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Abstract: Voting games with abstention are voting systems in which players can cast not only yes

and no vote, but are allowed to abstain. This paper centers on the structure of a class of complete

games with abstention. We obtain, a parameterization that can be useful for enumerating these

games, up to isomorphism. Indeed, any I-complete game is determined by a vector of matrices

with non-negative integers entries. It also allows us determining whether a complete game with

abstention is a strongly weighted (3,2) game or not, and for other purposes of interest in game

theory.
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1 Introduction

Simple games have been intensively used as models of collective choice and, especially, for situations

arising from political science. Many of these situations are described by weighted majority games,

the most interesting class of simple games. In a simple game, a single alternative, such as a bill or

an amendment, is pitted against the status quo, the players or voters vote in favor of the alternative

or against it and the motion is passed or not depending of the collective strength of members who

vote “”yes”.” The motion passes if and only if the set of all those who vote ”yes” is a winning

coalition. Abstention plays a key role in many of the real voting systems that have been modeled

by these games (such as the United Nations Security Council, or the United States federal system),

yet simple games, by their very definition, do not take the possibility of abstention into account;

those who do not vote “yes” are presumed to vote “no.” Felsenthal and Machover [6] define ternary

voting games (TVGs), a generalization of simple voting games. This class of games is a particular

case of the more general class of (j, k) games introduced by Freixas and Zwicker [11]. Taking j = 3

and k = 2 leads to (3, 2) games that are equivalent to TVGs. In either of these models of games,

abstention is treated as a level of approval intermediate to “yes” and “no”.
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Defining a simple game requires to list winning coalitions. The representation is rather simple

if it is a weighted game, but many decisions rules do not admit such a representation. A charac-

terization of games that admit a representation as weighted game is due to Taylor and Zwicker

[21] (see [22] for a complete description of weighted games and related games). Looking for a more

convenient representation is another motivation of the work by Carreras and Freixas [3]. Since

completeness is a necessary condition for a simple game to be representable as a weighted game,

they argued that complete games constitute a natural framework for discussing the characteriza-

tion of weighted voting. This paper deals with the class of complete simple games and centers on

their structure. These authors showed that a complete simple game is determined uniquely, up

to isomorphism, by a vector with positive integers components and a matrix with non-negative

integers entries. Clearly, this is simpler and more intuitive than setting all the winning coalitions

of the game. The present paper is a generalization of the former to simple games with abstention

or (3,2) simple games. We obtain in this larger class of vote a similar result as that by Carreras

and Freixas [3].

Our results allow us to obtain some enumerations of I-complete (3,2) games. They also allow

us to simplify the task to determine whether a given I-complete (3, 2) game is strongly weighted

or not. This is a very important step for the resolution of voting game design problems, one of

which is the well known inverse problem, (see Alon and Edelman [1], Kurz [15] and Dragan [5]). In

this sort of problem, we look for a weighted voting game that minimizes the distance between the

distribution of power 1 among the players and a given target distribution of power (according to

a given distance measure). In [14], Keijzer et al provide algorithms that solve voting game design

problems by enumerating all games of interest. The algorithm has been improved in the subclass

of weighted games. Our result is a preparation for the extension of the work by Keijzer et al [14],

to voting games with abstention.

The enumeration of I-complete (3,2) games we obtain is very restrictive. Indeed, unlike Kurz

and Tautenhahn [16] who describe an approach to determine enumeration formulas for the number

of complete simple games, as for I-complete (3,2) games, we are able to achieve this only for very

small values of n the number of players. The parameterization for I-complete (3,2) games we obtain

in this paper combined with the application of some enumerating techniques may potentially serve

for achieving further enumerations of I-complete (3,2) games and strongly weighted games.

In order to achieve the results mentioned above, we follow the same methodology as Carreras

and Freixas [3]. The main tool used in this paper is the desirability relation introduced by Isbell

[13]. We consider the natural extension of this relation in (3, 2) games, introduced by Tchantcho et

al [23] and reconsidered in Pongou et al [19] and Freixas et al ([9], [10]). This extension is termed

influence relation.

The rest of the paper is organized as follows. In Section 2, we recall basic definitions on (3, 2)

games. We also extend the well known influence relation introduced by Tchantcho et al [23] to

tripartitions and provide a characterization of indifference classes. In Section 3, we associate with

any complete (3, 2) game a multilattice of tripartition models which are represented by matrices

since they are clearly easier to manipulate. The main result is presented in Section 4 in which

we show that any (3, 2) complete game is characterized, up to an isomorphism by a vector of

1See [7] for a full description on power measurement problem.
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matrices, entries of which are non-negative integers. Such a representation is clearly simpler and

more intuitive than enumerating all the winning tripartitions of the game. We apply it to the

United Nations Security Council and show that this game is strongly weighted. Section 5 discusses

our results and concludes the paper. All the proofs are presented in the Appendix.

2 Preliminaries : (3,2) simple games

The materials on this section are essentially taken from Freixas and Zwicker [11], Tchantcho et al

[23] and Freixas et al ([9], [10]). In [11], Freixas and Zwicker introduced (j, k) simple games, we

consider the particular case where j = 3 and k = 2. Before the main notions are introduced we

need some preliminary definitions.

Throughout the paper, N denotes the non-empty and finite set of voters or players. An ordered

tripartition of N is a sequence S = (S1, S2, S3) of mutually disjoint subsets of N whose union is

N . In S, S1 stands for the set of yes voters, S2 for abstainers and S3 stands for no voters. We

denote by 2N the set of all subsets of N or the set of all ordered bipartitions of N and by 3N the

set of all ordered tripartitions of N . For any subset C of N and any a ∈ N , we simply write C ∪ a
for C ∪ {a} while C \ a stands for C \ {a}. For S, S ′ ∈ 3N we write S ⊆3 S ′ to mean that either

S = S ′ or S may be transformed into S ′ by shifting 1 or more voters to higher levels of approval.

Formally S ⊆3 S ′ ⇔ S1 ⊆ S ′1 and S2 ⊆ S ′1 ∪ S ′2; we write S ⊂3 S ′ if S ⊆3 S ′ and S 6= S ′.

The ⊆3 order defined in 3N has minimum: the tripartition (∅, ∅, N), and maximum: the tripartition

(N, ∅, ∅). Hence for every tripartition S, (∅, ∅, N) ⊆3 S ⊆3 (N, ∅, ∅).

Definition 2.1 A simple game (or (2,2) game) is a pair (N, V ) where N is the non-empty but

finite set of voters and V is a value function defined from 2N to {0, 1} such that for all coalitions

C,C ′, if C ⊂ C ′ then V (C) = 1 implies V (C ′) = 1.

It is often demanded that V be exhaustive, which leads to V (∅) = 0 and V (N) = 1.

Definition 2.2 A (3, 2) game G = (N, V ) consists of a finite set N of voters together with a value

function V : 3N −→ {0, 1} such that for all ordered tripartitions S, S ′, if S ⊂3 S ′ then V (S) = 1

implies V (S ′) = 1.

A tripartition S such that V (S) = 1 is said to be winning. A (3, 2) game can be defined by

its set of winning tripartitions, W = {S ∈ 3N : V (S) = 1}. In that case we denote the game

by (N,W). In voting, it is often demanded that V be exhaustive, then from the monotonicity

demanded to V , V (∅, ∅, N) = 0 and V (N, ∅, ∅) = 1. This enable us to obtain the equivalent

definition below.

Definition 2.3 A (3,2) game G = (N,W) consists of a finite set N of voters together with a set

W verifying the following conditions:

• (∅, ∅, N) /∈ W,

• (N, ∅, ∅) ∈ W,
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• If S ⊂3 T and S ∈ W then T ∈ W (monotonicity).

Standard notions on simple games naturally extend for tripartitions in (3, 2) games : S is a

losing tripartition whenever S /∈ W , S is a minimal winning tripartition provided that S ∈ W
and for all T ∈ 3N such that T ⊂3 S, T /∈ W . Let Wm denote the set of minimal winning

tripartitions. It is clear that W or Wm uniquely determine the (3, 2) game. Similarly, S is a

maximal losing tripartition if S /∈ W and for all T such that S ⊂3 T , T ∈ W . Furthermore, L or

LM uniquely determine the (3, 2) game, where L is the set of losing tripartitions and LM the set

of maximal losing tripartitions. Anonymous (3, 2) games are games for which for all tripartition

S, S is winning if and only if for all permutation ϕ : N → N , ϕ(S) = (ϕ(S1), ϕ(S2), ϕ(S3)) is

winning.

Next, we introduce weighted (3, 2) games, which is a special type of weighted (j, k) games

introduced in [11].

Definition 2.4 Let G = (N,W) be a (3,2) game. A representation of G as a weighted (3,2) game

consists of a vector w = (w1, w2, w3) where wi : N → R for each i together with a real number

quota q such that for every S ∈ 3N , S ∈ W ⇔ w(S) ≥ q where w(S) denotes
3∑
i=1

∑
a∈Si

wi(a) and

w1(a) ≥ w2(a) ≥ w3(a) for each a ∈ N .

We say that G = (N,W) is a weighted (3,2) game if it has such a representation.

According to the definition above, we can normalize, i.e. assign a zero weight, to any level of

approval. Here we are mainly concerned with games with abstention for which we can normalize the

weights at any of the three input levels, but it seems to be quite natural to choose the “abstention”

level . If a null weight is assigned to abstainers, then a non-negative weight is assigned to “yes”

voters and a non-positive weight to “no” voters. Thus, a weight 2 w(a) = (w+(a), 0, w−(a)) with

w+(a) ≥ 0 and w−(a) ≤ 0 is assigned to each a ∈ N . The only requirement for the threshold q, if

the (3, 2) game is demanded to be exhaustive, is that:

w(∅, ∅, N) =
∑
a∈N

w−(a) < q ≤
∑
a∈N

w+(a) = w(N, ∅, ∅).

The previous definition can now be rewritten as follows : G is weighted if there exists a sequence

of weight functions (w+, 0, w−) with w−(a) ≤ 0 ≤ w+(a) for all a ∈ N , and a quota q such that

for all S = (S1, S2, S3) ∈ 3N , S ∈ W ⇐⇒ w(S) =
∑
a∈S1

w+(a) +
∑
a∈S3

w−(a) ≥ q.

Two consecutive stronger conditions of a weighted (3, 2) game are the following which were

introduced in Freixas and Zwicker [11]:

Definition 2.5 A strongly weighted (3, 2) game is a weighted (3, 2) game that admits a represen-

tation such that for every pair of voters a and b,

[w+(a) ≥ w+(b),−w−(a) ≥ −w−(b)] or [w+(a) ≤ w+(b),−w−(a) ≤ −w−(b)].

The influence relation defined in simple games were extended to (3,2) games by Tchantcho et

al [23] as follows.

