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Support-Reducing Decomposition
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Abstract—Decomposition is a technology-independent process,
in which a large complex function is broken into smaller, less
complex functions. The costs of two-level or factored-form rep-
resentations (cubes and literals) are used in most decomposition
methods, as they have a high correlation with the area of cell-
based designs. However, this correlation is weaker for field-
programmable gate arrays (FPGAs) based on look-up tables.
Furthermore, local optimizations have limited power due to the
structural bias of the circuit descriptions.

This paper tries to reduce the structural biasing by remapping
the LUT network and decomposing the derived functions using
the support as cost function. The proposed method improves the
FPGA mapping results of a commercial tool for the 20 largest
MCNC benchmarks, with gains of 28% in delay plus 18% in
area when targeting delay, and a reduction of 28% in area plus
14% in delay with area as cost function. Results with 23% less
area and 6% less delay are obtained after physical synthesis (post
place-and-route). Moreover, 12 of the best known results for delay
(and 3 for area) of the EPFL benchmarks are improved.

Index Terms—Logic decomposition, logic synthesis, perfor-
mance optimization, support reducing, technology mapping.

I. INTRODUCTION

F IELD-PROGRAMMABLE gate arrays (FPGAs) are inte-
grated circuits consisting of programmable logic blocks

and interconnections. FPGAs can be reprogrammed multiple
times, and have a much smaller initial cost and production
time in comparison with application-specific integrated circuits
(ASIC). For these reasons, FPGAs are largely used for ASIC
prototyping and low-volume applications. However, when
compared to ASICs, the flexibility given by FPGAs comes at
the expense of larger area, power consumption, and delay [2].
Recently, FPGAs started to be employed in the optimization of
specific tasks in data centers, with technology leaders making
efforts in hybrid solutions with ASICs and FPGAs [3], [4].

The FPGA implementation process inherited many tech-
niques from the ASIC design flow. The use of well-established
methods enabled the fast growing and wide usage of FPGAs,
but these algorithms generally have cost functions customized
for cell-based designs, in which the area is proportional to the
number of transistors. Usual cost functions in logic synthesis
are cubes in sum-of-product (SOP) forms, literals in Boolean
function expressions, or nodes and levels of And-Inverter
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Graphs (AIGs). On the other hand, FPGAs based on look-
up tables (LUTs) are composed of logic blocks with k inputs
(typically 4 to 6), and each LUT can implement any logic
function of up to k inputs. A study on this miscorrelation is
presented in [5], showing that the reduction of nodes and levels
in AIGs does not necessarily translates to fewer LUTs or less
logic depth in the FPGA mapping generated.

A. Previous work
Several works on FPGA mapping are based on cut-

enumeration, performing a covering of the subject graph
using k-cuts [6]–[8]. These cut-based techniques vary on the
algorithms, parameters, and cost functions used for the cut-
enumeration and covering. Nevertheless, the quality of the
solution heavily depends on the structure of the subject graph.

A second group of works rely on Binary Decision Diagrams
(BDDs) to perform FPGA mapping [9]–[12]. BDDs usually
provide per se a good starting point for FPGA mapping, as
the redundant variables are removed and the structure size is
reduced. Also, BDDs enable the use of functional techniques,
reducing the structural bias. However, the complexity of BDDs
increases significantly with the number of variables, becoming
computationally unfeasible for large designs. Thus, BDD-
based methods are often applied to portions of the circuit
(partial collapsing), but these methods are also structurally
biased. This work proposes to combine these two strategies,
using both functional decomposition and cut-based mapping.

The idea of performing decomposition while reducing the
support (and targeting FPGAs) has already been proposed. The
support is minimized using don’t cares in [13], as explained
in [14]. In [15], it is proposed a complex decomposition aiming
support minimization, by identifying the compatibility of all
variables (or classes) in the bound-set. BoolMap [9] uses
the decomposition proposed in [15]. Our work proposes the
restructuring of the LUT network using the support size as
cost function, with the aid of simple and fast decompositions.

The support-reducing techniques presented in this paper are
well-known methods, with the exception of the abstraction-
based decompositions (see Section IV-E). Other decomposition
methods could be considered, such as [15]–[18], which are
slower, but could improve the quality of results. Still, the key
idea is to consider the support size as the cost function for
decomposition, which restructures the subject graph targeting
LUT-based FPGAs, and not the techniques incorporated.

In this paper, a decomposition of a function F is considered
support-reducing if the decomposing functions have their
support size smaller than F . This definition differs from [19],
which limits the term support-reducing to disjoint-support
decompositions (DSD).
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Fig. 1. Functionally equivalent, but structurally different AIGs, obtained via (a) algebraic factorization, and (b)(c) support-reducing decomposition.

B. Contributions of this paper

This work proposes two main contributions:
1) A functional decomposition, which is guided by the size

of the support, and it is based on simple and fast support-
reducing techniques.

2) A recursive remapping approach, that reduces the struc-
tural bias of the subject graph, and uses the FPGA
mapping metrics as cost function.

The proposed approaches are implemented into an
FPGA remapping tool, named Support-Reducing Remapping
(SR-map). By remapping the results of a commercial tool for
the 20 largest MCNC benchmarks, SR-map is able to reduce
delay in 28% (plus 18% in area) when targeting delay, and
improve area in 28% (plus 14% in delay) with area as cost
function. The main reasons for these improvements are:

1) The FPGA mapping metrics are used to guide the
resynthesis algorithm, instead of literals and cubes.

2) A new and aggressive collapsing strategy is applied,
instead of a local partial collapsing.

3) A new structure is generated by a support-reducing
functional decomposition.

The goal of using the mapping result as cost function
is to reduce the miscorrelation between intermediate and
final results, accepting transformations that will contribute to
improve the final solution [5]. This is possible with fast and
high-quality FPGA mapping algorithms [8].

BDD-based methods often rely on the partial collapsing of
the subject graph [9]–[11]. The effectiveness of this process
depends on the structure of the subject graph, which can
easily reach a local minimum. This work performs a recur-
sive global collapsing on the LUT network (see Section V),
with the goal of obtaining a result less biased by the structure
of the subject graph.

The support size as cost function in the decomposition
makes sense for FPGAs: a k-input function with any number
of literals can be implemented with a single LUT of k inputs.
This concept is illustrated with an example in Section II.

The rest of the paper is organized as follows. Some pre-
liminary concepts are described in Section III. Section IV
presents the support-reducing decomposition, and the recursive
remapping is explained in Section V. Section VI provides the
results and comparisons with academic tools and a commercial
tool. Section VII concludes the paper.

TABLE I
COMPARISON OF THE FPGA MAPPING FOR THE AIGS OBTAINED VIA

ALGEBRAIC FACTORIZATION AND SUPPORT-REDUCING DECOMPOSITION.

