
Industrial Experiences with Resource Management under
Software Randomization in ARINC653 Avionics Environments

Leonidas Kosmidis
Barcelona Supercomputing Center (BSC)

Cristian Maxim∗
Airbus S.A.S

Victor Jegu
Airbus S.A.S

Francis Vatrinet
SYSGO

Francisco J. Cazorla
Barcelona Supercomputing Center (BSC)

Spanish National Research Council (IIIA-CSIC)

ABSTRACT
Injecting randomization in different layers of the computing plat-
form has been shown beneficial for security, resilience to software
bugs and timing analysis. In this paper, with focus on the latter,
we show our experience regarding memory and timing resource
management when software randomization techniques are applied
to one of the most stringent industrial environments, ARINC653-
based avionics. We describe the challenges in this task, we propose a
set of solutions and present the results obtained for two commercial
avionics applications, executed on COTS hardware and RTOS.

CCS CONCEPTS
• Applied computing→ Avionics; Avionics; • Computer sys-
tems organization→Embedded and cyber-physical systems;
Embedded software; Real-time systems; Real-time operat-
ing systems; Real-time system specification; • Software and
its engineering → Allocation / deallocation strategies; Em-
bedded software; Real-time systems software;
ACM Reference Format:
Leonidas Kosmidis, Cristian Maxim, Victor Jegu, Francis Vatrinet, and Fran-
cisco J. Cazorla. 2018. Industrial Experiences with Resource Management
under Software Randomization in ARINC653 Avionics Environments. In
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DE-
SIGN (ICCAD ’18), November 5–8, 2018, San Diego, CA, USA. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3240765.3240818

1 INTRODUCTION
The increasing performance demand in modern critical real-time
systems has seeded the development of new tools to tame the
resulted complexity in both their hardware and software. In the
worst case timing analysis, which is crucial for this class of systems,
Measurement-Based Probabilistic Timing Analysis (MBPTA) [1] has
∗Also with Inria, Paris at the time of performing this work. Currently only with Inria..

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICCAD ’18, November 5–8, 2018, San Diego, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5950-4/18/11. . . $15.00
https://doi.org/10.1145/3240765.3240818

been successful, showing competitive results with current industrial
practice [2][3][4].

Despite its promising features, MBPTA requires the presence of
specific properties in the underlying platform to be applied [5]. That
is a) events affecting the execution time need to have an equal or
higher impact during measurement collection (analysis) compared
to the system operation, b) the execution times of the platform to
be modelled by an independent and identically distributed (i.i.d.)
random variable, so that they can be processed by Extreme Value
Theory (EVT) to obtain a probabilistic WCET curve. Both prop-
erties can be obtained by randomization in the system, either at
hardware [6] or software level [7].

Recent works in the literature have demonstrated the industrial
viability of deriving pWCET curves estimated with MBPTA using
both hardware and software approaches, in realistic setups includ-
ing real-time operating systems (RTOSes) and applications from
different critical domains such as aerospace [3][4][8], railway [9]
and automotive [10]. All those studies were focused only on the tim-
ing analysis of the system and in particular on the details about how
to provide MBPTA’s requirements in the measurement collection
in order to ensure a trustworthy pWCET and about the implemen-
tation of the hardware or the software in charge of providing the
required properties.

The application of software randomization, unlike hardware ran-
domization is not transparent to the application and to the RTOS,
but it is deemed as the more suitable option for adoption in the
avionics domain. However, in the previous studies the practical
implications of applying software randomization in an industrial
critical real-time system have not been covered, especially in the
avionics domain which requires strict provisioning of memory and
timing resources. In this paper we provide our useful insights to
industrial users of MBPTA, presenting our experience with the ap-
plication of dynamic software randomization on avionics software
executed on a commercial avionics Real-Time Operating System
(RTOS) and a COTS platform for the first time. In particular, the
contributions of this paper are the following: a) we describe the
challenges that software randomization introduces to the avionics
domain with respect to the integration of software randomized
applications within an ARINC653 operating system, b) we propose
solutions to overcome these challenges, namely the computation
of upperbounds for the applications’ memory requirements and c)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185528811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

we demonstrate the feasibility of software randomization in a com-
plete industrial avionics setup, presenting results about resource
management in this context.

