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ABSTRACT 

 

The main objective of this work is the development of different programs to learn and verify 

computational fluid dynamics problems which are governed by the Navier-Stokes equations. 

The document will be divided into different chapters in which we will detail the procedures 

performed. 

During the first chapter there will be an introduction on computational fluid dynamics problems, 

as the basic requirements to deal with this type of cases, as well as the limits that will be 

encountered during the development of these. 

In the second chapter there will be a brief introduction about the necessary theory which will be 

of great help during the development of the case studies. 

The convection-diffusion equations will be studied in the third chapter, which will be discretized 

for the development of the different cases. In this chapter we will also introduce the concept of 

Finite volume method that will be a fundamental part of this work. Finally, we will see the 

different numerical schemes that can be implemented, as well as the different solvers. 

During the fourth chapter the different cases will be presented, such as the Transient Conduction 

problem, the Diagonal flow and the Smith Hutton problem, which will be developed and 

commented. 

In the fifth chapter we will introduce in the Fractional Step Method, we will see the different steps 

to follow for the implementation of this method in the development of the case the Driven Cavity. 

the spatial discretization and the algorithm necessary for the development of this will be detailed. 

Finally, the results will be discussed, and the pertinent conclusions will be given. 

We will make an introduction to the field of turbulence that is why in chapter six the Burgers 

equations will be discretized; two different methods will be studied LES (Large eddy simulation) 

and DNS (Direct numerical simulation). The results obtained will be compared with the 

references given by the CTTC. 
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RESUMEN 

 

El objetivo principal de este trabajo es el desarrollo de diferentes programas para aprender y 

verificar problemas de fluidodinámica computacional las cuales son gobernadas por las 

ecuaciones de Navier-Stokes. 

El documento será dividido en diferentes capítulos en los cuales detallaremos los procedimientos 

realizados. 

Durante el primer capítulo se hará una introducción sobre los problemas de fluidodinámica 

computacional, como los requisitos bases para afrontar este tipo de casos, así como los límites 

que se encontraran durante el desarrollo de estos.  

En el segundo capítulo se hará una breve introducción sobre la teoría necesaria la cual será de 

gran ayuda durante el desarrollo de los casos de estudio. 

Las ecuaciones de convection-diffusion se estudiarán en el tercer capítulo las cuales serán 

discretizadas para el desarrollo de los diferentes casos. En este capítulo también se introducirá al 

concepto de Finite volume method que será parte fundamental de este trabajo. Por último, 

veremos los diferentes esquemas numéricos que se pueden implementar, así como los diferentes 

solvers. 

Durante el cuarto capítulo se presentarán los diferentes casos como the Transient Conduction 

problem, Diagonal flow y Smith Hutton problem los cuales serán desarrollados y comentados 

durante este capítulo. 

En el quinto capítulo nos introduciremos en el Fractional Step Method, veremos los diferentes 

pasos a seguir para la implementación de este método en el desarrollo del caso the Driven Cavity. 

se detallará la discretización espacial y el algoritmo necesario para el desarrollo de este. por 

último, se comentarán los resultados y se darán las conclusiones pertinentes. 

Haremos una introducción en el campo de la turbulencia por eso en el capítulo seis se discretizarán 

las ecuaciones de Burgers, se estudiarán dos diferentes métodos LES (Large eddy simulation) y 

DNS (Direct Numerical Simulation). Los resultados obtenidos serán confrontados con las 

referencias dadas por la CTTC. 
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1.Introduction 

 

1.1 Aim of the study 
 

The fundamental purpose of this project consists of the creation of a code programmed with 

MatLab that allows solving the Navier-Stokes equations in their incompressible form and 

studying the phenomenology of fluid mechanics and the bases of computational fluid dynamics. 

The main idea is to deepen the physics behind the process of computational implementation of a 

problem, so the code will solve cases with simple geometries. Spatial discretization has been 

proposed using the finite volume method and the fractional steps method has been used to solve 

the velocity and pressure coupling for the Driven Cavity case and the discretization of the 

convection-diffusion equations for the other cases. Large Eddy Simulation (LES) and Direct 

Numerical Simulation (DNS) to solve the burgers equation. 

 

1.2 Requirements 
 

The necessary requirement for the realization of these cases is the knowledge of a programming 

language MATLAB will use for this project. Another type of requirement is to use a type of mesh 

that approaches the reality of the problem to achieve values more similar to the references. 

 

1.3 Justification 
 

The advantages presented by the simulation against other analysis tools will be commented and, 

in this way, understand the reasons for which computer simulation has been chosen as the basis 

of this project. Today, simulation is both an alternative and a complement to experimentation in 

many branches of science since it is a cheap and effective tool for predicting the properties and 

behavior of a physical system. Not only that, but the computational techniques are a necessary 

complement to the theory that allows to verify the consequences that are obtained from 

performing hypotheses or complex models in different branches of physics, and that otherwise 

cannot be checked. 

The simulations allow us to systematically improve the design and properties of materials through 

the optimization of algorithms. A procedure without simulations will be tremendously expensive 

if it is done by prototyping or by other means of experimentation. Then it can be said that 

simulation is a tool that improves the efficiency of technological processes. 

In the simulations, specifically in the field of computational fluid dynamics because the prediction 

of cases is so complicated that it cannot be resolved analytically, it is where the simulation 

contributes more benefits and its use is more than justified. 
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Figure 1: Example of a Centrifugal Pump in CFD simulation. 

 

 

 

Figure 2: Example of a flow across a car CFD simulations. 

 

As already mentioned, this project aims to deepen the physical phenomenology of fluid 

mechanics, as well as the computational foundations of simulation with CFD tools to achieve a 

solid base in this field of physics. 

Therefore, we must understand the philosophy of this project to understand the operation of the 

very complex computational tools that exist today. For this reason, it has been decided to create 

an own code instead of using tools already in use such as ANSYS Fluent, OpenFoam or RealFlow 

among others. Although these programs are very useful for fluid simulation, their high complexity 

makes them not the most adequate tools to understand in detail how the equations of fluid 

mechanics are solved. 
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1.4 Limitation 
 

Before introducing the theoretical contents related to the project, it is necessary to specify certain 

points that affect its scope: 

• Since the phenomena treated in fluid dynamics are macroscopic, we will assume the 

hypothesis of mass continuity. This implies that any volume element will be sufficiently 

large to contain a very large number of molecules. 

• The physical properties of the fluid will always be considered constant within the range 

of application of the equations. This implies that you work with incompressible fluids. 

• The work regime will be laminar, so it will not be possible to solve cases with flows in a 

turbulent state. 

• The program will work with two-dimensional problems. 
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2.Matematical Formulation  
 

2.1 Introduction 
 

In this chapter we will briefly review the theory needed to tackle this project. It begins with the 

classification of fluids that will help us later when considering the resolution of problems, that is, 

during this project we will assume some necessary hypotheses to study the Navier-Stokes 

equations. We will see the conservation of the mass and momentum; these definitions of 

conservation will be great help and simplify the numerical resolution that we will see throughout 

this work. 

Another fundamental parameter of this project is the Reynolds number, we will make a brief 

introduction and analyze how this parameter contributes when solving the Navier-Stokes 

equations. Finally, the contour equations will be studied which will be applied to the different 

cases of studies that we will face in this work. 

 

2.2 Fluids classification 
 

▪ Steady – Non-steady 

A steady flow is one in which the variables that define it do not change locally over time. A 

transient one in which they do. 

▪ Incompressible – Compressible 

An incompressible fluid is one in which we can consider its density as constant; otherwise, the 

fluid is called compressible. 

▪ Ideal – Viscous 

An ideal fluid is one in which the effect of viscosity is so weak that it can be assumed to be zero. 

This means that we can neglect the internal friction force between the different layers of fluid. On 

the other hand, the fluids in which the dominant effect is viscosity, are called viscous. 

▪ Newtonian 

Newtonian fluids are those in which the viscosity is constant, it means, the ratio between the force 

per unit of surface that a layer of fluid exerts on the neighbors and the rate of deformation is 

constant. 
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2.3 Conservation equations 
 

We call Fluid Mechanics the branch of mechanics that studies the movement of fluids, the forces 

that provoke them and the interaction of fluids with the environment that limits them. A fluid in 

motion can be described mathematically by the functions of velocity distribution and two 

thermodynamic magnitudes belonging to the fluid. In this way, using five magnitudes (the three 

components of velocity and for example, pressure and density), the state of the fluid is completely 

determined. The fundamental equations of fluid mechanics model the behavior of any type of 

flow by conserving two quantities, mass and momentum[1]. 

The following equations are necessary to understand the conservation of these magnitudes. These 

equations have been simplified under certain hypotheses assumed in a very common way by a 

large part of the scientific community. These hypotheses are: 

▪ Mass continuity 

▪ Negligible relativistic effects 

▪ Absence of quantum effects 

▪ Validity in inertial reference systems 

▪ Interactions with negligible magnetic fields 

 

A. Mass conservation 

 

The law of mass conservation is fulfilled regardless of the nature of the fluid or the forces acting 

on it. This implies that throughout a fluid the mass is not destroyed or generated at any point. 

Mathematically this conservation law is expressed, in its differential form, as follows: 

 

𝜕𝜌

𝜕𝑡
+  𝛻 ∙ (𝜌𝑣⃗) =  0  

(2.1) 

 

where 𝜌 is the density of the fluid and 𝑣⃗ the velocity of the fluid at a point (x; y; z) of the space 

for a moment of time t. The first term of the previous expression represents the variation of mass 

per unit volume and unit of time at a certain point in space, and the second term refers to the 

variation of input and output velocity of mass in the system. The expression () is the so-called 

continuity equation, valid for all types of fluids. This expression appears in many fields of physics, 

such as Quantum Mechanics, Electromagnetic Theory, Relativistic Mechanics, etc. 

 

B. Momentum conservation 

The momentum is a vector physical quantity that, in the same way as mass, obeys the law of 

conservation. In the case of the fluids, the second Law of Newton affirms  

“the variation of motion per unit of time of a fluid mass is equal to that resulting from all the 

forces acting on that mass”. 



 
                                           MASTER FINAL THESIS 

16 
Boris Ortega Varas 

 

The forces that act on a fluid are of two types, volume and surface forces. If we consider a control 

volume v0 surrounded by a closed surface S0, the volume forces are those that do not depend on 

the interaction of the fluid v0 with the fluid that surrounds it and therefore affect the entire control 

volume equally. Gravitational force, electrical and magnetic forces are examples of these forces. 

In contrast, surface forces are forces that depend on the interaction of the fluid in v0 with the fluid 

that surrounds it. They are forces that are exerted on the control volume v0 through the surface S0. 

Examples of these forces are the forces of pressure, viscosity or friction. Taking into account this 

the equation of motion is expressed as follows: 

 

𝜌 
𝐷 𝑣⃗

𝐷𝑡
 =  𝑓𝑣 + 𝛻⃗⃗  ∙  𝜏̅̅ 

(2.2) 

 

where 𝑓𝑣 denotes the volume forces acting on the fluid and 𝜏̅̅  is the tension tensor associated with 

the surface forces. 

In this case the quotient x represents the variation over the time of the velocity of a fluid particle 

moving through space, it means, the axes of coordinates are located on each fluid particle. The 

description of the movement results from obtaining the trajectories that describe said particles. 

This way of describing fluids is called the Lagrangian description, one of the two formalisms that 

are commonly used to describe fluids macroscopically. The second of the formalisms is called 

Eulerian description, in which the axes are in fixed points of space, so in this case is the 

instantaneous description of the speed at each point what is obtained to represent the movement 

of the fluid. 

A Eulerian point of view will be adopted, so we need to know the relationship between both 

descriptions to obtain the equation (2.2) so that the derivative of velocity refers to fixed points in 

space. The concept of a substantial derivative is the tool that allows us to move from one 

formalism to another. Intuitively, it can be postulated that this derivative reflects two different 

causes of change; on the one hand, the fact that speed may be changing over time locally; and on 

the other hand, the fact that the fluid particle may be moving in a field in which the velocity is 

not uniform. 

The following equation expresses the changes in the velocity experienced by the fluid particle as 

it moves through the fluid field. 

𝐷 𝑣⃗

𝐷𝑡
=  

 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗ 

(2.3) 

 

This equation is the definition [] of a substantial derivative of velocity. Substituting now in (2.2) 

we obtain the expression for the conservation of the moment of a viscous fluid referred to fixed 

points of the space. 

𝜌 [
 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗] =  𝑓𝑣 + 𝛻⃗⃗  ∙  𝜏̅̅  

(2.4) 
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The stress tensor of (2.4) can be written as the sum of two terms, one representing the normal 

stress tensor produced by external forces on the surface of the system and the other the viscous 

stress tensor, that is, 

 

𝜏̅̅  =  − 𝑝 𝐼 ̅̅ +  𝜏̅̅ ′  (2.5) 

 

where p is the fluid pressure, 𝐼 ̅ ̅is the unitary tensor and 𝜏̅̅ ′  the stress tensor of viscous stresses, 

related to the molecular transport of the quantity of movement. The tension tensor takes different 

forms depending on the type of fluid that is being considered. Below you will see the shape that 

the tensioners acquire when dealing with ideal fluids and with viscous fluids. 

 

2.4 Ideal fluids 
 

As already mentioned, an ideal fluid is a fluid in which the viscous forces are considered null. In 

these circumstances the only force acting on the fluid is the pressure, so that the total force on a 

certain volume is the integral of the pressure along the surface surrounding the volume. In this 

case the tension tensor (2.5) is a diagonal matrix with its three equal components p, so that by 

substituting (2.4) we come to the expression of the well-known Euler equation (dd), one of the 

fundamental equations of the fluid mechanics. 

 

𝜌 [
 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗] =  𝛻⃗⃗𝑝  

(2.6) 

 

If we are in the presence of a gravitational field, the equation (2.6) must be modified, according 

to the equation (2.4), adding to the gradient of the pressure a term corresponding to the force 

exerted by the gravity on each element of volume. 

 

 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗ =  

𝛻⃗⃗𝑝 

𝜌
 + ɡ⃗⃗ 

(2.7) 

 

 

2.5 Viscous fluids 
 

It is now intended to obtain the equations of movement for a viscous fluid. For this, it is necessary 

to add to the tensor of tensions of an ideal fluid a term that reflects the transfer of viscous impulse, 

it means, the term 𝜏̅̅ ′  of the equation (2.5). The most general form of this tensor of rank two is 

represented as follows . 
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𝜏̅̅ ′ 𝑖𝑗 =  𝜂 [
𝜕𝑣𝑗

𝜕𝑥𝑖
 +  

𝜕𝑣𝑖

𝜕𝑥𝑗
 −  

2

3
 ( 𝛻⃗⃗  ∙ 𝑣⃗)𝐼 ̅]̅ +  ϛ (𝛻⃗⃗  ∙ 𝑣⃗) 𝐼 ̅

(2.8) 

 

 

In this way, adding the divergence of the tensor (2.8) to the Euler equation, we obtain the general 

form of the equation of motion for a viscous fluid. 

 

 

𝜌 [
 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗] =  −𝛻⃗⃗𝑝 + 𝛻⃗⃗  ∙  {𝜂 [

𝜕𝑣𝑗

𝜕𝑥𝑖
 + 

𝜕𝑣𝑖

𝜕𝑥𝑗
 − 

2

3
 ( 𝛻⃗⃗  ∙ 𝑣⃗)𝐼 ̅]̅ +  ϛ (𝛻⃗⃗  ∙ 𝑣⃗) 𝐼}̅  

(2.9) 

 

 

 

The constants a and b are called first and second coefficients of viscosity, or dynamic viscosity 

and volumetric viscosity. These magnitudes are functions of pressure and temperature, so they 

are not constant throughout the fluid and cannot be pulled out of the divergence operator.  

However, in most cases, the viscosity coefficients do not vary significantly along the fluid and 

can be considered constant, thus obtaining a simpler expression in vectoral form for the viscous 

fluids. 

