1

πm fΩ(xr,i;µm,Σm) + (1− pr)fU (xr,i)
)

(4)

where fΩ(xr,i;µm,Σm) is the likelihood function of instance xr,i given zr,i =m. Since a closed-

form maximization of f(X ;θ) is not possible, we resort to a numerical solution based on the so-

called Counter-Wise EM (CEM) algorithm proposed in [27], which estimates the parameters of

a Gaussian mixture density and the number of Gaussian components. Our approach generalizes

the work in [27] to the density mixture in (1), which includes not only Gaussian components130

but also a uniform distribution, and considers data from multiple annotators with unknown
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reliability. The purpose is to obtain an algorithm more robust to data errors thanks to the

uniform distribution that accounts for outliers.

The proposed EM algorithm is an iterative algorithm that regards X as the incomplete

observation and the set {X ,A,Z} as the complete one. Upon initialization of the parame-135

ters’ estimate with θ̂0, the EM algorithm alternates between an expectation (E) step and a

maximization (M) step in an iterative fashion as follows.

At iteration t+ 1 for t ≥ 0, and given an estimate θ̂t, the E -step computes the conditional

expectation of the log-likelihood function

Qc(θ̃; θ̂t) := EA,Z{log f(X ,A,Z; θ̃) | θ̂t,X} (5)

where θ̃ denotes a ’trial’ value of θ, and the complete pdf is

f(X ,A,Z; θ̃) =

R∏
r=1

Nr∏
i=1

(
p̃r

M̃∑
m=1

δ(zr,i −m)π̃m fΩ(xr,i; µ̃m, Σ̃m)
)ar,i

·
(

(1− p̃r)fU (xr,i)
)(1−ar,i)

(6)

Recalling that A and Z are independent, it holds that

Qc(θ̃; θ̂t)=

R∑
r=1

Nr∑
i=1

αtr,i log p̃r

M̃∑
m=1

ζtr,i,m log
(
π̃mfΩ(xr,i; µ̃m, Σ̃m)

)
+

R∑
r=1

Nr∑
i=1

(1− αtr,i) log ((1− p̃r)fU (xr,i)) (7)

where αtr,i := Pr{ar,i = 1|θ̂t,X} and ζtr,i,m := Pr{zr,i =m|θ̂t,X} are the posterior probabilities140

of the hidden variables. Then, in the E -step, one basically updates these a posteriori values

using the Bayes’ theorem with

αtr,i=
p̂tr
∑M̂t

m=1 π̂
t
mfΩ(xr,i; µ̂

t
m, Σ̂

t
m)

p̂tr
∑M̂t

m=1 π̂
t
mfΩ(xr,i; µ̂tm, Σ̂

t
m) + (1− p̂tr)fU (xr,i)

(8)

and

ζtr,i,m=
π̂tmfΩ(xr,i; µ̂

t
m, Σ̂

t
m)∑M̂t

l=1 π̂
t
lfΩ(xr,i; µ̂tl , Σ̂

t
l)

(9)

for r = 1, · · ·, R; i = 1, · · ·, Nr; and m = 1, · · ·, M̂ t. Probability αtr,i is a soft decision at iteration

t on whether instance xr,i is an outlier or not, and ζtr,i,m is a soft assignment of instance xr,i145

to the mth Gaussian component.

The M -step follows a Bayesian criterion, so that the estimate θ̂t+1 for the next iteration is

obtained solving

θ̂t+1 = arg max
θ̃

Qc(θ̃ ; θ̂t) + log f(π̃1, . . . , π̃M̂t)

subject to π̃m ≥ 0;
∑M̂t

m=1
π̃m = 1 (10)
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except for M̂ t+1, and where a negative Dirichlet-type prior is assumed

f(π̃1, . . . , π̃M̂t) ∝ exp

−L4
M̂t∑
m=1

log π̃m

, (11)

where L = D(D + 3)/2 is the number of parameters per Gaussian component. The negative150

Dirichlet prior encourages configurations where π̂m tends to be either 1 or 0. Therefore, this,

together with the probability constraint
∑M̂t

m=1 π̃m = 1, promotes sparsity in the set {π̂t+1
m :

m = 1, . . . , M̂ t}.

Then, substituting (7) in (10), it can be readily seen that annotators’ reliability is updated

as155

p̂t+1
r =

1

Nr

Nr∑
i=1

αtr,i (12)

for r = 1, · · ·, R; and the updated mean vectors and covariance matrices of the Gaussian com-

ponents are given by

µ̂t+1
m =

∑R
r=1

∑Nr

i=1 α
t
r,i ζ

t
r,i,m xr,i∑R

r=1

∑Nr

i=1 α
t
r,i ζ

t
r,i,m

(13)

and

Σ̂t+1
m =

∑R
r=1

∑Nr

i=1 α
t
r,iζ

t
r,i,m(xr,i − µ̂t+1

m )(xr,i − µ̂t+1
m )>∑R

r=1

∑Nr

i=1 α
t
r,i ζ

t
r,i,m

(14)

for m = 1, · · ·, M̂ t. Note that the denominator in (13) and (14) is a soft count of all non-outlier

instances that belong to the mth Gaussian component at iteration t+1. Further, the probability160

of the mth Gaussian component is computed solving the constrained optimization problem in

(10), which becomes

π̂t+1
m =

max{0, (
∑R
r=1

∑Nr

i=1 α
t
r,i ζ

t
r,i,m)− L

4 }∑M̂t

m=1 max{0, (
∑R
r=1

∑Nr

i=1 α
t
r,i ζ

t
r,i,m)− L

4 }
(15)

Interestingly, the impact of (15) on the iterative algorithm is that those Gaussian components

of the density mixture with a reduced number of soft assigned instances will be eventually

annihilated by obtaining a probability equal to 0. It is therefore convenient to select the initial165

estimated number of Gaussian components such that M̂0�M , which also makes our algorithm

more robust to the initial values of the rest of the parameters. Finally, the estimated number

of Gaussian components, M̂ t+1, is set equal to the number of Gaussian components such that

π̂t+1
m 6= 04.

The criterion proposed to stop the iterative algorithm is based on the function L(θ̂t+1,At,Zt),170

4Here, we are assuming that at each iteration t, the indexing of the M̂t+1 Gaussian components with π̂t+1
m 6= 0

is reorganized to become the first M̂t+1 components.
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defined for t ≥ 0 as

L(θ̂t+1,At,Zt)=Qc(θ̂
t+1; θ̂t)− L

4

M̂t+1∑
m=1

log π̂t+1
m − M̂ t+1 (L+ 1) +R

2
log

(
R∑
r=1

Nr∑
i=1

αtr,i

)
(16)

where we have the sets At := {αtr,i} and Zt := {ζtr,i,m} for r = 1, · · ·, R; i = 1, · · ·, Nr; and

m = 1, · · ·, M̂ t+1. Note that (16) is the M -step cost function in (10) plus a term that penalizes

models with a large number of parameters. Following the procedure in [27], when

L(θ̂t+1,At,Zt)− L(θ̂t,At−1,Zt−1) < ε|L(θ̂t+1,At,Zt)|, (17)

the least probable component of the Gaussian mixture is annihilated, i.e., the smallest non-175

zero π̂t+1
m is set to 0, and the algorithm is run again until inequality (17) is satisfied5. This

procedure is successively applied until M̂ t+1 = 1, or to a lower bound on the number of Gaussian

components if known beforehand. The final parameter estimates after the clustering stage,

denoted by θ̂c, are set equal to those that maximize (16), i.e.,

{θ̂c, {αcr,i}, {ζcr,i,m}} = arg max
∀t

L(θ̂t,At−1,Zt−1). (18)

The algorithm implemented by equations (8), (9), and (12)-(15) is denoted hereafter as the180

Outlier EM (OEM) algorithm and it is summarized in Alg. 1. The output of the clustering

stage is computed in (18) and given by θ̂c and the sets of a posterior probabilities {αcr,i} and

{ζcr,i,m} for r = 1, · · ·, R; i = 1, · · ·, Nr; and m = 1, · · ·, M̂ t+1.