LUT size
Algebraic

factorization
Support-reducing

decomposition
LUTs Levels LUTs Levels

2 inputs 11 4 9 4
3 inputs 6 3 4 2
4 inputs 5 2 2 2
5 inputs 3 2 2 2

II. MOTIVATING EXAMPLE

In this section, an example is presented to illustrate the
support-reducing decomposition. Let us assume the following
expression, which represents a 6-input Boolean function:

F (a, b, c, d, e, f) = abcdef + abcdef (1)

This expression has 12 literals, and it is also the optimal
AND/OR factored form, as there is no other expression with
fewer literals. The AIG shown in Fig. 1(a) is derived from the
expression in (1). A structural FPGA mapping targeting LUTs
with 4 inputs is also shown in Fig. 1(a), with the 5 shadowed
regions representing the LUT covering of the AIG. The FPGA
mapping derived by [8] is the following:

x1 = abc, x2 = def, x3 = abc, x4 = def

x5 = x1x2 + x3x4

By applying the proposed support-reducing decomposition
on (1), the following expression (with 20 literals) is obtained:

F = (ab+ ab)(bc+ bc)(cd+ cd)(de+ de)(ef + ef) (2)

In this case, the function was decomposed with the abstraction-
based AND bi-decomposition (see Section IV-E). At each step,
a variable is removed from the support of the decomposed
function, with the aid of the existential abstraction ∃xiF . The
function is decomposed in the form F = (∃xiF ) ·H , with H
obtained via don’t care minimization.

The AIG presented in Fig. 1(b) is derived from expression
(2). This AIG has 8 more nodes than the one in Fig. 1(a). This
means that it would likely result in a circuit with larger area,
if implemented as a cell-based design. However, its mapping
with 4-input LUTs has only 2 LUTs, whereas the one for
Fig. 1(a) has 5. The covering given by [8] is the following:

x1 = (ab+ ab)(bc+ bc)(cd+ cd)

x2 = x1(de+ de)(ef + ef)
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Similarly, the FPGA mapping for LUTs of different sizes
would require fewer LUTs for the AIG obtained by the
support-reducing decomposition, as shown in Table I. The
derived FPGA mapping is smaller for all cases, even for 2-
input LUTs, which is illustrated in Fig. 1(c).

Note that a and a are different literals. This makes sense
for cell-based designs, as each literal will result in a transistor.
Still, a and a are the same in terms of support, as both refer to
the variable a. Therefore, the support is the key cost function
for the proposed decomposition, generating a structure more
suitable for LUT-based FPGAs, even with larger AIGs.

III. PRELIMINARIES

A. Boolean Functions

An incompletely specified Boolean function (ISF) F (X) of
n Boolean variables is a mapping from an n-dimensional into
a 1-dimensional Boolean space: {0, 1}n → {0, 1,−}, where
‘−’ denotes a don’t care value. The sub-domains of F that
evaluate to ‘1’, ‘0’ and ‘−’ are the ON-set, OFF-set and DC-
set, respectively. F is a completely specified function if its
DC-set is empty. The set X = (x1, x2, . . . , xn) is denoted as
the support of F , and |F | denotes the size of X (n variables).
The complement of F is denoted as F . The logic operations
AND, OR and XOR are denoted as ‘ · ’ (or simply ‘ ’), ‘+’,
and ‘⊕’, respectively.

B. Cofactors and derivations

The positive (negative) cofactor operation of F (X) with
respect to the variable xi ∈ X consists of assigning xi to one
(zero) in F (X), which can be represented as Fxi (Fxi ). A
cube-cofactor consists of performing the cofactor operation
recursively, e.g., assigning the variables {xi, xj} ⊆ X in
F (X) to xi = 0 and xj = 1, which can be denoted as Fxixj

.
Cofactors can be used to extract information from F with

respect to a variable in its support. Typical cofactor derivations
are: the Boolean difference (3), the existential (4) and the
universal abstractions (5), the Shannon expansion (6), and the
positive (7) and negative (8) Davio expansions.

δF/δxi = Fxi ⊕ Fxi (3)
∃xiF = Fxi + Fxi (4)
∀xiF = Fxi ·Fxi (5)

F = xi ·Fxi + xi ·Fxi (6)
F = (xi · δF/δxi)⊕ Fxi (7)
F = (xi · δF/δxi)⊕ Fxi (8)

C. And-Inverter Graphs

An And-Inverter Graph (AIG) is a directed-acyclic graph
(DAG) in which each node has 0 incoming edges - the primary
inputs (PIs), or 2 incoming edges - the AND nodes, or 1
incoming edge - the primary outputs (POs). Each edge can be
negated or not. Sequential elements are considered as PI/PO
pairs. Examples of AIG are shown in Fig. 1: the dashed lines
are negated edges, the circles are AND nodes, the squares at
the bottom are PIs, and the squares at the top are POs.

AIGs have a high correlation with its derived circuit imple-
mentation, with the area correlated with the size of the graph,
and the delay proportional to the number of levels between
PIs and POs. Structural hashing [20] is an operation which
ensures that the AIG has only one AND node with the same
incoming edges, considering permutation. Balancing [21],
rewriting [22], refactoring [20] and resubstitution [23] are
AIG transformations applied to reduce the nodes and levels
of AIGs. Some commonly used scripts in ABC [24] are dc2
and compress2rs [5], [25], which iterate these transformations.

D. FPGA mapping

Technology mapping consists of transforming a technology-
independent subject graph into a network of gates from a
technology. In FPGAs, the technology typically consists of
LUTs, which are logic blocks that can be configured to
implement any logic function of up to k variables.

In ABC [24], the subject graph is a structurally hashed
AIG, and the FPGA mapping is performed on top of this
structure [8]. The FPGA mapping may vary significantly for
functionally equivalent but structurally different AIGs [26].
For example, the AIGs shown in Fig. 1(a) and Fig. 1(b)
implement the same function. However, the FPGA mapping
(k=4) for the AIG of Fig. 1(a) has 5 LUTs, whereas the
mapping for the AIG in Fig. 1(b) has 2 LUTs.

E. Binary Decision Diagrams

A Binary Decision Diagram (BDD) is a well-known rep-
resentation of Boolean functions [9]–[11]. A BDD is a DAG
with two terminal nodes (0 and 1), and each nonterminal node
represents a Boolean variable with two outgoing edges: the
0-edge and the 1-edge. A reduced-ordered BDD (ROBDD) is
a BDD in which the nonterminal nodes are organized in a
fixed variable order, in such a way that the number of BDD
nodes is reduced, and the redundant variables are removed.
Notice that ROBDDs are also a representation of the Shannon
expansion, which is a support-reducing decomposition.

In this work, ROBDDs are referred as BDDs, and are
the representation of choice for the support-reducing decom-
position. BDDs are an efficient representation (with a few
exceptions) and are able to handle a larger amount of variables
than other functional representations, e.g., truth tables. Also,
there are modern software libraries which can be used to
implement efficiently the techniques presented in Section IV.

F. Collapsing

In this work, the process of collapsing a circuit [21] is
performed for each output individually. The result of the
collapsing process is the logic function of a primary output
based on the primary inputs, as shown in the example of
Fig. 2. The output function obtained is the same regardless
of the circuit structure, therefore the structural don’t cares are
removed [27]. Notice that logic sharing between outputs is
potentially lost in this process, as observed in Fig. 2. This
approach may result in larger area, but also increases the
possibilities of reducing circuit delay.
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Fig. 2. Example of the collapsing process for a primary output.

In order to obtain an AIG from a collapsed function, and
therefore a subject graph for FPGA mapping, it is necessary
to decompose such function. For example, the decomposition
can be performed via algebraic factorization [28] (strash
command in ABC), or using the BDD structure, replacing
each BDD node by a multiplexer (muxes command in ABC).
In this work, the support-reducing decomposition is applied
(see Section IV), followed by structural hashing.

IV. SUPPORT-REDUCING FUNCTIONAL DECOMPOSITION

This section presents the proposed functional decompo-
sition, which is based on simple and fast support-reducing
techniques. The decomposition is technology-independent, i.e.,
it is agnostic to the target FPGA technology. The goal is to
generate a structure guided by the support size. The resulting
subject graph typically produces a faster or smaller LUT net-
work, but there are corner cases that poor results are obtained,
e.g., multiplier. For this reason, the remapping approach in
Section V selects the best result between the existing LUT
network and the one derived by the decomposition.

