
Journal of Network and Computer Applications 124 (2018) 121–136

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Online power aware coordinated virtual network embedding with 5G delay
constraint
Khaled Hejja ∗, Xavier Hesselbach
Dept. Networks Engineering, Universitat Politècnica de Catalunya, C/ Jordi Girona, 1-3, Edif.C3, Campus Nord, 08034, Barcelona, Spain

A R T I C L E I N F O

Keywords:
Virtual network embedding
Core network virtualization
Power consumption
Coordinated embedding
Delay

A B S T R A C T

Solving virtual network embedding problem with delay constraint is a key challenge to realize network virtual-
ization for current and future 5G core networks. It is an NP-Hard problem, composed of two sub-problems, one
for virtual node embedding, and another one for virtual edges embedding, usually solved separately or with a
certain level of coordination, which in general could result on rejecting some virtualization requests. Therefore,
the main contributions of this paper focused on introducing an online power aware algorithm to solve the vir-
tual network embedding problem using less resources and less power consumption, while considering end-to-end
delay as a main embedding constraint. The new algorithm minimizes the overall power of the physical network
through efficiently maximizing the utilization of the active infrastructure resources and putting into sleeping
mode all non-active ones. Evaluations of the proposed algorithm conducted against the state of art algorithms,
and simulation results showed that, when end-to-end delay was not included the proposed online algorithm
managed to reduce the total power consumption of the physical network by 23% lower than the online energy
aware with dynamic demands VNE algorithm, EAD-VNE. However, when end-to-end delay was included, it sig-
nificantly influenced the whole embedding process and resulted on reducing the average acceptance ratios by
16% compared to the cases without delay.

1. Introduction

Networks virtualization is an integral component of the current and
future 5G core networks, offering network operators opportunities to
consolidate their equipments into standardized high volume compo-
nents. This is reflected by efficiently utilizing the physical network
resources, through sharing them among several virtual networks (VN),
as well as providing more flexibility to manage, expand, and shrink
the physical network according to the VNs’ characteristics (3GPP TR
28.801, 2017; ITU-T Focus Group, 2017).

In general, network virtualization is realized by allocating suffi-
cient physical resources to satisfy the requirements of a virtual net-
work request (VNR), on top of a substrate network (SN) that has limited
residual capacities. This process is known as virtual network embedding
problem (VNE) (Fischer et al., 2013), which could be solved for offline
scenario, where all VNRs are known in advance, or for online scenario,
where VNRs arrive the SN on real time bases and each have specific life-
time. Nevertheless, the VNE problem is a well known NP-Hard problem
and can not be solved in polynomial time (Chowdhury et al., 2012).

∗ Corresponding author.
E-mail addresses: Khaled.Hejja@upc.edu (K. Hejja), Xavier.Hesselbach@upc.edu (X. Hesselbach).

To better explain the virtual network embedding problem and how
it could save the total power consumption in the substrate network,
Fig. 1 shows a substrate network of nine nodes and twelve edges, receiv-
ing two virtual network requests to be embedded, VNR-1 of four nodes
and four edges, and VNR-2 of three nodes and two edges. To realize
the embeddings for virtual nodes and edges of VNR-1 and VNR-2, the
VNE algorithm will search for candidate substrate nodes and edges that
have enough residual capacities to host their demands, while maintain-
ing similar connectivity as in the virtual requests. For VNR-1 in Fig. 1,
virtual nodes a, b, c, and d can be hosted on substrate nodes 1, 3, 2,
and 4, and the virtual edges a-b, a-c, b-d, and c-d can be hosted on
substrate edges 1–3, 1–2, 3–4, and 2–4 subsequently. Accordingly, the
VNE algorithm will embed VNR-1 on the candidate substrate resources,
and reserve the required capacities as requested by the virtual nodes
and edges. The same procedure repeats to embed VNR-2, where vir-
tual nodes e, f, and g will be embedded on substrate nodes 5, 7, 9, and
virtual edges e-f and f-g will be embedded on substrate edges 5–7 and
7–9 respectively. Once all virtual network requests were allocated, the
remaining nodes, 6 and 8, that do not host any virtual resources could

https://doi.org/10.1016/j.jnca.2018.10.005
Received 13 February 2018; Received in revised form 26 August 2018; Accepted 3 October 2018
Available online 6 October 2018
1084-8045/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jnca.2018.10.005
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jnca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2018.10.005&domain=pdf
mailto:Khaled.Hejja@upc.edu
mailto:Xavier.Hesselbach@upc.edu
https://doi.org/10.1016/j.jnca.2018.10.005

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Fig. 1. An illustrative diagram showing a substrate network of nine nodes and
twelve edges receiving two virtual network requests to be embedded, VNR-1 of
four nodes and four edges, and VNR-2 of three nodes and two edges.

be put into sleeping mode to save the total power consumptions in the
substrate network, and to minimize total costs.

Classic approach to handle the VNE problem is usually conducted
by dividing it into two subproblems with no coordination between
them. The first one deals with allocating virtual nodes onto physical
nodes, which is known as virtual node mapping (VNM) subproblem,
and the other one, is virtual edge mapping (VEM) subproblem, which
embeds virtual edges onto physical paths, connecting the correspond-
ing nodes hosting the virtual nodes in the physical network (Yu et al.,
2008). Along such process, VNE usually trades off between minimiz-
ing embedding costs, utilizing less SN resources, and maximizing rev-
enues through accepting as much as possible VNRs, while maintaining
acceptable quality of services (QoS). However, the fact that the two sub-
problems of the VNE are solved without coordination, based on finding
an acceptable embeddings for virtual nodes separate from embedding
the virtual edges, would most probably result on rejecting some virtual
demands, or including additional hidden SN resources (Fischer et al.,
2013), accordingly, increasing embedding costs and consuming more
power.