 

 

 

𝜌 [
 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗] =  −𝛻⃗⃗𝑝 +  𝜂𝛻2 𝑣⃗  +  (ϛ + 

1

3
𝜂) 𝛻⃗⃗(𝛻⃗⃗ ∙ 𝑣⃗) 

(2.10) 

 

If we are in a case in which we can consider the incompressible fluid, the density is constant along 

the same and the equation of continuity (2.1) is reduced 𝛻⃗⃗  ∙ 𝑣⃗  =  0. Thus, the last term in the 

second member of (2.10) is zero and we get the Navier-Stokes equation: 

 

𝜌 [
 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗] =  −𝛻⃗⃗𝑝 +  𝜂𝛻2 𝑣⃗  

(2.11) 

 

In this case, the stress tensor is reduced to a simple expression (𝜏̅̅  = −𝛻⃗⃗𝑝 +  𝜂𝛻2 𝑣⃗) that only 

depends on the dynamic viscosity 𝜂. However, it is common to find the written equations as a 

function of the coefficient 𝑣 =  
 𝜂

𝜌
 , called kinematic viscosity. 

 

 𝜕𝑣⃗

𝜕𝑡
+ (𝑣⃗  ∙  𝛻⃗⃗) 𝑣⃗ =  − 

1

𝜌
𝛻⃗⃗𝑝 +  𝑣𝛻2 𝑣⃗  

(2.12) 

 

The Navier-Stokes equation (2.12) is a system of partial non-linear derivative equations formed 

by three equations, one for each direction of space. They are coupled to each other through 

pressure and speed. 
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2.6 Reynolds number 
 

The Reynolds number is a parameter that appears in numerous problems of fluid mechanics 

because it allows to work with the Navier-Stokes equation in its dimensionless form. This number 

relates the kinematic viscosity v to, the main velocity of a problem v0, and a third parameter related 

to the geometrical properties of the same, called characteristic length l[2]. 

▪ Viscosity [ν]= [m]2/[s] = L2 T-1 

▪ Length [l]=[m]= L 

▪ Velocity [v0] = [m][s] = LT-1 

 

With these three magnitudes a single dimensionless parameter is obtained, this combination, 

designated by Re, is what is known as the Reynolds number. 

 

𝑅𝑒 =  
𝑣0𝑙

𝜈
 

(2.13) 

 

The Reynolds number represents the ratio of viscous forces to those of inertia. High Reynolds 

numbers indicate that inertial forces are predominant versus viscous forces, and for high Reynolds 

numbers, Re > 4000, the flow will be turbulent. This implies that the movement of the fluid is 

very sensitive to any disturbance, which quickly expands to form swirls due to the irregular 

character of the flow. Conversely, for low Reynolds numbers, Re < 2000, the flow will be laminar, 

which means that any disturbance that the fluid can suffer will be easily damped and the layers of 

adjacent fluids will always be parallel. The flows that lie between these two values of Re belong 

to what is known as the zone of transition. 

2.7 Simplified Equations 
 

As previously mentioned, it is necessary to adapt the continuity and Navier-Stokes equations to 

our particular case and carry out additional simplifications, until we obtain the equations that have 

been implemented in the code. Below we will see in detail these simplifications: 

 

▪ The physical properties of the fluid will be constant. 

The direct consequence of this is that it will not be possible to study cases in which the fluid is 

compressible, it means, it assumes constant density. On the other hand, the viscosity of the fluid 

will also be constant, so that the simulation is limited to a range of temperatures in which the 

physical properties do not vary significantly. 
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▪ They are considered fluids in laminar regime. 

This implies that turbulent flows could not be studied. Fluids are restricted to those with Reynolds 

numbers less than 2000. 

 

▪ Work with Newtonian fluids. 

At this point we eliminate all those fluids in which the relationship between the effort and the 

speed of deformation is not constant. For example, honey, heavy metals, blood and other "sticky" 

fluids will be excluded. 

 

▪ They will be two-dimensional problems. 

This is where we significantly limit the number of cases we can simulate. However, the essence 

of phenomenology is the same in two as in three dimensions and adding a third dimension 

complicates both the explanation and the visualization of results. In short, the wealth of 

description of the movement provided by the 3D case does not compensate the effort required in 

the programming and the higher computational cost of the simulations. 

 

2.8 Boundary conditions 
 

The general equations that govern the movement of fluids have been discussed in the previous 

sections. However, when the problem is reduced to a particular spatial domain, the information 

to obtain any particular solution from the system of equations (2.12) is insufficient. That is why 

it is essential to specify the boundary conditions that inform about the behavior of the fluid at the 

borders.  

We will now review the most common boundary conditions for a viscous fluid, starting with the 

so-called non-slip condition. This condition is applied to the surface of solids and assumes that 

the relative velocity between the surface of the solid and the fluid finitely close to it is zero. 

On the other hand, are the Dirichlet type boundary conditions. The information provided by this 

type of conditions is direct, that is, the value at the border of a generic variable ϕ is considered 

known, ϕ = f. In the case of a fluid, this condition is generally applied to the incoming flow and 

implies that one of the components of the speed is known.  

 

Finally, another of the most common boundary conditions are the so-called Newman conditions, 

which provide indirect information. In general, the value of the derivative of the variable ϕ in a 

normal direction n, 𝜕 𝜙 𝜙 𝑛⁄ =  𝑓 , at the border is known. Normally, these conditions are located 

in an area where the fluid is unidirectional and therefore there are no changes in the velocity 

component along that direction. 

 

Throughout this chapter we have seen in detail the fundamentals and concepts necessary to 

understand the phenomenology of fluid mechanics. The next step is to establish the fundamentals 

of computational fluid mechanics to be able to translate the equations that intervene in each 

problem to the computational language. Therefore, in the next chapter the necessary steps to carry 

out said translation will be explained. 
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2.9 Summary chapter 
 

Throughout this chapter we have seen different concepts that will be of great help later in the 

realization of this work. 

It starts with the classification of fluids which we have classified into 4 groups in a general manner 

that are the following; 

 

▪ Steady - Non-steady 

▪ Incompressible - compressible 

▪ Ideal - Viscous 

▪ Newtonian 

 

Then it is passed to the conservation equations and here also has been classified in two parts, the 

conservation of the mass and the momentum. These two hypotheses are a fundamental part when 

it comes to simplifying the Navier-Stokes equations. 

 

One of the parameters that will be used during the realization of this work is undoubtedly the 

number of Reynolds, this parameter helps me to distinguish in which study regime I am working 

this can be laminated as turbulent. Finally, the boundary equations, these equations tell me how I 

have to behave at the border or the problem. 

 

With the description of these concepts we can now enter more fully to the realization of this work 

which aims to study the Navier-Stokes equations. 
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3.The convection-diffusion equation 

3.1Introduction 
 
When a fluid plays a significant role in the problem, the effects of convection must be considered. 

This means that a transport of the general properties takes place by means of two different 

phenomena: the diffusion, related to the molecular movement, and the convection, related to the 

macroscopic movement. As shown in the transport equation, derived from the Reynolds Transport 

Theorem, which represents the flow balance in the control volume. 

 

𝜕𝜌𝜙

𝜕𝑡
+  𝛻 ∙ (𝜌𝑣⃗𝜙) = 𝛻 ∙ (Γ𝛻𝜙) + 𝑆  

 

(3.1) 

 

The property to be evaluated is the phi value (𝜙). On the left side of the equation above there are 

two terms, the first one is the accumulative term that represents the general property 𝜙 in the 

control volume and the second one is the flux by convection. On the right side another two terms, 

the first one is the diffusive flux and the second one is the source term that corresponds to an 

internal or external source that could variance the general property 𝜙 in the control volume. The 

conduction-diffusion equation and the problems related to it assume the velocity field known. 

Note that the above equation will be used to solve static problems by means of the transient nature 

of the equation in order to get the solution to converge until it is static. 

 

3.2 Discretization of the convection-diffusion equation 
 

Considering the following governing equations, corresponding to the Reynolds Equation of 

Transportation and the Equation of Continuity[3]. 

𝜕𝜌

𝜕𝑡
+  𝛻 ∙ (𝜌𝑣⃗) = 0 

 

(3.2) 

 

Using a rectangular finite volume and integrating the first equation and making use of the Gauss-

Ostrogradsky theorem, we obtain the following expression: 

 

 

    
(𝜌𝜙)𝑃

𝑛+1−(𝜌𝜙)𝑃
𝑛 

∆𝑡
∆𝑥∆𝑦 + [(𝜌𝑢𝜙)𝑒

𝑛+1 − (𝜌𝑢𝜙)𝑤
𝑛+1]∆𝑦 + [(𝜌𝑣𝜙)𝑛

𝑛+1 −

                      (𝜌𝑣𝜙)𝑠
𝑛+1]∆𝑥 = [(𝛤

𝜕𝜙

𝜕𝑥
)
𝑒

𝑛+1

− (𝛤
𝜕𝜙

𝜕𝑥
)
𝑤

𝑛+1

] ∆𝑦 + [(𝛤
𝜕𝜙

𝜕𝑥
)
𝑛

𝑛+1

−

                                                                               (𝛤
𝜕𝜙

𝜕𝑥
)
𝑠

𝑛+1

] ∆𝑥 + 𝑆𝑝
𝑛+1∆𝑥∆𝑦  

 

(3.3) 

It’s convenience to simplify the equation above to obtain discrete equations for convection-

diffusion problems. 
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Convective term 

𝐹𝑒 =  𝜌𝑢𝑒 (3.4) 

 

𝐹𝑤 =  𝜌𝑢𝑤 (3.5) 

 

𝐹𝑛 =  𝜌𝑣𝑛 (3.6) 

 

𝐹𝑠 =  𝜌𝑣𝑠 (3.7) 

 

 

Diffusive term 

𝐷𝑒 = 

𝛤𝑒
𝜕𝑥𝑒

 
(3.8) 

 

𝐷𝑤 = 

𝛤𝑤
𝜕𝑥𝑤

 
(3.9) 

 

𝐷𝑛 = 

𝛤𝑛
𝜕𝑦𝑛

 
(3.10) 

 

𝐷𝑠 = 

𝛤𝑠
𝜕𝑦𝑠

 
(3.11) 

 

 

With these new expressions, the conservation equations for mass and momentum can be rewritten 

as: 
 

(𝜌𝜙)𝑃
𝑛+1−(𝜌𝜙)𝑃

𝑛 

∆𝑡
∆𝑥∆𝑦 + [(𝐹𝑒𝜙)𝑒

𝑛+1 − (𝐹𝑤𝜙)𝑤
𝑛+1]∆𝑦 + [(𝐹𝑛𝜙)𝑛

𝑛+1 − (𝐹𝑠𝜙)𝑠
𝑛+1]∆𝑥 =

[𝐷𝑒(𝜙𝑒 −  𝜙𝑝)
𝑛+1

− 𝐷𝑤(𝜙𝑝 −  𝜙𝑤)
𝑛+1

] ∆𝑦 + [𝐷𝑛(𝜙𝑛 −  𝜙𝑝)
𝑛+1

−

 𝐷𝑠(𝜙𝑝 −  𝜙𝑠)
𝑛+1

] ∆𝑥 + 𝑆𝑝
𝑛+1∆𝑥∆𝑦  

 
 
 

(3.12) 

 

Introducing the equation of continuity in the formulation, this will give greater stability to the 

problem, compliance with the continuity implies that there will be no physical inconsistencies in 

the solution. Therefore, introducing these new terms in the previous equations the equation below 

is obtained. 
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(𝜌𝜙)𝑃
𝑛+1 − (𝜌𝜙)𝑃

𝑛 

∆𝑡
∆𝑥∆𝑦 + [(𝐽𝑒  −  𝐽𝑤)𝑛+1 − (𝐽𝑛  −  𝐽𝑠)

𝑛+1]  

− 𝜙𝑃
𝑛+1[(𝐹𝑒  −  𝐹𝑤)𝑛+1 − (𝐹𝑛  −  𝐹𝑠)

𝑛+1] =  𝑆𝑝
𝑛+1∆𝑥∆𝑦  

 
 
 

(3.13) 

 

It is useful to consider a total flux J that is made up of convection flux and diffusion flux. The 

table below shows the total flux.  

 

𝐽𝑒  =  [𝐹𝑒  −  𝐷𝑒 (𝜙𝐸  − 𝜙𝑃)]∆𝑦 (3.14) 

 

𝐽𝑤  =  [𝐹𝑤  − 𝐷𝑤 (𝜙𝑃  − 𝜙𝑊)]∆𝑦 (3.15) 

 

𝐽𝑛  =  [𝐹𝑛  − 𝐷𝑛 (𝜙𝑁  −  𝜙𝑃)]∆𝑥 (3.16) 

 

𝐽𝑠  =  [𝐹𝑠  −  𝐷𝑠 (𝜙𝑃  −  𝜙𝑆)]∆𝑥 (3.17) 

 

3.3 Grid 
 

The partial differential equations that govern fluid flow and heat transfer are not usually amenable 

to analytical solutions, except for very simple cases. Therefore, in order to analyze fluid flows, 

flow domains are split into smaller subdomains. The governing equations are then discretized and 

solved inside each of these subdomains. Typically, one of three methods are used to solve the 

approximate version of the system of equations: finite volumes, finite elements, or finite 

differences. Care must be taken to ensure proper continuity of solution across the common 

interfaces between two subdomains, so that the approximate solutions inside various portions can 

be put together to give a complete picture of fluid flow in the entire domain. The subdomains are 

often called elements or cells, and the collection of all elements or cells is called a mesh or grid[4].  

 

There are different options according to the study case, some of the available options are the 

following: 

 

• Structured grid 

• Block-structured grid 

• Unstructured grids 

 



 
                                           MASTER FINAL THESIS 

25 
Boris Ortega Varas 

 

Figure 3: Example of a 2D block-structured grid, designed for calculation of flow around a hydrofoil under a 
water surface  

 

3.3.1 Finite volume Method 
 

The calculation domain is divided into several nonoverlapping control volumes such that there is 

one control volume surrounding each grid point. The differential equation is integrated over each 

control volume. Piecewise profiles expressing the variation of ϕ between the grid points are used 

to evaluate the required integrals. The result is the discretization equation containing the values 

of ϕ for a group of grid points. 

A resolution model of Navier-Stokes differential equations has been chosen for finite control 

volumes for the development of this work, being of particular interest the type of mesh used. This 

type of meshing can be obtained by two procedures, chosen according to the practical application: 

 

▪ Centered faces: It consists of placing the nodes (study points of the mesh) in the desired 

positions, and then generating a volume of control around the node. 

 

▪ Centered nodes: First the control volumes must be generated within the domain, and 

once they are established, the node is placed in the center of the volume. 

 
 

In addition, the obtained discretization equations must comply with the four basic rules shown 

below: 

 

a) Consistency in the faces of the control volume. When one face is in contact with two 

adjacent control volumes, the flow through the faces must be represented by the same 

expression of discretization in the two control volumes.  

 

b) Positive coefficients. The increase in the value of a point of the mesh, with the other 

unalterable conditions, must lead to the increase of the value to the neighboring point in 

the mesh.  

 

c) The linearized internal sources must have a negative slope so that the coefficient of the 

study point, known as aP, is not negative. 

 

d) The value of the coefficient of the study point, aP , must be equal to the sum of the 

coefficients of the neighboring points. 
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With these conditions, doing a study in two dimensions, we obtain a discretized equation, of the 

form: 

 

𝑎𝑃𝜙𝑃 = 𝑎𝑁𝜙𝑁 + 𝑎𝑆𝜙𝑆 + 𝑎𝐸𝜙𝐸 + 𝑎𝑊𝜙𝑊 + 𝑏𝑃 
 

 

 

 

Figure 4: A typical CV and the notation used for a Cartesian 2D grid. 