The input for the decomposition is an ISF. It is possible
to identify external don’t care conditions (DC) and use them
as input to the decomposition. However, in this work, the
only don’t care conditions identified are from the internal
recursions of the method. The output of the decomposition is a
Boolean network consisting of logic gates from the set {AND2,
OR2, XOR2, MUX21, AO21, AX21}, which are required to
implement the techniques considered.

Fig. 3 presents a pseudo-code of the algorithm. The trivial
cases are checked at line 4. If the DC-set is not empty, then
minimization is applied (line 7), updating F if the minimized
function has a support smaller or equal to F . The minimization
can be implemented by any method that accepts an ISF, e.g.,
Espresso [28], BDD minimization [29], [30].

The decomposition method described in Fig. 4 is invoked at
line 12, which receives an ISF as input and returns a solution
consisting of a decomposing gate (op) and a set of functions
(〈F1, ..., Fn〉). If the solution has no disjoint support, then the
satisfiability don’t care (SDC) conditions are calculated by
CALCSDC (line 15), which is implemented as in [27].

Each derived function is decomposed recursively, generating
a Boolean network (line 17). The network obtained is con-
nected to the related input in the decomposing gate (op) at
line 18. Notice that the resulting network is also a tree, and

1: function SUPPORTREDUCEDECOMPOSITION(F , DC)
Input: An ISF, with the ON-set (F ) and the DC-set (DC)
Output: A Boolean network (tree) that implements the ISF

2: // check for trivial cases (constants, variables)
3: // the support size of F is denoted as |F |
4: if |F | ≤ 1 then return F
5: // if DC-set is not empty, then minimize F
6: if DC 6= ∅ then
7: Fmin = MINIMIZE(F , DC) // Espresso [28], BDD reduction [29]
8: // accept Fmin if support is reduced or the same
9: if |Fmin| ≤ |F | then F = Fmin

10: // perform decomposition
11: // op ∈ {AND2, OR2, XOR2, MUX21, AO21, AX21}
12: (op, 〈F1, ..., Fi, ..., Fn〉) = DECOMPOSEFUNCTION(F , DC)
13: for each function Fi in 〈F1, ..., Fi, ..., Fn〉 do
14: // calculate satisfiability don’t care as in [27]
15: DCi = DC + CALCSDC(op, i, 〈F1, ..., Fi, ..., Fn〉)
16: // decompose Fi recursively
17: network = SUPPORTREDUCEDECOMPOSITION(Fi, DCi)
18: op.connect(i, network) // connect network to gate input i
19: return op // root of the tree

Fig. 3. Pseudo-code of the proposed support-reducing decomposition.

1: function DECOMPOSEFUNCTION(F , DC)
Input: An ISF, with the ON-set (F ) and the DC-set (DC)
Output: A decomposition (op, 〈F1, ..., Fi, ..., Fn〉)

2: Q = ∅ // priority queue of potential solutions
3: // check for essential literals
4: DECOMPOSEESSENTIALS(F , 1, Q)
5: DECOMPOSEESSENTIALS(F , 0, Q)
6: // if essential literals found, return
7: if Q 6= ∅ then return best solution ∈ Q
8: // check one-variable decompositions
9: DECOMPOSEONEVARIABLE(F , DC, Q)

10: // check two-variable decompositions
11: DECOMPOSETWOVARIABLES(F , DC, Q)
12: return a solution with the lowest cost ∈ Q

Fig. 4. Pseudo-code for an step of the support-reducing decomposition.

the task of sharing logic is postponed to structural hashing and
AIG optimizations (see Section V).

The method in Fig. 4 performs several support-reducing
techniques on the input function F , selecting the one with
the lowest sum of support sizes, given that all functions in
〈F1, ..., Fn〉 have a support size smaller than |F |. If several
solutions are found, additional costs are considered (see Sec-
tion IV-A). Other techniques could be incorporated [15]–[18],
which are slower but could improve the results. Still, the idea
is to use simple and fast techniques that reduce the support,
obtaining an efficient method that is able to produce good
results by using the support size as cost function.

The support-reducing techniques tried are: (1) essential
literals (lines 4-5), which is a simple and fast disjoint-support
decomposition (DSD); (2) trying to remove one variable from
the support (line 9), using Shannon and Davio expansion
(and its simplifications); (3) trying to remove two variables
(line 11), with additional DSD techniques; and (4) a new bi-
decomposition method, based on the universal and existential
abstractions, applied to one and two variables.

A. Cost function

In this work, the cost function is the sum of support sizes
of the derived functions, i.e., min

∑i=n
i=1 |Fi|. Moreover, a

solution is only accepted if all derived functions have a support
size smaller than F , i.e., ∀i|Fi| < |F |. Additionally, if there
is more than one solution with the smallest sum of support
sizes, then the following costs are considered, in this order:



5

1: procedure DECOMPOSEESSENTIALS(F , P , Q)
Input: Boolean function F , polarity P , priority queue of decompositions Q
Post: decompositions added to Q

2: E = 〈e1, ..., en〉 // set of n essential literals of F
3: if E == ∅ then return
4: H = Fe1...en // cube-cofactor of F w.r.t. E
5: if H 6= 1 then
6: G = (e1 · ... · en) // AND of all essential literals
7: // polarity P ∈ {0, 1}
8: if P == 1 then Q.add(G ·H) // AND2
9: else Q.add(G+H) // OR2

10: else
11: G1 = (e1 · ... · en

2
) // AND of essential literals 1 to n

2

12: G2 = (en
2

+1 · ... · en) // AND of essential literals n
2 +1 to n

13: if P == 1 then Q.add(G1 ·G2) // AND2
14: else Q.add(G1 +G2) // OR2

Fig. 5. Pseudo-code for decomposition using essential literals.

1) The sum of squares of the BDD sizes [31], targeting a
balanced solution, which favors delay reduction.

2) The gate implementation cost in CMOS transistors, e.g.,
an AND2 gate costs less than a MUX21 or an XOR2.

As BDDs are the representation of choice, the cost function
exploits their structure to guide the decomposition, but similar
costs could be derived for other representations. For example,
the support size could be used instead of the BDD size.

B. Essential literals

Fig. 5 describes the decomposition method using essential
literals, i.e., literals that are common to all prime implicants.
For example, given F (X) and {a, b, c} ⊆ X , if {a, b, c}
are essential literals of F (X), then F can be rewritten as
F (X) = (abc)Fabc. Similarly, given G(X) = F (X) and
{x, y, z} ⊆ X , if {x, y, z} are essential literals of G(X), then
F can be decomposed as F (X) = (xyz) +Gxyz .