2We are identifying w+ with w1, 0 with w2 and w− with w3 in Definition 2.4.
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Definition 2.6 Let G = (N,W) be a (3, 2) game, a, b ∈ N :

• a is said to be at least as influential as b, denoted a ≥I b, if a ≥D+ b, a ≥D− b and a ≥D± b
where :

1) D+-desirability : for all (S1, S2, S3) ∈ 3N such that a, b ∈ S2,

(S1 ∪ b, S2 \ b, S3) ∈ W ⇒ (S1 ∪ a, S2 \ b, S3) ∈ W
2) D−-desirability: for all (S1, S2, S3) ∈ 3N such that a, b ∈ S3,

(S1, S2 ∪ b, S3 \ b) ∈ W ⇒ (S1, S2 ∪ b, S3 \ b) ∈ W
3) D±-desirability: for all (S1, S2, S3) ∈ 3N such that a, b ∈ S3,

(S1 ∪ b, S2, S3 \ b) ∈ W ⇒ (S1 ∪ a, S2, S3 \ a) ∈ W

• a is said to be strictly more influential than b, denoted a >I b if a ≥D+ b, a ≥D− b, a ≥D± b
and at least one of the three relations is strict.

• a is said to be as influential as b, denoted a ≡I b if a ≥I b and b ≥I a. In this case, players

a and b are said to be I-equivalent.

• G is a I-complete (3,2) game if either a ≥I b or b ≥I b for all pair a, b ∈ N .

It is straightforward to check that ≡I is an equivalence relation on N . In the sequel, the

equivalence classes will be denoted by N1, N2, . . . , Nt; the quotient set for ≡I is then denoted and

given by N/≡I = {N1, . . . , Nt}. That is, a ≡I b if and only if a and b belong to the same

equivalence class. Furthermore, >I induces a ranking �I on the set of ≡I-classes. If a >I b,

a ∈ Nu and b ∈ Nv then Nu �I Nv and we convey u < v.

The I-influence relation, which is reflexive is neither complete nor transitive in general. How-

ever, it has been proved in [23] that it is transitive whenever it is I-complete. Particularly, in

I-complete games, the influence relation is a complete preorder on the set of voters.

We illustrate the I-influence relation through the following example that will be very useful in

the sequel. From now on we will refer as n the vector defined by : n = (n1, n2, ..., nt) where for all

i = 1, ..., t, ni = |Ni|. In I-complete (3,2) games, we have : N1 �I N2 �I · · · �I Nt.

Example 2.7 Let us consider the 4-player game defined by : N = {1, 2, 3, 4} and

Wm =

{
(12, 3, 4), (12, 4, 3), (13, 2, 4), (14, 2, 3), (23, 1, 4),

(24, 1, 3), (23, 4, 1), (13, 4, 2), (14, 3, 2), (24, 3, 1)

}
where for instance, 12 represents {1, 2}.

The game is I-complete and there are two equivalence classes: the highest is N1 = {1, 2} and

the other class is N2 = {3, 4}. More precisely, we have : 1 ≡I 2 >I 3 ≡I 4 or equivalently

N1 �I N2.

It is well known that in (2, 2) games, weighted games are complete and there exist, when n ≥ 6,

complete games that are not weighted. Unlike in the (2, 2) simple games, a weighted (3, 2) game

may not be I-complete. As well, I-completeness does not imply weightedness. However, if a (3, 2)

game is strongly weighted then it is I-complete but the converse is not true. Although for n = 2,

I-completeness implies strongly weightedness. When n > 2, one may find for every n an I-complete

game not being strongly weighted, see Freixas et al [9] for these known results.
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We recall below the definition of transposition operation of two players within a given tripar-

tition. Given a tripartition S = (S1, S2, S3) of N and two players a and b, πab(S) is defined by :

πab(S) = (πab(S1), πab(S2), πab(S3)) where for any coalition C of N ,

πab(C) =


C if {a, b} ∩ C = ∅ or {a, b} ⊆ C

(C \ a) ∪ b if a ∈ C and b /∈ C
(C \ b) ∪ a if a /∈ C and b ∈ C

The following definition will be useful in the sequel.

Definition 2.8 Let G = (N,W) be an I-complete (3,2) game. A tripartition S is said to be

shift-minimal winning if : S is winning and πab(S) is losing for all a ∈ Si, b ∈ Sj, i < j and

a >I b. The set of shift-minimal winning tripartitions is denoted by Wsm.

As in simple games, for any (3, 2) game (N,W) it is straightforward to see that Wsm ⊆ Wm ⊆
W and these inclusions can be strict.

In the sequel we would like to extend relations ≥I and ≡I which are defined on the set of

players to the set of tripartitions. Given two tripartitions S and T , consider the following binary

relations on 3N .

• T ⊥ S means that there exist a, b ∈ N with a ≡I b such that πab(S) = T ;

• T a S means that either S ⊆3 T or there exist two players a and b such that a ≥I b, a ∈ Sj,
b ∈ Si with i ≤ j and πab(S) ⊆3 T .

Definition 2.9 Let G be an I-complete (3,2) game, S, T ∈ 3N , then :

• S is said to be equivalent to T denoted S ∼I T if S ⊥ R1 ⊥ · · · ⊥ Rh = T for some integer

number h.

• T is said to dominate S denoted T %I S if T a Rh a · · · a R1 = S for some integer number

h.

It can be easily checked that ∼I is an equivalence relation on 3N . Furthermore, %I is a

preordering in the set 3N with ∼I as associated equivalence relation.

Proposition 2.10 For all S, T ∈ 3N , T ∼I S if and only if T %I S and S %I T .

In the sequel, the ∼I-class of a tripartition S ∈ 3N will be denoted by S.

Proposition 2.11 Let (N,W) be an I-complete (3,2) simple game, N1, . . . , Nt, be the equivalence

classes of ≡I , with ni = |Ni| for all 1 ≤ i ≤ t. Then,

1) for all R, S ∈ 3N , S ∼I R⇔ |Ni ∩ Sj| = |Ni ∩Rj| for all i = 1, 2, ..., t and all j = 1, 2, 3.

2-a) for all R, S ∈ 3N , if S = R then s = r where s = (si,j) and r = (ri,j) for all i = 1, ..., t

and all j = 1, 2, 3, with si,j = |Ni ∩ Sj|; furthermore, 0 ≤ si,j and
3∑
j=1

si,j = ni for all i = 1, 2, ..., t.
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2-b) Conversely, for any matrix s = (si,j)i=1,...,t
j=1,2,3

such that: 0 ≤ si,j and
3∑
j=1

si,j = ni for all

i = 1, ..., t defines a unique ∼I-class S ∈ 3N .

3) for any S ∈ 3N , the cardinality of S is given by : |S| =
t∏
i=1

(ni
si,1

)(
ni−si,1
si,2 ).

In the sequel, we shall call s = (si,j)i=1,...,t
j=1,2,3

the matrix of indices associated with the class S :

it provides the common model, in terms of equivalent players of all tripartitions belonging to S.

3 The multilattice associated with an I-complete (3,2) game

It is clearly easier to manipulate models that are represented by matrices s = (si,j) rather than

tripartitions themselves. Given an I-complete (3,2) game (N,W), we recall the notation n =

(n1, . . . , nt) and denote by Λ(W) the set of all admissible models of tripartitions of the game, that

is, Λ(W) = {s = (si,j) : 0 ≤ si,j and
3∑
j=1

si,j = ni for all i = 1, ..., t} and W = {S ∈ 3N : S ∈ W}

be the set of classes of winning tripartitions.

We shall define a (dominance) relation in the set of Λ(W) in the spirit of Carreras and Freixas

[3]. For this purpose, the following results are fundamental.

Proposition 3.1 Let G = (N,W) be an I-complete (3,2) game. If S ∈ W, a >I b, a ∈ Sj, b ∈ Si
with i < j, then πab(S) ∈ W.

Let G = (N,W) be an I-complete (3,2) game and assume that G is not anonymous, which

implies that t ≥ 2 that is, it has at least two types of equivalent players. Let s = (si,j) be an

element of Λ(W). For any fixed i′, i′′, j′, j′′ such that 1 ≤ i′ < i′′ ≤ t and 1 ≤ j′ < j′′ ≤ 3, we

define (when possible) the following matrix s′ = (s′i,j) where

s′i,j =


si,j + 1 if i = i′ and j = j′

si,j − 1 if i = i′ and j = j′′

si,j − 1 if i = i′′ and j = j′

si,j + 1 if i = i′′ and j = j′′

si,j otherwise

This simply means that, for instance if t = 3 and s =

(
s1,1 s1,2 s1,3
s2,1 s2,2 s2,3
s3,1 s3,2 s3,3

)
,

for i′ = 1, i′′ = 2 and j′ = 1, j′′ = 3 then we have s′ =

(
s1,1 + 1 s1,2 s1,3 − 1
s2,1 − 1 s2,2 s2,3 + 1
s3,1 s3,2 s3,3

)
From the proposition above, we have the following corollary.

Corollary 3.2 Let G = (N,W) be an I-complete (3,2) game. Let S be a tripartition represented

by a matrix s = (si,j). Let i′, i′′, j′, j′′ with 1 ≤ i′ < i′′ ≤ t and 1 ≤ j′ < j′′ ≤ 3 such that the

matrix s′ = (s′i,j) is well defined.

If S ∈ W then S
′ ∈ W, for all tripartition S ′ represented by the matrix s′.
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Let S and S ′ be two tripartitions represented by the models s = (si,j) and s′ = (s′i,j) respec-

tively :

• If S ⊂3 S ′ then we say that s′ is a monotonic shift of s.

• If there exist 1 ≤ i′ < i′′ ≤ t and 1 ≤ j′ < j′′ ≤ 3, such that s′i,j are all well-defined as above,

then we will say that s′ is an elementary positive shift of s. When necessary, we will say that

s′ is an elementary positive shift of s for rows (i′, i′′) and columns (j′, j′′).

• We will say that s′ dominates s in Λ(W) if s′ can be obtained from s by a sequence of

monotonic and/or elementary positive shifts.

We provide below an equivalent formulation for the dominance relation in the set Λ(W).

Definition 3.3 Given r = (ri,j), s = (si,j) ∈ Λ(W), we have s δ r if : σ(s) < σ(r) where

σ(s) = (σsi,j), with σsi,j =
∑

i′≤i ; j′≤j
si′,j′

In the example 2.7, the matrix s =
(

0 1 1
1 1 0

)
dominates the matrix r =

(
0 0 2
1 1 0

)
by δ

because σ(s) =
(

0 1 2
1 3 4

)
, σ(r) =

(
0 0 2
1 2 4

)
and hence σ(s) < σ(r).

In the same example, s =
(

0 1 1
1 1 0

)
and u =

(
1 0 1
0 1 1

)
are not comparable by δ.

It is easy to check that δ is a partial ordering as stated below.

Proposition 3.4 The binary relation δ is a partial ordering on Λ(W).

We shall also note s = (s1, s2, s3) where any sj is the column number j of s. Given two column

vectors sj and rj for any j = 1, 2, 3 of s and r, we denote by:

sj δ
′ rj if Σi(sj) ≥ Σi(rj),∀i = 1, 2, . . . , t with Σi(sj) = s1,j + s2,j + · · ·+ si,j.

In words, sj δ
′ rj if for any row i, the sum of sj-components up to i is greater than or equal to the

corresponding sum of rj.

δ′ is an ordering that need not be complete.