Therefore, another strategy was developed, performing both VNM
and VEM as two separate subproblems, but with some coordination
between their solutions, where VNM is performed according to prede-
fined VEM constraints to guide allocating the virtual nodes (Chowdhury
et al., 2012). However, even through this provides a sort of coordina-
tion between VNM with VEM, still, virtual nodes could be embedded
at physical nodes that are farther away from each other, which implies
enforcing edges to be mapped at longer physical paths, as well as result-
ing on additional costs, power consumption, and maybe rejecting some
VNRs. Furthermore, regardless of the used strategy, VNE used to be con-
strained by virtual node’s processing capacities, and edge’s bandwidth
demands, but occasionally considering power consumption, or adding
delay as an additional constraint. Accordingly, the lack of consider-
ing more constraints throughout the VNE process, most likely would
result on degrading the overall quality of the whole embedding process,
especially when considering network virtualization for 5G applications,
which are sensitive to the amount of delay in the network for example
(5G Americas, 2017).

Consequently, the main motivation of this paper is to introduce a
new efficient embedding algorithm to solve the VNE grand problem, on
real-time bases and including end-to-end delay constraint, while min-
imizing the overall power consumption in the substrate network. The
proposed online power aware and fully coordinated VNE algorithm,
denoted by (OPaCoVNE), allocates the virtual nodes and the virtual
edges during one stage according to more realistic constraints, such as
nodes’ processing power, links’ bandwidth and end-to-end delay. More-

over, the benefits of the new proposed algorithm will be reflected on
realizing real time virtual network requests for 5G applications that are
sensitive to delay, in addition to solving the VNE problem for large
networks, using less resources, and generating lower costs and higher
revenues.

The core idea of OPaCoVNE can be summarized as follows, for every
virtual network request VNRr number r, OPaCoVNE will reconstruct it
into a collection of pairs, in which each of them will be composed of
two virtual nodes and their edge, then the demands of each pair will be
listed in a set format, to be called (segment), representing all parame-
ters of the two virtual nodes and their edge, including node’s locations
and their CPUs processing powers, in addition to their edge’s demanded
bandwidth BW and delay. As a result of that, OPaCoVNE will consider
all pairs of any VNR as a set of segments to be handled collectively.
To perform the embedding process, OPaCoVNE will afterwards select a
similar number of substrate pairs, each composed of two nodes and one
edge only, which comply with the demanded locations of the virtual
pair’s nodes and edge, then it will reformulate their resources into seg-
ment format similar to the structure of the virtual segment format, rep-
resenting the substrate pairs’ parameters. Ultimately, the algorithm will
compare each parameter from the virtual segment to its corresponding
parameter in the substrate segment, and if all comparisons were true,
OPaCoVNE will embed the virtual nodes and their edge from each vir-
tual pair onto its substrate counterpart.

In light of that, the proposed segmentation approach allowed OPa-
CoVNE to coordinate virtual nodes and edges’ embeddings together, on
a corresponding substrate nodes and edges. This will guarantee high
acceptance ratios, and efficiently utilizes the limited capacities in the
substrate network without any additional recourses, therefore, resulting
on minimizing the total power consumption in the substrate network.
Subsequently, OPaCoVNE’s use of the segmentation approached, differ-
entiated it from the VNE’s two steps approach adopted by literature,
which used to apply greedy algorithm to embed all virtual nodes first,
then run the shortest path algorithm to embed the virtual edges as a
second step, with partial or no coordination with the nodes’ embedding
step.

General performance and evaluations of OPaCoVNE algorithm were
conducted against one of the most referenced online VNE algorithms in
literature, the D-ViNE developed by Chowdhury et al. (2012), and the
power aware performance of OPaCoVNE was also compared against the
online power aware VNE algorithm, EAD-VNE developed by Zhang et
al. (2015). Finally, this paper provides additional analysis regarding
the impacts on OPaCoVNE’s performance when end-to-end delay was
used, in addition to analyzing power consumption, acceptance ratios
and processing time of the algorithm, by varying number, lifetime, and
size of the embedded VNRs, as well as varying number of edges in the
SN.

Main contributions:

1. As a main contribution by this paper, impacts of end-to-end delay
on the performance of the suggested online algorithm, OPaCoVNE,
were deeply analyzed, representing direct application for virtualiza-
tion in future 5G networks.

2. To minimize the total power consumption in the whole SN, segmen-
tation approach was proposed to guarantee coordinating the embed-
dings of the virtual nodes and edges, while utilizing the least sub-
strate resources to the minimum.

3. Evaluations for the acceptance ratio, cost, and utilizations of the SN
nodes and edges of the proposed online algorithm, were conducted
against the most referenced online algorithm by Chowdhury et al.
(2012), and the power consumption performance was compared
against the online power aware work of Zhongbao et al. (2015).

4. Additional evaluations for the proposed online algorithm, OPa-
CoVNE, were also introduced, showing the impacts of end-end-
delay, by varying number and size of the embedded VNRs, as well
as varying their lifetimes.

122

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Rest of the paper is organized as follows: Section 2 provides related
work. Segments definition and formulation are presented in section 3,
followed by an overview of the online scenario and its main objectives
in 4. Section 5 will introduce the system models, problem formulation,
explanation of the proposed online algorithm, and discussion for its
evaluation results will be presented in section 6. Finally, section 7 con-
cludes the paper and highlights some future work.

2. Related work

With regards to the coordinated VNE, the most referenced approach
is the one suggested by Chowdhury et al. (2012), which introduced a
set of algorithms to correlate between node and edge embedding prob-
lems when solving the VNE grand problem. They embedded the virtual
nodes onto SN nodes based on their residual capacities, and coordinated
the edges embeddings using the multi-commodity flow algorithm. How-
ever, since nodes were embedded first then edges afterwards, longer
paths could be used, which would result on adding additional costs. In
Botero et al. (2012a), the authors developed a greedy algorithm using
the shortest path, to embed virtual demands of both nodes and edges
together. They allowed hidden nodes in these shortest paths, which may
lead to consuming more resources.