Decomposition with essential literals is checked first and
preferred to the other techniques, as it is a fast DSD method
which removes the simple part of the decomposition. The
essential literals of F are checked at line 8 (polarity P = 1),
and the one for F at line 9 (polarity P = 0). If the function
is solely composed of essential literals, i.e., the cube-cofactor
w.r.t. to the essential literals is the constant 1 (F is a cube),
then a balanced decomposition is performed (lines 13-14).
Example: Consider the function F = ac(b(d+ f) + e),
which has the essential literals {a, c}. By calculating the cube
cofactor Fac = (b(d+ f) + e), it is possible to decompose
the function F = (ac)(b(d+ f) + e). Let us consider another
function G = (ab+ cd) + (e+ f), which has no essential
literals. The complement function G = H = (a+ b)(c+ d)ef
has the essential literals {e, f}. The cube cofactor in this
case is Hef = (a+ b)(c+ d), deriving the decomposition

G = (ef) + (a+ b)(c+ d) = (e+ f) + (ab+ cd)

C. One-variable decompositions

The basic one-variable support-reducing decompositions are
given by the Shannon expansion (6), and the Davio expan-
sions (7-8). These methods isolate one variable, thus reducing
the support size of the derived functions in at least one.
Simplifications of these expansions can be obtained given

1: procedure DECOMPOSEONEVARIABLE(F , DC, Q)
Input: ON-set (F ), DC-set (DC), priority queue of decompositions Q
Post: decompositions added to Q

2: for each variable xi ∈ support of F do
3: if δF/δxi == 1 then
4: Q.add(xi ⊕ Fxi

)
5: Q.add(xi ⊕ Fxi

)
6: return
7: if ∃xiF == Fxi

then
8: Q.add((xi · Fxi

) + Fxi
) // AO21

9: else if ∃xiF == Fxi
then

10: Q.add((xi · Fxi
) + Fxi

) // AO21
11: else // full Davio and Shannon expansions
12: Q.add((xi · δF/δxi)⊕ Fxi

) // AX21
13: Q.add((xi · δF/δxi)⊕ Fxi

) // AX21
14: Q.add(xi · Fxi

+ x · Fxi
) // MUX21

15: // one-variable abstraction-based bi-decompositions
16: if ∃xiF 6= 1 then
17: G = ∃xiF
18: H = MINIMIZE(F , G+ DC) // Espresso [28], BDD reduction [29]
19: Q.add(G ·H) // AND2
20: if ∀xiF 6= 0 then
21: G = ∀xiF
22: H = MINIMIZE(F , G+ DC) // Espresso [28], BDD reduction [29]
23: Q.add(G+H) // OR2

Fig. 6. Pseudo-code for one-variable decompositions.

specific conditions, as shown in (9). Essential literals cover
the cases in which one of the cofactors is a constant.

F = xi ⊕ Fxi
, if δF/δxi = 1

F = xi ⊕ Fxi
, if δF/δxi = 1

F = xi ·Fxi
+ Fxi

, if ∃xiF = Fxi

F = xi ·Fxi
+ Fxi

, if ∃xiF = Fxi

(9)

The Davio and Shannon expansions are added to the queue
in the method described in Fig. 6 (lines 12-14). The simplifi-
cations listed in (9) are also checked (lines 4-5, 8 and 10) and
preferred to the full Davio and Shannon expansions.

D. Two-variable decompositions

In [32], it is proposed the use of simple cofactor tests in
order to perform disjoint-support decompositions. The cofactor
tests and decompositions for AND and XOR are described in
(10), given F (X) and {x, y} ⊆ X . These tests are performed
in the method of Fig. 7 (lines 4-10, and 18).

If one of the cube-cofactors in (10) is a constant, then
simplifications can be derived (lines 14-15 and 20-22). If this
is not possible, then a MUX21 gate is defined for the AND
decomposition (line 16), and an AX21 gate for the XOR
decomposition (line 23).

F = (xy)Fx + (xy)Fxy , if Fx = Fy

F = (xy)Fx + (xy)Fxy , if Fx = Fy

F = (xy)Fx + (xy)Fxy , if Fx = Fy

F = (xy)Fx + (xy)Fxy , if Fx = Fy

F = ((x⊕ y) · δF/δx)⊕ Fxy , if δF/δx = δF/δy

(10)

E. Abstraction-based bi-decompositions

A Boolean function F is bi-decomposable if it can be
written as F = G op H , where op is a Boolean operation and
G and H are non-constant functions. This work introduces
two methods for bi-decomposition, which are based on the
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1: procedure DECOMPOSETWOVARIABLES(F , DC, Q)
Input: ON-set (F ), DC-set (DC), priority queue of decompositions Q
Post: decompositions added to Q

2: for each pair of variables xi, xj ∈ support of F do
3: found = true // checks AND DSD condition
4: if Fxi

== Fxj
then

5: S = (xi · xj); G = Fxixj
; H = Fxi

6: else if Fxi
== Fxj

then
7: S = (xi · xj); G = Fxixj

; H = Fxi
8: else if Fxi

== Fxj
then

9: S = (xi · xj); G = Fxixj
; H = Fxi

10: else if Fxi
== Fxj

then
11: S = (xi · xj); G = Fxixj

; H = Fxi
12: else found = false

13: if found then
14: if G == 0 then Q.add(S ·H) // AND2
15: else if G == 1 then Q.add(S +H) // OR2
16: else Q.add(S ·H + S ·G) // MUX21

return
17: // checks XOR DSD condition
18: if δF/δxi == δF/δxj then
19: S = (xi ⊕ xj), G = Fxy , H = δF/δxi

20: if G == 0 then Q.add(S ·H) // AND2
21: else if G == 1 then Q.add(S +H) // OR2
22: else if H == 1 then Q.add(S ⊕G) // XOR2
23: else Q.add((S ·H)⊕G) // AX21

return
24: // two-variable abstraction-based bi-decompositions
25: if ∃xixjF 6= 1 then
26: G = ∃xixjF
27: H = MINIMIZE(F , G+ DC) // Espresso [28], BDD reduction [29]
28: Q.add(G ·H) // AND2
29: if ∀xixjF 6= 0 then
30: G = ∀xixjF
31: H = MINIMIZE(F , G+ DC) // Espresso [28], BDD reduction [29]
32: Q.add(G+H) // OR2

Fig. 7. Pseudo-code for two-variable decompositions.

existential and the universal abstractions. As described in [14],
these abstractions are related to F as follows:

∀xiF ≤ F ≤ ∃xiF. (11)

The existential abstraction ∃xiF is larger than F . Therefore,
it implies an AND decomposition, e.g., F = ∃xiF ·H .
Similarly, the universal abstraction ∀xiF is smaller than F ,
and it implies an OR decomposition, e.g., F = ∀xiF + H .
Notice that this method can be applied to any number of
variables, as long as the abstractions are not constants, i.e.,
∃xiF 6= 1, and ∀xiF 6= 0. In this work, the abstraction-based
bi-decompositions are applied to one variable (lines 16-23 in
Fig. 6) and two variables (lines 25-32 in Fig. 7).

These abstractions have a characteristic of interest: their
support is smaller than F in at least one variable, i.e.,
|∃xiF | < |F |, and |∀xiF | < |F |, given that xi is in the
support of F . Consequently, it is possible to guarantee the
support reduction for at least one of the decomposing functions
by using these abstractions.

The method proposed differs from other bi-decomposition
methods [16]–[18], which try to identify variable partitions
and the decomposing functions. The abstraction-based bi-
decomposition is applied by setting one of the derived func-
tions (G) to an abstraction (∃xiF or ∀xiF ), and obtaining the
other function (H) via don’t care minimization.

The following conditions are used to obtain H via don’t
care minimization. For the AND bi-decomposition F = G ·H ,
F ≤ H ≤ F + G, given F and G. Considering G = ∃xiF ,
then F ≤ H ≤ F +∃xiF . Similarly, the condition for the OR

Step 1

Step 3

Run structural hashing, AIG
optimization and FPGA map (k)

Merge (structural hashing), run 
AIG optimization and FPGA map (k)

Circuit
description N

FPGA
mapping M1

... ...Om

... ...