Proposition 3.5 Given s, r ∈ Λ(W), the following two statements are equivalent:

• s δ r

•
{

either s1 = r1 and s2 δ
′ r2

or s1 6= r1 and (s1 δ
′ r1 and (s1 + s2) δ

′ (r1 + r2))

In the sequel we shall show that the pair (Λ(W), δ) is a multilattice that is, for all r, s ∈ Λ(W),

if we denote by Maj(r, s) the set of upper bounds of {s; r} and by Min(r, s) the set of lower

bounds of {s; r} then, both of those sets are non-empty with a minimal and maximal element

respectively.

For all matrices r, s ∈ Λ(W), define the following matrix u(r, s) or simply u as follows.

Definition of u given r, s ∈ Λ(W)
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Let r, s ∈ Λ(W) : Consider the following matrix M defined by:

M = (Mi,j) where, Mi,j = max(σri,j, σ
s
i,j) and M ′ defined as follows:

• M ′
i,1 = Mi,1 for all 1 ≤ i ≤ t;

• M ′
1,2 = M1,2 and

M ′
i,2 =

{
Mi,1 +Mi−1,2 −Mi−1,1 if Mi,2 +Mi−1,1 −Mi,1 −Mi−1,2 < 0

Mi,2 otherwise
for all 1 < i ≤ t;

• M ′
i,3 = Mi,3 for all 1 ≤ i ≤ t.

We define u = (ui,j) to be the matrix such that σ(u) = M ′, that is,

• u1,1 = M ′
1,1 and ui,1 = M ′

i,1 −M ′
i−1,1 for all 1 < i ≤ t.

• u1,2 = M ′
1,2 −M ′

1,1 and ui,2 = M ′
i,2 +M ′

i−1,1 −M ′
i−1,2 −M ′

i,1 for all 1 < i ≤ t.

• ui,3 = ni − ui,1 − ui,2 for all 1 ≤ i ≤ t.

It is easy to check that u is an element of Λ(W). We state below that in general, u is minimal

in Maj(r, s) with Maj(r, s) = {v ∈ Λ(W) : v δ s and v δ r}.

Lemma 3.6 For all r, s ∈ Λ(W)

• u ∈Maj(r, s) and

• u is minimal in Maj(r, s).

We now define a matrix d like u using instead a matrix m = (mij) where : mi,j = min(σri,j, σ
s
i,j).

We also consider the matrix m′ defined as follows:

• m′i,1 = mi,1 for all 1 ≤ i ≤ t;

• m′i,2 =

{
mi+1,2 +mi,1 −mi+1,1 if mi+1,2 +mi,1 −mi+1,1 −mi,2 < 0

mi,2 otherwise
for all 1 ≤ i < t and m′t,2 = mt,2;

• m′i,3 = mi,3 for all 1 ≤ i ≤ t.

Definition of d given r, s ∈ Λ(W)

The matrix d = (dij) such that σ(d) = m′ is define as follows:

• d1,1 = m′1,1 and di,1 = m′i,1 −m′i−1,1 for all 1 < i ≤ t;

• d1,2 = m′1,2 −m′1,1 and di,2 = m′i,2 +m′i−1,1 −m′i,1 −m′i−1,2 for all 1 < i ≤ t; and

• di,3 = ni − di,1 − di,2 for all 1 ≤ i ≤ t.
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It is easy to check that d is an element of Λ(W). We state below that in general, d is maximal

in Min(r, s) with Min(r, s) = {v ∈ Λ(W) : s δ v and r δ v}.

Lemma 3.7 For all r, s ∈ Λ(W)

• d ∈Min(r, s) and

• d is maximal in Min(r, s).

The two matrices s =
(

1 3 0
3 0 1

)
and r =

(
3 1 0
1 0 3

)
are not comparable. Let us compute

u and d for these two matrices.

σ(s) =
(

1 4 4
4 7 8

)
and σ(r) =

(
3 4 4
4 5 8

)
, thus, m =

(
1 4 4
4 5 8

)
, m′ =

(
1 2 4
4 5 8

)
and

M = M ′ =
(

3 4 4
4 7 8

)
. It then follows that u =

(
3 1 0
1 2 1

)
and d =

(
1 1 2
3 0 1

)
.

It can be easily seen in this example that u δ s and u δ r whereas s δ d and r δ d.

It follows from the lemmas above that (Λ(W), δ) is a multilattice. This will later be referred to

as the multilattice associated to the I-complete (3,2) game W . The maximum and the minimum

of the multilattice (Λ(W), δ) are respectively given by :

ε =

(
n1 0 0
n2 0 0
... ... ...
nt 0 0

)
and θ =

(
0 0 n1
0 0 n2
... ... ...
0 0 nt

)
Example 3.8 The multilattice associated with the 4-player game considered in Example 2.7 is

shown in Figure 1.

As we can see, in the first example above there are only two equivalence classes for the I-influence

relation. In the following example in which the game has 3 equivalence classes, the construction

of the multilattice associated to this game becomes less obvious.

Example 3.9 Let N = {1, 2, 3, 4} and Wm = {(12, 3, 4), (13, 2, 4), (14, 2, 3), (12, 4, 3)}. The game

is I-complete with the following classes :

N1 = {1} �I N2 = {2} �I N3 = {3, 4}.
The multilattice associated with this I-complete game is given in Figure 2.

We conclude this section by showing that (Λ(W), δ) and (3N/∼I , �I) are isomorphic, implying

in particular that any tripartition class S in 3N/∼I (where �I is the dominance relation induced

on 3N/∼I by the dominance relation %I on 3N : that is S �I R if and only if S %I R) can be

identified with a unique model s in Λ(W). In this respect we need a preliminary result.

Lemma 3.10 Let (N,W) be an I-complete (3,2) simple game.

For all S,R ∈ 3N , if S a R then s δ r.

The mentioned result states as follows.

Theorem 3.11 Let (N,W) be an I-complete (3,2) simple game and let N1 �I N2 �I · · · �I Nt

be the linear ordering of the classes with respect to ≡I . Then the map

Φ : (3N/∼I , �I) −→ (Λ(W), δ)

S 7−→ s = (si,j)i=1,...,t
j=1,2,3

is an isomorphism of ordered sets.
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4 Characteristic invariant of an I-complete (3,2) game

In this section we shall introduce a component that will allow us to classify and determine

I-complete (3,2) games. In order to achieve this, we need some additional notations and defi-

nitions.

Let (N,W) be a (3,2) game. We denote by :

• W = {S ∈ 3N : S ∈ W} the set of classes of winning tripartitions,

• Wm = {S ∈ 3N : S ∈ Wm} the set of classes of minimal winning tripartitions, and

• Wm
= {S ∈ 3N : S ∈ Wsm} the set of classes of shift-minimal winning tripartitions.

Note that S ∈ W if and only if s δ r for some R ∈ Wsm. In other words,

W = {S ∈ 3N : S %I R for some R ∈ Wsm}.
The following proposition shows the inclusion relation of the sets W , Wm and Wm

.

Proposition 4.1 Let (N,W) be an I-complete (3,2) game ; then, Wm ⊆ Wm ⊆ W.

We know that whenever R ⊂3 S, it follows that s δ r. We recall that N1 �I N2 �I · · · �I Nt

is the strict linear ordering of classes according to the relation ≡I and n = (n1, n2, . . . , nt) is the

vector defined by their cardinalities.

Without loss of the generality, we assume that there are r models associated to the different

classes of shift-minimal winning tripartitions. Let m1, m2, ... ,mr be these models (where mp =

(mp
i,j)i=1,...,t

j=1,2,3
). Again, without loss of the generality we can assume that these models are ordered

lexicographically with respect to rows, as follows.

Given x and y two vectors of r components each, we say that x is lexicographically greater or

equal to y if x = y or (there exists h < r such that xu = yu for all u ≤ h and xh+1 > yh+1).

Now we order the mp’s as follows. mp1 is greater than mp2 if the 3th-component vector

(mp1
1,1,m

p1
1,2,m

p1
1,3, . . . ,m

p1
t,1,m

p1
t,2,m

p1
t,3) is lexicographically greater than the 3th-component vector

(mp2
1,1,m

p2
1,2,m

p2
1,3, . . . ,m

p2
t,1,m

p2
t,2,m

p2
t,3).

As from now we will assume, without loss of the generality that these models are ordered

lexicographically and this leads to the sequence denoted M = (m1,m2, . . . ,mr). We provide

below some useful properties for M.

Theorem 4.2 Let G = (N,W) be an I-complete (3,2) simple game. The vector M associated

with G satisfies the following properties :

1) 0 ≤ mp
i,j and 0 <

3∑
j=1

mp
i,j = ni for all p = 1, . . . , r and all i = 1, . . . , t where ni = |Ni| with

N1 �I N2 �I · · · �I Nt are the I-classes of G;

2) If r > 1 then mp and mq are not δ-comparable if p 6= q; and

3) (i) If t = r = 1, then m1
1,3 < n;

(ii) If t > 1 then for every i < t there exists some p such that (mp
i,1 > 0 and mp

i+1,1 < ni+1) or

(mp
i,3 < ni and mp

i+1,3 > 0).
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Condition (3) reflects that for every i < t, a ∈ Ni and b ∈ Ni+1, some tripartition witnesses

that b �I a.

The next theorem shows that :

• The vector M is left invariant by any isomorphism of I-complete (3,2) games. We recall to

this end that two (3,2) games (N,W) and (N ′,W ′) are said to be isomorphic if there exists

a bijective map f : N → N ′ such that S ∈ W if and only if f(S) ∈ W ′; f is called an

isomorphism of (3,2) games and is also denoted by f : (N,W)→ (N ′,W ′).

• The vector M determines the game, in the sense that we are able to define a (unique up to

isomorphism) I-complete (3,2) game that possesses this invariant.

• Thanks to the above points, and to the fact that the vectorM also allows us to classify the

game, i.e. to distinguish it from any other non-isomorphic game; we shall refer to M as the

characteristic invariant of the I -complete (3,2) game (N,W).

Theorem 4.3

(a) Two I-complete (3,2) games (N,W) and (N ′,W ′) are isomorphic if and only if M =M′.

(b) Given a vector M satisfying the conditions of Theorem 4.2, there exists an I -complete (3,2)

game the characteristic invariant of which is M.

Now let us illustrate this result through examples.

Example 4.4

1) The (3, 2) game defined by M where M =
((

1 1 0
2 1 1

))
is an I-complete (3, 2) game with

n = 6 players and 24 shift-minimal winning tripartitions. Note that
(
2 0 0
1 2 1

)
corresponds to 12

minimal winning tripartitions. Thus, this game has 36 minimal winning tripartitions.

2) The voting procedure in the Security Council of the United Nations Organization is described

as follows : N = N1 ∪N2 where N1 = {1, 2, 3, 4, 5} represents the set of permanent members and

N2 = {6, 7, . . . , 15} the set of non permanent members, Wm = {(S1, S2, S3) ∈ 3N : |S1| = 9 and

S3 ∩N1 = ∅}. It can be checked that this game may be simply described by :

M =
((

5 0 0
4 0 6

)
,
(
4 1 0
5 0 5

)
,
(
3 2 0
6 0 4

)
,
(
2 3 0
7 0 3

)
,
(
1 4 0
8 0 2

)
,
(
0 5 0
9 0 1

))
.