2 SOFTWARE RANDOMIZATION
At software level, randomization is applied in the form of software
randomization. Software randomization places the various software
elements (code, stack, global data) in randomly different memory
positions, effectively modifying the application’s memory layout.
Since in both caches and TLBs – the two hardware structures with
higher impact in the execution time – the physical address deter-
mines the various element’s placement and replacement, software
randomization achieves both MBPTA’s requirements. In particular,
the events that affect the execution time (cache and TLB misses)
obtain a random behavior which is the same at both analysis and
system operation, and at the same time yield randomly distributed
execution times, modelled by an i.i.d. variable.

Software randomization can have a dynamic [7] or static form [11],
which identifies whether the placement of the program’s elements
at system operation takes place on-line (before program execu-
tion) or off-line. Both solutions have been demonstrated to work
in industrial setups, with the static variant being successful in the
automotive domain due to hardware limitations of automotive mi-
crocontrollers [10], while the dynamic implementation has been
applied in the space domain. In addition to full industrial studies
with COTS hardware [4], the dynamic variant which has been intro-
duced much earlier in the literature has been also explored in early
limited industrial experiments with simulators and research ori-
ented Real-Time Operating Systems [2]. For this reason, dynamic
software randomization (DSR) is considered to have reached a
higher Technology Transfer Level (TRL) and therefore it is selected
as the basis of our study.

3 AVIONICS ENVIRONMENT
The avionics domain, although it shares some common require-
ments with other critical domains such as the automotive and space,
it is the one with the strictest requirements. This creates additional
challenges in the application of software randomization in this con-
text, compared to its previous industrial applications [10][4]. In fact,
the authors of [4] present the required modifications that dynamic
software randomization had to undergo in order to be applied in an
industrial COTS environment, as well as how the requirements of
MBPTA were satisfied in their platform so that they could compute
a valid pWCET of their space application. In contrast, our work
is mainly focused on the particular challenges which arise in an
avionics environment from the use of software randomization with-
out any modifications. In this aspect, our primary goal is to identify
the implications of the application of software randomization in
the avionics domain and show how they can be addressed, so that
it can be applied.

At the core of an avionics system there is an ARINC653 [12]
RTOS, which provides the required spatial and temporal isolation
between software elements.

The avionics software is organized in partitions which are com-
posed by ARINC653 processes. Partitions are software entities

which guarantee time and space isolation among them, a require-
ment for critical systems in order to ensure the robustness of the
system both in avoiding deadline overruns as well as to provide
fault containment from potential memory violations. Processes are
execution units within a partition, which share the partition’s re-
sources. In order to obtain memory isolation, each partition has
its own address space, thus leveraging the protection offered by
the target processor’s Memory Management Unit (MMU), while
their processes execute in the same address space. In that aspect,
partitions are similar to processes in Unix systems, while ARINC653
processes are equivalent to POSIX threads. However, the main dif-
ference of ARINC653 is that both partitions and processes have
strict resource requirements provided by the system integrator in
XML form. The RTOS ensures that these requirements are respected,
otherwise countermeasures are applied. Among the requirements
which are specified for each partition and process are memory and
timing requirements.

Regarding memory requirements, the starting address and the
maximum size of each memory segment used by the software is
specified. The system integrator can map the desired memory seg-
ment in particular virtual addresses and grant specific access rights
on each one, such whether it can be read, written or executed as
well as if it can use the cache or it is forced to bypass it.