Another methodology to solve the embedding of virtual demands
was suggested by Botero et al. (2013). They used a strategy using
the mathematical frameworks of path algebra, which finds all eligible
paths between each pair of nodes in the SN to embed a virtual network
request using any type of constraints. A similar recent work using the
same mathematical framework was proposed by Nia et al. (2017), they
ordered the SN paths using an algorithm based on path algebra math-
ematics, which ranks and choses SN nodes to host the virtual nodes,
then, they search for the best SN path connecting the already chosen
nodes if it exists, by selecting the path with highest order based on
some determined metrics.

Moreover, a VNE heuristic based on greedy approach was proposed
by Ogino et al. (2017), which prioritizes the virtual edges assignment,
rather than the virtual nodes, suggesting that substrate resources shared
among multiple virtual networks is more likely to occur on the substrate
edge bandwidth. They used the minimum-cost route algorithm, to com-
pute the optimum substrate path for each virtual edge. However, their
methodology could allow for a possibility to select longer paths con-
taining non requested SN resources.

Recently, a study of VNE problem under maximum latency con-
straint was also developed by Bianchi and Presti (2017), to determine a
set of substrate network nodes and edges that could satisfy the demands
of virtual network’s end-to-end delay. Their algorithm used Markov
chain reward metrics, coordinating virtual nodes’ embedding problem
with virtual edges’ embedding as two problems. However, giving that
they used shortest path algorithm based on delay constraint, and apply-
ing a proximity metric to avoid including other non utilized nodes in
the selected path, that may offer closer path in terms of network hops,
but would include additional nodes that were not utilized, causing addi-
tional costs.

The authors in Su et al. (2014) proposed to maximize the accepted
VNRs while minimizing the power cost of the whole system. They
embed VN nodes on SN nodes that has lowest electricity price, then
put other nodes that has no load into sleeping mode. Moreover, Triki
et al. (2015) developed an embedding algorithm that embeds a sub-
set of VNRs into a subset of cleanest SN resources while satisfying
the VNR constraints. They constrained the VNE process by introducing
edge delay, packet loss, used power source, VNR priority and location.
While in Nonde et al. (2015), the authors designed an MILP and a real
time heuristic algorithm that, considers granular power consumption
of all devices in the physical network. They tried to consolidate nodes’
embeddings, by filling the ones with the least residual capacity before
switching on others.

Moreover, in Chen et al. (2016), the authors considered power effi-
cient VNE using feedback control approach, performing the embeddings
on a smaller set of SN resources. A limited mappable area consisting of
a selection of candidate nodes was located first, then they checked if
VN embedding was successful, if not, then a feedback control approach
is triggered to search for a wider mappable area. A modified VNE algo-
rithm was presented by Botero et al. (2012b), which prefers SN nodes
consuming less power and selects edges in a power efficient path. In
Botero and Hesselbach (2013), they developed a scalable power aware
reconfiguration heuristic approach, based on embedding cost and load
balancing. The heuristic considers a set of embedded VNRs as input, to
perform a power efficient relocation of resources without impacting the
acceptance ratio.

In addition to that, a power aware algorithm using migrations was
proposed by Ghazisaeedi and Huang (2017), which re-embeds virtual
edges according to their off-peak traffic demands, by defining stress rate
for the substrate edges, then after reallocating the virtual edges they put
into sleeping mode the remaining least stressed edges. However, they
did not re-embed the virtual nodes, but they make sure by applying
shortest path algorithm of Dijkstra, that the selected substrate path used
to migrate the virtual edges is also connecting the terminal nodes of the
virtual edge. Lastly, Hou et al. (2016) applied load balancing and power
efficient VNE heuristic, by using two embedding phases, one to embed
the virtual nodes, and the other one to embed the virtual edges. They
embed on physical nodes that are near to each other by using Dijkstra
shortest path algorithm. By this way they consolidated the traffic from
least utilized nodes and put into sleeping mode their connecting edges.

3. Segments for full coordinated solution of the VNE problem

This paper proposes a new solution for the two subproblems of the
virtual network embedding problem, by converting the structure of any
virtual network request into a collection of pairs of virtual nodes and
their edge, where the demands of each pair will be listed together in
a set format called segment, and converting the resources of an exact
similar number of substrate network pairs into segment format as well.
The motivation behind using the segmentation approach, is to facil-
itate allocating all virtual pairs belonging to a specific VNR, on the
corresponding substrate pairs that have enough resources to host the
demands of the virtual pairs’ nodes and edges, together in full coordi-
nation, without using any additional hidden substrate resources, which
guarantees consuming the least total power in the whole network along
the virtualization process.

The virtual pairs’ u and v segment is denoted by Segr
uv, and substrate

pairs’ i and j segment is denoted by Segij. The structure of both segments
must be similar in format, which means that the number of parameters
representing the virtual nodes and edges in the virtual segment Segr

uv,
are exactly similar to the number of parameters representing the sub-
strate nodes and edges in the substrate segment Segij, regardless the
values of their parameters.

The proposed segmentation format guarantees full coordinated
embedding of the virtual nodes and edges, since segments formulation
provides direct way to check one-to-one, if each element in the sub-
strate pair’s segment has enough resources to host the demands of its
counterpart from the virtual pair’s segment, precisely, by comparing the
first parameter in the virtual segment to the first parameter in the sub-
strate segment, the second to the second, and so on for all the remaining
parameters. If the results of ‘ALL’ checks are true, that is, each virtual
node demand found a substrate node to host it, ‘AND’, each virtual edge
demand found a substrate edge to host it, the embedding of the virtual
pair’s nodes and edges will be realized, together in full coordination
onto the corresponding substrate pair.