OjO1

I1 Ii In

Extract the sub-network for each output,
collapse, decompose, and FPGA map (k)

select best
w.r.t. COST

select best
w.r.t. COST

select best
w.r.t. COST

Extract shared sub-network, with the 
multiple fanout LUTs as outputs

Extract the sub-network for each 
output (with the Mf outputs as inputs),
collapse, decompose, and FPGA map (k)

Merge (structural hashing), 
run AIG optimization 

and FPGA map (k)

N can be a valid FPGA mapping (isMap flag)

generate
Mf mapping
recursively... ...

I1 Ii In F1 Fi Fn

... ... ... ...
I1 Ii In F1 Fi Fn

... ... ... ...
I1 Ii In F1 Fi Fn

... ... ... ...
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... ...
O1 Oj Om

... ...
I1 Ii In

... ...
I1 Ii In

... ...
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... ...Om
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... ...Om
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I1 Ii In

Step 2

F1 Fj Fm... ...

I1 Ii In

... ...

Shared 
sub-network Mf

Fig. 8. The recursive remapping approach.

bi-decomposition F = G + H is F ·G ≤ H ≤ F , given F
and G. Considering G = ∀xiF , then F · ∀xiF ≤ H ≤ F .
Example: Consider the function F = abcdef + abcdef . The
universal abstraction w.r.t. any variable is the constant 0.
Hence, it is not useful to perform the OR bi-decomposition
F = G+H , since it degenerates to G = 0 and H = F .
On the other hand, the AND bi-decomposition based on
the existential abstraction generates a good support-reducing
decomposition, as seen in Section II. Consider the existen-
tial abstraction w.r.t. variable a: G = ∃aF = bcdef + bcdef .
Using the conditions for H in an AND bi-decomposition
(F ≤ H ≤ F +G), the following ISF is defined:

abcdef + abcdef ≤ H ≤ a+ b+ c+ d+ e+ f

By applying Boolean minimization, H = (ab+ab) is obtained,
and the following AND bi-decomposition is produced:

F = (bcdef + bcdef)(ab+ ab)

Notice that this is not a disjoint-support decomposition.

V. RECURSIVE REMAPPING

This section presents the proposed remapping approach.
The idea is to collapse the whole LUT network recursively,
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1: function COLLAPSEDECOMPOSEMAP(N , k, COST, isMap)
Input: Circuit description (N ), LUT size (k), cost function (COST), flag (isMap)
Output: An FPGA mapping guided by COST (BestMap)

2: // Step 1 - obtain M1 by mapping (or remapping) input N
3: // run structural hashing, AIG optimizations, FPGA mapping
4: M1 = FPGAMAP(N , k, COST)
5: // define best mapping result regarding COST
6: if isMap and COST(N ) < COST(M1) then BestMap = N
7: else BestMap = M1

8: // if the number of levels is 1, return
9: if LEVELS(BestMap) == 1 then return BestMap

10: // Step 2 - obtain M2 by remapping outputs individually
11: outputNetworks = ∅ // best mapping for each output
12: // map each output individually
13: for each output i in BestMap do
14: // extract single output network
15: Ntk Oi = EXTRACTOUTPUTTOPIS(BestMap, i)
16: // collapse, decompose, optimize, FPGA mapping
17: Oi = COLLAPSEFPGAMAP(Ntk Oi, k, COST)
18: outputNetworks.insert(Oi, i)
19: // merge output networks using structural hashing
20: Ntk M2 = MERGENETWORKS(outputNetworks)
21: // run AIG optimizations, FPGA mapping
22: M2 = FPGAMAP(Ntk M2, k, COST)
23: if COST(M2) < COST(BestMap) then BestMap = M2

24: // Step 3 - obtain M3 by remapping outputs with a shared sub-network
25: sharedNodes = ∅ // set of shared nodes used
26: // create network with all multiple fanout nodes as primary inputs
27: tempNtk = MULTIPLEFANOUTTOPI(BestMap)
28: // map each output individually
29: for each output i in tempNtk do
30: // extract single output network
31: Ntk Oi = EXTRACTOUTPUTTOPIS(tempNtk, i)
32: // collapse, decompose, optimize, FPGA mapping
33: Oi = COLLAPSEFPGAMAP(Ntk Oi, k, COST)
34: if COST(Oi) < COST(outputNetworks[i]) then
35: outputNetworks.insert(Oi, i)
36: sharedNodes.insert(inputs of Oi)
37: if sharedNodes 6= ∅ then
38: // get shared sub-network with sharedNodes as outputs
39: sharedNtk = GETSHAREDSUBNETWORK(BestMap, sharedNodes)
40: Mf = COLLAPSEDECOMPOSEMAP(sharedNtk, k, COST, true)
41: // merge output networks and shared sub-network with struct. hashing
42: Ntk M3 = MERGENETWORKS(outputNetworks, Mf )
43: // run AIG optimizations, FPGA mapping
44: M3 = FPGAMAP(Ntk M3, k, COST)
45: if COST(M3) < COST(BestMap) then BestMap = M3

46: return BestMap

Fig. 9. Pseudo-code of the recursive remapping approach.

decompose, and select the best mapping for each circuit
part. An overview of the method is illustrated in Fig. 8,
and a pseudo-code detailing the proposed approach is shown
in Fig. 9. Different approaches were considered, such as
computing maximum fanout-free cones and performing partial
collapsing [10]. However, these methods were computationally
more expensive and produced worse results than the approach
proposed in this section. Notice that windowing and partial
collapsing are biased by the structure and by the order that
these processes are applied. On the other hand, the recursive
remapping proposed is more aggressive, leading to potential
(manageable) time-outs, but also larger gains.

The inputs for the remapping approach are a circuit descrip-
tion (N ), the number of LUT inputs (k), and a cost function
(COST), e.g., area or delay. The description can also be a valid
FPGA mapping (for k-LUTs), indicated by the flag isMap. The
output is an optimized FPGA mapping regarding COST.

The method can be divided into three sequential steps:
Step 1: Obtain LUT network M1 by mapping (or remap-
ping) the input description N . This is performed in function

FPGAMAP (line 4), which runs structural hashing and AIG
algebraic optimization. FPGA mapping is performed for each
different structure generated, returning the best mapping for
the cost function (COST).
Step 2: For each output, extract a single output cone from the
LUT network, optimize and map. The mapping is performed
in the function COLLAPSEFPGAMAP (line 17), which runs
collapsing, decomposition, AIG optimization, and FPGA map-
ping. Collapsing is a computationally expensive process that
may be unfeasible for complex networks, so a time-out is set
to avoid a long runtime. If collapsing is successful (and a BDD
is obtained, for example), then the decomposition presented in
Section IV is applied, generating a new network.

If there is a time-out (or if the support size is too large), then
the single output network extracted is the only one considered.
For each different network, structural hashing is performed,
followed by a single execution of AIG optimization scripts and
FPGA mapping. The best mapping for each output is greedily
selected, and the FPGA mapping M2 is generated by merging
these mappings using structural hashing (line 20), followed by
the function FPGAMAP (line 22).
Step 3: Extract a shared sub-network from the best mapping
found (N , M1 or M2). The outputs of this shared sub-
network are the nodes with multiple fanout identified in
topological order. These nodes are transformed to primary
inputs from the outputs perspective (line 27), and the function
COLLAPSEFPGAMAP is applied for each output. The imple-
mentation for the sub-network is obtained recursively (line 40),
until the number of levels is 1 (line 9). The FPGA mapping M3

is generated by merging the output networks and the mapping
of the shared sub-network using structural hashing (line 42),
followed by the function FPGAMAP (line 44). The method
returns the best mapping between N , M1, M2 and M3.