As a part of this process, the maximum stack size of each process
and the cumulative stack size of all partition’s processes need to
be specified. The RTOS ensures that this limit is not violated, by
mapping an invalid page (guard page) beyond the permitted virtual
address, which results in a memory exception if it is accessed. The
timing properties of partitions and processes are also provided in
both a cumulative and individual basis. Those include their periods
and their deadlines. Finally, it is important to note that avionics
RTOSes do not provide dynamic memory allocation features since
in the general case, programs relying on such mechanisms are hard
to reason about their maximum memory consumption or worst
case timing.

From the above discussion, it is clear that using any piece of
software in an avionics environment requires detailed information
about its memory and timing resource consumption.

4 CHALLENGES WITH DSR IN AVIONICS
Using DSR in an avionics environment presents a set of challenges
due to its implications on the memory and timing characteristics
of the randomized application. In particular, in order to modify
the memory layout of the program, dynamic memory allocation is
employed. Moreover, since the placement of software elements is
performed in a randomway, the exact size of each memory segment
varies from execution to execution. Finally, changing the memory
layout involves an execution time overhead, while the different
cache layouts create the necessary variability in execution time
required by MBPTA. Below, we examine in detail each of these
problems and sketch the solutions we implemented.

DynamicMemoryAllocation:DSR is based on dynamic mem-
ory allocation for modifying the code and data layout of the random-
ized software. In the absence of this functionality in ARINC653, we
use the RTOS to map a memory region in the virtual address space
of the randomized partition. This solution is completely transparent

Algorithm 1 Determine an optimal memory code pool size requirement for a software randomized avionics system

for all pi ∈ So f twareRandomisedPartitions do
UpperboundCodePoolSizei = CodePoolSizei = CodeSizei
UpperboundPartitionSizei =

∑
n∈{Code,Data } nSizei + nPoolSizei + StackSizei

while pi cannot start do
UpperboundCodePoolSizei = UpperboundCodePoolSizei ∗ 2
UpperboundPartitionSizei = UpperboundCodePoolSizei + DataPoolSizei +

∑
n∈{Code,Data } nSizei

end while
LowerboundCodePoolSizei = UpperboundCodePoolSizei/2
while (UpperboundCodePoolSizei − LowerboundCodePoolSizei) > 4KB do

NewCodePoolSizei = UpperboundCodePoolSizei − LowerboundCodePoolSizei
if pi cannot start then

LowerboundCodePoolSizei = NewCodePoolSizei
else

UpperboundCodePoolSizei = NewCodePoolSizei
end if

end while
CodePoolSizei = UpperboundCodePoolSizei
NewPartitionSizei =

∑
n∈{Code,Data } nSizei + nPoolSizei + StackSizei

end for

to software randomization runtime and the underlying application,
because DSR only requires the starting address of the memory
which it can use as a pool for its internal randomized memory
allocator. We introduce two memory regions, one for code and one
for data, to provide the required protection between different seg-
ments within the same partition. We use a different pair of memory
regions for each partition, so that the spatial isolation between
partitions is preserved.

Determining Memory Pool Size: The previous solution re-
quires to know the maximum size of each memory region mapped
to the partition address space. In order to achieve this, we developed
an iterative process which allows to derive those sizes.

Code randomization allocates for each function a piece of mem-
ory with size Sc , so that the code of the function can be mapped
in any possible cache sets of its cache memory hierarchy. Conse-
quently, Sc is platform dependent, equal to two times the size of the
target processor’s last level cache way. Therefore, the maximum
size of the code pool is a function of the system’s cache and the
number of functions in the software. Our DSR system implements
an eager code relocation scheme similar to [4], which performs
all function relocations before starting the program. We take ad-
vantage of this feature, which ensures that if the code memory
pool is not sufficient, the application of a partition will not be able
to start. Therefore in order to determine the upperbound of the
memory pool, we employ the exponential search algorithm, which
is an efficient algorithm for unbounded searching problems [13]
like ours. Algorithm 1 shows our implementation of the algorithm.
We perform a series of testing runs starting with the code size
limit of the partition before software randomization and doubling
the memory requirement until the upperbound is found, when the
application can start successfully. In each step we also update the
total memory requirement of the partition, which is equal to the
addition of all memory requirements. In order to avoid memory
overprovisioning, we continue to narrow down the memory re-
quirement by performing binary search in the opposite direction,

until we find the minimum upperbound within a 4KB region, which
is the granularity that memory resources are specified in the RTOS.
Note that the procedure converges very fast, since the software
fails quickly (before the application is started) in case of insufficient
allocated memory.