Note however that this game has 5005 shift-minimal winning tripartitions, and there are not

minimal winning tripartitions not being shift-minimal winning.

3) Now let us describe the unique I-complete (3,2) game up to isomorphism defined by the

invariant:

M =
((

2 1 0
2 2 1

)
,
(
2 1 0
1 4 0

))
.

- The vector M satisfies the conditions in Theorem 4.2.

- We let N = {1, 2, . . . , 8} and form the classes: N1 = {1, 2, 3} > N2 = {4, 5, 6, 7, 8}.
The shift-minimal winning tripartitions are given by the models:

(
2 1 0
2 2 1

)
and

(
2 1 0
1 4 0

)
. And

the remaining minimal winning tripartitions by the models
(
3 0 0
1 3 1

)
and

(
3 0 0
0 5 0

)
. By using

Proposition 2.11, we determine how many tripartitions are associated with each model. We should

need 126 minimal winning tripartitions to describe the game (N,W) in classical form.

12



Remark 4.5 : It is well known that for n = 2, there are exactly 12 I-complete (3,2) games. It is

also known that for t = 1 and n arbitrary there are 2n+1 − 2 I-complete (3,2) games (Freixas and

Zwicker [12]). The representation above allows us to compute, for n = 3, the number of I-complete

(3,2) games is 162. We have also computed the number of these games for n = 4, t = 2, 3 and

n = 5, t = 2. It is a challenging problem to obtain more enumerations for other combinations of

n and t. These numbers are depicted in the following table in terms of the number of I-classes

t = 1, 2, 3.

n = 1 n = 2 n = 3 n = 4 n = 5

t = 1 2 6 14 30 62

t = 2 - 6 80 888 12752

t = 3 - - 68 7292 ?

t = 4 - - - ? ?

t = 5 - - - - ?

Table 1:

? means we are unable to enumerate and − non-possible combination for n and t. The previous

table does not contain the number of I-complete (3, 2) games for t = 4 and t = 5 if n ≤ 5 because

the computer wasn’t able to give us these numbers. It is an interesting computational problem

to obtain these numbers, which would allow to know the number of I-complete (3, 2) games up to

isomorphism for n ≤ 5. Of course, enumerations for other combinations of n and t are equally

interesting.

In the following part, we prove that the representation above is also useful for determining

whether a given I-complete (3, 2) game is strongly weighted or not. First, recall that any weighted

(3, 2) game can be represented as a normalized weighted (3, 2) game, that is, a weighted (3, 2)

game for which, for a, b ∈ N , a ≡I b if and only if w(a) = w(b) with w(a) = (w1(a), w2(a), w3(a))

and w1(a) ≥ w2(a) ≥ w3(a). Moreover, it is feasible to normalize by 0 at any level of approval.

As the intermediate level usually stand for abstention, we may assume w2(a) = 0 for all a ∈ N . A

strongly weighted (3,2) game is a weighted (3,2) game such that for every pair a, b ∈ N it yields

either [w1(a) ≥ w1(b) and w3(a) ≤ w3(b)] or [w1(b) ≥ w1(a) and w3(b) ≤ w3(a)]. We prove the

following result.

Proposition 4.6 Let (N,W) be an I-complete (3,2) game.

(N,W) is a strongly weighted (3,2) game if and only if there is a vector w = (w(1), w(2), . . . , w(t)),

such that w(i) = (w1(i), w2(i), w3(i)) = (w1(i), 0, w3(i)) with w1(i) ≥ 0 ≥ w3(i) (i = 1, . . . , t) which

satisfies the system of inequalities:
t∑
i=1

(mp
i − α

q
i ) · w(i) > 0 for p = 1, 2, . . . , r; q = 1, 2, . . . , s, where m1, . . . ,mr are the models

of shift-minimal winning tripartitions and α1, . . . , αs are those of shift-maximal losing tripartitions

and ”·” is the inner product.

The above result can be illustrated with the UNSC game. Recall that the UNSC voting rule is

clearly an I-complete (3,2) game and its characteristic invariant M is given by the shift-minimal

models m1 =
(
5 0 0
4 0 6

)
, m2 =

(
4 1 0
5 0 5

)
, m3 =

(
3 2 0
6 0 4

)
, m4 =

(
2 3 0
7 0 3

)
, m5 =

(
1 4 0
8 0 2

)
and
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m6 =
(
0 5 0
9 0 1

)
. The models of shift-maximal losing tripartitions are given by α1 =

(
4 0 1
10 0 0

)
,

α2 =
(
5 0 0
3 7 0

)
.

We note that, since there are 125 shift-maximal losing tripartitions and 5005 shift-minimal

winning ones, so a näıve attempt to study the weightedness of this game would lead to a system of

5005× 125 = 625625 inequalities with 30 unknowns. However, the result above allows us to solve

only 6× 2 = 12 inequalities corresponding to:
2∑
i=1

(mp
i − α

q
i ) ·w(i) > 0 for p = 1, 2, . . . , 6; q = 1, 2.

Solving these inequalities gives the following vectors of weights : (1, 0,−6) for a permanent member

and (1, 0, 0) for a non permanent, and the quota is q = 9.

5 Conclusion and future work

The main contribution of this paper was to provide a simpler and more intuitive representation

of a significant subclass of (3, 2) simple games, that of I-complete (3,2) games. Any such game

can be represented by a finite list of matrices with non negative entries fulfilling some simple

algebraic properties. We give some enumerations of I-complete (3,2) games for combinations of

the parameters n and t, where t is the number of equivalent classes on players. As a consequence

of our enumerations we know that there are 162 I-complete (3,2) games for n = 3, 8210 I-complete

(3,2) games for n = 4 with t ≤ 3 and 12814 I-complete (3,2) games for n = 5 and t ≤ 2. A

computer-savvy researcher should be able to obtain enumerations for other relatively combinations

of n and t, than those we obtained in the paper. We apply it to the United Nations Security Council

and show that this game is strongly weighted.

Many power indices for (3,2) games are easily computed in the class of weighted (3,2) games by

using generating functions, as shown in [8]. Thus, in this respect, it is very important to determine

if a given (3,2) game is weighted. If the (3,2) game is I-complete, then it could be (strongly)

weighted and proposition 4.6 gives us the answer. If the game is strongly weighted then it is easy,

by means of the generating function methods, as shown in Feixas et al [9], to compute some power

indices for a reasonable large number of players.

Many significant subclasses of I-complete (3,2) games are more easily tractable by using our

numerical parameterization. For instance, I-complete (3,2) games being either constant-sum games

or games with consensus or homogeneous are now susceptible of being studied, classified or enu-

merated. Herewith, we point out some possible lines of future research related to our work.

The starting point was the extension of the desirability relation defined on individuals to

coalitions. We used the I-influence relation defined by Tchantcho et al [23]. However, as raised in

Freixas et al [9], there are weighted games not being complete for the influence relation, something

different to what occurs for simple games. This leads to the introduction of several extensions

of the desirability relation for simple games. From the completeness of these extensions, follows

the consistent link with weighted games. In a future work it could be interesting to analyze the

replacement of the I-influence used in this paper, with any of these extensions.

As pointed out above, we obtained some enumerations for I-complete (3,2) games for some

combinations of n and t. It seems computationally tractable to get enumerations for n = 4

and n = 5. It would be very interesting to get further enumerations for other combinations of
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these two parameters. Following Kurz and Tautenhahn [16], it would be interesting to find an

algorithm to determine formulas for the number of I-complete (3,2) games. Proposition 4.6 serves

for determining if a given I-complete (3,2) game is a strongly weighted (3,2) game. It is a challenging

question to determine the number of strongly weighted (3,2) games for small combinations of the

two parameters n and t.

We know that weighted (3,2) games can be written (in a suitable way) as a threshold function.

In this respect, one can wonder if the work by Bohossian and Bruck [2] who developed algebraic

techniques for constructing minimal weight threshold functions can be extended to (3,2) games

setup.

The notion of game with consensus has been extensively considered in the litterature (see Peleg

[18] and Carreras and Freixas [4]). These are game which are obtained by intersecting a linear game

with a symmetric weighted game. For example, Carreras and Freixas investigate the behaviour of

the Shapley-Shubik [20] power index when passing from one such game to another. The analogous

of these notions can be obtained for (3,2) games raising the problem of extension of the results

obtained in simple games to (3,2) games.

6 Appendix: Proofs

Proof of Proposition 2.10

⇒) S ⊥ T means that there exist a, b ∈ N such that πab(S) = T and a ≡I b (or, a ≥I b and

b ≥I a)

With no loss to generality, assume that a ∈ Si and b ∈ Sj with i ≤ j : then we have b ∈ Ti and

a ∈ Tj. Thus, (πab(S) = T, a ≥I b and a ∈ Ti, b ∈ Tj with i ≤ j) and (πab(T ) = S, b ≥I a and

b ∈ Si, a ∈ Sj with i ≤ j) and hence T a S and S a T .

⇐) Conversely, assume that S a T and T a S.

• If S = T then S ⊥ T .

• If S 6= T then : S a T and T a S means that:

- There exists {a, b} ⊆ N such that πab(T ) ⊆3 S, a ≥I b, and b ∈ Sj and a ∈ Si with i ≤ j

- There exists {a, b} ⊆ N such that πcd(S) ⊆3 T, c ≥I d, and d ∈ Tj and c ∈ Ti with i ≤ j.

We shall first prove that in this conditions, it holds (a, b) = (c, d).

Assume by contradiction that (a, b) 6= (c, d). We claim that |Sp| = |Tp| for all p = 1, 2, 3.

Indeed, assume that there exists p0 ∈ {1, 2, 3} such that |Sp0| 6= |Tp0|. With no loss to the

generality, assume that |Sp0| < |Tp0 |.

- If p0 = 1, then |S1| < |T1|, but πab(T ) ⊆3 S so, |T1| ≤ |S1| which is impossible.

- If p0 = 2, then |S2| < |T2|, but πcd(S) ⊆3 T so, |T1| ≥ |S1| and |T1 ∪ T2| ≥ |S1 ∪ S2| then

|T1 ∪ T2| = |T1|+ |T2| > |S1|+ |S2| = |S1 ∪ S2|. But πab(T ) ⊆3 S thus, |T1 ∪ T2| ≤ |S1 ∪ S2| which

is a contradiction.

- If p0 = 3 then |S3| < |T3|, but πcd(S) ⊆3 T so |S3| ≥ |T3| which is impossible.
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We can conclude at this point that |Sp| = |Tp| for all p ∈ {1, 2, 3} and hence

πab(Tp) = Sp and πcd(Sp) = Tp for all p = 1, 2, 3.

Since S 6= T , there exists p0 such that Sp0 6= Tp0 . Either (c /∈ Sp0 and d ∈ Sp0) or (d /∈ Sp0 and

c ∈ Sp0). With no loss of generality, assume that c /∈ Sp0 and d ∈ Sp0 . Then, πab(Tp0) = Sp0 and

πcd(Sp0) = Tp0 imply that πab(πcd(Sp0)) = Sp0 . As d ∈ Sp0 , it follows that c ∈ πcd(Sp0) and thus

c ∈ πab(πcd(Sp0)) = Sp0 , which is a contradiction, hence, (a, b) = (c, d).