 

 

3.4 Temporal Discretization 

For the development of the calculations we must specify the temporary schemes that are going to 

be used, since the final formulation of the method depends on them. There are numerous 

temporary schemes, but roughly they can be divided into two groups: 

• Explicit schemes 

The explicit schemes are those that assume that the values of the variables in the new time step 

depend only on the value of the variable in the previous instant. They are schemes that 

approximate the new values from the calculated ones, so they require a lower computational cost, 

but at the same time the stability of them is also lower. 

• Implicit schemes 

In the implicit schemes the value of the variables in the new time step is no longer approaching, 

it is calculated precisely from both the previous and the next instant. The computational cost in 

this case is much higher in each iteration, but they have the advantage that the stability of the 

method is very high. 
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3.5 Numerical Schemes 
 
Numerical results will only be physically realistic when the discretization scheme has certain 

fundamental properties. In some cases of study, it will be necessary to evaluate the properties and 

their corresponding gradients in the faces of the control volume, being necessary the use of 

resolution schemes that relate the variable in the face of the control volume with the values of the 

known nodes[5]. 

 

▪ Fundamental properties: 

 

1. Conservativeness; The equations are based of mass conservation. To ensure a 

conservation of ϕ for the whole solution domain, the flux leaving a control volume across 

a certain face must be equal to the flux entering the adjacent control volume through the 

same face. Therefore, all schemes used should be conservativeness. 
 

2. Boundedness; The discretized equations at each nodal point represent a set of algebraic 

equations that needs to be solved. Normally iterative numerical techniques are used to 

solve large equation sets. These methods start the solution process from a guessed 

distribution of the variable ϕ and perform successive updates until a converged solution 

is obtained. 
 

3. Transportiveness; It is very important that the relationship between the directionality of 

influencing and the flow direction, known as the transportiveness, is borne out in the 

discretization scheme. In order to understand these phenomena, the Peclet number is 

introduced. According to the Peclet number the internal node P is influenced by the west 

or east node, therefore it expressed the flow direction. 
 

𝑃𝑒 = 
𝐹

𝐷
 

 
(3.18) 

 

No convection and pure diffusion (𝑃𝑒 ‒ ‒> 0) 
No diffusion and pure convection (𝑃𝑒 ‒ ‒> ∞) 

 

 

The figure below shows the convectional positive fluxes in the control volume F > 0. 
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Figure 5: Positive Volume Fluxes. 
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▪ Low order schemes 

 
a) Upwind Difference Scheme (UDS) 

 
The upwind differencing scheme utilizes consistent expressions to calculate fluxes through cell 

faces; therefore, it can be easily shown that the formulation is conservative. The coefficients of 

the discretized equation are always positive and satisfy the requirements for boundedness[6].  

 

 

 

PHI VALUE MASS FLOW > 0 MASS FLOW < 0 

ϕ𝑛 ϕ𝑃 ϕ𝑁 

ϕ𝑠 ϕ𝑆 ϕ𝑃 

ϕ𝑒 ϕ𝑃 ϕ𝐸 

ϕ𝑤 ϕ𝑊 ϕ𝑃 

 

Table 1: UpWind difference Scheme Value accordinf to the mass flow. 

 

The scheme is based on the backward differencing formula, so the accuracy is only first-order 

based on the Taylor series truncation error. A major drawback of the scheme is that it produces 

erroneous results when the flow is not aligned with the grid lines. 

 
 

 

b) Central Difference Scheme (CDS) 

 
The central differencing scheme is one of the schemes used to solve the integrated convection-

diffusion equation and to calculate the transported property ϕ at the east and west faces. 

 

 

 

𝜙𝑒  =  
𝜙𝐸  +  𝜙𝑃

2
 

(3.19) 

 

𝜙𝑛  =  
𝜙𝑁  + 𝜙𝑃

2
 

(3.20) 

 

𝜙𝑤  =  
𝜙𝑃  +  𝜙𝑊

2
 

(3.21) 

 

𝜙𝑠  =  
𝜙𝑃  +  𝜙𝑆

2
 

(3.22) 

 
 

 

If Pe is greater than 2 the east coefficient will be negative. This violates one of the requirements 

for boundedness and may lead to physically impossible solutions. 
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c) Hybrid Different Scheme (HDS) 

 
The hybrid differencing scheme is based on a combination of central and upwind differencing 

schemes. The central differencing scheme, which is second order accurate, is employed for small 

Peclet numbers (Pe < 2) and the upwind scheme, which is first order accurate but accounts for 

transportiveness, is employed for large Peclet numbers (Pe ≥2). 

The hybrid difference scheme exploits the favorable properties of the upwind and central 

differencing schemes. The disadvantage is that the accuracy in terms of Taylor series truncation 

error is only first-order. 

 

d) Exponential Difference Scheme (EDS) 

 
The evaluation of the variable at the cell face comes from the exact solution of the convection-

diffusion equation in one-dimensional case, null source term and steady problem. As this scheme 

is more accurate, it also takes more computational efforts and time.  

 

e) Power Law Scheme (PLS) 

 
Evaluates the variable at the cell face using an approximation of EDS scheme by a polynomial of 

fifth degree. It is simpler than EDS, but, even so, it takes more computational efforts than UDS, 

CDS or HDS schemes.  

 

Now introducing one of the schemes above in the discretized equations of convection-diffusion, 

the following expression is obtained. 

 

 
𝑎𝑃𝜙𝑃

𝑛+1 = 𝑎𝑁𝜙𝑁
𝑛+1 + 𝑎𝑆𝜙𝑆

𝑛+1 + 𝑎𝐸𝜙𝐸
𝑛+1 + 𝑎𝑊𝜙𝑊

𝑛+1 + 𝑏𝑃 (3.23) 

 

 
 

𝑎𝑁 = 𝐷𝑁 ∙  𝐴(𝑃𝑁) + 𝑚𝑎𝑥(−𝐹𝑁, 0)  𝐹𝑛 =  (𝜌𝑣)𝑛∆𝑥 
𝐷𝑛  =

𝛤𝑛∆𝑥

(𝛿𝑦)𝑛
 

𝑎𝑆 = 𝐷𝑆 ∙  𝐴(𝑃𝑆) + 𝑚𝑎𝑥(𝐹𝑆, 0)  𝐹𝑠 =  (𝜌𝑣)𝑠∆𝑥 
𝐷𝑠  =

𝛤𝑠∆𝑥

(𝛿𝑦)𝑠
 

𝑎𝐸 = 𝐷𝐸 ∙  𝐴(𝑃𝐸) + 𝑚𝑎𝑥(−𝐹𝐸 , 0)  𝐹𝑒 =  (𝜌𝑢)𝑒∆𝑦 
𝐷𝑒  =

𝛤𝑒∆𝑦

(𝛿𝑦)𝑒
 

𝑎𝑊 = 𝐷𝑊 ∙  𝐴(𝑃𝑊) + 𝑚𝑎𝑥(𝐹𝑊, 0)  𝐹𝑤 =  (𝜌𝑢)𝑤∆𝑦 
𝐷𝑤  =

𝛤𝑤∆𝑦

(𝛿𝑦)𝑤
 

 

𝑎𝑃  =  𝑎𝑃  +  𝑎𝑃  +  𝑎𝑃  +  𝑎𝑃  +  𝑎𝑃  + 𝑏𝑃 

 

 

𝑏𝑃  =  𝜌𝑃
𝑛 ∙

∆𝑥∆𝑦

∆𝑡
∙ 𝜙𝑃

𝑛 

 

Table 2: Final discretized form of convection-diffusion equation. 
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Numerical Scheme A(P) 

UDS 1 

CDS 1 – 0.5 (| P |) 

HDS max (0, 1 – 0.5 (| P |) 

EDS |P| / (e |P| - 1) 

PLDS max (0, (1 – 0.5 (| P |)5) 
 

Table 3: Value of P for each Numerical Scheme. 

 

▪ High order schemes 

 
The use of upwind quantities ensures that the schemes are very stable and obey the 

transportiveness requirements, but the first order accuracy makes them prone to numerical 

diffusion errors. Such errors can be minimized by employing higher-order discretization. The 

higher-order schemes involve more neighbor points and reduce the discretization errors by 

bringing in a wider influence. By adding a new term into the general formulation that acts like a 

source the new equation is written as follows[7]. 

 

 

𝑎𝑃𝜙𝑃
𝑛+1 = 𝑎𝑁𝜙𝑁

𝑛+1 + 𝑎𝑆𝜙𝑆
𝑛+1 + 𝑎𝐸𝜙𝐸

𝑛+1 + 𝑎𝑊𝜙𝑊
𝑛+1 + 𝑏𝑃 + 𝑏𝑑𝑒 (3.24) 

  

 

𝑏𝑑𝑒 = 𝐹𝑛( 𝜙𝑛
𝑈𝐷𝑆 − 𝜙𝑛

𝐻𝑆)  − 𝐹𝑠( 𝜙𝑠
𝑈𝐷𝑆 − 𝜙𝑠

𝐻𝑆)  + 𝐹𝑒( 𝜙𝑒
𝑈𝐷𝑆 − 𝜙𝑒

𝐻𝑆)  − 𝐹𝑤( 𝜙𝑤
𝑈𝐷𝑆

− 𝜙𝑤
𝐻𝑆)  

(3.25) 

 

 

                                              𝜙𝑛
𝑈𝐷𝑆 ‒ ‒>  𝑈𝑝𝑤𝑖𝑛𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑐ℎ𝑒𝑚𝑒 

𝜙𝑛
𝐻𝑆   ‒ ‒> 𝐻𝑖𝑔ℎ 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑐ℎ𝑒𝑚𝑒 

 

 

To compute the high-resolution scheme a normalized variable formulation is introduced. The 

proposed scheme is formulated based on the normalized variable. Considering face f of a control 

volume defining ϕU, ϕD, ϕC, and ϕf as the upstream (U), downstream (D), central nodal values (C), 

and face value (f) for each cell face, the normalized value is defined as  

 

 

𝜙̅ =  
𝜙 − 𝜙𝑈

𝜙𝐷 − 𝜙𝑈
 

(3.26) 

 

 

Note that with this normalization 𝜙̅D = 1 and 𝜙̅U = 0. The use of the normalized variables 

simplifies the definition of the functional relationships of HR schemes and will be helpful in 

defining the conditions the functional relationships should satisfy in order to have the property of 

boundedness and stability. 
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Figure 6: Original and Normalized variables 

 

 

a) Upwind Second Order 

 
For this case it uses again the value of the variable in the central node of the control volume from 

where the flow comes, but it also considers the value of the variable in the previous node of the 

flow direction. The scheme consists of a lineal extrapolation between 𝜙C and 𝜙U. The value at the 

cell face is shown in the equation below. 

 

ϕ𝑓𝑎𝑐𝑒 = 
3

2
𝜙𝐶 +

1

2
𝜙𝑈 

 

 

(3.27) 

 
 

 
 

North face 

𝜙𝑛  =
3

2
𝜙𝑃 +

1

2
𝜙𝑆 

(3.28) 

 

 

 

 

South face 

𝜙𝑠  =
3

2
𝜙𝑆 +

1

2
𝜙𝑆𝑆 

(3.29) 

 

 

 

West face 

 

𝜙𝑒 = 
3

2
𝜙𝑃 +

1

2
𝜙𝑊 

(3.30) 

 

 

 

East face 

 

𝜙𝑤 = 
3

2
𝜙𝑊 +

1

2
𝜙𝑊𝑤 

(3.31) 
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b) Quick Scheme 

 
This scheme uses a three-point upstream quadratic interpolation for cell face values. The face 

value of ϕ is obtained from a quadratic function passing through two nodes (on each side of the 

face) and one node on the upstream. The value at each cell face is shown below. 

 

 

ϕ𝑓𝑎𝑐𝑒 = 
6

8
𝜙𝐶 +

3

8
𝜙𝐷  − 

1

8
𝜙𝑈 

 

 

(3.32) 

  

North face 

𝜙𝑛 = 
6

8
𝜙𝑃 +

3

8
𝜙𝑁  − 

1

8
𝜙𝑆 

(3.33) 

 

South face 

𝜙𝑠 = 
6

8
𝜙𝑆 +

3

8
𝜙𝑃  − 

1

8
𝜙𝑆𝑆 

(3.34) 

 

West face 

𝜙𝑒 = 
6

8
𝜙𝑃 +

3

8
𝜙𝐸  −  

1

8
𝜙𝑊 

(3.35) 

 

East face 

𝜙𝑤 = 
6

8
𝜙𝑊 +

3

8
𝜙𝑃  −  

1

8
𝜙𝑊𝑊 

(3.36) 

 

 

3.6 Solvers 
 

Once we have the discretized study equations and particularized for the given geometry and the 

boundary conditions, what is obtained is a matrix of algebraic equations that encompasses all the 

study points of the domain, of the form 𝐴 · 𝑥 = 𝑏, where both A and b are known values. 

Although initially it may seem easy to solve the system to find x (our unknown), the inversion of 

matrix A is not trivial and therefore it is necessary to find a tool that simplifies the calculations. 

These tools are the resolution algorithms, better known as solvers, which are divided into two 

large groups: direct and iterative [8]. 

▪ Direct solvers 

The direct solvers are those that directly solve the study equations, achieving only with a 

calculation process the value of the variables. They are solvers difficult to program but fast in 

execution, which saves calculation time. Among them, the TDMA or Tridiagonal Matrix 

Algorithm stands out, a very useful and fast method when matrix A only contains three adjacent 
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diagonals. This particularity makes their application cases are limited, since it is not always 

possible for the matrix to contain only three diagonals, however, when it is the case, it is the most 

practical method. 

The tridiagonal system of the equations may be written as: 

 

𝑎𝑖𝑥𝑖 + 𝑏𝑖𝑥𝑖−1 + 𝑐𝑖𝑥𝑖+1 = 𝑑𝑖 (3.37) 

 

Written in the matrix form, 

 

[
 
 
 
 
 
 
𝑎1 𝑐1 0

𝑏2 𝑎2 𝑐2

𝑏3 𝑎3 𝑐3

⋱ ⋱ ⋱
𝑏𝑛−1 𝑎𝑛−1 𝑐𝑛−1

0 𝑏𝑛 𝑎𝑛 ]
 
 
 
 
 
 

[
 
 
 
 
 

𝑥1

𝑥2

⋮
⋮

𝑥𝑛−1

𝑥𝑛 ]
 
 
 
 
 

[
 
 
 
 
 

𝑑1

𝑑2

⋮
⋮

𝑑𝑛−1

𝑑𝑛 ]
 
 
 
 
 

 

 

 

 

(3.38) 

 

The method consists in directly solve the written matrix: 

𝑃𝑖 = 
𝑐𝑖

𝑎𝑖 − 𝑏𝑖  ∙  𝑃𝑖−1
 (3.39) 

 

𝑅𝑖 = 
𝑑𝑖 + 𝑏𝑖  ∙  𝑅𝑖−1

𝑎𝑖 − 𝑏𝑖  ∙  𝑃𝑖−1
 

(3.40) 

 

And finally, the concurrency formulae to find the direct solution for each xi is, 

 

𝑥𝑖 = 𝑃𝑖 ∙ 𝑥𝑖+1 + 𝑅𝑖 (3.41) 

 

The way to solve is, first, calculate the values of 𝑃𝑖 and 𝑅𝑖 for each node in ascendant. Notice that 

for the first node i = 1: 𝑃1 = 
𝑐1

𝑎1
 and 𝑅1 = 

𝑑1

𝑎1
. Then, to find the 𝑥𝑖 values, it is needed to set the 

𝑥𝑛= 𝑅𝑛, and with the equation (3.41) find the rest of the values from i=n-1 to i=1(descending 

order) 

▪ Iterative solvers 

The iterative solvers are based on the concept of trial and error. The resolution starts with a 

random value, and based on repeating the calculations, using a convergence criterion, the final 

value of the variable is reached. Among them Gauss-Seidel stands out, one of the simplest 

algorithms of this type. Its operating principle consists of assuming an initial solution value for 

each node, performing an iteration and checking the results for each node with the assumed or 

last calculated value, until the difference meets the chosen convergence criterion. 
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The Gauss-Seidel algorithm is a iterative method that solves the values of x point by point in the 

following manner in the equation (3.42), for each i = 1, 2,…n. 