Data randomization is performed in a similar way, therefore the
followed procedure is the same for the data pool. Note that both iter-
ative searches can be combined in the same test campaign, because
in the case of insufficient memory, the memory violation address is
reported. Therefore, with a careful selection of the virtual address
at which each pool is mapped in the partition’s address space, it is
possible to distinguish whether it was caused by insufficient code
or data memory.

Determining Stack Size: Instead of dynamically allocating
each stack frame, the stack frame is randomly increased by a num-
ber between 0 and Ss in order to be mapped in any potential cache
set of its cache hierarchy. Similar to the code case, Ss is proces-
sor dependent, equal to the target processor’s cache set way of its
last level cache. Although maximum stack size can be computed
with commercial tools, there is no support for dynamic software
randomization. Moreover, this procedure is complicated from the
fact that not all the software inside a partition may be software
randomized eg. libraries.

For this reason, we used the same iterative method described ear-
lier. We modify the stack randomization used in our test campaign,
so that it always increases each stack frame by its maximum size
(Ss). This is equivalent to the eager relocation for the code, which
ensures that the maximum bound is found for a given software.
Next the iterative search is performed for each process inside each
partition. Finally, once the the maximum stack size of each process
is determined, their cumulative size is the maximum stack size for
the partition. Note that in this iterative process, the partition stack
must be always larger than the summation of the process stacks.

Timing: The runtime overhead of DSR is small compared to the
execution time of the application (few instructions per function),

Figure 1: Example High Execution time observed in aMIF of
APP1 without software randomization on P4080. The plot
shows the first 250 samples of the 1000 collected, without
software randomization.

therefore it does not affect its period or the deadline. However,
the function relocation before the start of the application can have
significant relative overhead. For this reason, we perform it at the
partition boot time from a process with unlimited deadline, which
creates the partition threads once the relocation is complete.

5 RESULTS
In our study we applied software randomization in two real avion-
ics applications (APP1 and APP2 for confidentiality reasons) with
high-criticality, hosted on IMA Line-Replaceable Module (LRM).
The two applications have diverse resource requirements and each
one is deployed in a separate partition. The APP1 has a smaller
memory footprint than APP2, a little less than 1MB and it consists
of a single ARINC653 process, while APP2 is slightly bigger than
5MB and has 3 processes. Moreover, each application has its own
timing requirements, eg. period, deadline and priority for each of
the processes it contains. Both applications have a periodic exe-
cution behavior, which is repeated after 16 Minor Frames (MIFs),
following a cyclic static schedule.

The experiments have been conducted on a PowerPC-based
P4080 platform [14], one of the platforms of choice of the PROXIMA
project. In our platform we use SYSGO’s PikeOS APEX paravirtual-
ized guest RTOS [15] over the PikeOS microkernel-based hypervi-
sor, which is compliant with the ARINC653 specification [12]. The
operating system is configured to have exclusive access to the L3
cache of the platform, which uses as scratchpad, in order to provide
high performance execution of the RTOS kernel, while it provides
a predictable behavior, since it doesn’t have an impact on the user
space application cache contents, neither on their execution time.

5.1 Memory Resources
The determination of the new memory requirements for both ap-
plications using our iterative method required less than a working
day in total, which confirms its fast convergence and its industrial
viability. For both applications the upperbound of the code and data
pool has been identified to 16M, while the binary search pinpointed
the minimum required sizes to 11MB and 15MB for the small and
the big applications respectively. This increase is mainly due to
the high number of functions contained in each application, which
are eagerly randomized. For example, even functions that are only

invoked in a specific operation mode (eg. take-off) or perform error
handling and therefore they might not be invoked frequently are
software randomized. Since the cache way of the P4080 instruction
cache is 4KB, for each function 8 extra KB are allocated, in order to
allow for a random placement of the function in this range, so that
the mapping of the function may be in any possible set.