The recursive approach creates different optimization oppor-
tunities. Regarding M1, it is possible to derive better solutions
by applying AIG optimization in a shared part of the network,
instead of the whole circuit. Regarding M2, if it is not possible
to collapse the primary output function, it may be possible
for a less complex function, removing part of the structural
bias. Furthermore, an area recovery process is achieved, as a
common part between outputs is remapped.

VI. EXPERIMENTAL RESULTS

The support-reducing functional decomposition and the re-
cursive remapping are implemented in C++. BDDs are the
representation of choice for the functional decomposition,
and the CUDD BDD package [30] is used. CUDD provides
an intuitive C++ API, and efficient methods to implement
the decompositions we propose, with functions to calculate
cofactors and abstractions, to identify essential literals, and to
perform don’t care minimization. Also, BDDs are used in the
collapsing of the LUT network, and provide an input for the
decomposition without the need of a translation.

The FPGA mapping based on priority cuts [8] and
choices [33] implemented in ABC [24] is the one used in
the recursive remapping approach. All results passed formal
verification with the ABC command cec.
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TABLE II
FPGA MAPPING COMPARISON WITH BDD-BASED APPROACHES (k = 5).

Circuit
BoolMap [9]

(delay)
BDS-pga [10]

(delay) ABC (delay) SR-map (delay)
+ ABC (delay)

LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. Time(s)
5xp1 13 2 15 2 21 3 14 2 3
9sym 7 3 7 3 60 4 8 3 2
9symml 7 3 7 3 58 4 8 3 2
alu2 43 4 41 4 117 7 35 4 13
alu4 268 7 190 7 219 9 102 4 26
apex6 188 4 186 4 171 4 169 3 26
apex7 78 3 71 3 61 3 54 3 8
b9 41 3 40 3 33 3 38 2 3
C1355 98 5 65 4 66 4 66 4 157
C1908 137 7 119 7 95 6 86 6 217
C499 102 4 64 4 66 4 66 4 162
C5315 672 9 447 7 365 7 374 6 217
C880 134 8 108 8 87 7 92 6 55
clip 15 2 30 4 71 4 19 3 8
count 42 2 26 5 36 3 33 3 5
des 594 3 909 4 623 4 568 4 328
duke2 192 5 169 7 141 4 120 4 26
misex1 15 2 14 2 15 2 11 2 2
rd84 10 2 13 3 109 5 13 3 11
rot 228 6 218 9 203 6 215 5 43
t481 5 3 5 2 148 6 5 2 2
vg2 30 4 12 3 27 3 21 3 6
z4ml 5 2 5 2 5 2 5 2 1
Geomean 49.63 3.60 44.95 3.91 74.81 4.20 40.59 3.31 57.52
Ratio 1.00 1.00 0.91 1.09 1.51 1.17 0.82 0.92 -

In order to obtain a delay-oriented FPGA mapping with
ABC, the command ‘if -C 12 -K k’ is used, which primarily
targets delay, with a configuration of at most 12 priority cuts
per node [25]. Alternatively, area-oriented FPGA mapping is
obtained with the command ‘if -a -C 12 -K k’. The number
of LUT inputs varies for the different sets of benchmarks.
Regarding the BDD-based methods, k=5 is defined to compare
with the published results. For the remaining cases, the LUT
input size is k=6. Structural bias is further reduced by identi-
fying structural choices [33] using the commands ‘&synch2’
and ‘&dch’ on top of the best FPGA mapping obtained.

The proposed approach attempts to optimize a given FPGA
mapping. In the experiments presented in this section, the input
FPGA mapping is either the best known mapping result for
the EPFL benchmarks [34], or the FPGA mapping obtained by
a commercial tool. For all other cases, the circuit description
is used as input, and the mapping is produced by ABC.

The FPGA mappings reported are greedily selected based on
the cost function. In this work, two cost functions are analyzed:
logic levels and LUT count. If the objective is reducing delay,
then SR-map greedily selects the circuit parts with fewer logic
levels, using LUT count as a tie breaker. Alternatively, if the
goal is to minimize area, LUT count is the main cost function
and logic levels is the tie breaker.

A. BDD-based FPGA mapping tools

This section compares the SR-map results with the ones
reported by the tools BoolMap [9] and BDS-pga [10], and
the mappings obtained with ABC. The FPGA mappings (with
k=5) of BoolMap and BDS-pga refer to the best delay results
reported in [9] and [10], which are presented in Table II.
The bold values in Table II highlight the best delay results.

BDS-pga obtains an area reduction of 9% in comparison with
BoolMap, at the expense of increasing delay in 9%.

The ABC results are obtained using the same input structure
as the BDD-based tools1, applying structural hashing, 10 itera-
tions of AIG optimization scripts (compress2rs and dc2), and
delay-oriented FPGA mapping (identifying structural choices).
Notice that the number of iterations can be tuned to get better
results or to have a lower runtime. The ABC results are the
same as the M1 mappings presented in Section V.

ABC produces worse results than the BDD-based tools,
with mappings 51% larger in area and 17% larger in delay,
compared to BoolMap. The difference in LUTs is larger
than 90% for benchmarks rd84 and t481, and the reason for
this behavior lies on the nature of each approach. BoolMap
and BDS-pga perform functional transformations using BDDs,
whereas ABC performs an structural mapping on top of an
AIG, in which nodes and levels are iteratively minimized.

SR-map improves the ABC results and delivers a final
result that outperforms BoolMap [9], even using the networks
generated by ABC as starting point. This work improves
BoolMap results in 18% for area and in 8% for delay, with
the best delay result for 12 of the 22 benchmarks.

B. 20 largest MCNC benchmarks

This section presents results for the 20 largest MCNC
benchmarks, comparing the results of this work with the ones
obtained with a commercial tool and ABC. The synthesis in
the commercial tool is configured to avoid the use of multi-
plexers and merging of LUTs, delivering results comparable
to the other tools. The reported runtime for the commercial
tool regards only the logic synthesis and optimization steps.

Table III presents the FPGA mappings to LUTs with k=6.
The bold numbers in ‘Levels’ highlight the best delay results,
whereas the bold numbers in ‘LUTs’ underline the best results
for area. Regarding the methods analyzed, SR-map obtains the
best delay result for 19 of 20, and the best area result for
13 of the 20 benchmarks. All results are generated with the
same input description. The ABC mapping is obtained with
structural hashing, 10 iterations of AIG optimization scripts,
and FPGA mapping identifying structural choices.

BDS-pga [10] and MFS [25] results are ommited due
to space, but their relationship is (> means better results):
commercial tool > MFS [25] > BDS-pga [10] > ABC
(AIG optimization, and FPGA mapping with priority cuts and
structural choices). Notice that ABC results are the starting
point for the proposed method, showing the difference of using
the same mapping algorithm but exploring different structures.

1) Delay-oriented mapping: Using the delay-oriented
FPGA mapping, ABC produces a result 99% larger in area
and 5% larger in delay when compared with the commercial
tool. SR-map produces a result with 27% fewer logic levels
and 10% fewer LUTs, with ABC delay-oriented mapping, and
delay as cost function (COST). Also, an area reduction of 16%
plus a delay reduction of 12% is achieved when area is defined
as the cost function in SR-map.