To clarify what is meant by segments and how they guarantee fully
coordinated embedding, segment definition, and segment formulations
for a specific substrate path and for a VNR are presented as follows:

123

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

3.1. General definition of the basic segment

For any path Pij belonging to a physical network or is part of a
virtual network request, consisting of two nodes i and j, connected by
a direct edge (i, j), and does not include any intermediate or hidden
nodes, Pij segment, denoted by Segij is defined as a list including all
parameters of the two nodes and the edge, grouped in a set format as
shown in Eq. (1).

For example, Pij could be represented by the following specific
nodes’ parameters, namely, nodes’ locations denoted by loci and locj,
processing power capacities cpui and cpuj, and parameters of their con-
necting edge are bandwidth capacity bwij and delay dij. Consequently,
the segment defining path Pij can be written in set format as follows:

Segij = {loci, locj, cpui, cpuj, bwij, dij} (1)

However, in general any substrate or virtual directed graph can be
reconstructed of one or multiple paths, where each path could be com-
posed of multiples of the basic segment above representing the pairs
formulating the corresponding paths. Therefore, to generalize the con-
cept of the basic segment in Eq. (1) on any graph, let Setr be a set of
segments listing all demands of the virtual nodes and edges in a VNRr

graph, and let SetS be a set of segments listing all resources of the can-
didate physical nodes and edges in a substrate graph to host the virtual
nodes and edges in the VNRr.

The formulation of both segments is clarified in the following sub-
sections, starting by the VNR segment:

3.2. VNR set of segments formulation (Setr)

For a virtual network request VNRr, consisting of a collection of
pairs of virtual nodes associated with loc and CPU demands, and virtual
edges associated with BW and delay demands, Eq. (1) can be general-
ized to list all these parameters together as shown in Eq. (2) as follows:

Setr = {Segr
uo,‥, Segr

wx,‥, Segr
pv} (2)

Where:

Segr
uo = {locr

u, locr
o, cpur

u, cpur
o, bwr

uo, d
r
uo}

Segr
wx = {locr

w, locr
x, cpur

w, cpur
x, bwr

wx, d
r
wx}

Segr
pv = {locr

p, locr
v, cpur

p, cpur
v, bwr

pv, d
r
pv}

u, v, o, p,w, x are virtual nodes∈ VNRrgraph
An illustrative application of Eq. (2) is shown in Fig. 2a, which

presents two VNRs to be embedded, a line graph VNRr1 and a directed
cycle graph VNRr2. For example, VNRr1 is composed of three virtual
nodes and two virtual edges forming two pairs. The first virtual pair
includes virtual nodes 1.1 and 1.2, and virtual edge (1.1,1.2), while the
second virtual pair includes virtual nodes 1.2 and 1.3, and virtual edge
(1.2,1.3). Notice that the first virtual node location, locr1

1.1, demands
being located at the location of SN node a, while location of second
virtual node locr1

1.2 at SN node b, and locr1
1.3 at SN node e. At the top

of Fig. 2b, the formulation of Eq. (2) was applied to construct the set
of segments, Setr1, representing VNRr1, listing all demanded locs, cpus,
bws, and the overall end-to-end delay. Accordingly, Setr1 is formulated
as follows:

Setr1 = {Segr1
1.1,1.2, Segr1

1.2,1.3}

Where:

Segr1
1.1,1.2 = {locr1

1.1, locr1
1.2, cpur1

1.1, cpur1
1.2, bwr1

1.1,1.2, d
r1
1.1,1.2}

Segr1
1.2,1.3 = {locr1

1.2, locr1
1.3, cpur1

1.2, cpur1
1.3, bwr1

1.2,1.3, d
r1
1.2,1.3}

In this way, the demands of VNRr1 are translated from a line graph
topology, into a set of segments representing the demands of the two
pairs formulating VNRr1. The same procedure can be repeated for
VNRr2 as shown at the top of Fig. 2c.

Fig. 2. Example about constructing the physical path segment, SetS, and VNR segment, Setr. In a, two VNRs need to be embedded, a line graph VNRr1 and a directed
cycle graph VNRr2. In the upper part of b and c, the construction of the set of segments belonging to VNRr1 and VNRr2 is shown, and their corresponding substrate
segments are shown in the lower parts of b and c.

124

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

3.3. Segment formulation for a substrate graph (SetS)

For any substrate graph consisting of similar pairs of nodes and
edges as the VNR’s pairs, without any hidden hopes or edges, refor-
mulate its resources into a set of segments, listing the substrate pairs’
loc, CPU, BW, and delay values together as shown in Eq. (3):

SetS = {Segsn,‥, Segkl,‥, Segmd} (3)

Where:

Segsn = {locs, locn, cpus, cpun, bwsn, dsn}

Segkl = {lock, locl, cpuk, cpul, bwkl, dkl}

Segmd = {locm, locd, cpum, cpud, bwmd, dmd}

s, d, k, l, n,m are physical nodes∈ substrate graph
To complete the above example, the bottom of Fig. 2b illustrates a

direct application on how to use Eq. (3). Since the demanded virtual
nodes’ locations are the locations of the nodes on substrate path Pae,
then the set of segments representing Pae, denoted by Setae, represents a
typical similar structure to that of Setr1. Similar in this example means,
since VNRr1 topology is a line graph, consisting of two pairs, with spe-
cific virtual nodes’ locations, then the selected substrate graph topology
must be a line graph, of two pairs fulfilling the demands of the virtual
nodes’ locations. Accordingly, applying Eq. (3) to formulate the set of
segments, Setae, representing substrate graph Pae can be written as fol-
lows:

Setae = {Segab, Segbe}

Where:

Segab = {loca, locb, cpua, cpub, bwab, dab}

Segbe = {locb, loce, cpub, cpue, bwbe, dbe}

In this way, substrate line graph path Pae has been translated from
a graph topology into segment format, fulfilling the virtual nodes’
demanded locations and similar in structure to Setr1. The same process
can be followed to formulate the set of substrate segments to allocate
VNRr2 as shown in Fig. 2c.