Regarding the stack size limits of the ARINC653 processes, all 4
processes had a small maximum stack size, in the order of KBs. In 3
out of the 4 processes, doubling the maximum stack size has been
sufficient, since the size of the stack was already small partially due
to the small stack frame size of each function and also due to the
small function call depth. In one of the processes however, the call
depth was deeper requiring a larger increase, 16 times larger as an
upperbound, and 10 times using the binary search. This apparently
big relative increase is exaggerated due to the fact that the size of
the P4080’s data cache way is also 4KB, and therefore this is the
amount of padding introduced by the stack randomization in order
to achieve the mapping of the stack frame in any data cache line.
This amount is much bigger than the few bytes of each stack frame,
but in absolute numbers it is low, since it still allows the stack limit
to stay within the range of hundreds of KBs.

The resulting overall partition sizes are well within the specifi-
cations considered for the memory requirements of future avionics
applications, as well as the total memory capacity of the future
avionics hardware platforms.

5.2 Timing Resources
With respect to the timing properties of the partitions and their pro-
cesses, none of the tasks periods or deadlines needed to be adjusted.
Current industrial practice [2] adds an engineering margin around
20% over high watermark execution times as WCET [16], which
incorporate further slack compared to the actual deadline. Note
however, that this margin is specific to the target platforms used in
current avionics systems, such as the Freescale MPC755 and cannot
be safely used in other architectures, especially the ones featuring
more high-performance hardware components, which can create
a big discrepancy between average and worst-case performance,
such as our platform, based on a highly speculative out-of-order
execution core, featuring multiple levels of cache.

In order to verify this hypothesis, we have run several experi-
ments of the applications without software randomization. For a
pool of 1000 observed execution times of both applications, we have
observed cases with unusually high execution times. Such a case is
shown in Figure 1, where we show the first 250 executions of a MIF
of APP1. We observe that there are 3 cases with a very big execution
time, in the order of 2× bigger than the rest of the execution times.
This behavior is not consistent with the application behavior on
flight computers based on the Freescale MPC755, and due to the
lack of full hardware documentation and deep observation facilities
it was not possible to identify its exact source. For this reason, the
20% margin is not safe for this architecture and it is only provided
below as a reference.

After applying software randomization in both applications, we
examined the execution time of the MIFs of interest of each one and
derived their pWCET using the commercial pWCET timing analysis
software RVS [17]. The timing analysis has been performed only

0

20000

40000

60000

80000

100000

120000
Ex

ec
ut

io
n

Ti
m

e
(c

yc
le

s)

MOET

pWCET

0

500000

1000000

1500000

2000000

2500000

3000000

Ex
ec

ut
io

n
Ti

m
e

(c
yc

le
s)

MOET

pWCET

(a) APP1 (b) APP2

Figure 2: MOET and pWCET values for 10−12 probability.

for the most critical process of each application. The pWCET results
for cut-off probability 10−12 and the Maximum Observed Execution
Time (MOET) for both applications are shown in Figure 2.

In APP1, the pWCET estimates for probability 10−12 are between
3-8% compared to the highwatermark, while in APP2 for probability
10−12 between 6-36%, with only six MIFs above 20%. However, as
we have already mentioned, the 20% margin is not appropriate for
P4080, since the platform exhibits much larger jitter, which might
not be able to be observed during analysis time measurements.