3.1. Simulation results with synthetic data

This section shows simulation results with synthetic data to illustrate the performance of

OEM. We consider R = {11, 21, 25, 31, 41, 51} annotators providing instances according to (1)

with D= 2 and confined to a rectangular area of dimensions Umin
1 = 1, Umax

1 = 4, Umin
2 = 0 and

Umax
2 = 5. The average number of instances per annotator is 20 and Nr ∈ [16, 24]. Sixty percent

of annotators have pr = 0.95, 30% pr = 0.75, and 10% have low reliability with pr = 0.25.

The number of Gaussian components is M = 10 with πm = 0.1 for m = 1, · · ·,M . Figure

1 shows a realization with N = 1000 instances of (1) with R = 51 and it also includes the

Gaussian means {µm :m = 1, · · ·,M}. The covariance matrices of 5 Gaussian components are

Σm = diag([0.04, 0.05]), of 4 Gaussian components Σm = diag([0.08, 0.1]) and the last one has

even larger variances Σm = diag([0.12, 0.15]). This setup is selected because of its difficulty due

to the proximity of Gaussian components with different variances. Results of OEM are averaged

using 100 independent realizations. The initial estimated means {µ̂0
m;∀m = 1, · · · , M̂0} are

the centroids obtained by the k -means algorithm [28, 29] with M̂0 equal to 6 times the average

5In our experiments, ε = 1e− 5 and L(θ̂0,A−1,Z−1) is initialized to −∞.
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Algorithm 1 OEM clustering

Input: R, X , θ̂0, Mmin, Tmax, ε

Output: θ̂c, {αcr,i}, {ζcr,i,m}

1: Set t← −1 and L(θ̂0,A−1,Z−1)← −∞

2: while M̂ t+1 > Mmin and t < Tmax do

3: repeat

4: t← t+ 1

5: E-Step: Compute {αtr,i} and {ζtr,i,m} using (8) and (9).

6: M-Step: Compute θ̂t+1 using (12)-(15), and set M̂ t+1 equal to the number of Gaussian

components such that π̂t+1
m 6= 0.

7: Calculate L(θ̂t+1,At,Zt) using (16).

8: until L(θ̂t+1,At,Zt)− L(θ̂t,At−1,Zt−1) < ε|L(θ̂t+1,At,Zt)|

9: Set π̂t+1
m0
← 0 where m0 = arg min{∀m=1,··· ,M̂t+1} π̂

t+1
m

10: end while

11: Obtain {θ̂c, {αcr,i}, {ζcr,i,m}} using (18).

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
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3.5
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4.5

5

Figure 1: Instances + and true Gaussian means big � with synthetic data.

number of clicks per annotator, i.e., around 120 in our setup. The initial estimated Gaussian

covariance matrices are all set to {Σ̂0
m = Σ0 :=

σ2
x

200I;∀m= 1, . . . , M̂0}, where σ2
x is the sample

variance of the instances. Probabilities are initialized as π̂0
m = 1/M̂0 for all m, and pr = p0 :=

0.9 for all r. OEM is executed until M̂ t = 1 or up to Tmax = 500 iterations. For comparison

purposes, k -means, the hierarchical agglomerative clustering (HAC) method (see e.g., [29] for

details), and CEM of [27] are also evaluated. CEM is initialized exactly as OEM, and k -means

is run with a number of centroids twice the average number of clicks per annotator. Results

are evaluated in terms of sensitivity denoted by Sc and precision denoted by P c which are
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measured as

Sc =
TP c

Np

P c =
TP c

TP c + FP c
(19)

where TP , FP , TN and FN stand for True/False Positives/Negatives; Np denotes the number185

of true ground truth elements; and supraindex c denotes after the clustering stage. In this

setup with synthetic data, the ground truth are the means of the Gaussian components and,

therefore, Np = M = 10. Figure 1 shows the sensitivity and precision obtained applying OEM,

CEM, k -means, and HAC. Clearly, HAC performs the worst with lower sensitivity and precision.

10 15 20 25 30 35 40 45 50 55
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c }
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S CEM
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S HC
P OEM
P CEM
P KM
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Figure 2: Sensitivity (solid) and precision (dotted) after clustering with OEM o, CEM x, k -means + and HAC

�.

The other three methods achieve a similar sensitivity close to one, and OEM outperforms the190

rest with a higher precision. Note that k -means might easily improve precision by reducing

the number of centroids, but at the cost of reducing sensitivity as well. Also note that at the

clustering stage it is crucial to not miss true positives, i.e., prioritize a high sensitivity, otherwise

there would be no option to identify them as positive in the detection stage.

4. Data Processing after Clustering195

The information at the end of the clustering stage is computed in (18) and given by the

parameter estimate, θ̂c, and the soft assignment of each instance to the clusters and the outliers

set, given respectively by the posterior probabilities {ζcr,i,m} and {αcr,i} for r = 1, · · ·, R; i =

1, · · ·, Nr; and m = 1, · · ·, M̂ t+1.

The number of identified clusters at the end of the clustering stage is given by M̂ c, which is200

the number of Gaussian components with non-zero probability. Without loss of generality, we
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assume a reorder of the cluster indexes such that the first M̂ c clusters are those with π̂cm 6= 0.

These M̂ c clusters are the (possibly erroneous) structures identified jointly by all annotators.

For instance, in the MalariaSpot setup, these clusters become potential parasites and the final

objective of the detection stage is to pick out those that correspond to true parasites. The rest205

of the estimated parameters after the clustering stage include the cluster centroids given by

{µ̂cm :m = 1, · · · , M̂ c} and the cluster covariance matrices {Σ̂c
m :m = 1, · · · , M̂ c}. Note that

covariance matrices are indicative of the cluster size and, in some applications, might be well

used to complement the detection stage. Finally, annotators are also ranked according to p̂cr.

These values can be used to initialize p̂0r in the clustering stage of other images where any of the210

current annotators provide instances, and will definitely be used in the online implementation

in Section 6.