 

𝑥𝑖
𝑘+1  =  

1

𝑎𝑖𝑗
(−∑𝑎𝑖𝑗𝑥𝑗

𝑘+1  −  ∑𝑎𝑖𝑗𝑥𝑗
𝑘 + 𝑏𝑖

𝑗>𝑖𝑗<𝑖

) 

 

(3.42) 

The new values of 𝑥𝑖
𝑘+1 are used as soon as they are known. For example, first it is computed the 

value of 𝑥1
𝑘+1, and once this is computed it is used in the second equation to calculate the new 

𝑥2
𝑘+1, and so on. 

As it is and iterative method when the 𝑥𝑖
𝑘+1 values are fond for all the domain values of I it is 

needed to check (for each value of I from 1 to n) if the method has converged, with the next 

expression. 

‖𝑥𝑖
𝑘+1  −  𝑥𝑖

𝑘  ‖ <  𝛿  

 

Within the iterative solvers also highlights the Line-By-Line, which is a combination of Gauss-

Seidel with TDMA. When matrix A is not tri-diagonal, there is a way to force it to be by including 

the values of the variables needed in the independent term. In this way we get a new matrix A 

that is tri-diagonal, on which we can apply TDMA. However, since the matrix is not the original 

one, an iterative process must be carried out, using Gauss-Seidel to obtain the final values of the 

system. 

3.7 Summary chapter 
 

During this chapter we have seen the convection-diffusion equations in their incompressible form. 

we have seen the Navier-Stokes equation in its general form to later discretize it. the equation has 

been discretized in one convective part and the other diffusive. Using these expressions and 

following the hypothesis of conservation and momentum has reached a final expression which 

will be the key to face this work. 

The spatial discretization has been analyzed, that for this work we will use the FVM (Finite 

Volume Method). Three types of meshes can be classified in their general form; 

▪ Structured grid 

▪ Block-structured grid 

▪ Unstructured grids 

Another fundamental part of this chapter has been the temporal discretization, we have seen two 

types of discretization which later will be of great help when considering the resolution of 

problems, The numerical schemes which we have classified into two types, First order scheme 

and High Resolution Scheme, have been seen in detail how to implement these types of schemes 

and which is the most convenient when developing a case study. Finally, the Solvers necessary 

for the development of this project, these solvers are classified into two major categories; 
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▪ Iterative Solver 

▪ Direct Solver 

Now we turn to the next chapter which aims to develop codes in MATLAB to study and analyze 

different cases of computational fluid dynamics. 
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4 Problems Convection-Diffusion Test problems 
 

4.1 Introduction 
 

The purpose of this chapter is to have a familiarity with the cases of convection-diffusion which 

with the mathematical formulation seen in chapter two and the discretization of the Navier-Stokes 

equations in chapter three we can now study three cases that are the following; 

▪ A Two- Dimensional Transient Conduction Problem 

▪ Diagonal Flow Problem 

▪ Smith-Hutton Problem 

The first case the heat transfer by conduction presents an interesting starting point for the study 

of the formulation of the Navier-Stokes equations, since the physical processes involved are easy 

to understand and do not present a great technical difficulty 

The heat transfer has a negative gradient. This fact can be observed in the following equation, 

where the heat flow is expressed as a function of temperature, this being proportional to the 

gradient by means of a constant, λ, known as thermal conductivity. 

 

𝑞 =  −𝜆
𝜕𝑇

𝜕𝑥
 

(4.1) 

 

 

The other two cases are the Diagonal Flow and Smith-Hutton, the first is based on a diagonal flow 

and the second on a solenoid flow confined in a rectangle. For these cases of studies different 

simulations will be made to different Reynolds numbers as well as with different mesh density 

and numerical schemes. 

For the resolution of these cases, two types of Solver have been proposed, for the case of Heat 

Transfer by conduction the solver that we will use is the Line by Line and for the two following 

cases the Point by Point. Next, the case studies. 

 

4.2 A Two- Dimensional Transient Conduction Problem 
 

This problem consists in a very long rod composed of four different materials, as it can be seen 

in the figure 7. As the draw is not a scale in the table 10 the coordinates of the points 𝑝1, 𝑝2 and 

𝑝3 are given. The properties of each one of the four materials are given in table 9, and boundary 

conditions can be found in the table 11. Furthermore, the initial temperature field is known, and 

is 𝑇=8.00 °𝐶. 
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The objective of this exercise is to obtain the value of the temperatures in each point of the 

domain, for each instant of time. The temporal evolution of the temperature of the domain points 

(0.65, 0.56) and (0.74, 0.72) will be studied to facilitate the graphic representation of the results. 

 

Figure 7: The two-transient conduction problem scheme[9]. 

 

 

 ρ[Kg/m3] cp[J/KgK] λ[W/mK] 

M1 1500.00 750.00 170.00 

M2 1600.00 770.00 140.00 

M3 1900.00 810.00 200.00 

M4 2500.00 930.00 140.00 
 

Table 4: Transient conduction problem properties 

 

 x[m] y[m] 

P1 0.50 0.40 

P2 0.50 0.70 

P2 1.10 0.80 

 

Table 5: Coordinates of the problem 

 

Cavity Wall Boundary Conditions 

Bottom Isotherm T= 23 0C 

Top Uniform Qflow = 60 W/m length 

Left In contact with a fluid Tg = 330C and a heat 
transfer coefficient 9 W/m2K 

Right Uniform temperature T=8 + 0.005 ∙t 0C 
 

Table 6: Boundary conditions of transient conduction problem 
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▪ Assumptions 

For the resolution of this exercise, the following hypotheses must have been formulated: 

1. Constant thermophysical properties. 

2. Transient study of the equations. 

3. The calculation of the equations will be done for times from 0 to 10000, with a temporary 

increase of 1s. 

4. Two-dimensional study of the case, so that the contribution of depth will not be 

considered in the equations. 

5. An implicit resolution scheme will be used. 

 

Governing Equations 

For the resolution of this exercise, a discretization of centered nodes has been chosen, generating 

two-dimensional control volumes, in which the node where the temperature is evaluated is in the 

center. Using this type of discretization, it is necessary that in the generated control volumes none 

appear with different materials, so that a horizontal division and two verticals have been made 

taking advantage of the limits imposed by each material, thus generating a different mesh density 

for each one of them. When evaluating the thermal conductivity in the faces between nodes, a 

harmonic mean of the value will be made. 

In this way, for two nodes with equal thermal conductivity, the harmonic mean will give this 

value, while if the nodes are of different materials a weighted value will be obtained with the size 

of each control volume. 

This is a case of pure conduction and constant physical properties. Therefore, the energy equation 

is the only equation which will be used to obtain the temperature field. 

 

𝜕𝑇

𝜕𝑡
=  

𝜆

𝜌𝑐𝑝
𝛻2𝑇 

(4.2) 

 

Numerical Methods 

 

For the time integration a full implicit method will be used for this problem, integrating the 

equation (4.2) the following term is obtained. 

∫
𝜕𝑇

𝜕𝑡
𝑑𝑡 = 𝑇𝑛+1  − 𝑇𝑛  = 

𝑡𝑛+1

𝑡𝑛 ∫
𝜆

𝜌𝑐𝑝
𝛻2𝑇 𝑑𝑡 ≈

𝑡𝑛+1

𝑡𝑛  
𝜆

𝜌𝑐𝑝
𝛻2𝑇𝑛+1∆𝑡 (4.3) 

 

𝑇𝑛+1  −  𝑇𝑛

∆𝑡
 =  

𝜆

𝜌𝑐𝑝
𝛻2𝑇𝑛+1 

(4.4) 
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To obtain the temperature field for each time step, the equation must be integrated over the whole 

domain. First the transient term will be integrated and then the diffusive term. 

∫
𝑇𝑛+1  −  𝑇𝑛

∆𝑡Ω

 𝑑Ω ≈
𝑇𝑛+1  −  𝑇𝑛

∆𝑡
 ∆𝑥∆𝑦  

(4.5) 

 

∫ 𝛻2𝑇𝑛+1

𝛺

 𝑑𝛺 =  ∫ 𝛻
𝛺

∙  (𝛻𝑇𝑛+1)𝑑𝛺 =  ∫ 𝛻𝑇𝑛+1

𝜕𝛺

 ∙  𝑛̂𝑑𝑆 =  

 

(
𝑇𝐸

𝑛+1  −  𝑇𝑃
𝑛+1

∆𝑥𝑑𝑒

 −  
𝑇𝑃

𝑛+1  −  𝑇𝑊
𝑛+1

∆𝑥𝑑𝑤

)∆𝑦 +  (
𝑇𝑁

𝑛+1  −  𝑇𝑃
𝑛+1

∆𝑦𝑑𝑛

 −  
𝑇𝑃

𝑛+1  −  𝑇𝑆
𝑛+1

∆𝑦𝑑𝑠

)∆𝑥   

 

 
 
 
 
(4.6) 

 

To solve the problem, we must arrive at the following equation. 

 

𝑎𝑃𝑇𝑃
𝑛+1 = 𝑎𝑁𝑇𝑁

𝑛+1 + 𝑎𝑆𝑇𝑆
𝑛+1 + 𝑎𝐸𝑇𝐸

𝑛+1 + 𝑎𝑊𝑇𝑊
𝑛+1 + 𝑏𝑃 (4.7) 

 

 

West nodes 

𝑎𝑊
′ = 0          (4.8) 

 

𝑎𝑝
′ = 𝑎𝑝  +  

𝑎𝑊𝜆𝑤

∆𝑥𝑑𝑤
+  𝜆𝑤

 

 

(4.9) 

 

𝑏𝑝
′ = 𝑏𝑝  −  

𝑎𝑊∆𝑥𝑇𝑔

∆𝑥𝑑𝑤
+  𝜆𝑤

 
(4.10) 

 

 

North nodes 

 

𝑎𝑁
′ = 0 (4.11) 

 

𝑎𝑝
′ = 𝑎𝑁 + 𝑎𝑁 (4.12) 

 

𝑏𝑝
′ = 𝑏𝑝  −  𝑎𝑁

𝑞𝑡𝑜𝑝∆𝑦𝑑𝑛

𝜆𝑛
 

(4.13) 

 

East nodes 
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𝑎𝐸
′ = 0 (4.14) 

 

𝑏𝑝
′ = 𝑏𝑝  −   𝑎𝐸𝑇𝑟𝑖𝑔ℎ𝑡 (4.15) 

 

South nodes 

 

𝑎𝑆
′ = 0 (4.16) 

 

𝑏𝑝
′ = 𝑏𝑝  −  𝑎𝑆𝑇𝑏𝑜𝑡𝑡𝑜𝑚 (4.17) 

 

 

Inner nodes 

 

𝑎𝑁 = − 
𝜆𝑛

𝜌𝑐𝑝
 

∆𝑥

∆𝑦𝑑𝑛

           
(4.18) 

 

𝑎𝑆 = − 
𝜆𝑆

𝜌𝑐𝑝
 
∆𝑥

∆𝑦𝑑𝑠

 
(4.19) 

 

𝑎𝐸 = − 
𝜆𝑒

𝜌𝑐𝑝
 
∆𝑦

∆𝑦𝑑𝑒

 
(4.20) 

 

𝑎𝑊 = − 
𝜆𝑤

𝜌𝑐𝑝
 

∆𝑦

∆𝑦𝑑𝑤

 
(4.21) 

 

𝑏𝑝 = 𝑇𝑝
𝑛
∆𝑥∆𝑦

∆𝑡
 

(4.22) 

 

Results 

Below we can see the results obtained by developed code. The precision obtained would be 

greater with a denser meshing, but an increase in the number of nodes affects a greater time and 

calculation effort. 

 

The temperature map for an instant of time of 5000 and 10000 seconds can be appreciated in the 

graph below. Analyzing the images, in the lower wall the temperature remains constant over time 

and as the temperature of the right wall increases proportionally to the time elapsed. 

 

Considering the possible calculation errors due to the precision obtained with the work mesh, it 

can be seen how the results that have been obtained are quite similar to the reference by the CTTC 

(Centre Tecnologic Heat Transfer) 
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It can be concluded that the number of chosen nodes is enough to obtain an accurate solution. 

This solution has a physical meaning since the right side is at approximately 33ºC and the bottom 

boundary at 23ºC. Inside the domain, a temperature degradation can be observed from a 

temperature of about 33ºC on the right boundary to a temperature of 23ºC on the left and bottom 

boundaries. 

 

 

Time: 5000 seconds 
 

 

 

Figure 8: Temperature at 5000 seconds 

 

 

 

Figure 9: Temperatures at 5000 seconds with the two Points requested. 
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Time: 10000 seconds 

 

 

Figure 10: Temperature at 10000 seconds 

 

 

 

Figure 11: Temperature at 10000 seconds with the two Points requested. 
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Figure 12: Comparison between the two requested points at 5000 seconds. 

 

 

Figure 13: Comparison between the two requested points at 10000 seconds. 
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Tempo 

seconds 

 

 

P1 

 

P2 

  

Tempo 

seconds 

 

P1 

 

P2 

       

0.00 8.00 8.00  5000.00 24.58 25.50 

20.00 8.00 8.00  5200.00 25.09 26.12 

40.00 8.00 8.01  5400.00 25.59 26.73 

80.00 8.00 8.01  5600.00 26.08 27.34 

100.00 8.01 8.02  5800.00 26.58 27.94 

400.00 8.94 8.35  6000.00 27.07 28.54 

800.00 10.91 9.86  6200.00 27.55 29.14 

1200.00 12.73 11.72  6400.00 28.04 29.74 

1400.00 13.58 12.63  6600.00 28.52 30.34 

1600.00 14.38 13.52  6800.00 29.01 30.93 

1800.00 15.15 14.38  7000.00 29.49 31.52 

2000.00 15.88 15.21  7200.00 29.97 32.11 

2200.00 16.58 16.01  7400.00 30.45 32.70 

2400.00 17.25 16.78  7600.00 30.93 33.29 

2600.00 17.90 17.53  7800.00 31.40 33.88 

2800.00 18.53 18.27  8000.00 31.88 34.47 

3000.00 19.14 18.98  8200.00 32.35 35.06 

3200.00 19.73 19.68  8400.00 32.83 35.65 

3400.00 20.31 20.36  8600.00 33.30 36.23 

3600.00 20.88 21.04  8800.00 33.78 36.82 

3800.00 21.43 21.70  9000.00 34.25 37.40 

4000.00 21.98 22.35  9200.00 34.72 37.99 

4220.00 22.56 23.06  9400.00 35.20 38.57 

4400.00 23.04 23.63  9600.00 35.67 39.16 

4600.00 23.56 24.26  9800.00 36.14 39.74 

4800.00 24.07 24.88  9999.00 36.61 40.32 
 

Table 7: Temperatures values from 0 seconds to 10.000 seconds 
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4.3 The Diagonal Flow Problem 
 

The flow is in the upper diagonal, and the boundary conditions are those that are shown in the 

image, the solution of this problem is known for an infinite Peclet number. 

 

 

Figure 14: The Diagonal Flow Problem [10]. 

 

The velocity field in this case is as follows: 

 

𝑢(𝑥, 𝑦) =  𝑉0 ∙ 𝑐𝑜𝑠(𝛼) (4.23) 

𝑣(𝑥, 𝑦) =  𝑉0 ∙ 𝑠𝑖𝑛(𝛼) (4.24) 

 

The solution must fulfil the following criteria: 

 

𝜙 = 𝜙1                Above the diagonal (4.25) 

𝜙 = 𝜙2                Below the diagonal (4.26) 

 

To solve the problem two schemes were used the Upwind and Quick in order to compare a first 

order scheme with a second order scheme. On the other hand, the solver used for this case is a 

Line by Line method. 