Finally, in Figure 3 we show the pWCET curve for a representa-
tive MIF of APP1 and APP2. We observe that the measurements of
the application, represented with the red line (Measured Execution
Time-MET) can only reach a probability up to 10−3, since we have
collected 1000 execution time samples. RVS integrates the latest
MBPTA implementation, the open-source MBPTA-CV [18], which
ensures that enough samples from the tail of the execution time
distribution are present in the measurements in order to accurately
obtain the parameters of the distribution required to compute the
pWCET. If more measurements from the tail of the distribution are
required, it instructs the user to collect more samples. In all the
cases, 1000 samples have been deemed enough for the application
of MBPTA, which have been collected in less than a working day,
too. Note that the execution time measurements are then processed
by MBPTA-CV in order to compute the pWCET curve, which is
shown with the magenta colored line (WCET_EVT). In that case,
the distributions can reach very low probabilities and as expected,
the pWCET distribution upperbounds the collected execution time
measurements.

6 RELATED WORK
Software randomization has been proposed in the literature for
several purposes. Security is probably the domain which has used
randomization more than any other one. The first notion of random-
ization for security can be found in the work of Forrest et al. [19],
who propose several methods to diversify applications. Address
space layout randomization (ASLR) [20] has been adopted by both
Unix-based and Microsoft’s operating systems for the desktop and
server markets, in order to make hardware attacks exploiting infor-
mation about the memory layout of programs, like buffer overruns,

harder. Recently, a microarchitectural flaw has been discovered
called Meltdown[21] in the design of modern processors based on
speculative execution, which allows leaking of information even
under ASLR. An improved version of ASLR, called Kernel Page Ta-
ble Isolation (KPTI) also known as KAISER [22] has been proposed,
in order to prevent such leakage of information.

Other uses of software randomization have found application
in software resilience to bugs. Berger et al. [23] proposed a series
of techniques which increase the robustness of applications in the
presence of memory access violations. Such techniques have also
found their way to commercial operating systems, such asMicrosoft
Windows 8 and later.

In the real-time and critical embedded systems domain, software
randomization is the enabler of MBPTA [1] properties on con-
ventional hardware. In particular, software randomization allows
to comply with the requirement of execution time of end-to-end
measurements to exhibit a behavior that can be described by an in-
dependent and identically distributed random variable. At the same
time, the random execution time behavior of the system provides
the same behavior both at analysis and during the execution time,
satisfying the second requirement of MBPTA, too.

Several previous works in the literature have applied software
randomization in the context of MBPTA on industrial case studies.
Wartel et al. [2] applied dynamic software randomization on two
avionics applications and provided a comparison with hardware
software randomization. However, their evaluation was based on a
simulated hardware platform and used an academic open-source
RTOS, while our work is executed on a real industrial setup, with
actual COTS hardware and a commercial ARINC653 RTOS. For this
reason, we had to deal with the resource management issues which
have not been detected in earlier preliminary evaluations.

Cros et al. [4] applied software randomization on an aerospace
case study. Their work is similar to ours, since they also use dy-
namic software randomization on COTS hardware (LEON3) with a
commercial RTOS (SYSGO RTEMS SMP). However, their work is
only focused on the timing analysis of the application with MBPTA.
In particular they present the modifications required to the dynamic
software randomization to be ported to their target platform and to
support a bounded amount of memory and execution time, which is

(a) APP1 (b) APP2

Figure 3: pWCET plots and measurements for representative MIFs of each application.

required for real-time systems. In contrast, our work solely focuses
on the challenges arising from the use of software randomization
in more restrictive environments such as avionics, which require
the determination and allocation of explicit memory and timing
budgets for each application and need to be adjusted accordingly
when they are software randomized.

Kosmidis et al. [10] used static software randomization on an
academic model-based generated application, resembling an auto-
motive control application derived from an industrial application
specification. Their setup is based on the AURIX Tricore processor
and uses the ERIKA open source RTOS. Similar to [4] this work
is also only focused on the ability to compute a WCET on a deter-
ministic platform using software randomization, and does not take
into account the impact of software randomization in the resource
allocation of software units.