Now to embed all virtual nodes and edges from VNRr1 on the sub-
strate path Pae, in full coordination, each element in the two formulated
set of segments, Setr1 and Setae will be directly compared one-to-one,
which means for each parameter value in Setr1 representing a virtual
node in VNRr1, check if its counterpart in Setae can fulfill its demands,
and at the same time, for each parameter value in Setr1 representing
a virtual edge in VNRr1, check if its counterpart in Setae has enough
residual capacity to host it as well. This process can be achieved if and
only if each comparison statement in the following (if-AND) conditions
is true, as follows:

if loca = locr1
1.1 AND

if locb = locr1
1.2 AND

if loce = locr1
1.3 AND

if cpua − cpur1
1.1 ≥ 0 AND

if cpub − cpur1
1.2 ≥ 0 AND

if cpue − cpur1
1.33 ≥ 0 AND

if bwab − bwr1
1.1,1.2 ≥ 0 AND

if bwbe − bwr1
1.2,1.3 ≥ 0 AND

if dab ≤ dr1
1.1,1.2 AND

if dbe ≤ dr1
1.2,1.3

Accordingly, if all the above conditions were proven true, this guar-
antees that each virtual node and edge in VNRr1 will be hosted by
their counterparts in substrate path Pae. Therefore, segments formula-
tion and the comparisons, made the embeddings of virtual nodes fully
coordinated with the embeddings of the virtual edges, together on the
same substrate path. The same comparison procedure can be followed
to check if the demands of VNRr2 can be hosted by the directed cycle
substrate graph Pmno.

4. Evaluation scenario

In real worlds of 5G networks, services, applications, and users inter-
act with the infrastructure network instantly and on real-time. There-
fore, in the context of networks’ virtualization, the demands must be
analyzed and allocated on the substrate network, online, utilizing the
shared resources efficiently, adhering to the required service qualities
as demanded, and at the same time keep updating the statue of the sub-
strate network’s resources regularly, in order to spontaneously evaluate
the possibilities of allocating other virtualization demands when they
arrive.

Based on that, the proposed algorithm by this paper, OPaCoVNE
is designed for online scenario, and its main objective is to successfully
embed the VNRs, on real time, while minimizing the overall power con-
sumption in the whole substrate network considering end-to-end delay
as a main embedding constraint. The algorithm handles the virtual net-
work requests one-by-one, and keeps monitoring and updating the sub-
strate network frequently, to free up more resources for future usage by
new virtual requests.

Detailed online problem formulations, simulation and evaluation for
the online scenario are presented in the following section.

5. Online problem formulation

Since virtual network embedding problems deals with making deci-
sions, about an efficient utilizations for using the limited resources of
the physical substrate network, the VNE problems were traditionally
modeled as an optimization problem of objective function, and con-
strained by controlling conditions, matching the resources availability
against the requirements, while utilizing the scarce physical resources.
This is usually referred to as integer linear programming (ILP) prob-
lem, which when solved will have positive, integer, and linear decision
variables in their final optimal solution (Bradley and Magnanti, 1977).
However, optimal solution for VNE as an ILP problem, implies intro-
ducing binary constraints to connect one edge only for each node, then,
mapping all virtual nodes and edges on their physical counterparts hav-
ing enough resources to accommodate their demands. Accordingly, vir-
tual edges associated with bandwidth constraints are usually treated
as commodities between pairs of nodes, and therefore, embedding a
virtual edge optimally is similar to finding an optimal flow for the com-
modity in any network model, which is an NP-hard problem and will
take huge amount of time to solve (Fischer et al., 2013; Kleinberg and
Tardos, 2009).

To formally introduce the VNE problem as an ILP, the following
paragraphs will introduce network and power consumption models of
the VNE, followed by the objective functions and its constraints. Table 1
summerizes all used notations for the formulation of the VNE problem.
In addition to that, the proposed online algorithm that solves the VNE
in polynomial times will be explained in details, including an illustra-
tive example, its computational complexity, as well as introducing the
algorithm’s evaluation metrics.

125

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Table 1
Notation.

Notation Description.

GS Directed graph of the physical network.
NS Substrate network nodes.
ES Substrate network edges.
NSub Subset of substrate network nodes.
ESub Subset of substrate network edges.
loci Location of node i.
cpua

i Available CPU capacity at node i.
cpui Consumed CPU capacity at node i
CPUi Maximum CPU capacity at node i.
Ui CPU utilization of node i.
bwa

ij Available bandwidth capacity of (i, j).
bwij Consumed bandwidth capacity of (i, j).
BWij Maximum bandwidth capacity of (i, j).
fij Throughput flows in (i, j).
da

ij Current end-to-end delay in (i, j).
PS All basic paths in substrate network.
Pij Basic path of two nodes and one edge.
Psub Collection of basic paths.
GV Virtual network graph.
NV Virtual nodes of virtual network graph.
EV Virtual edges of virtual network graph.
VNRr Virtual network request r.
R Total number of VNRs.
t, tr

a , tr
e VNRr duration, arrival, and expiry times.

locu Preferred location to host virtual node u.
cpur

u Demanded CPU capacity by u.
bwr

uv Demanded bandwidth capacity by (u, v).
dr

uv Demanded end-to-end delay in (u, v).
PCi Power consumption of i.
PCBusy

i Maximum power of node i.
PCidle

i Idle power of node i.
Segij Substrate pair i and j segment.
Segr

uv Virtual pair u and v segment.
Adjsub Substrate set of segments adjacency matrix.
Adjr VNR adjacency matrix.
xur

i 1 if i is hosting virtual node u.