1http://www.ecs.umass.edu/ece/tessier/rcg/bds-pga-2.0/blifs.tar
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TABLE III
FPGA MAPPING COMPARISON FOR THE 20 LARGEST MCNC BENCHMARKS (k = 6).

Recursive remapping
Factor (delay) + Factor (area) + SR-map (delay) SR-map (area) SR-map (area)

Circuit Commercial tool ABC (delay) ABC (area) ABC (delay) ABC (delay) + ABC (delay) + ABC (delay) + ABC (area)
LUTs Lev. Time(s) LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. LUTs Lev. Time(s) LUTs Lev. Time(s) LUTs Lev.

alu4 320 5 230 456 5 415 10 183 5 186 5 63 3 24 58 4 21 56 5
apex2 302 13 276 507 6 408 11 40 4 40 4 35 3 17 34 4 14 30 7
apex4 192 3 290 558 5 529 10 390 4 390 4 155 3 203 155 3 212 153 3
bigkey 569 3 313 577 3 577 3 577 3 577 3 685 2 257 491 3 191 577 3
clma 180 5 438 2614 8 2221 18 200 4 203 4 203 4 75 190 4 84 186 8
des 436 4 345 447 4 457 7 447 4 446 4 513 3 194 445 4 222 449 5
diffeq 472 8 348 559 7 510 13 559 7 532 8 533 7 241 527 8 262 502 14
dsip 690 3 338 871 3 871 3 869 2 869 2 869 2 190 869 2 224 869 2
elliptic 115 5 313 315 6 297 11 315 6 315 6 316 5 36 311 6 51 291 11
ex1010 210 3 335 572 5 550 10 453 4 432 5 208 3 107 207 4 180 207 4
ex5p 100 2 252 326 4 301 9 91 2 85 3 86 2 12 82 2 16 82 5
frisc 1694 13 292 1725 12 1698 26 1886 10 1692 13 1857 10 654 1689 13 853 1637 25
i10 557 9 285 535 8 500 22 627 7 522 9 537 7 329 505 9 317 481 24
misex3 197 5 240 284 5 234 9 205 4 193 4 117 4 37 102 4 35 94 5
pdc 155 4 286 1385 6 1143 14 154 4 148 4 157 3 70 142 4 67 144 6
s38417 1458 7 437 2557 6 2443 11 2460 6 2458 7 2450 6 1304 2396 7 1035 2369 12
s38584 1946 8 432 2287 6 2255 12 2463 5 2212 6 2224 5 1246 2229 5 729 2198 12
seq 531 7 247 583 5 520 10 560 4 486 5 527 4 307 459 5 114 420 10
spla 157 4 269 1350 6 1128 15 145 4 137 4 156 3 138 135 4 62 121 6
tseng 656 8 269 651 6 631 13 647 6 635 8 634 6 385 636 8 265 629 12
Geomean 374.30 5.24 306.1 744.07 5.51 685.86 10.56 400.08 4.43 383.36 4.92 335.79 3.84 141.1 312.67 4.61 128.9 304.62 7.21
Ratio 1.00 1.00 - 1.99 1.05 1.83 2.01 1.07 0.84 1.02 0.94 0.90 0.73 - 0.84 0.88 - 0.81 1.38

2) Area-oriented mapping: ABC produces a result 83%
larger in area than the commercial tool using area-oriented
FPGA mapping. Notice that there is an area recovery post-
process in ABC delay-oriented mapping, but area-oriented
mapping does not try to improve delay. Therefore, delay is
increased significantly, almost doubling the logic levels. Using
ABC area-oriented mapping and area as cost function, SR-map
obtains a result with 19% fewer LUTs than the commercial
tool, but with 38% more logic levels. The results are 3%
smaller in area than using ABC delay-oriented mapping, but
with much worse delay results, as this is disregarded in ABC
area-oriented mapping. For this reason, this configuration is
not recommended if delay must be considered.

3) Support-reducing decomposition: The remapping ap-
proach proposed in Section V can be applied regardless of
the support-reducing decomposition presented in Section IV.
For example, the collapsed functions can be decomposed
using algebraic factorization [28], instead of the method
proposed. The results for the recursive remapping using fac-
torization (obtained with the ABC command strash) instead
of the support-reducing decomposition are also presented in
Table III, denoted as ‘Factor’. For some benchmarks, e.g.,
apex2, clma, ex5p, the removal of the structural bias using
recursive remapping produces similar results both for factor-
ization and decomposition. However, considering the full set
of benchmarks, the results obtained using the support-reducing
decomposition are considerably better than the ones using
factorization, both for area and delay.

C. EPFL benchmarks

The EPFL benchmarks [34] are a set of 20 designs, 10
arithmetic and 10 random/control circuits. Since 2015, the
best known FPGA mapping results (with k=6) for delay and
for area are recorded. Consequently, these benchmarks have

TABLE IV
BEST KNOWN RESULTS FOR EPFL BENCHMARKS (2017).

Circuit Best EPFL (delay) SR-map (delay) + ABC (delay)
LUTs Levels LUTs Levels Time(s)

arbiter 2884 5 2243 5 729
cavlc 115 4 75 3 25
dec 270 2 264 2 11
int2float 41 3 31 3 5
i2c 244 3 242 3 30
mem ctrl 2490 7 2484 6 792
max 882 10 857 10 313
multiplier 8215 28 6543 28 26012
priority 157 4 152 4 15
router 57 4 54 4 5
sin 1801 30 3546 28 12779
voter 1469 12 1450 12 4601

Circuit Best EPFL (area) SR-map (area) + ABC (area)
LUTs Levels LUTs Levels Time(s)

cavlc 101 6 72 4 25
dec 270 2 264 2 11
int2float 28 6 27 6 5

highly optimized results, which are very difficult to improve.
For example, the commercial tool used in this work is not
able to improve any of the EPFL results, as it provides FPGA
mappings with more balanced results in area and delay, and
also considers congestion issues.

The proposed method is able to update 12 of the best known
results for delay, and 3 for area, as presented in Table IV. The
most remarkable results are: cavlc, with a reduction of 25%
in delay plus 35% in area; int2float, reducing LUT count in
25%; and the multiplier, with an area reduction of 20%. Note
that the area of the sin benchmark is increased significantly
for a reduction of 2 logic levels. This behavior is expected,
as the delay is the cost function in this case. Therefore,
SR-map greedily selects the circuit parts with lowest logic
levels, considering LUT count only as a tie breaker.
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(a) Default strategy (b) Area strategy (c) Delay strategy

Fig. 10. Comparison of the commercial tool results using the SR-map as input vs. the initial description, for the synthesis strategies: Default, Area, Delay.

TABLE V
REMAPPING OF THE COMMERCIAL TOOL RESULTS FOR THE 20 LARGEST

MCNC BENCHMARKS (k = 6).