Before applying the detection stage, results provided by the annotators should be organized

according to the identified clusters. Firstly, instances that correspond to an outlier with high

probability are discarded, a fact that can be inferred from the posterior probability αcr,i. For215

convenience, let us define the set X c := {xr,i : r = 1, · · ·, R; i = 1, · · ·, Nr; such that αcr,i ≥ δc}

with 0 ≤ δc ≤ 1, as the set of non-outlier instances6. Accordingly, we also define {X cr : r =

1, · · ·, R} to denote the set of non-outlier instances provided individually by the annotators.

Secondly, instances of X c must be assigned to one of the identified clusters and for that we

use the soft assignment ζcr,i,m. Thus, a hard decision is taken to assign each non-outlier instance220

to the cluster with higher posterior probability among the M̂ c identified clusters as follows

C(xr,i) = arg max
m∈1,··· ,M̂c

ζcr,i,m

for all xr,i ∈ X c. That is, C(x) ∈ {1, · · · , M̂ c} can be seen as an operator that returns the

cluster associated to the generic instance x.

Finally, since not all M̂ c identified clusters have been tagged individually by all annotators,

we compute the variables yr,m ∈ {0, 1} for all r = 1, · · ·, R and m = 1, · · ·, M̂ c as follows225

yr,m =

 1 if ∃xr,i ⊂ X cr s.t. C(xr,i) = m

0 otherwise
(20)

and build the set of labels Y := {yr,m : r = 1, · · ·, R;m = 1, · · ·, M̂ c}. For convenience, let us

define the subset Ym := {yr,m : r = 1, · · ·, R} that can be seen as the set of individual binary

labels given by the R annotators to the mth cluster identified in the clustering stage.

6The higher δc is, the more conservative the decision about non-outliers.
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5. Detection Stage

The problem at hand at this stage is, given annotator labels in Y, to make a binary decision,230

on each one of the M̂ c identified clusters, on whether it corresponds to a true structure or true

positive, or not. That is, we face a classification problem of the identified clusters into 2 classes.

For instance, in the MalariaSpot setup, we have to decide whether each cluster identified in the

clustering stage corresponds to a true parasite or not. We denote the unknown true labels by

the set of binary variables B := {bm : m = 1, · · ·, M̂ c}, meaning that bm = 1 when the mth
235

identified cluster corresponds to a true positive, and bm = 0 if it corresponds to a false positive.

The elements in B are modeled as hidden rvs with prior probability of having a true positive

equal to µ := Pr(bm = 1) for m = 1, · · · , M̂ c. To solve this binary classification problem, we

model annotators’ labels in Y as Bernouilli rvs, and apply the EM algorithm proposed in [18]

that estimates the unobserved true labels in B using Y.240

For that, we assume that each annotator tags the mth identified cluster as 0 or 1 based on

two biased coins. Annotator r flips a coin with bias ψr := Pr(yr,m = 1|bm = 1) if bm = 1,

or with bias ηr := Pr(yr,m = 0|bm = 0) if bm = 0. These biases are known respectively as

sensitivity, or true positive ratio, and specificity, or true negative ratio. Subscript r denotes

that they may differ from one annotator to another.245

As usual in the related literature [18], we also adopt the common assumption that annotators

are conditionally independent, i.e., for any pair of different annotators r and q we assume that

Pr(yr,m, yq,m|bm) = Pr(yq,m|bm) · Pr(yq,m|bm),

meaning in practice that annotators do not communicate among them. Assuming that decisions

on each identified cluster are independent, the likelihood function of the complete set {Y,B} is

equal to250

f(Y,B;φ)=

M̂c∏
m=1

f(Ym, bm;φ)

=

M̂c∏
m=1

((1− µ)B0(Ym;φ))(1−bm)(µB1(Ym;φ))bm

where B0(Ym;φ) := Pr(Ym|bm=0) and B1(Ym;φ) := Pr(Ym|bm=1) given by

B0(Ym;φ)=
∏R
r=1 η

(1−yr,m)
r (1− ηr)yr,m (21)

and

B1(Ym;φ)=
∏R
r=1 ψ

yr,m
r (1− ψr)(1−yr,m). (22)
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Note that (21) and (22) hold because annotators are conditionally independent. Vector φ is

the parameter vector defined as

φ = [µ;ψ1, · · · , ψR, η1, · · · , ηR] (23)

and includes the prior probability of the classes, and the sensitivity and specificity of all anno-255

tators. Since all these parameters are unknown, the EM algorithm in [18] estimates not only

the unobserved true labels, but also the prior probabilities of each class and the sensitivity and

specificity of each annotator in a joint manner. After initializing φ̂0 conveniently, the EM al-

gorithm alternates between an E -step and an M -step in an iterative fashion until convergence.

At iteration k+17, the E -step computes the following expectation of the log-likelihood function260

Qd(φ̃; φ̂k) := EB{log f(Y,B; φ̃)|φ̂k,Y} (24)

where φ̃ denotes a ’trial’ value of φ. This step basically requires the computation of the posterior

probability of the latent variables that, using Bayes’ theorem, are equal to

βkm := Pr{bm = 1|φ̂k,Y}

=
µ̂kB1(Ym; φ̂k)

µ̂kB1(Ym; φ̂k) + (1− µ̂k)B0(Ym; φ̂k)
(25)

for m = 1, · · ·, M̂ c. The M -step updates the parameter estimate by solving

φ̂k+1 = arg max
φ̃

Qd(φ̃; φ̂k). (26)

Then, at iteration k + 1, the prior probability of having a true label is

µ̂k+1 =
1

M̂ c

M̂c∑
m=1

βkm, (27)

and the sensitivity and specificity are, respectively, equal to265

ψ̂k+1
r =

∑M̂c

m=1 β
k
my

r
m∑M̂c

m=1 β
k
m

and (28)

η̂k+1
r =

∑M̂c

m=1(1− βkm)(1− yrm)∑M̂c

m=1(1− βkm)
(29)

for r = 1, · · ·, R. Equations (25),(27)-(29) are iterated until convergence8. The final parameter

estimates are given by

φ̂d := φ̂K , (30)

7For the sake of clarity, we use different iteration indexes to distinguish between the OEM and EM detection

algorithm.
8In practice, we set a maximum number of iterations given by Kmax.
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Algorithm 2 DEM Algorithm

Input: Y, M̂ c, {β0
m : m = 1, · · ·, M̂ c}, ε, Kmax

Output: {βdm : m = 1, · · ·, M̂ c}

1: Set k ← −1 and Qd(φ̃; φ̂0)← −∞

2: repeat

3: k ← k + 1

4: M-Step: Compute φ̂k+1 using (27)-(29).

5: E-Step: Compute {βk+1
m } using (25).

6: Calculate Qd(φ̃; φ̂k+1) using (24).