5.1. Substrate network model

The physical network GS = (NS,ES) is modeled as a weighted
directed graph, where i and j ∈ NS are SN nodes, and (i, j) ∈ ES is an
edge connecting nodes i and j. Each node i ∈ NS is associated with
loci denoting the node’s location, cpua

i representing current available
CPU capacity, cpui for consumed CPU capacity, and CPUi as the max-
imum CPU capacity of node i. Each substrate edge (i, j) is associated
with bwa

ij, bwij, and BWij representing available, consumed, and maxi-
mum bandwidth capacities. It is assumed that the physical network is
well established and stable, therefore it would be possible to extract all
the physical paths in advance. Accordingly, PS = {(i, j)} represents the
set of all directed basic paths in the whole SN, where each basic path
is connecting a pair of SN nodes i and j with an edge. And substrate
path Psub ∈ PS represents a candidate hosting substrate topology, for-
mulated from a collection of the basic segments Pij, each constructed of
a pair of two nodes and one physical edge, and its end-to-end delay is
given by da

ij.

5.2. Virtual network model

The virtual network is modeled as a weighted directed graph
GV = (NV,EV), where u and v ∈ NV are virtual nodes, and (u, v) ∈ EV

is a virtual edge. VNRr is a virtual network request number r out of
R total VNRs. For online scenario, each VNR has a lifetime interval
denoted by t, arrival time denoted by tra, and expires at tre . Each virtual
node u ∈ NV is associated with locu denoting the preferred location to
host the virtual node, cpur

u representing the demanded CPU capacity
during time t, and each virtual edge (u, v) connecting a pair of virtual

nodes u and v, is also associated with bwr
uv, representing the demanded

bandwidth capacity during time t, and dr
uv representing the maximum

allowed end-to-end delay demanded by virtual edge (u, v).

5.3. Power consumption model

For the online scenario, the linear power model introduced by
Dayarathna et al. (2016) and Fan et al. (2007) is used to estimate power
consumption of SN servers (PC), including idle power as given in Eq.
(4). Nodes’ utilization, Ui, is a fraction between (0–1), reflecting the
ratio of consumed cpui to the maximum CPUi given by Eq. (5).

∀ i ∈ NS

PCi = pcidle
i + [PCBusy

i − pcidle
i] × Ui (4)

Ui =
cpui
CPUi

(5)

5.4. Online objective function definition and formulation

The main target of the objective function for OPaCoVNE is to suc-
cessfully accommodate all the demands of the arriving VNRs on online
scenario, while minimizing overall power consumption in the whole
substrate network, by putting into sleeping mode all idle resources.
Demands in the online case arrive at certain tra and expire at tre , there-
fore, the objective function must consider embedding VNRs during the
time intervals specified by each related VNRr.

To make sure that a specific physical node is active, variable xur
i is

used in the objective function formulation, which takes a binary value
of 1 if substrate node i is active and assigned to host the virtual node u
(u ← i), during the time interval t ∈ [tra, tre], and 0 otherwise. The objec-
tive function is shown in Eq. (6):

∀ t ∈ [tra, tre], ∀ u ∈ NVand ∀ r ∈ R

min PC =
∑

∀i∈NS

(pcidle
i + [PCBusyt

i − pcidle
i] × Ut

i) × xur
i (6)

5.4.1. Constraints definition and formulation
Objective function solution will be constrained by location, capacity,

flow, and domain constraints as shown bellow.
Location constraints

∀ u ← i locr
u = loci (7)

∀ (u, v) ← (i, j) Adjr(u,v) = Adjsub
(i,j) (8)

Capacity constraints

∀ t ∈ [tra, t
r
e], ∀ u ← i

∑
r∈R

cpurt
u ≤ CPUi (9)

∀ t ∈ [tra, t
r
e], ∀ (u, v) ← (i, j)

∑
r∈R

bwrt
uv ≤ BWij (10)

∀ t ∈ [tra, t
r
e], da

ij ≤ drt
uv (11)

Flow constraints

∀ t ∈ [tra, tre]∑
∀m∈NS

f t
sm −

∑
∀m∈NS

f t
ms = bwrt

uo (12)

∑
∀m∈NS

f t
dm −

∑
∀m∈NS

f t
md = −bwrt

pv (13)

k ≠ s, d
∑

∀m∈NS

f t
km =

∑
∀m∈NS

f t
mk (14)

126

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Domain constraints

∀ t ∈ [tra, t
r
e], ∀ i ∈ NS xurt

i ∈ {0,1} (15)

∀ t ∈ [tra, t
r
e], ∀ u ∈ NV

∑
∀i∈NS

xurt

i = 1, (16)

At each time interval [tra, tre], Eq. (7) ensures that each virtual node
is located at its demanded location, and Eq. (8) ensure that each virtual
edge is only located on a single substrate edge. Eq. (9) ensures that the
total consumed CPU processing power capacity at substrate node i is less
than or equal to the maximum CPU capacity at that SN node, while Eq.
(10) ensures the same for bandwidth capacity. End-to-end delay in Pij

is controlled through Eq. (11) to be less than or equal to the maximum
demanded delay by VNRr. Eq. (12) ensures that the net flows getting
out of the source node s is the demanded flow bwrt

uo by virtual edge (u, o)
during time interval t. While Eq. (13) ensures that, the net flow getting
out of the destination node d is the forwarded flow bwrt

pv by virtual edge
(p, v). And Eq. (14) ensures that all flows are transferred through any
intermediate node k between source node s and destination node d, and
nothing remains at that intermediate node. Regarding network domain,
Eq. (15) ensures to solve the problem as ILP, and Eq. (16) to guarantee
each virtual node is mapped only to one substrate node.