The results are divided in three sections; 

• Rho/gamma = 10 

• Rho/gamma = 1e3 

• Rho/gamma = 1e6 

Once the simulated results have been verified it is time to plot those results and thereafter analyze 

its behavior depending on the value of 𝜌/Г. 
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Results  

The results obtained with the created program are shown below. we have chosen two types of 

mesh disinfection, 50 x 50 and 100 x 100. The Peclet number will be varied to see the behavior 

with different numbers. For the different cases a comparison by means of graphs of the two 

schemes were adopted. We can observe that the results are similar in the two schemes and we 

also see a better result that approaches the theoretical by applying meshes with more numbers of 

nodes. 

1. Rho/gamma = 10 

 

a) UpWind 

 

 

Figure 15: Mesh Comparison 50 x 50 and 100 x 100. 

 

b) Quick 

 

Figure 16: Mesh Comparison 50 x 50 and 100 x 100. 
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2. Rho/gamma = 1000 

The results obtained for the simulation are presented for a Re = 1e3, with a mesh of 50 x 50 and 

100 x 100 with an error 1e-6. 

 

 

a) UpWind 

 

Figure 17: Mesh Comparison 50 x 50 and 100 x 100. 

 

 

b) Quick 

 

Figure 18: Mesh Comparison 50 x 50 and 100 x 100. 
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3. Rho/gamma = 1000000 

The results obtained for the simulation are presented for a Re = 1e6, with a mesh of 50 x 50 and 

100 x 100 with an error 1e-6. 

 

a) Upwind 

 

Figure 19: Mesh Comparison 50 x 50 and 100 x 100. 

 

b) Quick 

 

Figure 20: Mesh Comparison 50 x 50 and 100 x 100. 

 

As can be seen in the cases studied, the problems are very sensitive to Peclet variations. For low 

values, a large diffusion zone is obtained where the variable does not have the expected value, 

and as the number of Péclet increases, this diffusion is reduced, and the result approaches the 

theoretical one. However, the exercise is also sensitive to the meshing used, as can be seen in the 

previous figures. For less dense meshes the phenomenon known as false diffusion occurs, where 

it seems that there is more diffusion than there really is, as if the value of the simulated Péclet was 

lower than the real one, while for denser meshes, diffusion is reduced, and the value obtained is 

closer to the ideal. 
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4.4 The Smith Hutton Problem  
 

The objective of the problem is to solve the transport of a variable due to a constant velocity 

field into a bi-dimensional body testing different numerical schemes. 

 

Figure 21: The Smith Hutton Problem[9]. 

 

This problem is also known as the Smith-Hutton problem and has the peculiarity that the flow 

moves solenoidal, so that for a rectangular domain like the one observed in the image, the velocity 

field is of the form: 

 

𝑢(𝑥, 𝑦)  =  2𝑦(1 − 𝑥2) (4.27) 

𝑣(𝑥, 𝑦)  =  −2𝑥(1 − 𝑦2) (4.28) 

 

And the boundary conditions of the study variable are those shown in the table below, where the 

value of α must be 10 for this exercise: 

 

Boundary Conditions 

ϕ = 1+ tanh [(2x +1) α] -1 < x < 0 y = 0 (entrance) 

ϕ = 1- tanh [α] x = -1 0 < y < 1 

ϕ = 1- tanh [α] -1 < x < 1 y = 1 

ϕ = 1- tanh [α] x = 1 0 < y < 1 
𝝏𝝓

𝝏𝒚
= 𝟎 

0 < x <1 y = 0 (exit) 

 

Table 8: Phi value related to the Boundary Conditions. 

 

For the development of this problem we will assume different hypotheses that will help us to build 

the program. One of the first hypotheses is that the flow is steady state, thermophysical parameters 

such as density and diffusion coefficient are constant and cell-centered discretization: average 

values over each cell –the property ϕ, density, diffusion coefficient.  
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Matematical Formulation of the Problem 

 

In order to solve this case, the convection-diffusion equation has to be solved. 

𝜕𝜌𝜙

𝜕𝑡
+  𝛻 ∙ (𝜌𝑣⃗𝜙) = 𝛻 ∙ (Γ𝛻𝜙) + 𝑆 

(4.29) 

 

To discretize the convection-diffusion equation, it has been used the Finite Volume Method 

(FVM) as shown in the equation below. 

 

(
𝜕𝜌𝜙

𝜕𝑡
)
𝑝
∆𝑥∆𝑦 + ((𝑚̇𝜙)𝑒 − (𝑚̇𝜙)𝑤)∆𝑦 + (𝑚̇𝜙)𝑛 − (𝑚̇𝜙)𝑠)∆𝑥 

=  (𝛤
𝜕𝜙

𝜕𝑥
𝑆)

𝑒
 − (𝛤

𝜕𝜙

𝜕𝑥
𝑆)

𝑤
 + (𝛤

𝜕𝜙

𝜕𝑥
𝑆)

𝑛
 −  (𝛤

𝜕𝜙

𝜕𝑥
𝑆)

𝑠
  

 

 

(4.30) 

 

 

Results  

 

The results obtained with UDS and Quick Scheme are shown in the following pages, these results 

are comparing with the reference results. 

The results are divided in three sections; 

• Rho/gamma = 10 

• Rho/gamma = 1e3 

• Rho/gamma = 1e6 

 

Once the simulated results have been verified it is time to plot those results and thereafter analyze 

its behavior depending on the value of 𝜌/Г. The results can vary according to the mesh number, 

so we can see that the density of the mesh is a very important factor when it comes to obtaining 

accurate results. 

Finally, the results commented graphically will be seen. In the first case corresponding to ρ / Γ = 

10 and 300 x150 mesh, the diffusion present in the domain is higher than in the other two cases, 

due to the low convective term, while in the other two cases, for higher ρ / Γ values and a higher 

mesh density, diffusion is lower, and the strong effect of convection is seen, moving the fluid 

according to the geometry of the velocity field. 
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1. Rho/gamma = 10 

 

Figure 22: Mesh Comparison 200 x 100 and 300 x 150. 

2. Rho/gamma = 1e3 

 

Figure 23:Mesh Comparison 200 x 100 and 300 x 150. 

3. Rho/gamma = 1e6 

 

Figure 24: Mesh Comparison 200 x 100 and 300 x 150. 
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The following table contains the numerical values of the different numbers of 𝜌/Г with the two 

schemes chosen for the comparison with the reference. The Mesh used to obtain the following 

values is a 200 x100. 

 

 Rho/Gamma 10 Rho/Gamma 1000 Rho/Gamma  1000000 

Position 
x 

Reference QUICK UDS Reference QUICK UDS Reference QUICK UDS 

0.0 1.989 1.911 1.908 2.000 2.000 2.000 2.000 2.000 2.000 

0.1 1.402 1.404 1.387 1.999 1.999 1.999 2.000 2.000 2.000 

0.2 1.146 1.155 1.136 1.999 1.997 1.997 2.000 1.999 1.999 

0.3 0.946 0.956 0.938 1.985 1.942 1.944 1.999 1.977 1.981 

0.4 0.775 0.784 0.769 1.841 1.617 1.627 1.964 1.708 1.733 

0.5 0.621 0.629 0.617 0.951 0.916 0.924 1.000 0.925 0.936 

0.6 0.480 0.486 0.477 0.154 0.292 0.290 0.036 0.234 0.222 

0.7 0.349 0.353 0.348 0.001 0.046 0.044 0.001 0.024 0.020 

0.8 0.227 0.230 0.226 0.000 0.003 0.003 0.000 0.000 0.007 

0.9 0.111 0.113 0.111 0.000 0.000 0.000 0.000 0.000 0.000 

1.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table 9: Different rho/gamma comparison 

 

Below the plots of the results obtained for the different numbers of 𝜌/Г, in which the 

diffusion that originates when the value of x is low can be better appreciated. 

 

 

Figure 25: 2D plots with Rho/Gamma 10 
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Figure 26:2D plots with Rho/Gamma 1000 

 

 

 

Figure 27: 2D plots with Rho/Gamma 1000000 

 

 

The two schemes used are almost similar, the Quick is the one that comes closest to the reference. 

So, the Quick scheme is much more accurate than the UDS. 

Looking of the simulated figures, it can be appreciated how in the first case the velocity enters in 

the cavity and by diffusion is dispersed through the cavity. But, in the other cases, where the 

Peclet has been increased, the diffusive term does not affect so much, and the velocity enters in 

the cavity and goes off by convection. In conclusion, if the Peclet increases the convective term 

is the dominants over the diffusive one, or vice versa if the Peclet number decreases. 
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4.5 Summary chapter 
 

During this chapter we have seen how to implement the Navier-Stokes equations in their 

incompressible form for the 3 case studies. 

In the first case we have discretized the convection-diffusion equations for the case under 

examination, we have applied certain hypotheses that allow us to solve the problem more easily. 

For the temporary discretization, an implicit method has been chosen and for the spatial 

discretization the FVM as well as for the other two study cases. The boundary conditions imposed 

by the problem have been followed resulting in a great similarity with the theoretical data. Table 

7 shows how the two points assigned by the problem vary each time the time advances, this 

variation can be better appreciated in figure 12 and 13. 

For Diagonal Flow as can be seen, the problems are very sensitive to Peclet variations. For low 

values, a large diffusion zone is obtained where the variable does not have the expected value, 

and as the number of Péclet increases, this diffusion is reduced, and the result approaches the 

theoretical one. However, the exercise is also sensitive to the meshing used, as can be seen in the 

previous figures. For less dense meshes the phenomenon known as false diffusion occurs, where 

it seems that there is more diffusion than there really is, as if the value of the simulated Péclet was 

lower than the real one, while for denser meshes, diffusion is reduced, and the value obtained is 

closer to the ideal. 

And finally, for the Smith-Hutton problem, it can be appreciated how in the first case (Re = 10) the 

velocity enters in the cavity and by diffusion is dispersed through the cavity. But, in the other 

cases, where the Peclet has been increased, the diffusive term does not affect so much, and the 

velocity enters in the cavity and goes off by convection. In conclusion, if the Peclet increases the 

convective term is the dominants over the diffusive one, or vice versa if the Peclet number 

decreases. 

The codes made in Matlab have responded to the physics of the problems under study therefore 

we can say that the problems set at the beginning of the chapter have been solved. 
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5. Fraction Step Method 

 

5.1 Introduction  
 

The set of Navier-Stokes equations and the continuity equation make up a complex system of 

differential equations in coupled partial derivatives. That is why, except for very simple cases, no 

analytical solutions have yet been found and the need for a numerical resolution is evident. 

The process of obtaining the numerical solution computationally involves three stages, 

decoupling, discretizing and solving the equations. In the first stage, we try to decouple the speed 

of the pressure in the equations, it means, to find an adequate method that allows us to obtain a 

set of equivalent expressions to the Navier-Stokes equations and continuity, in which the 

unknowns (𝑣⃗ 𝑎𝑛𝑑 𝑝) can be solved separately. In the second stage, the differential equations in 

partial derivatives and their boundary conditions are transformed into a system of discrete 

algebraic equations, both in time and space. Finally, the third stage involves the implementation 

of numerical methods to computationally solve systems of algebraic equations already discretized 

and decoupled. 

In this chapter we will study, on the one hand, the so-called fractional steps method (Fractional-

Step Method-FSM), a method used to decouple the velocity pressure in the Navier-Stokes 

equations, and on the other hand, the Finite Volumes method, used to spatially discretize the 

equations. During the development of the FSM, the discretization schemes used for the temporary 

part will also be explained. 

 

5.2 FSM  
 

This method uses the decomposition theorem of Helmholtz-Hodge to solve the coupling of 

pressure and velocity in incompressible fluids. The idea is to obtain two separate equations, one 

for speed and one for pressure. For this the method uses an intermediate speed with which the 

pressure is resolved and then the final speed is calculated by correcting the intermediate speed 

with the pressure. Below we will see in more detail the operation of the method, starting with the 

Helmholtz-Hodge theorem[11]. 

The Helmholtz-Hodge theorem states that any vector field in a closed contour can be uniquely 

decomposed into a part of zero divergence or solenoidal part and an irrotational part, as follows: 

 

 

ω⃗⃗ =  ω⃗⃗ 𝑠𝑜𝑙 + ω⃗⃗ 𝑖𝑟𝑟 =  ω⃗⃗ 𝑠𝑜𝑙 + ∇⃗⃗ 𝐴 (5.1) 
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The figure below shows the decomposition of the vector field ω⃗⃗  

 

 

Figure 28: Decomposition of the vector field 𝝎⃗⃗⃗ . 

 

Obtaining ∇⃗⃗ 𝐴 𝑥 ∇⃗⃗ 𝐴 =  0 to any scalar field A. Applying the divergence operator on both sides of 

equation (5.1) ( ∇⃗⃗ ∙  ω⃗⃗ 𝑠𝑜𝑙 =  0 ) the Poisson equation for the scalar field A is obtained. 

 

∇⃗⃗ ∙  ω⃗⃗  =  ∇2 𝐴 (5.2) 

 

If the field is known, the above equation can be solved using the following relationship: 

ω⃗⃗ 𝑠𝑜𝑙  =  ω⃗⃗  −  ∇⃗⃗  ⃗𝐴   (5.3) 

 

Once explained the Helmholtz-Hodge theorem we apply it to the Navier-Stokes equations to solve 

the coupling of pressure and velocity and obtain two resolvable equations, one for each variable 

mentioned. 

 

𝜕𝑣 

𝜕𝑡
 + (𝑣  ∙   ∇⃗⃗  ⃗)𝑣  =  

1

𝑅𝑒
 ∇2𝑣   −   ∇⃗⃗  ⃗𝑝  

(5.4) 

 

 ∇⃗⃗  ⃗  ∙  𝑣  =  0   (5.5) 

The term of the pressure corresponds with the irrotational part that we mentioned (  ∇⃗⃗  ⃗𝑝 ∿  ∇⃗⃗  ⃗𝐴 ), 

and the velocity with the field of divergence null  ∇⃗⃗  ⃗  ∙  𝑣   ∿ ∇⃗⃗ ∙  ω⃗⃗ 𝑠𝑜𝑙  . Therefore, the method 

consists in defining an intermediate speed that corresponds to the solenoidal field and that is a 

function of a vector that we will define as R (𝑣 ). Then, if we separate the term of the pressure in 

(5.4) and apply the divergence operator, we obtain the Poisson equation for the pressure. 

 



 
                                           MASTER FINAL THESIS 

57 
Boris Ortega Varas 

 

∇2𝑝 =   ∇⃗⃗  ⃗  ∙  [− (𝑣  ∙   ∇⃗⃗  ⃗)𝑣  + 
1

𝑅𝑒
 ∇2𝑣   ] 

(5.6) 

 

R(𝑣 ) = [− (𝑣  ∙   ∇⃗⃗  ⃗)𝑣  + 
1

𝑅𝑒
 ∇2𝑣   ] 

(5.7) 

Using R(𝑣 ), an analogous equation as (5.3) is obtained for the Navier-Stokes equations (see 

figure): 

𝑣  =  R(𝑣 )  −  ∇⃗⃗  ⃗𝑝    

 

Figure 29: Decomposition of the Navier-Stokes equations in an irrotational field irrotational and one of null 
divergence. 

 

In this way, with the initial velocity field (which is known), we can directly calculate the 

intermediate velocity 𝑣 ⃗⃗⃗ ⃗ ∗ = 𝑓(𝑅(𝑣 ⃗⃗⃗ ⃗)), use it to solve the Poisson equation, and finally correct 

𝑣 ⃗⃗⃗ ⃗ ∗ with the pressure gradient to calculate the final velocity 𝑣⃗ fluid. 