7: until
(
Qd(φ̃; φ̂k+1)−Qd(φ̃; φ̂k) < ε|Qd(φ̃; φ̂k+1)|

)
or (k = Kmax)

8: Set βdm ← βk+1
m for m = 1, · · ·, M̂ c.

where K is the minimum between Kmax and the iteration in which Qd(φ̃; φ̂k+1)−Qd(φ̃; φ̂k) <

ε|Qd(φ̃; φ̂k+1)| where ε is a predefined small positive real. Similarly, the final posterior proba-

bilities are given by270

βdm := βKm (31)

for m = 1, · · ·, M̂ c. The decision on whether the clusters identified in the clustering step

correspond to a true label or not is taken by a hard decision of the final posterior probabilities

βdm. That is, for m = 1, · · ·, M̂ c we decide the mth identified label is a true label if βdm ≥ δd,

and a false label otherwise, where 0 < δd < 1. Upon initialization of β0
m, the detection EM

(DEM) algorithm proceeds, alternating between the M -step and E -step until convergence, as275

summarized in Alg. 2.

We do not provide results of the DEM algorithm with synthetic data since it has already

been widely studied in the literature. Still, the initialization of the algorithm based on the

results of the clustering stage is worthy of mention.

5.1. Algorithm Initialization280

It is well known that the EM algorithm should be judiciously initialized to guarantee con-

vergence to the ML solution. For DEM, we consider three different options to initialize the

posterior probabilities as follows

β0
m =

1

R

R∑
r=1

yr,m; (32)

β0
m =

 1 if
∑R
r=1 yr,m ≥

R
2

0 otherwise
; (33)

and285

β0
m =

π̂cm
max{π̂c1, · · · , π̂cM̂c

}
(34)
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for 1, · · ·, M̂ c. The first and second initialization options given in (32) and (33) are soft and

hard majority voting criteria, respectively. The third initialization in (34) uses results of the

clustering stage and normalizes the maximum value of β0
m to 1. Recall that the non-zero cluster

probabilities π̂cm in (15) are a soft majority voting but weigh each instance by its probability of

not being an outlier, which is given in the clustering step by αcr,i. In the experimental results290

section, we will further comment on the initialization of the detection EM algorithm.

6. Online Implementation

Online implementations of the clustering-detection algorithm are highly advised in crowd-

sourcing applications because data provided by annotators are usually available in a streaming

manner. Moreover, an online approach is more efficient since images can be set aside once295

results are good enough, and annotators are forwarded to analyze new images.

To implement the complete procedure in an online manner, we need to address both the

clustering and detection EM algorithms. Several EM online implementations already exist in

the literature, e.g., [21, 22, 23], but most of them use a fixed set of parameters. In our setup,

however, the set of parameters to estimate increases as new instances are available since different300

annotators might come into play and new potential parasites can be identified after clustering.

The online algorithm is summarized in Alg. 3. After initialization, the algorithm executes the

clustering stage (OEM) followed by the detection stage (DEM) as new instances are available.

For clarity, the index for the outer iteration is denoted by s.

6.1. Initialization305

The algorithm is initialized by executing the batch clustering and detection algorithms

described in Sections 3-5 after R(0) annotators provide data 9. That is, firstly OEM in Alg. 1 is

executed in a batch mode to obtain the estimation of the clustering parameters denoted by θ̂c(0),

and the posterior probabilities {αcr,i(0)} and {ζcr,i,m(0)} for r = 1, · · · , R(0); i = 1, · · · , Nr; and

m = 1, · · · , M̂ c(0), where M̂ c(0) denotes the number of identified clusters at s = 0. Then,310

the data are processed as in Section 4 to generate Y(0). Finally, DEM in Alg. 2 is executed

in a batch mode initialized with Y(0), M̂ c(0) and {β0
m(0) : m = 1, · · ·, M̂ c(0)} to compute

{βdm(0) : m = 1, · · ·, M̂ c(0)}.

6.2. Online clustering algorithm

Then, at the outer iteration s > 0 we assume that there are new instances given by315

Xnew(s) = {xnewq (s);∀q = 1, · · · , |Xnew(s)|}, so that a total of X (s) = X (s − 1) ∪ Xnew(s)

9Note that (0) shows dependence of the parameters’ estimate at the first outer iteration s = 0.

15



Algorithm 3 Online clustering and detection algorithm

Input: R(0),{Rnew(s) : s = 1, · · ·, S}, X (0), {Xnew(s) : s = 1, · · ·, S}, θ̂0(0), Mmin, Tmax, ε,

δc, δd

Output: Number and centroids of true labels

1: Run once OEM-DEM batch algorithm to compute {βdm(0) : m = 1, · · ·, M̂ c(0)} with inputs

R(0), X (0), θ̂0(0).

2: Set s← 0

3: while s < S do

4: s← s+ 1

5: Given Xnew(s), set M̂0(s) = M̂ c(s − 1) + |Xnews | and compute θ̂0(s) as explained in

Section 6.2 using (35)-(37).

6: BuildR(s) = R(s−1)∪Rnew(s) and X (s) = X (s−1)∪Xnew(s); compute θ̂c(s), {αcr,i(s)},

{ζcr,i,m(s)} using Alg. 1 with inputs R(s), X (s), θ̂0(s).

7: Build Y(s) using (20) in Section 4 and compute {β0
m(s) : m = 1, · · ·, M̂ c(s)}.

8: Compute {βdm(s) : m = 1, · · ·, M̂ c(s)} using Alg. 2 with inputs Y(s), M̂ c(s) and {β0
m(s) :

m = 1, · · ·, M̂ c(s)}.

9: end while

10: For m = 1, · · · , M̂ c(s), decide whether cluster m is a true label or not using βdm(s) ≥ δd.

instances are available at outer iteration s. Further, we denote by R(s) the number of annota-

tors who have provided instances until iteration s so that R(s) = R(s − 1) + Rnew(s), where

Rnew(s) is the number of new annotators at iteration s and R(s − 1) is the number of old

annotators. Note that this notation is general enough to cover different cases: (a) the same set320

of annotators provides new instances, i.e., Rnew(s) = 0 and Xnew(s) 6= ∅; (b) new annotators

provide new instances, i.e., Rnew(s) > 0 and Xnew(s) 6= ∅; or (c) both old and new annotators

provide new instances.

Assuming that a total of X (s) instances from R(s) annotators are available at outer iteration

s, the initial value of parameters θ̂0(s) of the OEM algorithm is computed as follows. Firstly,325

the initial number of Gaussian components of the clustering algorithm is set equal to the number

of clusters identified in the previous stage, i.e., M̂ c(s − 1), plus the number of new instances,

i.e., M̂0(s) = M̂ c(s − 1) + |Xnews |. The mean vector of these new clusters is initialized to be

equal to the new instances whereas the mean vector of the first M̂ c(s−1) Gaussian components

is equal to the values obtained at the end of the clustering of the previous round, i.e.,330

µ̂0
m(s) =

 µ̂cm(s− 1) m = 1, · · · , M̂ c(s− 1)

xnewq (s) m = M̂ c(s− 1) + 1, · · · , M̂0(s)
(35)
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Similarly, the covariance matrix of the first M̂ c(s − 1) Gaussian components is equal to the

values obtained at the end of the clustering of the previous outer iteration, and the covariance

matrix of the new clusters is initialized to Σ0 as follows

Σ̂0
m(s) =

 Σ̂c
m(s− 1) m = 1, · · · , M̂ c(s− 1)

Σ0 m = M̂ c(s− 1) + 1, · · · , M̂0(s)
(36)