5.5. OPaCoVNE to solve VNE in full coordination

Optimal solution for VNE is known to be NP-Hard and computa-
tionally intractable, since it can be reduced to the multi-way separator
problem, which is NP-Hard by itself (Chowdhury et al., 2012). Some of
the main reasons highlighting why solving VNE is challenging, could be
due to randomness of the arrival of VNRs depending on users’ demands,
as well as topology and limited SN resources. However, the virtual
edges’ embedding problem is what makes VNE problem exceptionally
an NP-hard, since it can be reduced to the unsplittable flow problem,
which is NP-hard (Bradley and Magnanti, 1977; Kolliopoulos and Stein,
1997). Consequently, solving VNE problem in polynomial time is not
possible. Therefore, majority of VNE approaches followed heuristic or
meta-heuristic algorithms to solve VNE optimization problems in a rea-
sonable polynomial time (Fischer et al., 2013).

Accordingly, to solve the objective function, fully coordinating vir-
tual nodes and edges’ embeddings together, while minimizing the total
power consumption in the whole substrate network, this paper pro-
poses the online algorithm, OPaCoVNE, as a power aware VNE heuris-
tic, which can provide final results for the VNE problem in millisec-
onds of time. Its main advantage in reducing the total power consump-
tion relies on using only direct edges between any pair of nodes, then
utilizes the segmentation approach for comparing each element in the
VNRr set of segments, Setr, against their counterparts in the SN path’s
set of segments, SetS, considering the following constrains, namely: loc,
CPU, BW, and end-to-end delay. If the elements of the substrate seg-
ment has enough resources to accommodate the demands as stated by
the elements of the VNR’s segments, a successful embedding occurs.

5.6. OPaCoVNE explained

The OPaCoVNE methodology is shown in the flowchart shown in
Fig. 3 and the pseudo-code is shown in Algorithm 1. At each time t, if
a VNRr arrives, the code structures its set of segments, and based on
the demanded locations for the virtual nodes, the code will build a sim-
ilar SN topology to the VNRr topology, then it formulates the SN set
of segments, and compares both sets to check if the candidate SN seg-
ments, have enough resources to host all demands of VNRr during the
time interval. At each iteration, the algorithm keeps checking whether
any VNR has expired, in oder to remove its demands from the hosting
resources, and it updates the whole SN accordingly. In parallel with

that, at each iteration cycle, OPaCoVNE evaluates the power consump-
tion of each SN node if it is idle or loaded, and turns it off, if it has zero
utilization, to save the overall power consumption in the SN.

More elaborations about the steps of OPaCoVNE are discussed in the
subsections.

5.6.1. Initialization
OPaCoVNE starts by listing all pairs of the VNRr, then using the

demanded locations of the virtual nodes and edges, the algorithm will
allocate the substrate pairs complying with the demanded locations’
constraints, without using any hidden hops or edges, consequently, it
will construct the candidate substrate topology path Psub similar to the
topology structure of VNRr. It is assumed that the substrate network
topology is physically fixed, therefore, the main elements formulating
substrate network, such as number and connectivity of the SN nodes
and edges, are also fixed and does not change, but only their capacities
varies due to the consumption after each time interval t.

Algorithm 1 OPaCoVNE Pseudo-Code.
1. Input: GS and GV.
2. while t ≠ 0 do
3. for each VNRr ∈ R arriving the SN randomly at time t

Formulate Setr as Eq. (2).
4. for the set of all SN pairs Pij ∈ PS ∶

- List all SN pairs matching the nodes’ and edges locations
of VNRr pairs, and ensure.
they are connected by one SN edge only.

- Formulate SetS representing Psub as Eq. (3).
- Compare Setr against SetS.

5. - If satisfied,
- Main Output - Embed VNRr on Psub.
- Update all parameters of SN nodes and edges.
- else go to next VNR, step-3.

6. for All embedded VNRs.
- Check and offload expiring VNRs.
- Update SN’s CPU and BW resources.

7. for All SN nodes.
- Calculate current Ui.
- if Ui = 0
- Turn-off SN node i to save power.

8. Evaluate Metrics.
9. If VNRs list not empty, go to next VNR step-3.

5.6.2. Segmentation
This is the differentiating aspect of OPaCoVNE algorithm compared

to others, mainly because it facilitates solving the two subproblems of
VNE, virtual nodes’ embedding problem and virtual edges’ embedding
problem, together, providing full coordination, while assuring not to
use any additional substrate resources, to minimize total power con-
sumption in the physical network. To do that, first OPaCoVNE will
reformulate all pairs of the arriving VNRr into a set of segments, Setr,
following the format of Eq. (2). Then, it will construct the set of seg-
ments, SetS, representing all pairs of the candidate SN topology path
Psub following Eq. (3). This will prepare OPaCoVNE to check the possi-
bilities of embedding each virtual pair of nodes and their edge, onto
a corresponding substrate pair of nodes and their edge, one-to-one,
together, and without utilizing any hidden hopes or edges.

5.6.3. Embedding decision
This is the main step in making sure that each pair of virtual nodes

and their edge are embedded together, resulting on solving the two sub-
problems of the VNE in full coordination altogether. To guarantee fully
coordinated embeddings, OPaCoVNE compares each element in the SN
set of segments SetS to its counterpart in Setr, one-to-one, at the same
time, and in one comparison step, as shown in the comparison inequali-
ties given by Eq. (17). For example, each loci and cpua

i element in SetS is

127

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Fig. 3. Flowchart 1 presenting the general structure of the methodology used by OPaCoVNE. It starts by the initialization phase, then segmentation, followed by the
embedding and updating phases, and concludes by the evaluation phase.

compared to its counterpart locr
u and cpur

u in Setr, and at the same time,
do the same for the remaining elements representing BW and delay.
Notice the use of ‘AND’ in Eq. (17) to guarantee the full coordination if
and only if every element in SetS satisfies the needs of its counterpart
in Setr, while embedding each virtual edge on a single substrate edge
only, through using the adjacency matrices of the candidate substrate
path, Adjsub, and Adjr for the VNRr.