As (a, b) = (c, d), we then have, (πab(T ) ⊆3 S, a ≥I b), and (πab(S) ⊆3 T, b ≥I a) so,

πab(T ) ⊆3 S and T ⊆3 πab(S) ⊆3 T : consequently, πab(S) = T , which together with a ≡I b yield

S ⊥ T . �

Proof of Proposition 2.11

Let (N,W) be an I-complete (3,2) simple game, N1, N2, . . . , Nt, be the equivalence classes of

≡I , with |Ni| = ni for all 1 ≤ i ≤ t.

1. ⇒) Since S ∼I R, R = f(S) with f : N → N a product of transpositions of equivalent

players; therefore f(Ni) = Ni for all i. It follows that for all j = 1, 2, 3 and for all i = 1, . . . , t,

Rj ∩Ni = f(Sj) ∩ f(Ni) = f(Sj ∩Ni) so, |Rj ∩Ni| = |Sj ∩Ni| for all i and all j because f

is bijective.

⇐) Conversely, assume that |Sj ∩ Ni| = |Rj ∩ Ni| for all j = 1, 2, 3 and all i ∈ {1, 2, ..., t}.
Let A = {j : Si = Rj} : then |A| ∈ {0, 1, 2, 3}.

(a) If |A| ≥ 2 then it is obvious that S = R and it follows that S ∼I T .

(b) If |A| = 1 then assuming with no loss of the generality that S1 = R1, we have: S2 6= R2

and S3 6= R3.

It follows from |Sj∩Ni| = |Rj∩Ni| for all i, j that |S2|−|S2∩R2| = |R2|−|S2∩R2| and

|S3| − |S3 ∩R3| = |R3| − |S3 ∩R3|; thus, |S2 \R2| = |R2 \ S2| and |S3 \R3| = |R3 \ S3|.
Furthermore, we have :

For all i = 1, ..., t,

{
|(S2 \R2) ∩Ni| = |(R2 \ S2) ∩Ni|
|(S3 \R3) ∩Ni| = |(R3 \ S3) ∩Ni|

(∗)

|(S2 ∪R2) \ (S2 ∩R2)| = |(S2 \R2) ∪ (R2 \ S2)|

= |
t⋃
i=1

((S2 \R2) ∩Ni)|+ |
t⋃
i=1

((R2 \ S2) ∩Ni)|

=
t∑
i=1

|(S2 \R2) ∩Ni|+
t∑
i=1

|(R2 \ S2) ∩Ni|

= 2
t∑
i=1

|(S2 \R2) ∩Ni|

since |(S2 \R2) ∩Ni| = |(R2 \ S2) ∩Ni| for all i.

Now let m =
t∑
i=1

|(S2 \R2) ∩Ni| : m 6= 0 because S2 6= R2.

We shall now proceed by induction on m in order to ”transform” S into R .

Let a ∈ (S2 \ R2) ∩ Ni and b ∈ (R2 \ S2) ∩ Ni and let us consider the transposition

π(1) = πab such that: S ′2 = π(1)(S2).
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Then m′ =
t∑
i=1

|(S ′2 \ R2) ∩ Ni| = m − 1 and by induction we obtain a sequence

(π(1), π(2), . . . , π(m)) of transpositions of equivalent players such that:

π(m) ◦ π(m−1) ◦ · · · ◦ π(1)(S2) = R2. We consider the application f : N → N which is the

product of the m transpositions of indifferent players that leads to : f(S2) = R2. We

then have: f(S) = (f(S1), f(S2), f(S3)) = (R1, R2, f(N \ (S1 ∪ S2))) = R and it follows

that S ∼I R.

(c) If |A| = 0 then Sj 6= Rj, for all j.

• Since S1 6= R1 we consider m =
t∑
i=1

|(S1 \ R1) ∩ Ni|. Using induction on n and a

similar proof to the one used in (1.b) we show that there exists a mapping g : N → N

product of transpositions of indifferent players such that g(S) = (R1, S
′
2, S

′
3); hence

S ∼I g(S). If g(S2) = R2 then g(S3) = R3 and it follows that g(S) = R and

hence S ∼I R. If g(S2) 6= R2, then g(S) = (R1, S
′
2, S

′
3) with S ′2 6= R2, that is

|{j : g(Sj) = Tj}| = 1.

• Note that g(S) satisfies (∗). We can now refer to (1.b) to deduce that g(S) ∼I R.

The conclusion S ∼I R then follows.

(d) The two equalities and the inequality are obvious.

(e) Any tripartition T of the ∼I-class S is obtained by choosing for every i, si,1 players in

Ni to form T1 and choosing for any i, si,2 players among the ni − si,1 remaining players

in Ni to form T2. The remaining players form T3.

2. This comes directly from the procedure above and merely states the number of ways S can

be formed. �

Proof of Proposition 3.1

Consider R the tripartition obtained from S by moving player b from the j-th level to the i-th

level. Then both a and b belong to Ri

If R is winning, then by monotonicity, πab(S) is winning.

If R is losing, as a >I b, we have a ≥D+ b, a ≥D− b and a ≥D± b.
If j = 1 and i = 2, a ≥D+ b implies that πab(S) is winning.

If j = 1 and i = 3, a ≥D± b implies that πab(S) is winning.

If j = 2 and i = 3, a ≥D− b implies that πab(S) is winning. �

Proof of Corollary 3.2

As s′ is well defined, si′,j′′ > 0 and si′′,j′ > 0. It follows that there exists a, b ∈ N such that,

a ∈ Sj′′ ∩ Ni′ and b ∈ Sj′ ∩ Ni′′ . We have a ∈ Ni′ and b ∈ Ni′′ with i′ < i′′ : thus a >I b. At the

same time a ∈ Sj′′ and b ∈ Sj′ with j′ < j′′ so it follows from Proposition 3.1 that πab(S) ∈ W ,

since S ∈ W . As the tripartition πab(S) is represented by the matrix s′, we have πab(S) ∈ S
′
;

hence S
′ ∈ W . �
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Proof of Proposition 3.4

It is obvious that δ is reflexive and antisymmetric. Now let s, r and v ∈ Λ(W) such that: s δ r

and r δ v. It follows that, σsi,j ≥ σri,j ∀i, j and σri,j ≥ σvi,j ∀i, j, hence σsi,j ≥ σvi,j ∀i, j. Thus s δ v

and δ is an ordering on Λ(W).

In Example 3.8 the tripartitions (13, 4, 2) and (23, 14, ∅) which are represented by the models:

s =
(

1 0 0
0 0 1
1 1 0

)
and v =

(
0 1 0
1 0 0
1 1 0

)
are not δ-comparable since σ(s) =

(
1 1 1
1 1 2
2 3 4

)
and

σ(v) =
(

0 1 1
1 2 2
2 4 4

)
. Hence δ is a partial order. �

Proof of Proposition 3.5

(⇒) Let us suppose that for any two models s and r of Λ(W), σ(s) < σ(r). We shall prove

that: {
either s1 = r1 and s2 δ

′ r2
or s1 6= r1 and (s1 δ

′ r1 and (s1 + s2) δ
′ (r1 + r2))

σ(s) < σ(r) means that σsi,j ≥ σri,j ∀i, j.

Since σsi,1 ≥ σri,1 ∀i = 1, 2, . . . , t, we have
∑
i′≤i

si′,1 ≥
∑
i′≤i

ri′,1 ∀i = 1, 2, . . . , t. It is easy to remark

that
∑
i′≤i

si′,1 = Σi(s1). So, Σi(s1) ≥ Σi(r1) and hence s1 δ
′ r1.

• If there exists a row i such that Σi(s1) > Σi(r1) then s1 6= r1.

Since σsi,2 ≥ σri,2 ∀i = 1, 2, . . . , t, we have
∑

i′≤i,j′≤2

si′,j′ ≥
∑

i′≤i,j′≤2

ri′,j′ ∀i = 1, 2, . . . , t (?). We

remark that
∑

i′≤i,j′≤2

si′,j′ = Σi(s1 + s2) hence, Σi(s1 + s2) = Σi(r1 + r2) ∀i = 1, 2, . . . , t and

thus (s1 + s2)δ
′(r1 + r2).

• If not, then s1 = r1 and using (?) we conclude that Σi(s1 + s2) ≥ Σi(r1 + r2) ∀i = 1, 2, . . . , t.

Since Σi(s1 + s2) = Σi(s1) + Σi(s2) we conclude that Σi(s2) ≥ Σi(r2) ∀i = 1, 2, . . . , t, that is,

s2 δ
′ r2.

⇐) Let us now suppose that for any two models s and r of Λ(W) we have:{
either s1 = r1 and s2 δ

′ r2
or s1 6= r1 and (s1 δ

′ r1 and (s1 + s2) δ
′ (r1 + r2))

We need to prove that σ(s) < σ(r).

• If s1 δ
′ r1 and (s1 + s2) δ

′ (r1 + r2) then we have, σsi,1 ≥ σri,1 and σsi,2 ≥ σri,2 ∀i = 1, 2, . . . , t.

Thanks to the equalities σsi,1 = Σi(s1) and σsi,2 = Σi(s1 + s2) ∀i = 1, 2, . . . , t, we obtain

σsi,3 = Σi(s1 + s2 + s3) = n1 + n2 + · · ·+ ni = Σi(r1 + r2 + r3) = σri,3 ∀i = 1, 2, . . . , t.

Hence σsi,j ≥ σri,j ∀i = 1, 2, . . . , t and j = 1, 2, 3.
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• If s1 = r1 and s2 δ
′ r2 it can easily be checked as well that σsi,j ≥ σri,j ∀i = 1, 2, . . . , t and

j = 1, 2, 3.

Finally, we conclude that σ(s) < σ(r). �

Proof of Lemma 3.6

Let r, s ∈ Λ(W).

1. Let 1 ≤ i ≤ t and j = 1, 2, 3, σui,j = M ′
i,j ≤ Mi,j = max(σri,j;σ

s
i,j) ≥ σri,j, hence σ(u) < σ(r)

and thus u δ r. Likewise we have u δ s.

2. Next, consider v ∈ Λ(W) such that v ∈ Maj(s, r). We shall prove that if u δ v then v = u.

It is then useful to prove that v δ u. It follows from the definition of M ′ that M ′ < M and

for this purpose we will distinguish two cases.

• Case1 : M = M ′

Let 1 ≤ i ≤ t and j = 1, 2, 3 then σui,j = M ′
i,j = Mi,j = max(σsi,j;σ

r
i,j) ≤ σvi,j since

v ∈Maj(s, r), hence v δ u and thus v = u.

• Case2 : M ′ <M and M ′ 6= M

It follows from v δ r and v δ s that σ(v) <M .

It follows from the definition of M ′ that there exists l, (1 < l ≤ t) such that M ′
l,2 > Ml,2

and for all i, (1 ≤ i ≤ t) such that M ′
i,j ≤Mi,j, we have M ′

i,j = Mi,j for j = 1, 2, 3. For

such i, we have σvi,j ≤ σui,j = M ′
i,j = Mi,j ≤ σvi,j hence σvi,j = Mi,j = σui,j.