Further, the probability of the new clusters is initialized to one-eighth of the minimum among

{π̂cm(s− 1) : m = 1, · · ·, M̂ c(s− 1)}; afterwards, cluster probabilities at iteration s, i.e.,{π̂cm(s) :335

m = 1, · · ·, M̂0(s)}, are normalized to sum up to 1. Finally, we assume that the reliability of

new annotators is set to p0, as follows

p̂0r(s) =

 p̂cr(s− 1) r = 1, · · · , R(s− 1)

p0 r = R(s− 1) + 1, · · · , R(s)
(37)

After θ̂0(s) is obtained, the OEM algorithm in Alg. 1 is run. Note that the number of

iterations until convergence of the clustering algorithm is expected to be much shorter for

s > 0 than for s = 0, since most of the Gaussian components are already identified with340

good initialization of the mean vector. The outputs of OEM at iteration s are denoted by

θ̂c(s) for the parameter estimate, and by {αcr,i(s) : r = 1, · · ·, R(s); and i = 1, · · ·, Nr} and

{ζcr,i,m(s) : r = 1, · · ·, R(s); i = 1, · · ·, Nr; and m = 1, · · ·, M̂ c(s)} for the posterior probabili-

ties.

6.3. Online data processing after clustering345

The intermediate data is processed similarly to Section 4 to generate the set Y(s) :=

{yr,m(s) : r = 1, · · ·, R(s); and m = 1, · · ·, M̂ c(s)} with the individual binary labels given

by the annotators to the clusters identified in the clustering stage. It is important to note that

the number of identified clusters at outer iteration s, denoted by M̂ c(s), might be different

from those identified at the previous iteration, M̂ c(s − 1). Therefore, elements in Y(s) might350

be different to those in Y(s − 1), not only because new annotators might come into play at

iteration s, but also because binary tags of old annotators to the clusters identified at itera-

tion s might have changed. Therefore, we need to build the set Y(s) from scratch following

the procedure described in Section 4. That is, first the set of non-outlier instances is built as

X c(s) := {xr,i(s) : r = 1, · · ·, Rs; and i = 1, · · ·, Nr; such that αcr,i(s) ≥ δc}. Then, we assign355

each non-outlier instance to one of the clusters by computing

C(xr,i) = arg max
m=1,··· ,M̂c(s)

ζcr,i,m(s)
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for all xr,i(s) ∈ X c(s). Finally, we build the set Y(s) := {yr,m(s) : r = 1, · · ·, R(s); and m =

1, · · ·, M̂ c(s)} as follows

yr,m(s) =

 1 if ∃xr,i(s) ⊂ X cr (s) s.t. C(xr,i(s)) = m

0 otherwise
(38)

where X cr (s) := {xr,i(s) : i = 1, · · ·, Nr; such that αcr,i(s) ≥ δc}.

6.4. Online detection and stopping360

Finally, the DEM algorithm in Alg 2 is run. The posterior probabilities for all clusters

identified in the clustering stage are initialized as follows

β0
m(s) =

 βdm(s− 1) m = 1, · · · , M̂ c(s− 1)

β
′

m m = M̂ c(s− 1) + 1, · · · , M̂ c(s)
(39)

where β
′

m indicates one of the three initialization options (32), (33) or (34) presented in Section

5.1. Hence, posterior probabilities of the clusters identified in the previous round (s−1) remain

the same, and the posterior probabilities of the new identified clusters, if any, are initialized as365

explained in Section 5.1. Note that if M̂ c(s) < M̂ c(s − 1), it is not necessary to compute the

posterior probability for the annihilated clusters. The output of the DEM algorithm at outer

iteration s is given in (31) by the posterior probabilities {βdm(s) : m = 1, · · ·, M̂ c(s)}.

At this point, a hard decision is taken to decide the true labels by βdm(s) ≥ δd, where

0 < δd < 1. The online algorithm is summarized in Alg. 3 assuming S outer iterations. In370

a practical implementation, however, the online algorithm might be stopped when this hard

decision does not change throughout several consecutive outer iterations.

7. Experimental results with real data

In this section, results of the proposed approach for 10 digitized images tagged by volun-

teers through the MalariaSpot platform [11] are presented. These digitized smears, referred375

to hereafter as Image 1 to Image 10, are from the Health Investigation Centre of Manhiça in

Mozambique. For the acquisition of the images, Image 1 to Image 5 were taken with a con-

ventional light microscope (Zeiss, model AX05COP2) attached to a Nokia Xperia Z2 cellphone

using a market plastic adapter that aligns the cellphone camera to the ocular lens of the mi-

croscope. Image 6 to Image 10 were taken using the standard technology for a clinical image380

using a camera mounted on the microscope. Figure 3 and Figure 4 show Image 3 and Image 10,

respectively. It is important to remark that the use of mobile phones to capture smears is a

very appealing technology for working in the field, specially in countries with limited resources.

However, the quality of the image is worse compared to that using the standard technology, a

18



Figure 3: Image 3 taken with a microscope attached to a cellphone camera.
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Figure 4: Image 10 taken with standard technology.

fact that adds an extra challenge but also interest to our work. All digitized smears have been385

analyzed by non-expert volunteers and the ground truth has been identified by experts. Figure

5 and Figure 6 show the instances provided by R = 25 annotators selected at random from the

data set for Image 3 and Image 10, respectively, and the ground truth. As in Section 3.1,

results are evaluated in terms of sensitivity, i.e., the fraction of ground truth that is identified

as parasites and denoted by S, and precision, i.e., the fraction of potential parasites that are390

positive and denoted by P . Sensitivity and precision are both computed after clustering and

detection stages as S = TP
Np

and P = TP
TP+FP , where TP , FP , TN and FN denote true/false

positives/negatives, respectively; and Np denotes the number of true parasites. Supraindex c

denotes sensitivity and precision computed after the clustering stage, and supraindex d after

the detection stage. For instance, Sc is sensitivity after clustering and P d precision after detec-395

tion. Unless otherwise stated, results are given averaging a total of 300 independent realizations
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Figure 5: Instances provided by R = 25 annotators (×) and ground truth (�) for Image 3.
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Figure 6: Instances provided by R = 25 annotators (×) and ground truth (�) for Image 10.

selecting datum from the MalariaSpot dataset where each image was tagged more than 5, 000

times by non-expert volunteers. The following sections show results after the clustering stage

and after the detection stage. Afterwards, we show results obtained with the online algorithm

of Section 6.400

7.1. Results after clustering

In this section, we show results of Sc and P c after the clustering stage using OEM, CEM,

k -means and HAC algorithms and with R = {11, 21, 25, 31, 41, 51}. The initialization of pa-

rameters of OEM and CEM is exactly the same as in Section 3.1. The initial estimated means

{µ̂0
m;∀m = 1, · · · , M̂0} are the centroids obtained by the k -means algorithm with M̂0 equal to405