 

Temporal discretization  

Explicit schemes will be used to reduce computational time, and to solve the stability problem, 

the Courant criterion will be used to determine the time step: 

𝐶0  =  
|𝑢|∆𝑡

∆𝑥
 ≤  1 

(5.8) 

Following now with the choice of the temporal schemes for the development of the FSM, in our 

case we have opted for a low order scheme CDS (Central Difference Scheme) for the 

discretization of the term of the temporary derivative, 
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𝜕𝑣⃗

𝜕𝑡
  |

𝑛+1/2

 ≈     
𝑣⃗𝑛+1 − 𝑣⃗𝑛

∆𝑡
 

(5.9) 

 

an explicit scheme of the second order known as the Adams-Bashforth scheme for the terms 

grouped in 𝑅(𝑣 ⃗⃗⃗ ⃗) , 

 

𝑅𝑛+1/2(𝑣⃗) ≈
3

2
𝑅(𝑣⃗𝑛)  − 

1

2
𝑅(𝑣⃗𝑛−1) 

(5.10) 

  

and finally, a Euler backward first order scheme for the term of the pressure gradient: 

 

𝑣⃗𝑛+1  −  𝑣⃗𝑛

∆𝑡
 =  

3

2
𝑅(𝑣⃗𝑛)  − 

1

2
𝑅(𝑣⃗𝑛−1)  − ∇⃗⃗⃗𝑝𝑛+1 

(5.11) 

  

Now, reorganizing the equation (5.11), the intermediate velocity is obtained, represented by the 

first term of the following expression: 

 

𝑣⃗𝑛+1  + ∇⃗⃗⃗𝑝𝑛+1∆𝑡 = 𝑣⃗𝑛 + ∆𝑡 [
3

2
𝑅(𝑣⃗𝑛)  − 

1

2
𝑅(𝑣⃗𝑛−1) ] 

(5.12) 

 

𝑣 ⃗⃗⃗ ⃗ ∗ =  𝑣⃗𝑛+1  + ∇⃗⃗⃗𝑝𝑛+1 ∆𝑡 (5.13) 

  

In this way an expression is obtained to determine the real speed 𝑣⃗𝑛+1. The last step is to apply 

to the equation (5.13) the divergence operator and the incompressibility criterion to obtain the 

Poisson equation in a discrete form, thus concluding with the formulation of the method. 

∇⃗⃗⃗ 𝑣 ⃗⃗⃗ ⃗ ∗ =  ∆𝑡 ∇2 𝑝𝑛+1  

 

FSM Steps 

The resolution steps of the FSM will be summarized below. In this way we will see both the 

global operation that the program will follow and the equations with which we will work from 

now on to complete the process of discretization. 
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1. Evaluating the diffusive and convective terms by calculating R(v⃗⃗n) using the initial 

velocity field. 

𝑅(𝑣⃗𝑛) =  − (𝑣⃗𝑛∆𝑡)(𝑣⃗𝑛) +
1

𝑅𝑒
 𝛻2𝑣⃗𝑛    

(5.14) 

2. Determine the intermediate speed 

 𝑣 ⃗⃗⃗ ⃗ ∗ =  𝑣 ⃗⃗⃗ ⃗  +  ∆𝑡 [
3

2
𝑅(𝑣⃗𝑛)  − 

1

2
𝑅(𝑣⃗𝑛−1) ] 

(5.15) 

 

3. Solve the Poisson equation to obtain the pressure fields. 

 𝛻2 𝑝𝑛+1 = 
𝛻⃗⃗ ∙ 𝑣 ⃗⃗⃗ ⃗ ∗

∆𝑡
 

(5.16) 

4. Correct the intermediate speed with the pressure of the previous step and evaluate the 

actual velocity of the fluid at the instant n+1 

𝑣⃗𝑛+1 = 𝑣 ⃗⃗⃗ ⃗ ∗  −  𝛻⃗⃗𝑝𝑛+1 ∆𝑡 (5.18) 

 

5.3 Spatial Discretization 
 

5.3.1 Finite Volume Method 
 

The method of finite volumes is based on the direct discretization of the equations of conservation 

of the mass, motion and energy. This method integrates the equations in each of the control 

volumes in which the work domain is divided (see Figure 30), associating each of them with a 

nodal point in the center. The surface integrals that appear in the equations are approximated by 

the sum of the flows that cross each of the faces of the polyhedron; the result is a discretized 

equation that relates the values of the variables in a group of nodal points[8]. 

 

Figure 30: The finite volume Method 
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The main advantage of this method is that spatial discretization is carried out directly in the 

physical space of the problem. Therefore, there are no problems with the transformation between 

coordinate systems, as in the finite differences method. Another advantage of the method is the 

great flexibility it offers when using it in both structured and unstructured meshes. Due to all this 

this method is one of the most used in CFD simulations. 

 

5.3.2 Grid 
 

The first step in spatial discretization consists of the discretization of the work domain, that is, 

deciding the most appropriate type of mesh to our problem, considering the advantages and 

limitations of each of them. 

Depending on the shape and relative size of the nodes that make up a mesh, two types are 

distinguished, the structured and unstructured meshes. Within the structured meshes we can find 

uniform or non-uniform meshes, depending on the regularity of the spacing between cells. 

The advantage of structured meshes is that their geometry is simple and therefore are easier and 

intuitive to program. However, they are not perfectly adaptable to the regions of interest and it is 

not possible to densify an area of interest without increasing the number of points along the entire 

mesh. The strong point of the unstructured meshes is precisely that they are totally moldable 

according to the geometry of the problem, but its implementation in the computer is quite more 

expensive. Therefore, it is necessary to define and decide what type of mesh is more convenient, 

considering the limitations of each one. For this case it will only be treated with simple geometries 

and therefore uniform structured meshes will be used. On the other hand, if we look at the situation 

of the nodes in the meshes, two types are distinguished: the centered meshes and the displaced 

meshes (staggered).  

The centered ones are characterized by working with all the variables defined in the central node 

of the control volume, while the displaced meshes work with the pressure in the center of the 

volume and the components of the velocity are moved half a cell towards the face of the same. 

 

 

Figure 31: Example of centered mesh (left) and displaced mesh (right). 

 

Working with a displaced mesh is equivalent to working with several centered meshes, one for 

each variable, as shown in Figure 32. 
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Figure 32: Example of displaced mesh in 2D. 

 

The use of a displaced arrangement [12] such as that shown in Figure 31 has the advantage that 

many of the terms that require interpolation with the centered mesh can be calculated directly 

without interpolation. We can see this in figure 33. Both the pressure and the diffusive terms can 

be approximated by centered differences without interpolation, since the pressure is in the center 

of the cell and the velocity derivatives (needed for the term diffusive), are already calculated on 

the faces. 

 

 

Figure 33: Representative diagram of the mesh used (uniform, structured and dispaced), as well as the 
placement of each of the points of the different variables. 

 

 

Considering all the above, we will work with a uniform structured and displaced mesh. Figure 33 

shows a scheme of the mesh that has been implemented, as well as the notation used of the cells 

and their adjoining ones. Given any point P, its neighbors will be denoted by the initials in English 

of the cardinal points, N, S, E and W. The faces of the cells are denoted in the same way but with 

lowercase letters. 
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5.3.3 Spatial Discretization of the Equations 

The next step is to discretize the equations obtained in the "Steps of the FSM " section, thus 

eliminating the spatial derivatives involved. For this, the Finite Volumes method will be applied, 

so that the equations will be integrated over a generic cell like the one shown in figure 34, 

validating whether one component or another of the velocity is integrated. Initially, all the 

equations referring to one component and then the other should be integrated, each one integrated 

in its corresponding working mesh (Figure 33). However, the process can be simplified by 

integrating the equations for a generic variable 𝜙 =  𝑣 ⃗⃗⃗ ⃗ = (𝑢, 𝑣)  specifying which magnitudes 

have to be replaced or obtained from each particular mesh. 

 

Figure 34: Generic cell diagram and nomenclature used to designate the parameters of the same. 

 

The following equations will be discretized 

 

R(𝜙) =  − ( 𝜙 𝛻⃗⃗) 𝜙 + 
1

𝑅𝑒
 𝛻2 𝜙  

(5.19) 

 

∇2𝑝 =  
𝛻⃗⃗ ∙ 𝜙⃗⃗⃗ ∗

∆𝑡
 

(5.20) 

 

Then the discretization process will be shown for R (ϕ) Because the operators involved in the two 

equations are the same and the discretization is equivalent. The only difference, as we have 

mentioned before, is the work mesh, which for the equation (5.20) would be the mesh of the 

pressure nodes. 

R (ϕ) Discretization  

A. Convective term R (𝜙)𝑐𝑜𝑛𝑣 = (( 𝜙 𝛻⃗⃗) 𝜙):  

∬ 𝑅 (𝜙)𝑐𝑜𝑛𝑣  𝑑𝑆
𝑆

= ∫ ∫ (𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
 )

𝑒

𝑤

𝑑𝑥 𝑑𝑦
𝑛

𝑠

 
(5.21) 
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∫ [(𝑢 𝜙)𝑒  −  (𝑢 𝜙)𝑤 +   𝑣
𝜕𝜙

𝜕𝑦
 (𝑥𝑒 − 𝑥𝑤)]

𝑛

𝑠

 𝑑𝑦 
(5.22) 

 

[(𝑢 𝜙)𝑒  − (𝑢 𝜙)𝑤](𝑦𝑛 − 𝑦𝑠) + [(𝑣 𝜙)𝑛  −  (𝑣 𝜙)𝑠] ∆𝑥 (5.23) 

  

In the previous expression, we have approximated the surface integrals by the sum of the flows 

that cross the faces, 𝜙𝑖 = 𝜙𝑒,𝑤,𝑛,𝑠. Now, the points e,w,n and s are not points belonging to the 

working domain of the mesh and you need to put them in function of the points E,W,N and S. 

Using again the scheme of centered differences we can approximate: 

 

𝜙𝑖 =
𝜙𝑃 + 𝜙𝐼

2
 

(5.24) 

 

Where 𝜙𝑃𝑎𝑛𝑑 𝜙𝐼 = 𝜙𝐸,𝑊,𝑁,𝑆, Now theses flow corresponds to the mesh points. Substituting in 

equation (5.24) the following equation is obtained. 

 

 

𝑅 (𝜙)𝑐𝑜𝑛𝑣 =
∆𝑦

2
[𝑢𝑒(𝜙𝑃 + 𝜙𝐸)  − 𝑢𝑤(𝜙𝑃 + 𝜙𝑊)] +

∆𝑥

2
[𝑣𝑒(𝜙𝑃 + 𝜙𝐸)  −  𝑣𝑤(𝜙𝑃 + 𝜙𝑆)] 

(5.25) 

 

 

B. Diffusive part  𝑅 (𝜙)𝑑𝑖𝑓 = ∇2𝜙 ∶ 

 

∬ 𝛻2𝜙 
𝑆

𝑑𝑆 =  ∫ ∫ (
𝜕2𝜙

𝜕𝑥2
+ 

𝜕2𝜙

𝜕𝑦2)
𝑒

𝑤

𝑛

𝑠

𝑑𝑥 𝑑𝑦 ∫ [(
𝜕𝜙

𝜕𝑥
)
𝑒
 −  (

𝜕𝜙

𝜕𝑦
)
𝑤

𝑛

𝑠

+ 
𝜕2𝜙

𝜕𝑦2∆
∆𝑥]𝑑𝑦 =  ∆𝑦 [(

𝜕𝜙

𝜕𝑥
)
𝑒
 −  (

𝜕𝜙

𝜕𝑥
)
𝑤
] + ∆𝑥 [(

𝜕𝜙

𝜕𝑦
)
𝑛

 − (
𝜕𝜙

𝜕𝑦
)
𝑠

] 

 

(5.26) 

 

This time to obtain the expression based on the points of the domain again centered differences 

will be used in the following way: 

 

(
𝜕𝜙

𝜕𝑥
)
𝑖
= 

𝜙𝐼  −  𝜙𝑃

𝑥𝐼  −  𝑥𝑃
 (

𝜕𝜙

𝜕𝑦
)
𝑖

= 
𝜙𝐼  −  𝜙𝑃

𝑦𝐼  −  𝑦𝑃
 

(5.27) 

 

Substituting in the equation (5.27), the following expression for the diffusive part is obtained 
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𝑅 (𝜙)𝑑𝑖𝑓 = ∆𝑦 [( 
𝜙𝐸  − 𝜙𝑃

𝛿𝑥𝑒
 )  − ( 

𝜙𝐸  −  𝜙𝑊

𝛿𝑥𝑤
 )]  

+ ∆𝑥 [( 
𝜙𝑁  − 𝜙𝑃

𝛿𝑦𝑒
 )  −  ( 

𝜙𝑃  −  𝜙𝑆

𝛿𝑦𝑤
 )]  

 

(5.28) 

 

The next step is to add the convective and the diffusive terms considering that − 𝑅 (𝜙)𝑐𝑜𝑛𝑣 +

 
1

𝑅𝑒
 𝑅 (𝜙)𝑑𝑖𝑓 . the following expression is obtained: 

𝑅(𝜙) =  
∆𝑦

2
 [𝑢𝑤(𝜙𝑃 + 𝜙𝑊)  − 𝑢𝑒(𝜙𝑃 + 𝜙𝐸)] +  

∆𝑥

2
 [𝑣𝑠(𝜙𝑃 + 𝜙𝑆)  − 𝑣𝑛(𝜙𝑃 + 𝜙𝑁)]

+
1

𝑅𝑒
∆𝑦 [( 

𝜙𝐸  −  𝜙𝑃

𝛿𝑥𝑒

 )  −  ( 
𝜙𝑃  −  𝜙𝑊

𝛿𝑥𝑤

 )]  

+
1

𝑅𝑒
∆𝑥 [( 

𝜙𝑁  −  𝜙𝑃

𝛿𝑦𝑛

 )  −  ( 
𝜙𝑃  −  𝜙𝑆

𝛿𝑦𝑠

 )]  

 

 

 

(5.29) 

The above equations can be expressed in the following form; 

𝑅(𝜙) = 𝑎𝑊𝜙𝑊  +  𝑎𝐸𝜙𝐸  + 𝑎𝑁𝜙𝑁  + 𝑎𝑆𝜙𝑆  −  𝑎𝑃𝜙𝑃  (5.30) 

 

 

West nodes 

𝑎𝑊 = ∆𝑦 (
1

𝑅𝑒 𝛿𝑥𝑤

+
𝑢𝑤

2
 ) 

(5.31) 

 

East nodes 

𝑎𝐸 = ∆𝑦 (
1

𝑅𝑒 𝛿𝑥𝑒

+
𝑢𝑒

2
 ) 

(5.32) 

 

 

North nodes 

𝑎𝑁 = ∆𝑥 (
1

𝑅𝑒 𝛿𝑦
𝑛

+
𝑣𝑛

2
 ) 

(5.33) 

 

South nodes 

𝑎𝑆 = ∆𝑥 (
1

𝑅𝑒 𝛿𝑦
𝑠

+
𝑣𝑤

2
 ) 

(5.34) 
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 𝑎𝑃 = 𝑎𝑊 + 𝑎𝐸 + 𝑎𝑁 + 𝑎𝑆 (5.35) 
 

5.4 Algorithm 
 

1. Case Definition  

The definition of the case is an essential part of the whole process. At this point, the chosen 

physical problem is transformed into a set of discretized equations and the appropriate boundary 

conditions are established. Likewise, we opt for a specific spatial and temporal discretization, and 

finally the criteria for convergence of the program are chosen. 

 

2. Pre-Processing 

In this second phase of the process, once the choice of the case has been stipulated, on the one 

hand the physical data and numerical parameters related to it are introduced, and on the other 

hand, the necessary calculations are made prior to the iterative body. In this way, the main steps 

of this phase will be the following: 

• Introduce the geometric parameters necessary for the creation of the mesh. 

• Introduce the physical parameters, which depend on the choice of the case, although in a 

general way they could be the viscosity, density, initial speed, Reynolds number etc. 