We also have σul,2 ≤ σvl,2. Indeed if σul,2 > σvl,2 then we would have:

vl,2 = σvl,2+σvl−1,1−σvl,1−σvl−1,2 < M ′
l,2+Ml−1,1−Ml,1−Ml−1,2 = 0, since σvl,2 < σul,2 = M ′

l,2.

Hence vl,2 < 0 which is impossible since v ∈ Λ(W). Therefore, σ(v) < σ(u) and thus

v δ u. �

Proof of Lemma 3.7

Let r, s ∈ Λ(W).

1. First let us show that s δ d and r δ d.

Let 1 ≤ i ≤ t and j = 1, 2, 3 then σdi,j = m′i,j ≤ mi,j = min(σsi,j;σ
r
i,j) ≤ σsi,j, hence σ(s) < σ(d)

and thus s δ d. Likewise we prove that r δ d.

2. Next, consider v ∈ Λ(W) such that v ∈ Min(s, r). We shall prove that if v δ d then v = d.

It’s then useful to prove that d δ v. It follows from the definition of m′ that m < m′ and for

this purpose we will distinguish two cases.

• Case1 : m = m′

Let 1 ≤ i ≤ t and j = 1, 2, 3 then σdi,j = m′i,j = mi,j = min(σsi,j;σ
r
i,j) ≥ σvi,j since

v ∈Min(s, r), hence d δ v and thus v = d.
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• Case2 : m < m′ and m 6= m′

It follows from r δ t and s δ t that m < σ(v).

It follows from the definition of m′ that there exists l, (1 ≤ l < t) such that m′l,2 < ml,2

and for all i, (1 ≤ i ≤ t) such that m′i,j ≥ mi,j, we have m′i,j = mi,j for j = 1, 2, 3. For

such i, we have σvi,j ≥ σdi,j = m′i,j = mi,j ≥ σvi,j hence σvi,j = mi,j = σdi,j.

We also have σdl,2 ≥ σvl,2. Indeed if σvl,2 > σdl,2 then we would have:

vl+1,2 = σvl+1,2 + σvl,1− σvl+1,1− σvl,2 < ml+1,2 +ml,1−ml+1,1−m′l,2 = 0, since σvl,2 > σdl,2 =

m′l,2. Hence vl+1,2 < 0 which is impossible since v ∈ Λ(W). Therefore, σ(d) < σ(v) and

thus d δ v. �

Proof of Lemma 3.10

It suffices to prove that for any S,R ∈ 3N if R ⊆3 S or there exists u, v ∈ N with u ∈ Sm, v ∈ Sl
with l ≤ m and u ≥I v, such that πuv(R) = S then s δ r.

If R ⊆3 S then R1 ⊆ S1 and R1 ∪R2 ⊆ S1 ∪ S2. It then follows that ri,1 ≤ si,1 and

ri,1 + ri,2 ≤ si,1 + si,2 ∀i = 1, . . . , t. This later inequality implies Σi(r1) ≤ Σi(s1) (i) and (s1 +

s2) δ
′ (r1 + r2). (ii)

• If s1 = r1 then ri,2 ≤ si,2 ∀i = 1, . . . , t, hence Σi(r2) ≤ Σi(s2) ∀i = 1, . . . , t and consequently

s2 δ
′ r2; thus, s δ r.

• If s1 6= r1 then s1 δ
′ r1 from (i) and with (ii) we have s δ r.

If πuv(R) = S with u ≥I v , u ∈ Sm, v ∈ Sl and l ≤ m, let u ∈ Np and v ∈ Nq then p ≤ q since

u ≥I v.

• If l = m then s = r and s δ r.

• If l < m : on one hand, if p = q then s = r and thus s δ r. On the other hand, if p < q then

sp,l = rp,l + 1, sq,l = rq,l − 1, sp,m = rp,m − 1, sq,m = rq,m + 1, si,j = ri,j for all j 6= l,m and

all i 6= p, q. This means that s is an elementary positive shift of r and therefore, s δ r. �

Proof of Theorem 3.11

We need to prove that
Φ : (3N/∼I , �I) −→ (Λ(W), δ)

S 7−→ s = (si,j)i=1,...,t
j=1,2,3

is an isomorphism of ordered

sets.

It follows from proposition 2.11 that Φ is well defined and bijective. Now, let S,R ∈ 3N : set

s = Φ(S) and r = Φ(R).

The implication S �I R⇒ s δ r follows directly from the lemma above.

Now assume that s δ r : let us prove that S �I R. In order to achieve this, we will construct

a matrix U such that S �I U �I R, that is, S %I U %I R.

As s δ r, we have:
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{
either s1 = r1 and s2 δ

′ r2
or s 6= r and (s1 δ r1 and Σi(s1 + s2) ≥ Σi(r1 + r2) ∀i = 1, 2 . . . t)

Case 1: If s1 = r1 and s2 δ
′ r2, let l < t be the smallest index such that : Σl(s2) ≥ Σt(r2).

Consider the matrix u = (ui,j) defined as follow:
ui,1 = si,1 = ri,1 ∀i = 1, ..., t

ui,2 = si,2 ∀i < l, ul,2 = Σt(r2)− Σl−1(s2), ui,2 = 0 ∀i > l

ui,3 = si,3 ∀i < l, ul,3 = nl − ul,1 − ul,2, ui,3 = ni − ui,1 ∀i > l

By construction, u ∈ Λ(W). Let U ∈ 3N/ ∼I such that u = Φ−1(U). By definition of u we

have : s2 δ
′ u2 (1); Σt(u2) = Σt(r2) (2); s δ u (3) and u δ r (4).

Since s1 = u1 = r1, there exist two maps f : N → N and g : N → N product of transpositions

of indifferent players such that f(R1) = U1 and g(U1) = S1. Denote f(R) = (U1, R
′
2, R

′
3) and

g(U) = (S1, U
′
2, U

′
3) : then f(R) ∼I R and g(U) ∼I U .

• In order to prove that U %I R, let us proceed by induction on m =
∑

ui,2≥ri,2

(ui,2 − ri,2).

- If m = 0 then u2 = r2 and since u1 = r1, it then follow that u = r and hence U %I R.

- If m > 0 then, let k < t be the smallest index such that uk,2 > rk,2. From (4), we have

u1,2 = r1,2, ..., uk−1,2 = rk−1,2. Thanks to (2) there exist an index h > k such that uh,2 < rh,2.

Consider the smallest such index h : and let a ∈ (U2 ∩ Nk) \ R′2 and b ∈ (R′2 ∩ Nh) \ U2. Since

k < h, we have a >I b and b �I a. Let π(1) = πab and R′′2 = πab(R
′
2). Then R′′2 verifies (1) and

(2) and
∑

ui,2≥r′i,2

(ui,2 − r′i,2) = m − 1. We obtain by induction a sequence (π(1), π(2), π(3), . . . , π(m))

of transpositions of players of different classes such that π(m) ◦ π(m−1) ◦ · · · ◦ π(1)(R′2) = U2. Let

Γ = π(m) ◦ π(m−1) ◦ · · · ◦ π(1). Then Γ(R′2) = U2. Since Γ(f(R)) = Γ(U1, R
′
2, R

′
3) = (U1, U2,Γ(R′3)),

it follows that Γ(f(R)) = U and hence U %I f(R). Since f(R) ∼I R we deduce that U %I R.

• In order to prove that S %I U , we will proceed by induction on m = |U ′2 \ S2|.

Subscase 1 : If m = 0 then U ′2 ⊆ S2 and g(U) ⊆3 S, thus, S %I g(U).

Subscase 2 : If m > 0, then there exists a ∈ N : a ∈ U ′2 \ S2. With no loss of the generality,

let us assume that a ∈ (U ′2 \ S2) ∩ Ni. Since si,2 ≥ ui,2, there exists b ∈ (S2 \ U ′2) ∩ Ni. Thus,

a ≡I b, U ′′2 = πab(U
′
2) satisfies (1) and |U ′′2 \ S2| = m − 1. We obtain by induction a sequence

(πab = π(1), π(2), . . . , π(m)) of transpositions of equivalent players such that π(m) ◦ π(m−1) ◦ · · · ◦
π(1)(U ′2) ⊆ S2. By letting Γ′ = π(m) ◦ π(m−1) ◦ · · · ◦ π(1), we have Γ′(U ′2) ⊆ S2. It is straightforward

that Γ′(g(U)) ⊆3 S; hence S %I g(U). Since g(U) ∼I U we deduce that S %I U .

The case 1 is now complete, thanks to U %I R and S %I U , it follows that S %I R, which

means that S �I R.

Case 2 : If s1 δ
′ r1, s1 6= r1 and (s1 + s2) δ

′ (r1 + r2) . Again, let l < t be the smallest index

such that Σl(s1) ≥ Σt(r1). Consider the following matrix u = (ui,j) :
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
ui,1 = si,1 ∀i < l, ul,1 = Σt(r1)− Σl−1(s1) , ui,1 = 0 ∀i > l

ui,2 = ni − ui,1 − ui,3, ∀i = 1, ..., t

ui,3 = ri,3 ∀i = 1, ..., t

Once more, as u ∈ Λ(W), let U ∈ 3N/ ∼I such that u = Φ−1(U). We deduce from the definition

of u that : si,1 ≥ ui,1 ∀i = 1, 2, . . . , t (1) ; Σt(u1) = Σt(r1) (2); Σi(s1 + s2) ≥ Σi(u1 + u2) ∀i =

1, 2, . . . , t (3); s δ u (4) u δ r (5). Recall that we want to prove that S � I U �I R, that is,

S %I U %I R.

Since u3 = r3 there exists a mapping h : N → N , product of transpositions of equivalent players

such that: h(R3) = U3. Let h(R) = (R′1, R
′
2, U3) : then h(R) ∼I R.

• Let us show that U %I R : let m =
∑

ui,1≥ri,1

(ui,1 − ri,1).

By using a similar reasoning as in Case 1, and proceeding by induction on m, we obtain

U %I h(R). Now thanks to the fact that h(R) ∼I R, it follows that U %I R.

• Let us show that S %I U . For this purpose, let m = |U1 \ S1|.

Subcase 1 : If m = 0, then U1 ⊆ S1 because si,1 ≥ ui,1 ∀i = 1, . . . , t.

Let U ′ = (S1, U
′
2, U

′
3) where U ′2 = U2\A, A = (S1\U1)∩U2, U

′
3 = U3\B with B = (S1\U1)∩U3.

We then have U ⊆3 U ′ because U1 ⊆ S1 and U1 ∪ U2 = S1 ∪ U ′2. So, U ′ %I U (?). Now, it is

enough to show that S %I U ′. Since s1 = u′1 and Σt(u
′
2) ≤ Σt(u2), U

′ verifies (4) and hence

Σt(s2) ≥ Σt(u
′
2).

If Σt(s2) = Σt(u
′
2) then by induction on m′ =

∑
si,2≥u′i,2

(si,2 − u′i,2), we prove as above that

S %I U ′. In addition, if Σt(s2) > Σt(u
′
2), then there exists a mapping K1 : N → N product of

transpositions of equivalent players such that K1(U
′) = (S1, U

′′
2 , U

′′
3 ) where U ′′2 satisfies (1). In

addition, U ′ ∼I K1(U
′) (??).