6 times the average number of clicks per annotator, i.e., around 120 in our setup; the initial

estimated Gaussian covariance matrices are all set to {Σ̂0
m = Σ0 :=

σ2
x

200I;∀m = 1, . . . , M̂0},

where σ2
x is the sample variance of the instances. Probabilities are initialized as π̂0

m = 1/M̂0
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for all m, and pr = p0 := 0.9 for all r. OEM and CEM are executed a minimum of 10 iterations

until M̂ t = 1 or a maximum of 500 iterations.410

Figure 7 shows results for Images 1–5 with a cellphone camera (in red, blue, magenta, cyan

and green, respectively) of sensitivity (in ◦, �, �, C and B, respectively for each image) and

precision (in ∗, +, ×, ? and •, respectively) obtained after clustering with OEM (solid line) and

CEM (dotted line). Similarly, Figure 8 shows sensitivity and precision for Images 6–10 with

standard technology for OEM and CEM. For the sake of comparison, Figure 9 and Figure 10415

show precision and sensitivity after clustering with k -means (solid line) and HAC (dotted line)

for the two sets of images, respectively.
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SENSITIVITY AND PRECISION AFTER CLUSTERING (Im. 1 to Im. 5)

Figure 7: Sensitivity and precision after the clustering stage with OEM (solid) and CEM (dotted) for images

taken with a cellphone camera. Im. 1 (in red, Sc ◦ and P c ∗), Image 2 (in blue, Sc � and P c +), Image 3 (in

magenta, Sc � and P c ×), Image 4 (in cyan, Sc C and P c ?), and Image 5 (in green, Sc B and P c •).

As observed, OEM and CEM perform similarly and better than k -means and HAC. Still, in

Figure 7, OEM provides overall better sensitivity results and slightly worse precision. In Figure

8, both methods achieve very similar sensitivity (except in Image 9 where OEM is better)420

and OEM achieves overall better precision. Therefore, and since at the clustering stage it is

convenient to prioritize high sensitivity, we may conclude that OEM outperforms CEM with

these real datum.

If we compare sensitivity and precision after the clustering stage between the images taken

with a cellphone camera (Figure 7, Images 1-5) and the ones taken with standard technology425

(Figure 8, Images 6-10), we may conclude that the results of images with standard technology

are overall better since both sensitivity and precision are higher. For instance, precision with

datum obtained from images from a cellphone camera take values between 0.1 and below 0.5,

whereas precision with data from images using standard technology increases to the range of

[0.4, 0.6] and Image 9 is even higher than 0.9 with OEM. Notably, sensitivity with data from430
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SENSITIVITY AND PRECISION AFTER CLUSTERING (Im. 6 to Im. 10)

Figure 8: Sensitivity and precision after the clustering stage with OEM (solid) and CEM (dotted) for images

taken with standard technology. Image 6 (in red, Sc ◦ and P c ∗), Image 7 (in blue, Sc � and P c +), Image 8

(in magenta, Sc � and P c ×), Image 9 (in cyan, Sc C and P c ?), and Image 10 (in green, Sc B and P c •).
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Figure 9: Sensitivity and precision after the clustering stage with k -means (solid) and HAC (dotted) for images

taken with a cellphone camera. Image 1 (in red, Sc ◦ and P c ∗), Image 2 (in blue, Sc � and P c +), Image 3 (in

magenta, Sc � and P c ×), Image 4 (in cyan, Sc C and P c ?), and Image 5 (in green, Sc B and P c •).

images using standard technology is very close to 1 for all images. Further, we observe that

clustering of clicks for images from a cellphone camera needs at least R = 25 games to reach

stable sensitivity values although precision does not improve, whereas for images taken with

standard technology a lower value of games is needed, i.e., R = 11, is sufficient.

7.2. Results after detection435

In this section, we present sensitivity and precision results after the detection stage using

the same images as in Section 7.1. Figure 11 shows sensitivity and precision after the detection

stage for Images 1–5 taken with a cellphone, and Figure 12 for Images 6–10 taken using standard
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SENSITIVITY AND PRECISION AFTER CLUSTERING (Im. 6 to Im. 10)

Figure 10: Sensitivity and precision after the clustering stage with k -means (solid) and HAC (dotted) for images

taken with standard technology. Image 6 (in red, Sc ◦ and P c ∗), Image 7 (in blue, Sc � and P c +), Image 8

(in magenta, Sc � and P c ×), Image 9 (in cyan, Sc C and P c ?), and Image 10 (in green, Sc B and P c •).

technology, both using clustering results obtained with the OEM algorithm. Therefore, in these

figures, solid lines are the results obtained with the detection EM (DEM) algorithm proposed440

in Section 5, and dashed lines are results obtained with Majority Voting (MV), which is a

straightforward procedure for the detection stage.
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SENSITIVITY AND PRECISION AFTER DETECTION (Im. 1 to Im. 5)

Figure 11: Sensitivity and precision after the detection stage with DEM (solid) and Majority Voting (dashed)

for images taken with a cellphone camera. Image 1 (in red, Sd ◦ and P d ∗), Image 2 (in blue, Sd � and P d +),

Image 3 (in magenta, Sd � and P d ×), Image 4 (in cyan, Sd C and P d ?), and Image 5 (in green, Sd B and P d

•). Clustering with OEM.

Interestingly, for each realization, we run DEM as in Alg. 2 twice initialized with different

posterior probabilities using (32) and (33). The one with the highest final value of the objective

function Qd(φ̃; φ̂k+1) is kept to make the decision on each potential parasite, i.e., we decide445
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SENSITIVITY AND PRECISION AFTER DETECTION (Im. 6 to Im. 10)

Figure 12: Sensitivity and precision after the detection stage with DEM (solid) and Majority Voting (dashed)

for images taken with standard technology. Image 6 (in red, Sd ◦ and P d ∗), Image 7 (in blue, Sd � and P d +),

Image 8 (in magenta, Sd � and P d ×), Image 9 (in cyan, Sd C and P d ?), and Image 10 (in green, Sd B and

P d •). Clustering with OEM.

cluster m is positive if βdm > δd := 0.5 and negative otherwise. This approach provides the best

results for these real data compared to using only one of the initializations given in (34)-(33).

Further, the overall computational cost is not significant because convergence of DEM is very

fast; usually just 10− 15 iterations are required.

In Figure 11, we observe that sensitivity with MV decreases to the range of [0.2, 0.4], except450

for Image 2 to the range of [0.45, 0.65]. Instead, DEM is capable of keeping sensitivity higher

within the range of [0.5, 0.75] and up to 0.9 for Image 2. Conversely, precision is higher with

MV than with DEM. Regarding Figure 12, the detection stage both with DEM and with MV

increases performance, that is precision is significantly higher than after clustering without

sacrificing sensitivity.455

For the purpose of comparison, Figure 13 shows sensitivity and precision after the detection

stage for Images 1–5 taken with a cellphone, and Figure 14 for Images 6–10 taken using standard

technology, both using clustering results obtained with the CEM algorithm. No significant

differences are observed compared to the results obtained clustering with OEM shown in Figure

11 and Figure 12. A measure that takes into account the trade-off between sensitivity and460

precision is the balanced Fβ-score defined as

Fβ = (1 + β2)
S · P

S + β2 · P
, (40)

such that the closer to one the better. Typical values for β are 0.5, 1 and 2; we select the value

of β = 2 to penalize low sensitivity values. Table 1 lists values of the F2-score measurement

for all images using R = 31 games after the clustering stage with OEM or CEM, and after

the detection stage with MV and with DEM. For comparison purposes, results achieved with465
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SENSITIVITY AND PRECISION AFTER DETECTION (Im. 1 to Im. 5)