Finally, several other works used commercial applications on
top of MBPTA compatible hardware. Wartel et al. [16] performed
the first application of MBPTA on avionics software, however they
used a hardware simulator and no RTOS. Fernandez et al. [3] com-
puted the pWCET of a thruster application from the aerospace
domain, while Hernandez et al [8] evaluated the implementation
of a hardware randomized processor with an aerospace case study,
too. Agirre et al. [9] define a safety concept for the application of
MBPTA on either a hardware or software randomized platform
for a railway application, while the same application is used by
Mezzetti et al. [24] for the evaluation of a path coverage technique
for MBPTA and randomized caches. However, hardware randomiza-
tion does not present any challenge from the application or RTOS
point of view, since it is completely transparent to both.

7 CONCLUSION
In this paper we explained the implications of using Dynamic Soft-
ware Randomization in an avionics environment and we presented
the solutions we developed for this task. In particular, software ran-
domization requires the adjustment of memory and timing budgets
allocated for ARINC653 applications. To that end, we presented a
method to compute the upperbounds of the various memory re-
quirements of avionics applications and showed that it can be used
in practice even for applications with large memory footprint. To

demonstrate its effectiveness, we successfully applied DSR in two
commercial avionics applications on an industrial COTS hardware
and RTOS setup, obtaining their pWCET estimations with MBPTA,
which are competitive with respect to current industrial practice
based on measurements.

ACKNOWLEDGMENTS
The work leading to these results has been funded by the European
Community’s Seventh Framework Programme (FP7/2007-2013) un-
der the PROXIMA Project (grant agreement 611085). Moreover, it
has been partially supported by the Spanish Ministry of Science and
Innovation under grant TIN2015-65316-P and the HiPEAC Network
of Excellence.

REFERENCES
[1] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Var-

danega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and
F. J. Cazorla, “Measurement-Based Probabilistic Timing Anal-
ysis for Multi-path Programs,” in Euromicro Conference on
Real-Time Systems (ECRTS), July 2012, pp. 91–101.

[2] F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z. Stephen-
son, B. Triquet, E. Quiñones, C. Lo, E. Mezzetti, I. Broster,
J. Abella, L. Cucu-Grosjean, T. Vardanega, and F. Cazorla,
“Timing Analysis of an Avionics Case Study on Complex Hard-
ware/Software Platforms,” in Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2015, pp. 397–402.

[3] M. Fernandez, D. Morales, L. Kosmidis, A. Bardizbanyan,
I. Broster, C. Hernandez, E. Quiñones, J. Abella, F. Cazorla,
P. Machado, and L. Fossati, “Probabilistic Timing Analysis on
Time-Randomized Platforms for the Space Domain,” in De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE), March 2017, pp. 738–739.

[4] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster,
and F. J. Cazorla, “Dynamic Software Randomisation: Lessons
Learned From an Aerospace Case Study,” in Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE),
March 2017, pp. 103–108.

[5] F. J. Cazorla, J. Abella, J. Andersson, T. Vardanega, F. Vatrinet,
I. Bate, I. Broster, M. Azkarate-Askasua, F. Wartel, L. Cucu,

F. Cros, G. Farrall, A. Gogonel, A. Gianarro, B. Triquet, C. Her-
nandez, C. Lo, C. Maxim, D. Morales, E. Quiñones, E. Mezzetti,
L. Kosmidis, I. Aguirre, M. Fernandez, M. Slijepcevic, P. Conmy,
and W. Talaboulma, “PROXIMA: Improving Measurement-
Based Timing Analysis through Randomisation and Proba-
bilistic Analysis,” in Euromicro Conference on Digital System
Design (DSD), 2016.

[6] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla, “A Cache
Design for Probabilistically Analysable Real-time Systems,” in
Design, Automation and Test in Europe Conference and Exhibi-
tion (DATE), 2013, pp. 513–518.

[7] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. Berger,
and F. J. Cazorla, “Probabilistic Timing Analysis on Conven-
tional Cache Designs,” inDesign, Automation and Test in Europe
Conference and Exhibition (DATE), 2013, pp. 603–606.