• Introduce the numerical integration parameters related to the convergence of the problem, 

that is, the desired precisions for the pressure and the components of the velocity. 

 

• Finally, the matrix of pressure coefficients is calculated, and the empty matrices of the 

velocity components are defined. 

 

3. Iterative body 

The iterative body is the most important part of the algorithm. This part is repeated many times 

until the convergence criteria is reached. it consists of the following points: 

• The vector R (ϕ) is calculated for each component of the velocity from the initial velocity 

field, obtaining the convective and diffusive terms. 

• From the above terms the intermediate speed is determined. 

• The Poisson equation is solved, and the pressure is determined 

• The intermediate speed is corrected with the pressure gradient and the actual speed of the 

fluid in the next time step. 

• Finally, convergence criteria are established to ensure that the program ends when the 

velocities and pressure do not change over time. 
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5.5 Driven Cavity 
 

The Driven cavity problem consists of a closed cavity of infinite length, with a fluid in its interior 

and one of the walls moving at a constant speed, as shown in figure 20. The mass in this system 

is conserved, so there is no entry or exit of mass in the cavity. This case is perfectly compatible 

with the specifications previously made in the equations, so incompressible and Newtonian fluids 

will be used in laminar regime. The equations of the movement that we will solve, therefore, the 

following: 

 

Figure 35: Outline of the geometry and boundary conditions of the Driven case 

 

 

𝜕𝑈

𝜕𝑥
+ 

𝜕𝑉

𝜕𝑦
=  0 

(5.36) 

 

𝜕𝑈

𝜕𝑡
+  𝑈

𝜕𝑈

𝜕𝑥
+ 𝑉

𝜕𝑈

𝜕𝑦
=  

1

𝑅𝑒
(
𝜕2𝑈

𝜕𝑥2
+ 

𝜕2𝑉

𝜕𝑦2) − 
𝜕𝑝

𝜕𝑥
 

(5.37) 

 

 

𝜕𝑉

𝜕𝑡
+  𝑈

𝜕𝑉

𝜕𝑥
+ 𝑉

𝜕𝑉

𝜕𝑦
=  

1

𝑅𝑒
(
𝜕2𝑈

𝜕𝑥2
+ 

𝜕2𝑉

𝜕𝑦2) − 
𝜕𝑝

𝜕𝑦
 

(5.38) 

 

𝑅𝑒 =
𝑈0𝑙

𝑣
 

(5.39) 

 

l is the characteristic length, in this case the length of the cavity, l = 1 m. 

Regarding the boundary conditions, as we can see in figure 35, there are three fixed walls and a 

fourth one moving at a constant speed, so the boundary conditions for the velocity in the fixed 
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walls will be of non-slip type, it means, all the components of the velocity equal to zero except 

for the U component in the mobile wall, which will have a Dirichlet type condition, that is, a 

known value U = 1 m = s. The boundary conditions for the pressure are Neumann type, which 

implies that the pressure derivative in the walls is null. 

It is possible to predict in a qualitative way which is the physics that must obey the problem. As 

the wall (or lid) moves, it will begin to draw fluid until it meets the right wall of the box, which 

forces the fluid to descend. The same will happen with the other two remaining walls, so that a 

recirculation of the flow occurs, as seen in figure 35. On the other hand, near the wall a pressure 

gradient must be produced, so that a positive pressure in one of the corners moves the flow away 

from it, and a negative pressure in the other corner brings it closer. 

5.6 Results 
 

The results obtained with the program created for the problem driven cavity are shown below. On 

the one hand, a study of the influence of mesh densification will be carried out, and once the 

optimum mesh is chosen, a study of the problem based on the Reynolds number is made. As we 

have seen, the Reynolds number tells us how predominant the viscous forces in each fluid are, so 

by doing this analysis, we will see the behavior of the fluid in the cavity as a function of the 

viscosity. The Reynolds number will be varied from Re = 100 (higher viscosity) to Re = 2000 

(lower viscosity), to always ensure the permanence of the fluid within the laminar regime. The 

simulation will be propagated starting from the fluid in the resting cavity until reaching the steady 

state, it means a state in which the fluid no longer varies explicitly with time. The convergence 

criterion that will be used to determine if the simulation is in the steady state is as follows: 

 

 

‖𝑈𝑛+1‖ − ‖𝑈𝑛‖

‖𝑈𝑛+1‖
 <  𝑘 

(5.40) 

 

‖𝑉𝑛+1‖ − ‖𝑉𝑛‖

‖𝑉𝑛+1‖
 <  𝑘 

(5.41) 

 

 

So, it is being imposed that the relative error between each component of the speed in a moment 

of time and in the previous instant is less than k, an error that we consider adequate. 

First a study of the number of cells in the mesh has been carried out to determine which mesh will 

be used from now on, using a Re = 100. When the number of cells is increased, the precision of 

the simulation should be higher, same way as computational time, so we must reach a compromise 

between both. Meshes of 10, 30 and 50 nodes were used in each direction. 
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Re = 10 

 

 

Figure 36: V (m/s), Mesh 10 x 10, 30 x 30, 50 x 50.                     

                             

          

 

Figure 37: U (m/s), Mesh 10 x 10, 30 x 30, 50 x 50. 

 

 

 

Figure 38: Pressure, Mesh 10 x 10, 30 x 30, 50 x 50. 

 

In the previous figure we can visually compare the results obtained. However, sometimes a 

comparison by graphics is more effective, where solutions can be compared numerically. 

Therefore, the velocity profile of the component u will be shown below. 
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Figure 39: Mesh comparison U(m/s) with Re 100. 

 

Re = 1000 

 

The results obtained for the simulation are presented for a Re = 1000, with a mesh of 10 x 10, 

30 x 30, 50 x 50 with an error 1e-6. 

 

 

Figure 40: V (m/s), Mesh 10 x 10, 30 x 30, 50 x 50. 

 

 

Figure 41: U (m/s), Mesh 10 x 10, 30 x 30, 50 x 50. 
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Figure 42: Pressure, Mesh 10 x 10, 30 x 30, 50 x 50                                             

 

Figure 43: Mesh Comparison U(m/s) with Re = 1000. 

 

Re = 2000 

 

To conclude the results obtained from the simulation with a Re = 2000 are shown below, with a 

10 x 10, 30x30, 50 x 50 mesh and a speed error less than 1e-6 

 

 

Figure 44: V (m/s), Mesh 10 x 10, 30 x 30, 50 x 50. 
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Figure 45: U (m/s), Mesh 10 x 10, 30 x 30, 50 x 50. 

 

 

 

Figure 46: Pressure, Mesh 10 x 10, 30 x 30, 50 x 50. 
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Figure 47: Mesh Comparison U(m/s) with Re= 2000. 

 

10 x 10 20 x 20 30 x 30 40 x 40 50 x 50 

3 min 1s 19min 55sec 38min 35sec 73min 6sec 97min 5sec 
 

Table 10: Time comparison with different Mesh density. 

 

To study the Driven cavity problem three different Mesh density were used (10 x 10, 30 x 30, 50 

x 50), however, the table below shows a comparison of the number of steps and the computational 

time required for a 40 x 40 Mesh with different converge criteria. 

 

Error_𝒗⃗⃗⃗ n0 steps time 

5∙10-6 150526 1h 13min 

1∙10-6 581512 6h 9min 
 

Table 11: Comparative table of the number of steps and the computational time required with a 40-cell grid for 
the different convergence criteria. 

 

Re = 100 / 1000 / 2000 

On the other hand, considering the physics behind the Reynolds number, the different results in 

the sections of Re = 100, Re = 1000 and Re = 2000 will be discussed below.  

The section of Re = 100 is the case with the Reynolds number lower and therefore the more 

viscous fluid of the three. As we could intuitively foresee, it is the case that it presents lower 

speeds, since the viscous friction forces are higher, and the fluid is more difficult to move.  

In the case of Re = 1000 the speeds are higher than in the previous case and the velocity profiles 

fit well to the results obtained.  

However, in the case of Re = 2000, although the speeds are also higher, the comparison with the 

velocity profiles are quite different. The main reason may be that with that number of Reynolds 

we are at the limit between the laminar regime and the transition zone to the turbulent regime, so 

the numerical methods of resolution implemented are no longer the appropriate ones. These 

discrepancies in case of Re = 2000 we do not consider them an error of the program, on the 

contrary, this should happen since our code is not adapted to solve flows in the transition zone. 

In cases with numbers of Reynolds 1000 and 2000, as we see in the figures, numerical instabilities 

appear in one of the corners, a logical fact since it is a simple code in which efficiency was not a 

priority. Until now, these instabilities have not been appreciated, probably because the time step 

we can afford to meet the Courant criterion in the case of Re = 100 is greater than in the cases of 

Re = 1000 and Re = 2000, therefore the number of the iterations necessary to reach the steady 

state are lower and the accumulation of errors is less. That is why we tried to reduce the time step 

for the two following simulations, although the same instabilities were obtained. 
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5.7 Summary Chapter 
 

During this chapter we have studied the FSM, we have seen how to decouple the speed and 

pressure to obtain an intermediate speed and then the correct speed. 

Regarding the temporal discretization, explicit schemes have been used, CDS (Central Difference 

Scheme) For the descretization of the temporal derivative, another explicit scheme of second 

order known as Adams-Bashforth for the terms R(𝑣 ) and finally a scheme of first backward order 

of Eulero for the pressure gradient. 

We have seen the steps to follow for the resolution of the FSM, which are as follows; 

▪ Calculate R(𝑣 ) using the initial velocity field 

▪ Determine the intermediate speed 

▪ Solve the poissson equation and obtain the field of pressures 

▪ Correct the intermediate speed with the pressure of the previous step and evaluate the 

current speed of the fluid instantly n + 1. 

Following later in the chapter we find the spatial discretization that is a fundamental part of this 

work. As in the previous cases, it has been adapted by the finite volume method, which is based 

on the direct discretization of the conservation equations of mass, motion and energy. The main 

advantage of this method is that the spatial discretization is carried out directly in the physical 

space of the problem. Therefore, there are no problems with the transformation between 

coordinate systems, as in the finite difference method. Another advantage of the method is the 

great flexibility it offers when using it in both structured and unstructured meshes. Due to all this, 

this method is one of the most used in CFD simulations. 

On the other hand, if we look at the situation of the nodes in the meshes, two types are 

distinguished: the centered meshes and the displaced meshes (staggered). The displaced meshes 

work with the pressure in the center of the volume and the components of the velocity move half 

a cell towards the face of the same. The use of a shifted arrangement has the advantage that many 

of the terms that require interpolation with the centered mesh can be calculated directly without 

interpolation. 

The algorithm of resolution that has been implemented has 3 parts that are the following; 

▪ Case Definition 

▪ Pre-Processing 

▪ Iterative body 

The definition of the case is an essential part of the whole process. At this point, the chosen 

physical problem is transformed into a set of discretized equations and the appropriate boundary 

conditions are established. Likewise, we opted for a specific spatial and temporal discretization, 

and finally the criteria of convergence of the program are chosen 

Once the choice of the case has been stipulated, on the one hand, the physical data and the 

numerical parameters related to it are introduced, and on the other hand, the necessary calculations 

are made before the iterative body. 
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The iterative body is the most important part of the algorithm. This part is repeated many times 

until the convergence criterion is reached. 

In this chapter to verify the methodology of the FSM, the DRIVEN CAVITY case has been 

studied. The problem consists in a closed cavity of infinite length, with a fluid in its interior and 

one of the walls moving at a constant speed. 

The results have been divided into 3 parts; 

▪ Re = 100 

▪ Re = 1000 

▪ Re = 2000 

We have remained in the laminar regime since during the transition from laminar to turbulent 

errors can be found in the results. 

A simple code has been created with MATLAB that solves the incompressible Navier-Stokes 

equations for the laminar regime. It has been verified that the code responds qualitatively to the 

physics that is expected from the fluid. Inside the cavity with the sliding lid is observed the 

recirculation of the fluid, moved by the friction with the lid. What is more, the quantitative 

comparison with commercial programs is very reasonable, it is observed as in viscous fluids the 

speed of the flow is small and as we approach the turbulent regime, greater divergences are found 

caused by the numerical simplicity of our implementation. These results can be considered 

positive considering the enormous complexity of the modern computational techniques of fluid 

dynamics and therefore we will conclude by saying that the objectives set at the beginning of the 

problem have been successfully fulfilled. 
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6.Introduction to Turbulence field  
 

6.1 Introduction 
 

Most of the flows encountered in engineering become unstable above a certain Reynolds number. 

Below that critical Reynolds number, flows are laminar. These instabilities cause a chaotic and 

random state of motion in which the velocity, pressure and temperature change continuously with 

time. This regime is called turbulent flow. 

 

Turbulent fluctuations always have a three-dimensional spatial character creating rotational flow 

structures which are called turbulent eddies. To compute the turbulence simulation a large 

memory capacity is required. 

 

This enormous computational cost is unfeasible for most computers. It can only be computed on 

supercomputers and the calculations last thousands of hours. For that reason, scientists and 

engineers are doing researches to develop numerical methods to capture the turbulent effects with 

a lower computational cost. The numerical methods are listed below: 

 
 

▪ Large eddy simulation (LES): this method focuses on the behavior of larger eddies as 

well as the mean flow. Thus, the Navier-Stokes equations are filtered to compute the 

larger eddies and rejects the smaller eddies. The computational cost is high, although it 

is lower than the DNS. For that reason, it is starting to tackle complex CFD problems. 

 

▪ Direct numerical simulation (DNS): This method needs a fine grid to solve the 

Kolmogorov length scales and sufficiently small-time steps to be able to resolve the 

fastest fluctuations. The computational cost is enormous, so it is only used for high 

accuracy flows in high-tech industries. 

 
 
One of the biggest challenges at present in the field of complex systems is the knowledge of the 

turbulence phenomenon. This document will deal with different concepts related to the 

measurement of the turbulence phenomenon such as DNS or LES, as well as the properties that 

the Navier-Stokes equations must fulfill when dealing with turbulence. 

To understand the basic concepts about the Navier-Stokes equations in the non-linear dynamics 

of turbulence, a simplified model will be presented that combines many of the mentioned aspects: 

Burgers Equation. In this section we will solve the Burgers equation in Fourier space. 
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6.2 Problem definition 
 

The Navier-Stokes equations for incompressible flow in dimensionless form are: 

 

𝛻 ∙ 𝑣⃗  =  0 (6.1) 

 

𝜕𝑣⃗

𝜕𝑡
 + (𝑣⃗ ∙ 𝛻)𝑣⃗  =  

1

𝑅𝑒
∆𝑢 −  𝛻𝑝 

(6.2) 

 

 

The Dutch scientist J.M.Burgers simplified the Navier-Stokes equations. With this simplification 

the equations can be studied in a single spatial dimension[13]: 

 

𝜕𝑢

𝜕𝑡
 +  𝑢

𝜕𝑢

𝜕𝑥
=

1

𝑅𝑒
 
𝜕2𝑢

𝜕𝑥2
+  𝑓 

(6.3) 

 

As noted, the Burgers equation is not linear, so it can be expected to describe a phenomenon 

similar to turbulence. It has been verified that the Burgers equation does not present the main 

properties of turbulence, such as the sensitivity with the initial conditions. Despite this, it is still 

the best option to enter the turbulence phenomenon. 

 

 

6.3 Numerical formulation 
 

6.3.1 Burger’s equation in Fourier Space  
 

In this study the Burgers equation is expressed in the Fourier space. 