Figure 13: Sensitivity and precision after the detection stage with DEM (solid) and Majority Voting (dashed)

for images taken with a cellphone camera. Image 1 (in red, Sd ◦ and P d ∗), Image 2 (in blue, Sd � and P d +),

Image 3 (in magenta, Sd � and P d ×), Image 4 (in cyan, Sd C and P d ?), and Image 5 (in green, Sd B and P d

•). Clustering with CEM.
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SENSITIVITY AND PRECISION AFTER DETECTION (Im. 6 to Im. 10)

Figure 14: Sensitivity and precision after the detection stage with DEM (solid) and Majority Voting (dashed)

for images taken with standard technology. Image 6 (in red, Sd ◦ and P d ∗), Image 7 (in blue, Sd � and P d +),

Image 8 (in magenta, Sd � and P d ×), Image 9 (in cyan, Sd C and P d ?), and Image 10 (in green, Sd B and

P d •). Clustering with CEM.

clustering with k -means, and detection DEM are also included.

As can be observed, in general, F2-score values increase after the detection stage. Regarding

the first set of Images 1–5 taken with a cellphone camera, the proposed approach of OEM-DEM

provides higher values of the F2-score for all images except for Image 4 and Image 1. Regarding

the second set of Images 6–10 taken using standard technology, the three methods provide470

similar acceptable results but the combination that works better is k -means for clustering and

DEM for detection. Therefore, it may be concluded that the proposed approach of OEM for
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Clustering OEM CEM OEM CEM OEM CEM KM

Detection − − MV MV DEM DEM DEM

Im. 1 0.6196 0.6267 0.2915 0.3033 0.6558 0.6586 0.572

Im. 2 0.6144 0.6501 0.625 0.6418 0.7953 0.7840 0.7935

Im. 3 0.7096 0.7186 0.381 0.3952 0.6855 0.6781 0.5702

Im. 4 0.4472 0.4551 0.242 0.2658 0.6343 0.6261 0.6663

Im. 5 0.7617 0.7588 0.3614 0.3754 0.6546 0.6506 0.5812

Im. 6 0.849 0.8083 0.9335 0.9278 0.9587 0.9651 0.9921

Im. 7 0.785 0.8002 0.9167 0.9199 0.9373 0.9391 0.9398

Im. 8 0.7753 0.7517 0.9011 0.8980 0.952 0.9519 0.9967

Im. 9 0.9742 0.9674 0.9778 0.9802 0.9202 0.9510 0.9443

Im. 10 0.9284 0.9466 0.9447 0.9652 0.8828 0.9175 0.9658

Table 1: F2-score with R = 31 games computed after clustering with OEM and with CEM; after detection with

Majority Voting and with DEM; and after detection with DEM and clustering with k -means (KM).

clustering and DEM for detection shows a good performance with both types of images, and

significantly better results for images of lower quality taken with the cellphone camera. These

results are promising because the proposed approach is well suited to process tags provided by475

annotators on images of worse quality but taken with low-cost technology available to many

more people worldwide.

7.3. Results with online algorithm

This section includes results of the online algorithm presented in Section 6 and summarized

in Alg. 3. Results for Image 3 and Image 10 are shown. Figure 15 and Figure 16 plot sensitivity480

and precision as a function of R(s) after clustering and after detection, respectively. A solid

line is used for batch results and a dashed-dotted line for online results. In this case, results are

obtained averaging 100 independent realizations. Regarding the online algorithm, the number

of annotators starts with R(0) = 11 and increases in steps of 1 until 51, i.e., R(s) ∈ [11, 51].

The initial values for s = 0 are selected as in Section 7.1 using R(0) and X (0). That is, M̂0(0)485

is equal to 6 times the average number of clicks per annotator; {Σ̂0
m(0) = Σ0 =

σ2
x

200I;∀m =

1, . . . , M̂0} where σ2
x is the average of the variance of the instances; probabilities are initialized

as π̂0
m(0) = 1/M̂0(0) for all m; and pr(0) = p0 = 0.9 for all r. Threshold parameters are set

equal to δc = 0.5 and δd = 0.5.

Initialization of {β0
m;∀m = 0, · · · , M̂ c(s)} at each outer iteration is different for s = 0 and490

s > 0. At s = 0, we proceed as for the batch DEM (that is, Alg. 2 is run twice initialized
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SENSITIVITY AND PRECISION AFTER CLUSTERING (Im. 3 and Im. 10)
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Figure 15: Sensitivity and precision after the clustering stage with the online algorithm (dashed-dotted) and

batch (solid)) for Image 3 (in magenta, Sd � and P d ×) and Image 10 (in green, Sd B and P d •).
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SENSITIVITY AND PRECISION AFTER DETECTION (Im. 3 and Im. 10)

Im. 3 Sd batch
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Im. 3 Sd online
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Figure 16: Sensitivity and precision after the detection stage with the online algorithm (dashed-dotted) and

batch (solid)) for Image 3 (in magenta, Sd � and P d ×) and Image 10 (in green, Sd B and P d •).

with (32), and (33); the one with the highest final value of Qd(φ̃; φ̂k+1) is kept). For s > 0,

{β0
m;∀m = 0, · · · , M̂ c(s)} is computed with the initialization (32) or (33) chosen at s = 0.

As can be seen, sensitivity and precision obtained with the online implementation follow the

path of the batch implementation.495

8. Conclusions

An unsupervised approach to detect specific structures in an image tagged by non-expert

annotators in a crowdsourcing application has been presented. The procedure consists of two

stages, namely a clustering stage followed by a detection stage, both based on the EM algo-

rithm. The method is robust to unreliable annotators thanks to the density mixture model500

27



that accounts for outliers, and it gracefully combines their responses in a blind manner. Fur-

ther, a novel online implementation of the method is presented that is suited to crowdsourced

applications in which data are available in a streaming manner. Comprehensive experimental

results with real data of the MalariaSpot project, in which annotators are asked to identify

parasites in thick blood smears, are included to illustrate and support both the batch and505

the online approach. Good results are obtained not only with high quality images taken with

an expensive microscope, but also with images taken with low-cost technology that attaches

a cheaper microscope to a cellphone camera. Even though annotators are more error-prone

due to the lower quality of the images, the approach still provides acceptable results. There-

fore, worldwide Malaria diagnosis may benefit from the presented procedure since it makes the510

MalariaSpot platform more accessible to countries and organizations with scarce resources.
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Appendix A. Illustrative example of the two-stage procedure520

This appendix illustrates the two-stage approach proposed in this paper using data and

images of the MalariaSpot project but without including algorithmic details of the clustering

and the detection stages, which are presented in Sections 3–5. Remarkably, note that the

approach is general enough to be used not only with any crowdsourced data in which annotators

are asked to identify specific structures in images, but also with similar data provided instead525

by different automated techniques with unknown reliability.