By induction on m′′ = |U ′′2 \ S2|, we prove identically that S %I K1(U
′) (? ? ?).

Now, thanks to (?), (??) and (? ? ?), we deduce that S %I U ′ %I U hence S %I U .

Subcase 2 : If m > 0, then by proceeding as we did in Subcase 2 of case 1, we prove the

existence of a mapping K2 : N → N product of transpositions of equivalent players such that

K2(U1) ⊆ S1. Let K2(U) = (K2(U1), U
′
2, U

′
3) : this meets the subcase just done above (m = 0)

by merely replacing U with K2(U). We can therefore use the same reasoning to conclude that

S %I U ′ ∼I U and hence S %I U . Finally, we obtain S %I U %I R. �

Proof of Proposition 4.1

From the inclusions Wsm ⊆ Wm ⊆ W , it follows that Wsm ⊆ Wm ⊆ W . Hence

Wm ⊆ Wm ⊆ W since Wsm =Wm
. �

Proof of Theorem 4.2

We consider M as defined in the text.

1. This point comes from the fact that any mp belongs to Λ(W).
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2. If r > 1, let p 6= q. Then mp and mq are not δ-comparable : indeed, if (for example) mp δ mq,

then, Sq /∈ W
m

with mq = Φ(Sq) which is a contradiction.

3. (i) Assume that : t = r = 1. If the vector m1 = (0, 0, n) then (∅, ∅, N) would be a winning

tripartition, which is impossible.

(ii) Now assume that t > 1. If the condition [there exists some p such that (mp
i,1 > 0 and

mp
i+1,1 < ni+1) or (mp

i,3 < ni and mp
i+1,3 > 0)] is not true for some i < t, then any component

of the vector M should be one of the following four forms :

Form 1:

m
p
1,1 m

p
1,2 m

p
1,3

m
p
2,1 m

p
2,2 m

p
2,3

. . . . . . . . .
0 0 ni

. . . . . . . . .
m

p
t,1 m

p
t,2 m

p
t,3

, Form 2:


m

p
1,1 m

p
1,2 m

p
1,3

. . . . . . . . .
0 m

p
i,2 m

p
i,3

m
p
(i+1),1

m
p
(i+1),2

0

. . . . . . . . .
m

p
t,1 m

p
t,2 m

p
t,3

, Form 3:

 m
p
1,1 m

p
1,2 m

p
1,3

. . . . . . . . .
0 0 ni

ni+1 0 0
. . . . . . . . .
m

p
1t m

p
2t m

p
3t

,

Form 4:

m
p
1,1 m

p
1,2 m

p
1,3

m
p
2,1 m

p
2,2 m

p
2,3

. . . . . . . . .
ni+1 0 0
. . . . . . . . .
m

p
t,1 m

p
t,2 m

p
t,3

.

(a) • In the sequel, we will prove that in either form, for all a ∈ Ni and b ∈ Ni+1 we have

b ≥I a.

Let a ∈ Ni and b ∈ Ni+1. We will prove that b ≥D+ a, b ≥D− a and b ≥D± a.

The proof of b ≥D+ a

Let S ∈ 3N such that a, b ∈ S2 and (S1 ∪ a, S2 \ a, S3) ∈ W . We need to prove that

(S1 ∪ b, S2 \ b, S3) ∈ W , that is, there exists p such that s′ = Φ(S1 ∪ b, S2 \ b, S3) δ m
p. Let

s = Φ(S1 ∪ a, S2 \ a, S3) : since (S1 ∪ a, S2 \ a, S3) ∈ W , we have s δ mp for some p. In the

sequel we will prove that s′ δ mp.

• If mp is of Form 1, then s1 δ
′ mp

1 and s1 6= mp
1 as si,1 > 0, Σh(s1) ≥ Σh(m

p
1) ∀h 6= i and

Σi(s1) > Σi(m
p
1).

We claim that s′1 δ
′ mp

1 : indeed, Σh(s1) = Σh(s
′
1) for all h < i, Σi(s

′
1) = Σi(s1) − 1, and

Σh(s
′
1) = Σh(s1) for all h ≥ i + 1. We also claim that Σh(s

′
1 + s′2) ≥ Σh(m

p
1 + mp

2) for all

h = 1, ..., t. Indeed, Σh(s
′
1 + s′2) = Σh(s1 + s2) ≥ Σh(m

p
1 +mp

2) for all h 6= i and Σi(s
′
1 + s′2) =

Σi(s1 + s2)− 1 ≥ Σi(m
p
1 +mp

2).

So, if s′1 6= mp
1, then it follows that s′ δ mp.

However, if it happens that s′1 = mp
1, in order to conclude that s′ δ mp, we will show that

s′2 δ
′ mp

2.

We proved above that for all h = 1, ..., t, Σh(s
′
1 + s′2) ≥ Σh(m

p
1 + mp

2) and s′1 = mp
1 implies

Σh(s
′
1) = Σh(m

p
1), thus Σh(s

′
2) ≥ Σh(m

p
2) for all h, hence, s′2 δ

′ mp
2.

• If mp is of Form 2 or 3, the proof is quite similar to that of the case where mp is of

Form 1.
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• Ifmp is of Form 4, then s1 δ
′ mp

1 and s1 6= mp
1 because s(i+1),1 < ni+1. Since s(i+1),1 < ni+1

and Σi+1(s1) ≥ Σi+1(m
p
1), it follows that Σi(s1) > Σi(m

p
1). Since s(i+1),1 < ni+1 and

Σi+1(s1) ≥ Σi+1(m
p
1), it follows that Σi(s1) > Σi(m

p
1). We can now proceed exactly as

in the first form to get s′ δ mp.

The proof of b ≥D± a : similar to the proof of b ≥D+ a

The proof of b ≥D− a

Let S ∈ 3N such that a, b ∈ S2 and (S1, S2 ∪ a, S3 \ a) ∈ W . We need to prove that

(S1, S2 ∪ b, S3 \ b) ∈ W , that is, there exists p such that s′ = Φ(S1, S2 ∪ b, S3 \ b) δ mp. Let

s = Φ(S1, S2 ∪ a, S3 \ a) : since (S1, S2 ∪ a, S3 \ a) ∈ W , we have s δ mp for some p. In the

sequel we will prove that s′ δ mp.

Since s δ mp, either [s1 δ
′ mp

1, s1 6= mp
1 and Σi(s1 + s2) ≥ Σi(m

p
1 +mp

2) ∀i,] or [s1 = mp
1 and

s2 δ
′ mp

2].

• If mp is of Form 1, then Σh(s
′
1) = Σh(s1) ∀h, Σh(s2) = Σh(s

′
2) ∀h < i, Σi(s

′
2) = Σi(s2)−1

and Σh(s
′
2) = Σh(s2) for all h > i.

- If [s1 δ
′ mp

1, s1 6= mp
1 and Σi(s1 + s2) ≥ Σi(m

p
1 + mp

2) ∀i], then s′1 δ
′ mp

1 and s′1 6= mp
1

because s′1 = s1. In addition, Σh(s
′
1 + s′2) = Σh(s1 + s2) ≥ Σh(m

p
1 + mp

2) for all h 6= i and

Σi(s
′
1 + s′2) = Σi(s1 + s2)− 1 ≥ Σi(m

p
1 +mp

2), hence s′ δ mp.

- If [s1 = mp
1 and s2 δ

′ mp
2], then s′1 = mp

1. We claim that s′2 δ
′ mp

2 : Indeed, Σh(s
′
2) =

Σh(s2) ≥ Σh(m
p
2) ∀h < i ,Σi(s

′
2) = Σi(s2) − 1 ≥ Σi(m

p
2), and Σh(s

′
2) = Σh(s2) ≥ Σh(m

p
2)

∀h > i. It then follows that s′ δ mp.

• If mp is of Form 2

- If [s1 δ
′ mp

1, s1 6= mp
1 and Σi(s1 + s2) ≥ Σi(m

p
1 +mp

2) ∀i]
By proceeding as in the form 1, we get s′ δ mp.

- Assume that [s1 = mp
1 and s2 δ

′ mp
2]

By construction, we have s′1 = s1, thus, s′1 = mp
1. It remains to show that s′2 δ

′ mp
2.

If s2 = mp
2 then s3 = mp

3 and hence s(i+1),3 = 0 which is a contradiction since b ∈ S3 \ a. We

then have s(i+1),2 < mp
(i+1),2. Indeed, mp

(i+1),2 = ni+1 −mp
(i+1),1 = ni+1 − s(i+1),1 = s(i+1),2 +

s(i+1),3 > s(i+1),2 since s(i+1),3 > 0. It follows that From s2 δ
′ mp

2 and s(i+1),2 < mp
(i+1),2, we

have Σi(s2) > Σi(m
p
2).

In summary, Σh(s
′
2) = Σh(s2) ≥ Σh(m

p
2) ∀h < i, Σi(s

′
2) = Σi(s2)− 1 ≥ Σi(m

p
2) and

Σh(s
′
2) = Σh(s2) ≥ Σh(m

p
2) for all h > i. We conclude that s′2 δ

′ mp
2 .

• If mp is of Form 3 or 4, the proof is quite similar to that of the case where mp is of

Form1. �

Proof of Theorem 4.3

Proof of a)
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⇒) Let f : (N,W) → (N ′,W ′) be an isomorphism. Then the inverse map f−1 is also an isomor-

phism and that πf(a)f(b) = f ◦πab◦f−1 for all a, b ∈ N . It then follows that a ≥I b⇔ f(a) ≥I′ f(b);

that is f preserves the influence relation and hence it preserves individual and coalitional indif-

ference and coalitional dominance. Moreover, f induces a multilattice isomorphism f : (3N ;�1

) → (3N
′
;�1) such that f(W) = W ′. The map φ : (Λ(W); δ) → (Λ(W ′); δ′) is an isomorphism

because φ = Φ′ ◦ f ◦Φ−1 is a product of isomorphisms. Both games have, therefore, a common set

of models of shift-minimal winning tripartitions. Since they are lexicographically ordered by rows,

we conclude that M =M′.

⇐) Assume that M =M′ : Let us prove that there exists an isomorphism

f : (N,W)→ (N ′,W ′). LetN1 = {k1, . . . , kn1}, N ′1 = {l1, . . . , ln1} andNi = {kn1+···+ni−1+1, . . . , kn1+···+ni
},

N ′i = {ln1+···+ni−1+1, . . . , ln1+···+ni
} for all i = 2, . . . , t. Let us consider the mapping :

f : N −→ N ′

kp 7−→ lp

It is obvious that f is bijective and f(Ni) = N ′i ∀i = 1, . . . , t.

Assume that S ∈ W . If s = Φ(S), then s δ mp for some p. Let S ′ = f(S) and s′ = Φ′(S
′
).

Given thatM =M′, mp is an element ofM′. Thanks to the equality s′ = s that comes from the

definition of f , it follows that s′ δ mp and S ′ ∈ W ′. Applying the same argument to f−1 it follows

that the implication f(S) ∈ W ′ ⇒ S ∈ W holds, thus, f is an isomorphism.