[8] C. Hernández, J. Abella, F. Cazorla, A. Bardizbanyan, J. Ander-
sson, F. Cros, and F. Wartel, “Design and Implementation of
a Time Predictable Processor: Evaluation With a Space Case
Study,” in 29th Euromicro Conference on Real-Time Systems,
ECRTS 2017, 2017, pp. 16:1–16:23.

[9] I. Agirre, M. Azkarate-Askasua, A. Larrucea, J. Perez, T. Var-
danega, and F. J. Cazorla, “A Safety Concept for a Railway
Mixed-Criticality Embedded System Based on Multicore Par-
titioning,” in 2015 IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing and Com-
munications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, Oct 2015, pp. 1780–1787.

[10] L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti,
E. Quiñones, J. Abella, T. Vardanega, and F. Cazorla,
“Measurement-Based Timing Analysis of the AURIX Caches,”
in International Workshop on Worst-Case Execution Time Anal-
ysis (WCET), 2016, pp. 9:1–9:11.

[11] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and
F. Cazorla, “TASA: Toolchain Agnostic Software Randomisa-
tion for Critical Real-Time Systems,” in International Confer-
ence On Computer Aided Design (ICCAD), 2016, pp. 59:1–59:8.

[12] ARINC, “Avionics Application Software Standard Interface:
ARINC Specification 653P1-3. Aeronautical Radio,” 2010.

[13] J. L. Bentley and A. C. Yao, “An Almost Optimal Algorithm for
Unbounded Searching,” Information Processing Letters, vol. 5,

pp. 82–87, 1976.
[14] FreeScale, P4080 QorIQ Integrated Multicore Communication

Processor Family Reference Manual. Rev 1, 2012.
[15] SYSGO, “Pikeos,” https://www.sysgo.com/products/pikeos-

hypervisor/partitions-guest-os, Accessed August 2018, 2003.
[16] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones, J. Abella,

A. Gogonel, A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega,
and F. J. Cazorla, “Measurement-Based Probabilistic Timing
Analysis: Lessons from an Integrated-Modular Avionics Case
Study,” in IEEE Symposium on Industrial Embedded Systems
(SIES), June 2013, pp. 241–248.

[17] Rapita Systems Ltd., “Rapitime, part of the rapita verification
suite,” 2004, http://www.rapitasystems.com/products/rvs, Ac-
cessed August 2018.

[18] J. Abella, M. Padilla, J. Castillo, and F. Cazorla, “Measurement-
Based Worst-Case Execution Time Estimation Using the Coef-
ficient of Variation,” ACM Transactions Design Automation of
Electronic Systems, vol. 22, no. 4, pp. 72:1–72:29, Jun. 2017.

[19] S. Forrest, A. Somayaji, and D. H. Ackley, “Building Diverse
Computer Systems,” in Proceedings. The Sixth Workshop on Hot
Topics in Operating Systems, May 1997, pp. 67–72.

[20] PaX Team, “PAX,” 2001, https://pax.grsecurity.net, Accessed
August 2018.

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Melt-
down,” ArXiv e-prints, Jan. 2018.

[22] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “KASLR is Dead: Long Live KASLR,” in Engineer-
ing Secure Software and Systems - 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceedings. Cham:
Springer International Publishing, 2017, pp. 161–176.

[23] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic Memory
Safety for Unsafe Languages,” in Proceedings of the ACM SIG-
PLAN 2006 Conference on Programming Language Design and
Implementation. ACM Press, 2006, pp. 158–168.

[24] E. Mezzetti, M. Fernandez, A. Bardizbanyan, I. Agirre, J. Abella,
T. Vardanega, and F. Cazorla, “EPC Enacted: Integration in an
Industrial Toolbox and Use against a Railway Application,” in
2017 IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), April 2017, pp. 163–174.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 30.60 points
 Normalise (advanced option): 'original'

 32

 D:20180816092532
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 30.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