The MalariaSpot project offers digitized images of thick blood samples through an on-line

game to volunteers who, after a short training period, identify malaria parasites in the images.

For further details about this project, visit [1]. Figure A.17 includes two different examples

of such images. The left image is taken with a conventional light microscope (Zeiss, model530

AX05COP2) attached to a Nokia Xperia Z2 cellphone using a market plastic adapter that

aligns the cellphone camera to the ocular lens of the microscope; the right image is taken

with the standard technology for a clinical image using a camera mounted on the microscope.
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During the game, players tag wherever they spot a malaria parasite in the image. As an
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Figure A.17: Digitized Images of blood samples taken with different technologies.

example, Figure A.18 and Figure A.19 show the tags of 51 players or annotators with red ×535

in the two images, respectively. For these images, the ground truth identified by experts with

green � is also included for testing purposes. As observed, players make mistakes wherever

tags do not coincide with the ground truth. Some of the errors are isolated randomly located

tags, meaning that very few players erroneously identified a parasite there, while other errors

are tagged by several players. In order to circumvent these erroneous tags, the procedure to

Figure A.18: Tags provided by 51 annotators (×) and ground truth (�).

540

identify the true parasites given the tags of all annotators consists of a clustering stage followed

by a detection stage. For the clustering, tags are modeled as instances of a density mixture

model of an unknown number of Gaussians plus a uniform r.v., which models the isolated

tags. Using this density mixture model, the data is clustered using an EM-based algorithm so

that a number of clusters and their corresponding centroids are obtained after the clustering545

stage. Besides, the algorithm also rates annotators according to their performance. Figure
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Figure A.19: Tags provided by 51 annotators (×) and ground truth (�).

A.20 and Figure A.21 show the centroids of the clusters identified after the clustering stage for

both images, respectively. As observed, the clustering stage performs differently depending

Figure A.20: Tags provided by 51 annotators (×), centroids of the identified clusters after the clustering stage

(�), and ground truth (�)

on the image. Annotators tend to make more mistakes with the image in Figure A.18, which

is taken with less advanced technology, than with the image in Figure A.19. Therefore, the550

clustering identifies more clusters in the image in Figure A.20 than in the image in Figure A.21.

Clearly, in Figure A.21, artifacts erroneously tagged by a significant number of players remain

as an additional cluster whereas isolated errors do not affect the clustering. Therefore, the

detection stage is responsible for assessing whether a cluster corresponds to a true parasite

or not. A different EM-based technique is also used for the detection stage so that both the555

number of annotators who tag a particular cluster and their reliability are taken into account

for the decision. Figure A.22 and Figure A.23 show the centroids detected as parasites after
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Figure A.21: Tags provided by 51 annotators (×), centroids of the identified clusters after the clustering stage

(�), and ground truth (�)

the detection stage in blue (+) for images in Figure A.18 and Figure A.19, respectively.

Figure A.22: Tags provided by 51 annotators (×), centroids of the identified clusters after the detection stage

(+), and ground truth (�)

In this particular example, precision and sensitivity after detection with the image in Figure 5

are P d = 0.9091 and Sd = 0.9091, and with the image in Figure 6 are P d = 1 and Sd = 1.560

References

[1] http://malariaspot.org, 2012.

[2] S. Nag, N. Basu, S. Bandyopadhyay, Different Methods for Diagnosing Malaria Disease,

IJCMPR 2 (1) (2016) 197–201.

31



100 200 300 400 500 600 700

100

200

300

400

500

600

700

Figure A.23: Tags provided by 51 annotators (×), centroids of the identified clusters after the detection stage

(+), and ground truth (�)

[3] Y. Purwar, S. L. Shah, G. Clarke, A. Almugairi, A. Muehlenbachs, Automated and un-565

supervised detection of malarial parasites in microscopic images, Malaria journal 10 (1)

(2011) 1–10.

[4] S. Savkare, S. Narote, Automatic detection of malaria parasites for estimating parasitemia,

International Journal of Computer Science and Security (IJCSS) 5 (3) (2011) 310.

[5] P. Suradkar, Detection of malarial parasite in blood using image processing, International570

Journal of Engineering and Innovative Technology (IJEIT) 2 (10).

[6] S. Raviraja, Geethanjali, Chethana, Kanthesh, The Classification and Recognition of Plas-

modium Parasite.., IJARCSSE 5 (7) (2015) 863–886.

[7] M. I. Razzak, Malarial parasite classification using recurrent neural network, International

Journal of Image Processing (IJIP) 9 (2) (2015) 69.575

[8] S. Kaewkamnerd, C. Uthaipibull, A. Intarapanich, M. Pannarut, S. Chaotheing,

S. Tongsima, An automatic device for detection and classification of malaria parasite species

in thick blood film, Bmc Bioinformatics 13 (17) (2012) 1.

[9] M. Elter, E. Haslmeyer, T. Zerfas, Detection of malaria parasites in thick blood films, in:

Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Confer-580

ence of the IEEE, IEEE, 5140–5144, 2011.

[10] L. Rosado, J. M. C. da Costa, D. Elias, J. S. Cardoso, Automated detection of malaria

parasites on thick blood smears via mobile devices, Procedia Computer Science 90 (2016)

138–144.

32



[11] M. A. Luengo-Oroz, A. Arranz, J. Frean, Crowdsourcing Malaria Parasite Quantification:585

An Online Game for Analyzing Images of Infected Thick Blood Smears, J Med Internet

Res 14 (6) (2012) e167.

[12] E. Simpson, S. Roberts, I. Psorakis, A. Smith, Dynamic Bayesian combination of multiple

imperfect classifiers, in: Decision Making and Imperfection, Springer, 1–35, 2013.

[13] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via590

the EM algorithm, Journal of the royal statistical society. Series B (methodological) (1977)

1–38.

[14] M.-S. Yang, C.-Y. Lai, C.-Y. Lin, A robust EM clustering algorithm for Gaussian mixture

models, Pattern Recognition 45 (11) (2012) 3950 – 3961.

[15] Z. Zhang, C. Chen, J. Sun, K. L. Chan, EM algorithms for Gaussian mixtures with split-595

and-merge operation, Pattern Recognition 36 (9) (2003) 1973 – 1983.

[16] J. N. Myhre, K. Ø. Mikalsen, S. Løkse, R. Jenssen, Robust clustering using a kNN mode

seeking ensemble, Pattern Recognition 76 (2018) 491 – 505.

[17] F. de Morsier, D. Tuia, M. Borgeaud, V. Gass, J.-P. Thiran, Cluster validity measure and

merging system for hierarchical clustering considering outliers, Pattern Recognition 48 (4)600

(2015) 1478 – 1489.

[18] A. P. Dawid, A. M. Skene, Maximum likelihood estimation of observer error-rates using

the EM algorithm, Applied statistics (1979) 20–28.

[19] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni, L. Moy, Learning

from crowds, Journal of Machine Learning Research 11 (Apr) (2010) 1297–1322.605

[20] A. Pagès-Zamora, G. B. Giannakis, R. López-Valcarce, P. Giménez-Febrer, Robust clus-
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