SR-map (delay) SR-map (area)
Circuit ABC (delay) + ABC (delay) + ABC (delay)

LUTs Levels LUTs Levels Time(s) LUTs Levels Time(s)
alu4 232 5 65 3 28 58 4 19
apex2 179 6 33 4 13 32 4 9
apex4 193 3 155 3 107 155 3 86
bigkey 573 3 681 2 285 459 3 144
clma 193 3 181 3 24 166 4 17
des 446 4 445 3 232 436 4 178
diffeq 470 6 470 6 261 452 7 223
dsip 869 2 869 2 215 681 2 181
elliptic 105 4 110 3 21 99 4 16
ex1010 210 3 208 3 96 207 4 76
ex5p 92 2 86 2 10 82 2 7
frisc 1839 10 1892 9 947 1684 11 792
i10 551 8 533 8 302 512 9 280
misex3 158 4 112 4 28 96 4 21
pdc 126 4 148 3 23 114 4 15
s38417 2493 6 2432 6 967 1458 7 971
s38584 2188 6 2332 5 640 1946 8 641
seq 458 5 417 5 89 446 5 77
spla 131 4 145 3 20 119 4 15
tseng 649 6 636 6 240 625 7 237
Geomean 360.88 4.32 306.47 3.76 94.8 270.47 4.52 74.3
Ratio 0.96 0.82 0.82 0.72 - 0.72 0.86 -

D. Remapping of the results from a commercial tool

The results in Table III are obtained from the original BLIF
descriptions. In this section, the results obtained with the
commercial tool are remapped by SR-map. The remapping
results are presented in Table V. The commercial tool performs
sequential optimization, and equivalence checking with the
original description is performed with ABC command dsec.

A reduction of 4% in area and 18% in delay of the
results from a commercial tool is obtained with ABC by
performing iterative AIG transformations and FPGA mapping
with choices. Using the ABC delay-oriented mapping and
delay as cost function, SR-map achieves even better results,
with 28% fewer logic levels and 18% fewer LUTs. Also,
an area reduction of 28% plus a delay reduction of 14% is
obtained when area is defined as the cost function for SR-map.

E. SR-map remapping as input to the commercial tool

Previous experiments are presented with results in number
of LUTs and levels, but reduction in logic levels often does

TABLE VI
RESULTS OF A COMMERCIAL TOOL FOR DIFFERENT STRATEGIES,

AFTER PHYSICAL SYNTHESIS (PLACE-AND-ROUTE).

Synthesis strategy of the tool
Input from: Default Area Delay

Area Delay Area Delay Area Delay
Initial description 330.73 4.94 320.32 5.65 375.24 4.92
SR-map (delay) + ABC(delay) -20% -9% -16% -9% -20% -6%
SR-map (area) + ABC(delay) -23% -6% -22% -11% -23% -8%

not translate into improved delay post place-and-route due to
congestion issues. In order to evaluate this effect, SR-map
results are fed back to the commercial tool, comparing the post
place-and-route metrics between using the initial description
versus using the SR-map remapping as input.

A summary of the geometric mean results is presented in
Table VI. Three different synthesis strategies are investigated:
(1) with the Default parameters, (2) targeting Area minimiza-
tion, and (3) Delay reduction. The delay reported is the one
for the critical path, in ns.

In previous experiments, the synthesis of the commercial
tool was configured to avoid the use of multiplexers and
merging of LUTs, delivering results comparable to the other
tools. In this section, the results presented may have multiplex-
ers, and the LUTs may be merged. Additionally, sequential
optimization is performed, and the number of registers may
vary for the different synthesis strategies and inputs. The
area reported considers these characteristics of the commer-
cial tool: logic optimization and merging (LUTs), sequential
optimization (FFs), and the use of multiplexers to reduce
delay and implement functions with more inputs (7 and 8).
Multiplexers occupy much less area than LUTs and flip-flops,
so we conservatively consider muxes as half the size of the
other elements, resulting in this function to compare area:
Area = LUTs + FFs + 0.5×Multiplexers.

In comparison with the Default strategy, and using the initial
description, the Area strategy improves 3% in area for an
increase of 14% in delay, whereas the Delay strategy reduces
delay by 1% at the expense of increasing area by 14%.

As observed in Table VI, the post place-and-route results
show worse metrics than the ones reported in Table V, as these
are implemented into an actual FPGA. Still, for the Default
strategy, the results have 20% less area and 9% less delay, by
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using the SR-map remapping targeting delay as input, and 23%
less area and 6% less delay, by using the SR-map remapping
targeting area as input. Similar results are achieved for the
other strategies. Notice that the commercial tool results in
Table III are for a different synthesis strategy, in which the
use of multiplexers and LUT combining is avoided.

Interestingly, the SR-map remapping targeting area as input
to the commercial tool generated better post place-and-route
results, even for delay. This is because aggressive reduction
of logic levels often leads to congestion, which prevents the
place-and-route tools to translate this reduction into better
performance. A detailed comparison of the benchmark results
for this case is provided in the plots of Fig. 10.

F. Scalability analysis

Boolean methods are known to have scalability issues, and
this is typically handled by limiting the scope of application,
with techniques such as partial collapsing [9]–[11], window-
ing [25], and partitioning [35]. The proposed approaches are
no different. The size of BDDs may increase significantly with
the number of variables, slowing down even simple BDD op-
erations. For this reason, the collapsing process is only applied
to functions with up to a certain limit of input variables. Fig. 11
shows the average area-delay product for different limits in the
support, presenting a trade-off between runtime and quality of
results. The results presented are obtained with SR-map for a
subset of the benchmarks considered in previous sections. For
the results previously presented in this paper, the support limit
is defined to 50 variables.

Additionally, a time-out is set to prevent a long runtime.
This runtime limit is set for the collapsing process and the
decomposition. Notice that the BDD size may be large and
the BDD operations may take a long time, even with a limit
in the number of variables. As observed in Fig. 11, the quality
of results obtained by SR-map is similar for a time-out of 5
and 1000 seconds. The runtime with time-out of 1000 seconds
exposes the exponential behavior of increasing the number of
variables for BDD operations. However, the runtime can be
kept under control by defining a smaller time-out, which also
presents a linear increase with the support limit. As mentioned
in Section V, if there is a time-out (or if the support size is
larger than the limit defined), then the output network extracted
is the only one considered in the remapping algorithm.

Also, note that the remapping method extracts a sub-
network that feeds all outputs, therefore a larger number of
levels in the FPGA mapping may also result in a larger run-
time. The ABC tool presents a fraction of the runtime obtained
with SR-map, as it is part of the proposed method, and it
is repeatedly used. Nevertheless, the average execution time
observed in Table III (141 and 129 seconds) is comparable
with the one for the commercial tool (306 seconds).

VII. CONCLUSIONS

This paper proposes a support-reducing functional decom-
position method to produce a subject graph with a structure
more suitable to LUT-based FPGA mapping. An recursive
remapping approach is also proposed, trying to reduce the

area x delay

runtime

Fig. 11. Runtime and quality analysis, considering different limits for the
support (20 to 70 variables), and time-outs (5 and 1000 seconds). The area-
delay product is the result of number of LUTs times the number of levels.

structural bias of the circuit, and using the actual FPGA
mapping result as cost function.

The experiments show promising results. The proposed
method improves the FPGA mapping results of a commercial
tool for the MCNC benchmarks, with gains of 28% in delay
plus 18% in area when targeting delay, and 28% in area plus
14% in delay with area as cost function. Post place-and-route
results with 23% less area and 6% less delay (or 20% less
area and 9% less delay) are obtained by using the remapping
result as input to the commercial tool instead of the initial
description. Moreover, 12 of the best known results for delay
(and 3 for area) of the EPFL benchmarks are updated.

As future work, some directions could be explored. Ad-
ditional support-reducing techniques could be incorporated,
such as [16], [18]. A partial collapsing approach that uses the
FPGA mapping result as cost function could be investigated.
Regarding the recursive remapping, the propagation of the
don’t care conditions could potentially improve the results.
Also, keeping track of the critical paths may allow further
area reduction while obtaining similar delay results.
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