Proof of b)

Let M satisfying conditions of Theorem 4.2. We need to construct an I-complete (3, 2) game the

characteristic invariant of which is M. Let n = Σt(n) = n1 + n2 + · · ·+ nt,

N = {1, 2, . . . , n} and N1, N2, . . . , Nt be the subsets of N formed, respectively, by n1, n2, . . . , nt, el-

ements (which may be chosen following the natural ordering). By theorem (4.2), none of these sub-

sets is empty. For each S ∈ 3N we define s = (si,j)j=1,2,3
i=1,...,t

where si,j = |Sj ∩Ni| ∀j = 1, 2, 3 and i =

1, . . . , t. LetW = {S ∈ 3N : s δ mp for some p}. We will prove that (N,W) is a (3, 2) I-complete

simple game whose characteristic invariant is M.

1. It is straightforward that (N,W) is a (3, 2) simple game.

2. We shall now prove that N1, N2, . . . , Nt are equivalence classes according to the relation ≡I
and they are linearly ordered (N1 > N2 > · · · > Nt).

• Let i ∈ {1, 2, ..., t}, a, b ∈ Ni and S ∈ 3N .

- Proof of b ≥D+ a. If a, b ∈ S2 such that (S1 ∪ a, S2 \ a, S3) ∈ W then by considering s =

Φ(S1 ∪ a, S2 \ a, S3) and s′ = Φ(S1 ∪ b, S2 \ b, S3), we have s = s′. Since (S1 ∪ a, S2 \ a, S3) ∈ W
we have, s δ mp for some p so that s′ δ mp. Hence (S1 ∪ b, S2 \ b, S3) ∈ W and b ≥D+ a.

- We prove in the same way that b ≥D− a and b ≥D± a, thus b ≥I a. By the same arguments,

we obtain a ≥I b consequently a ≡I b.

• Now let i ∈ {1, 2, ..., t}, a ∈ Ni, b ∈ Ni+1 and S ∈ 3N . We will prove that a ≥I b and b � a.
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If a, b ∈ S2 such that (S1 ∪ b, S2 \ b, S3) ∈ W then by considering s = Φ(S1 ∪ a, S2 \ a, S3)

and s′ = Φ(S1 ∪ b, S2 \ b, S3), we have s δ s′ since s is an elementary positive shift of s′. With

(S1 ∪ b, S2 \ b, S3) ∈ W we have, s′ δ mp for some p. So, s δ mp. Hence (S1 ∪ a, S2 \ a, S3) ∈ W
and a ≥D+ b. Likewise, it can easily be checked that a ≥D− b and a ≥D± b which leads to a ≥I b.

• To prove that b �I a, we use Theorem 4.2 (3(ii)) and take a tripartition S ∈ 3N whose model

is some matrix mp such that: (mp
i,1 > 0 and (mp

i+1,2 > 0 or mp
i+1,3 > 0)) or

(mp
i+1,3 > 0 and (mp

i,1 > 0 or mp
i,2 > 0)). This condition leads to the following three possible

cases. (mp
i,1 > 0 and mp

i+1,2 > 0) or (mp
i,1 > 0 and mp

i+1,3 > 0) or (mp
i,2 > 0 and mp

i+1,3 > 0).

Case 1 : If mp
i,1 > 0 and mp

i+1,2 > 0 then we can assume that a ∈ S1 and b ∈ S2. If r is the

model of πab(S) then we have mp δ r and mp 6= r, since that mp is an elementary positive shift of

r with j′ = 1, j′′ = 2, i′ = i and i′′ = i+ 1. Hence, b �D+ a and thus b �I a.

Case 2 : If mp
i,1 > 0 and mp

i+1,3 > 0 then we can assume that a ∈ S1 and b ∈ S3. If r is the

model of πab(S) then we have mp δ r and mp 6= r, since that mp is an elementary positive shift of

r with j′ = 1, j′′ = 3, i′ = i and i′′ = i+ 1. Hence b �D± a and thus b �I a.

Case 3 : If mp
i,2 > 0 and mp

i+1,3 > 0 then we can assume that a ∈ S2 and b ∈ S3. If r is the

model of πab(S) then we have mp δ r and mp 6= r, since that mp is an elementary positive shift of

r with j′ = 2, j′′ = 3, i′ = i and i′′ = i+ 1. Hence, b �D− a and thus b �I a.

• Finally, Theorem 4.2.(3) and the definition of W guarantee that Wm
contains exactly r

models that are m1,m2, . . . ,mr. The proof is complete. �

Proof of Proposition 4.6

Let (N,W) be a I-complete (3, 2) game with m1, . . . ,mr being the shift-minimal winning models

and α1, . . . , αs the shift-maximal losing ones.

1) Suppose that (N,W) is a strongly weighted (3, 2) game. Then it is weighted and there exists

a vector w = (w1, w2, w3) where wi : N → R for each i together with a real number quota q such

that for every S ∈ 3N , S ∈ W ⇔ w(S) ≥ q where w(S) =
3∑
i=1

∑
a∈Si

wi(a) and w1(a) ≥ w2(a) ≥ w3(a)

for each a ∈ N . Given that the game is I-complete, let us suppose that players are ranked into t

(t ≥ 1) classes.

Now let S ∈ Wsm, T ∈ LδM (the set of all shift-maximal losing tripartitions) and let mp

and αq with p ∈ {1, 2, . . . , r}, q ∈ {1, 2, . . . , s} be the respective models of S and T . We have

w(S) > w(T ), that is,
3∑
j=1

∑
a∈Sj

wj(a) >
3∑
j=1

∑
a∈Tj

wj(a). It is easy to check that
3∑
j=1

∑
a∈Sj

wj(a) =

t∑
i=1

mp
i · w(i) and

3∑
j=1

∑
a∈Tj

wj(a) =
t∑
i=1

αqi · w(i). This yields
t∑
i=1

mp
i · w(i) >

t∑
i=1

αqi · w(i), and thus

t∑
i=1

(mp
i − α

q
i ) · w(i) > 0.

2) Conversely, let us suppose that there exists a vector w = (w(1), w(2), . . . , w(t)) such that,

w(i) = (w1(i), 0, w3(i)) with w1(i) ≥ 0 ≥ w3(i) (i = 1, . . . , t) which satisfies the system of inequal-

ities:
t∑
i=1

(mp
i − α

q
i ) · w(i) > 0 ∀p = 1, 2, . . . , r and ∀q = 1, 2, . . . , s.
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Denote by q = min
p=1,...,r

t∑
i=1

mp
i · w(i). Let S ∈ W represented by the model m.

Since
t∑
i=1

mi · w(i) ≥
t∑
i=1

mp
i · w(i) ∀p = 1, 2, . . . , r, we then have w(S) =

3∑
i=1

∑
a∈Si

wi(a) =
t∑
i=1

mi ·

w(i) ≥ q and hence (N,W) is a weighted (3, 2) game. Thus, (N,W) is strongly weighted since it

is well known from [9] that any weighted (3,2) game which is I-complete is strongly weighted. �
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(
0 0 2
1 1 0

) (
0 1 1
1 0 1

)
→

(
1 0 1
0 1 1

)

(
1 0 1
1 0 1

)

(
0 0 2
1 0 1

)
→

(
1 0 1
0 0 2

)
→

(
1 1 0
0 0 2

)
↑

(
1 0 1
0 2 0

)

(
0 1 1
1 1 0

)
→

(
1 1 0
0 1 1

)

(
0 2 0
1 0 1

)
→

(
1 1 0
0 2 0

)

(
0 2 0
1 1 0

)

→

→
(
0 2 0
0 2 0

)

(
0 2 0
0 1 1

)↑

↑
→

(
0 1 1
0 1 1

)

(
0 1 1
0 2 0

)

(
0 2 0
0 0 2

)↑↑
→

→
(
0 0 2
0 2 0

)

(
0 0 2
0 1 1

) (
0 1 1
0 0 2

)

(
0 0 2
0 0 2

)

↑ ↑
→

→
↑

(
0 0 2
2 0 0

)

(
0 1 1
2 0 0

)

(
0 2 0
2 0 0

)

↑

↑ (
1 0 1
1 1 0

) (
1 1 0
1 0 1

)

(
1 1 0
1 1 0

)

→

(
2 0 0
0 0 2

) (
2 0 0
0 1 1

) (
2 0 0
0 2 0

)
↑

(
1 0 1
2 0 0

)

(
2 0 0
1 0 1

)(
1 1 0
2 0 0

) (
2 0 0
1 1 0

)

(
2 0 0
2 0 0

)

↑

↑

Figure 1: Multilattice associated with Example 2.7.
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1 0 0
0 1 0
0 0 2



1 0 0
0 0 1
1 0 1



1 0 0
0 0 1
0 1 1

1 0 0
0 0 1
0 0 2

→

0 0 1
1 0 0
0 0 2

→
0 0 1

1 0 0
0 1 1



0 1 0
1 0 0
0 0 2



0 0 1
0 0 1
1 0 1

 0 0 1
0 0 1
1 1 0

→ →
0 0 1

0 1 0
1 0 1



0 1 0
0 0 1
1 0 1



0 0 1
0 1 0
1 1 0



0 0 1
1 0 0
0 2 0



1 0 0
0 0 1
0 2 0



1 0 0
0 1 0
0 1 1



0 1 0
1 0 0
0 1 1



0 1 0
0 0 1
1 1 0

→
0 1 0

0 1 0
1 0 1

 0 1 0
0 1 0
1 1 0



0 1 0
1 0 0
0 2 0



→

1 0 0
0 1 0
0 2 0



0 1 0
0 1 0
0 2 0


↑

0 1 0
0 1 0
0 1 1


↑0 1 0

0 0 1
0 2 0

0 0 1
0 1 0
0 2 0



0 0 1
0 0 1
0 2 0

→

→ →

0 0 1
0 1 0
0 1 1

 0 1 0
0 0 1
0 1 1

 0 1 0
0 1 0
0 0 2

→

↑

→

↑ ↑

0 1 0
0 0 1
0 0 2


↑0 0 1

0 1 0
0 0 2

0 0 1
0 0 1
0 1 1



0 0 1
0 0 1
0 0 2



→→

↑↑

↑

0 0 1
0 0 1
2 0 0

 0 0 1
1 0 0
1 0 1



0 0 1
1 0 0
1 1 0



→

0 0 1
0 1 0
2 0 0



0 1 0
0 0 1
2 0 0

 0 1 0
1 0 0
1 0 1



→

↑

→

↑

↑

0 1 0
0 1 0
2 0 0


↑

0 1 0
1 0 0
1 1 0



→

→

↑↑

↑ 1 0 0
0 0 1
1 1 0



1 0 0
0 1 0
1 0 1



1 0 0
0 1 0
1 1 0



1 0 0
1 0 0
0 0 2

 1 0 0
1 0 0
0 1 1

 1 0 0
1 0 0
0 2 0


↑

0 0 1
1 0 0
2 0 0

 1 0 0
0 0 1
2 0 0

 1 0 0
1 0 0
1 0 1

→

↑

→

→

→

0 1 0
1 0 0
2 0 0

 1 0 0
0 1 0
2 0 0

 1 0 0
1 0 0
1 1 0



1 0 0
1 0 0
2 0 0



→

↑

↑ ↑

Figure 2: Multilattice associated with Example 3.9.
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