 

𝜕𝑢̂𝑘

𝜕𝑡
 + ∑ 𝑢̂𝑝

𝑘=𝑝+𝑞

𝑢̂𝑞𝑞𝑖 = − 
𝑘2

𝑅𝑒
 𝑢̂𝑘  + 𝑓𝑘 

 

𝑘 = 0,1,2, . . . 𝑁 

 

(6.4) 

 

 

  

  

(6.5) 
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𝑓𝑘  = { 
𝑠𝑜 𝑡ℎ𝑎𝑡,

𝜕𝑢̂𝑘

𝜕𝑡
 =  0  𝑓𝑜𝑟 𝑘 =  1

             0     ,             𝑓𝑜𝑟 𝑘 > 1
 

 

 

Where the Fourier coefficient k of 𝑢 (𝑥, 𝑡) corresponds to: 

 

𝑢(𝑥)  =  ∑ 𝑢̂𝑘𝑒
𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

 

(6.6) 

 

Transient term 

 

𝜕𝑢

𝜕𝑡
 =  

𝜕

𝜕𝑡
( ∑ 𝑢̂𝑘𝑒

𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

) = ∑
𝜕𝑢̂𝑘

𝜕𝑡
𝑒𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

  

(6.7) 

 

 

Convective term 

 

𝑢
𝜕𝑢

𝜕𝑥
=   ( ∑ 𝑢̂𝑝𝑒

𝑖𝑝𝑥

𝑝 = +∞

𝑝 = −∞

)
𝜕

𝜕𝑡
( ∑ 𝑢̂𝑞𝑒

𝑖𝑞𝑥

𝑞 = +∞

𝑞 = −∞

)        

=  ( ∑ 𝑢̂𝑝𝑒
𝑖𝑝𝑥

𝑝 = +∞

𝑝 = −∞

)( ∑ 𝑖𝑞𝑢̂𝑞𝑒
𝑖𝑞𝑥

𝑞 = +∞

𝑞 = −∞

)          

=  ∑ ∑ 𝑢̂𝑝

𝑞=+∞

𝑞=−∞

𝑝=+∞

𝑝= −∞

𝑖𝑞𝑢̂𝑞𝑒
𝑖(𝑞+𝑝)𝑥 

 

 

 

 

(6.8) 

 

 

 

Diffusive term 

 

𝜕2𝑢

𝜕𝑥2
=  

𝜕2

𝜕𝑥2
 ( ∑ 𝑢̂𝑘𝑒

𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

) = − ( ∑ 𝑘2𝑢̂𝑘𝑒
𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

)  

(6.9) 
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So, finally we obtained the following term for the equation (6.3) in Fourier space: 

 

∑
𝜕𝑢̂𝑘

𝜕𝑡
𝑒𝑖𝑘𝑥 + 

𝑘 = +∞

𝑘 = −∞

∑ ∑ 𝑢̂𝑝

𝑞=+∞

𝑞=−∞

𝑝=+∞

𝑝= −∞

𝑖𝑞𝑢̂𝑞𝑒
𝑖(𝑞+𝑝)𝑥  

=  
1

𝑅𝑒
∑ 𝑘2𝑢̂𝑘𝑒

𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

 +  ∑ 𝑓𝑘𝑒
𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

 

 

(6.10) 

 

 

Which can be solved for each mode k 

 

𝜕𝑢̂𝑘

𝜕𝑡
+ ∑ 𝑢̂𝑝𝑖𝑞𝑢̂𝑞

𝑝+𝑞= 𝑘

= 
1

𝑅𝑒
𝑘2𝑢̂𝑘  +  𝑓𝑘 

(6.11) 

 

 

In addition, the following condition must be fulfilled: 

 

𝑢̂𝑘 = 𝑢̂−𝑘
̅̅ ̅̅ ̅ (6.12) 

 

This greatly facilitates the calculation since only the modes must be found corresponding to 𝑘 = 

0, 1, 2, ..., 𝑁, since the negative modes are given directly by the previous equation. The results of 

this problem will be exposed through the kinetic energy that is defined as: 

 

𝐸𝑘 = 𝑢̂𝑘  ∙ 𝑢̂−𝑘
̅̅ ̅̅ ̅ (6.13) 

 

The energy 𝐸𝑘 ϵ R of the K-th mode is obtained by taking the product of 𝑢̂𝑘 with its complex 

conjugate.  

 

6.3.2 Time Step 
 

The following condition must be imposed so that the solution converges using an implicit scheme. 
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∆𝑡 <  𝐶 
𝑅𝑒

𝑁2
 

(6.14) 

 

 

 

 

The parameter C has a value between 0 <𝐶 <1. Therefore, Δ𝑡 must choose small enough for the 

system to converge on a stationary solution. 

 

6.3.3 Spatial approximation 
 

The discretization is based on the truncation of this series up to a finite amount of terms. This is: 

 

𝑢(𝑥)  =  ∑ 𝑢̂𝑘𝑒
𝑖𝑘𝑥

𝑘 = +∞

𝑘 = −∞

 ≈  ∑ 𝑢̂𝑘𝑒
𝑖𝑘𝑥

𝑘 = +𝑁

𝑘 = −𝑁

 

(6.15) 

 

  

This reduces the infinite set of equations that would result of an infinite series to a set of equations. 

This number may be even reduced again considering assumption 𝑢̂0 = 0 and the fact that the 

solution to this problem has conjugate symmetry: 

 

𝑢̂𝑘 = 𝑢̂−𝑘
̅̅ ̅̅ ̅ (6.16) 

 

In the contribution of the convective term a special attention must be taken 

 

∑ 𝑢̂𝑝𝑖𝑞𝑢̂𝑞

𝑝+𝑞= 𝑘

 

(6.17) 

 

So, given a mode K, the pair which contribute to the convective term are those which satisfy 

 

𝑝 + 𝑞 =  𝑘 (6.18) 

 

 

With the spatial discretization the series is truncated to a range from -N to N. When computing 

the different combinations of modes and that accomplish (6.18), one should exclude those values 

which are out of bounds. This is 
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|𝑝 + 𝑞 = 𝑘| < 𝑁 (6.19) 

 

 

|𝑝| < 𝑁 ; |𝑞| < 𝑁 (6.20) 

 

 

All the necessary interactions between modes (shaded region) are illustrated in the following 

representation. As it shown only the positive modes will be solved. 

 

Figure 48: Positive interection between modes. 

 

 

6.4 LES 
 

Implementing a large eddy simulation (LES) model, which should improve the results of the 

coarser meshes. It consists basically in the addition of a non-dimensional viscosity that multiplies 

the diffusive term, which is determined by assuming some properties of the energy spectrum. This 

additional viscosity (turbulent) is calculated as follows: 

 

𝜐𝑡 = 𝜐𝑡
+∞ (

𝐸𝑘𝑁

𝑘𝑁
)
1/2

𝜐𝑡
∗ 

(6.21) 

 

 

𝜐𝑡
+∞  =  0.31 

5 −  𝑚

𝑚 + 1
 √3 − 𝑚 𝐶𝑘

−3/2
 

(6.22) 

 

 

𝜐𝑡
∗  =  1 + 34.5 𝑒

−3.03(
𝑘𝑁
𝑘

)
 

(6.23) 
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Where m is the slope of the energy spectrum, 𝐸𝑘𝑁
 is the energy at the cut-off frequency (𝑘𝑁) and 

𝐶𝑘 is the Kolmogorov constant. In the case of the Burger’s equation m ≈ 2 and 𝐶𝑘 ≈ 0.4223. So, 

the equation for each mode that has to be solved using a LES model is: 

 

𝜕𝑢̂𝑘

𝜕𝑡
+ ∑ 𝑢̂𝑝𝑖𝑞𝑢̂𝑞

𝑝+𝑞= 𝑘

= 
1

𝑅𝑒
+ 𝜐𝑡𝑘

 𝑘2𝑢̂𝑘  + 𝐹𝑘 

 

(6.24) 

 

 

 

6.5 Results  
 

To compare the two methods (DNS and LES) different cases are solved. 

 

Method N Re 

DNS 20 40 

DNS 100 40 
 

Table 12: DNS Method with N modes and Re = 40. 

 

Method N Re 𝑪𝒌 

LES 20 40 0.05 

LES 20 40 0.4223 
 

Table 13: LES Method with 20 modes and Re= 40. 

 

The following figure shows the results provided by the created program. The results are compared 

with the reference provided by the CTTC. 
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Figure 49:  Results obtained with the simulation of the Burguers equation for Re = 40 

 

 

Figure 50: Reference solution for the energy spectrum of the steady-state solution of the Burgers equation with 
Re = 40 [14]. 

 

As seen in the graph, the results coincide with the reference. Now the results obtained in the 

simulations will be commented. Of both cases solved, it should be noted that although both 

implementations are solved quickly, the one related to the LES model decreases computer time 

to some extent and provides more precise results. 
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DNS 

A large amount of modes needs to be simulated to have good results. with few modes the energy 

is not well distributed, the energy backscattering produces instabilities in all the scales, giving 

bad results even in the easiest zone to be solved. 

LES 

Kolmogorov 0.4523, the results obtained for the large scales are quite like the results obtained 

with the DNS of 100 modes and only some instabilities appear on the last modes. 

Kolmogorov 0.05, the energy spectrum decays quicker than in the other simulations, there is a 

higher dissipation when increasing the modes. 

 

6.6 Summary chapter 
 

During this chapter we have studied the problem of turbulence with the Burger's equations. As 

noted, the Burgers equation is not linear, so it can be expected to describe a phenomenon similar 

to turbulence. It has been verified that the Burgers equation does not present the main properties 

of turbulence, such as the sensitivity with the initial conditions. Despite this, it is still the best 

option to enter the turbulence phenomenon. 

We have discretized the equations in the Fourier space, in which we obtain three terms; 

▪ Transient term 

▪ Convective term 

▪ Diffusive term 

To subsequently reach a general formula with which we have raised the problem. We have seen 

the part that concerns the Time Step and the spatial approach that are a fundamental part when 

developing this case study. 

For this case study two numerical methods have been developed; 

▪ Large eddy simulation (LES): this method focuses on the behavior of larger eddies as 

well as the mean flow. Thus, the Navier-Stokes equations are filtered to compute the 

larger eddies and rejects the smaller eddies. The computational cost is high, although it 

is lower than the DNS. For that reason, it is starting to tackle complex CFD problems. 

 

▪ Direct numerical simulation (DNS): This method needs a fine grid to solve the 

Kolmogorov length scales and sufficiently small-time steps to be able to resolve the 

fastest fluctuations. The computational cost is enormous, so it is only used for high 

accuracy flows in high-tech industries. 

 

The results obtained as can be seen have similarity with the results provided by the CTTC. Given 

that the results are close to the theoretical ones, we can say that the problem posed at the beginning 

of this chapter has been successfully developed. 
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7.Conclusions 
 

 

During the development of this work we have seen the resolution of the Navier Stokes equations 

in their incompressible form. We have started with a brief introduction of the positive aspects and 

the limitations that we find during the development of this project. Undoubtedly the use of codes 

for simulations in the field of computational fluid dynamics has helped to improve and efficiency 

in the aerospace industry and everything related to it. 

The mathematical formulations that we have found throughout the second chapter have helped us 

to understand and subsequently solve the cases that we will find later in the fourth and fifth 

chapter. In this work, simple structured meshes have been implemented since the case studies are 

not so complex. We have varied only the density of the meshes with the aim of obtaining more 

accurate results to the references, which has been proven that denser the mesh, the better results 

we get, but the negative aspect in all this is the computational time that is much highest. 

Another parameter that we have changed during the simulations the convergence criterion, we 

have used simple criteria that adapt to the physics of the problem. For the MatLab program we 

have decided that the simulation ends when the relative difference of the speed between two 

consecutive time steps is less than a certain value. On the other hand, we have implemented two 

types of Solvers, Point by Point and Line by Line. The precision in the results obtained by both 

solvers is almost identical therefore in this work we have used the Line by Line for the case of 

Convection Heat Transfer and the Point by Point for the other cases. 

For all cases of studies, codes have been created that solve the incompressible Navier-Stokes 

equations for the laminar regime. The programs have been validated by comparing the results 

obtained with the References provided by the CTTC and with which the efficiency of the 

programs has been verified. 

To conclude it can be said that the objectives set at the beginning of the development of this 

project have been achieved, the phenomenologies presented by the study of the Navier-Stokes 

equations have been observed, the Navier-Stokes equations have been applied to simple cases of 

computational fluid dynamics with the aim of introducing us in this field. Throughout the 

development and analysis of the different cases, false diffusion phenomena can be observed which 

can produce an inadequate mesh or a Reynolds number that is too high or due to convergence 

problems. 
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7.1 Future Work 
 

As far as future work is concerned, it would be possible to improve the codes made in this project, 

giving a greater precision to the results and thus be able to get closer to the theoretical data. 

For the development of this work MATLAB has been used as a programming language, we have 

used simple functions without complex structures. For the following works we could make use of 

another programming language like C ++ in which it would help us in a quick resolution of the 

cases and since C ++ is a better-known programming language it would help us to confront us 

with other working groups and make a more precise code with better results. 

The time available is a key factor when performing a job like this, therefore, to get better results 

many simulations have to be done to compare all the results obtained and decide which is closer 

to the physical problem. 

The mesh is another key point for this type of work, in the future it could be implemented 

unstructured meshes to obtain a greater precision in the results. For this first one must make a 

study of the problem and then think that the mesh is appropriate for that case. Working with 

unstructured meshes helps analyze cases where the geometry of the problem is more complex. 

During this work we have analyzed simple cases, the most convenient thing in the future is to 

analyze more complex cases and enter more in what concerns the field of turbulence since without 

doubt during the study of computational fluid dynamics cases we find these problems. 

Key points for future works; 

▪ Language programming 

▪ Work with different types of Mesh  

▪ Analyze Turbolent cases 

▪ More time for simluations  
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8.Task Planning  
 

In the table below, you can see a description of the tasks that must be done during the work, as 

well as the relationship between them and their approximate duration. In addition to this table, 

the Gantt chart is attached where you can see graphically the duration and dependence of these 

tasks. 

 

Task Description Precedence Time[h] 

    

 

A 

Estudios de las ecuaciones de 

Navier-Stokes en su forma 

incompresible e Introduccion 

al campo de las turbolencias. 

 

 

- 

 

 

100 

 

B 

 

MATLAB ampliación de los 

conocimientos. 

 

A 

 

35 

 

C 

 

Estudio técnicas de Mallado 

(Finite Volume Method). 

 

B 

 

20 

 

D 

Desarrollo códigos para los 

diferentes casos de estudio de 

las ecuaciones de conveccion-

difusion y análisis de estos. 

 

A, B, C 

 

100 

 

E 

Estudio y Desarrollo 

algoritmos FSM (Fractional 

Step Method). 

 

A, B, C 

 

75 

 

F 

 

Verificacion analisis de los 

resultados FSM. 

 

F 

 

35 

 

 

G 

 

Desarrollo de los algoritmos 

y análisis de los resultados 

Burger’s equation para los 

casos DNS Y LES. 

 

 

A, B, C, F 

 

 

25 

 

 

H 

 

Redacción del reporte 

correspondiente a los casos 

estudiados. 

 

 

A 

 

 

75 

 

Table 14: Task Planning with description of each task and time. 
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Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A                 

B                 

C                 

D                 

E                 

F                 

G                 

H                 
 

Table 15: Gantt chart 

 

 

9.Enviromental Impact  
 

For the accomplishment of this work two important things have been used, paper in what concerns 

the calculations and studies of this subject and the electrical energy for the development of the 

codes and the simulations. 

The environmental impact could be measured in how many hours electric power is used to make 

the simulations, but we must know that using this method of fluid dynamics simulations no longer 

have to create models at scales which would lead to a greater environmental impact by the use of 

larger materials which once done the tests would have to be thrown away since sometimes 

destructive tests are made. 

On the other hand, the use of paper is true that doing calculations by hand requires the use of 

paper, but we can lower the environmental impact using recycled paper and in turn recycling used 

paper. 

In conclusion, two main Environmental impact factors are considered for the realization of this 

project; 

▪ Paper consumption 

▪ Electric consumption 

For the development of this work we have tried to minimize the environmental impact by 

following what has been said in the paragraphs above, for which the environmental impact of this 

work has been minimal. 
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