Therefore, if the inequalities in Eq. (17) are ‘ALL’ true for every
candidate substrate and virtual pair, which means that the demands of
every virtual node and edge can be accommodated by the correspond-
ing resources in the substrate path represented by SetS, accordingly, a
successful fully coordinated embedding for the virtual nodes and edges

is performed for both of them together. Decision matrix for the embed-
ding process is given as follows:

i ∈ SetS and u ∈ Setr if loci = locr
u AND

(i, j) ∈ Psuband (u, v) ∈ EV Adjsub
(i,j) = Adjr(u,v) AND

i ∈ SetS and u ∈ Setr if cpua
i − cpur

u ≥ 0 AND

(i, j) ∈ SetS and (w, x) ∈ Setr if bwa
ij − bwr

wx ≥ 0 AND

if da
ij ≤ dr

uv (17)

128

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

5.6.4. Updating
Once a successful embedding occurs, the algorithm updates all

changed SN resources and moves to next VNRr+1. However, in case
that the selected SN set of segments does not have enough resources to
accommodate VNRr demands, the algorithm rejects VNRr, and jumps to
the next VNR from step-3. This process keeps on going until no more
VNRs to be handled.

5.7. PaCoVNE computational time complexity

Regardless the number of VNRs and based on the adjacency matrix
of SN, OPaCoVNE searches and lists all pairs in O(|NS| + |ES|) pro-
cessing time, depending on the total number of nodes N and edges E
formulating the SN. Once all pairs are listed, the actual embedding pro-

cess starts, which consumes almost a negligible processing time in mil-
liseconds, since it is based on checking all elements in the comparison
statement as in Eq. (17).

5.8. General illustrative example

A brief example to explain the proposed OPaCoVNE is shown in
Fig. 4. At the top of the figure, four VNRs need to be embedded on
the substrate network. Each VNR has clear specific location demands,
as well as CPU, BW, and delay. For example VNR1 requests that, the
location of virtual node 1.1 must be at the location of substrate node a,
virtual node 1.2 to be located at b, and 1.3 at c. Therefore, OPaCoVNE
algorithm will first confirm the location constraints of the nodes, and
if each pair of the located substrate nodes are connected by one direct

Fig. 4. Numerical example showing the basics of OPaCoVNE. At the top left, Four VNRs need to be embedded on the substrate network as given at the top right.
Each VNR has clear specific location demands, as well as CPU, BW, and delay. In a,c, and d, VNR-1, VNR-3, and VNR-4 were allocated and the substrate network
was updated, while in b, VNR-2 was rejected due to the delay constraint.

129

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

substrate edge only, as shown in Fig. 4a, where substrate nodes a and
b are directly connected by the edge (a, b), as well as nodes b and c
are also directly connected by edge (b, c). Next, OPaCoVNE will move
to check CPU, BW, and delay demands of VNR1, where virtual nodes
1.1, 1.2, and 1.3 demand that the substrate nodes a, b, and c must
have at least 30 units of CPU per each of them, which is true, since
each of a, b, and c has 100CPU units. The same for the BW demands
of virtual edges (1.1,1.2) and (1.2,1.3), demanding 50BW units and
maximum of 2 delay units in substrate edges (a, b) and (b, c), which is
also true, since each of them has 100 current BW units and 1 current
delay unit. Accordingly, VNR1 will be embedded on substrate nodes
and edges of path Pabc, while substrate nodes d and e will be turned-off,
since they are not utilized to minimize the total power consumption
in the network. Following the same procedure, VNR3 and VNR4 will
be embedded on substrate paths Pcde and Pabcde respectively as shown
in Fig. 4c and d. However, for VNR2 even though substrate path Pabcd

fulfills its loc, CPU, and BW demands, yet it was rejected, since delay
demand of virtual edge (2.1,2.4) was less than the current edge delay
in the candidate substrate edge (a, d).

5.9. Evaluation metrics

The performance of OPaCoVNE algorithm will be evaluated based
on acceptance ratio, total power consumption, saved power, total rev-
enues, total cost, CPU and BW utilizations, and processing time.

5.9.1. Average acceptance ratio, AR
Is a ratio to represent how OPaCoVNE algorithm is performing,

and is calculated by averaging and dividing the number of successfully
embedded VNRs at each time interval by the total number of VNRs R
(Chowdhury et al., 2012; Fischer et al., 2013).

AR = 1
T

∑
∀t∈T

1
R

Total Number of Embedded VNRs ∗ 100 (18)

5.9.2. Average power consumption, PC
Calculated by averaging the total power consumed by all SN nodes

and edges after each time interval t, (Botero and Hesselbach, 2013),

PC = 1
T

∑
∀t∈T

∑
∀i∈NS

PCt
i (19)

5.9.3. Average saved power, PS
The average amount of saved power when the proposed power

reduction strategy was used. It is calculated after each time interval t,
given by subtracting the total power consumed by the whole SN with-
out power reduction strategy PCt−, from the total power consumed by
all SN after applying the power reduction strategy PCt+.

PS = 1
T

∑
∀t∈T

(
∑

∀i∈NS
PCt−

i −
∑

∀i∈NS
PCt+

i) (20)

5.9.4. Average cost, Co
The average amount of allocated virtual processing powers multi-

plied by the processing unite price 𝜇, and throughputs multiplied by
the flow unite price 𝜌, at each time interval t (Chowdhury et al., 2012).

Co = 1
T

∑
∀t∈T

(
∑

∀u∈NV

𝜇 × cpurt
u +

∑
∀(u,v)∈EV

𝜌 × bwrt
uv) (21)

5.9.5. Average revenues, Rev
Representing revenues from all accepted virtual requests at each

time interval t, calculated by adding the total demanded processing
powers and throughputs (Chowdhury et al., 2012).

Rev = 1
T

∑
∀t∈T

(
∑

∀u∈NV

cpurt
u +

∑
∀(u,v)∈EV

bwrt
uv) (22)

5.9.6. Average CPU utilization, CPUutil
It represents the average SN nodes’ utilization trend after all simula-

tion iterations. Its defined as a ratio between consumed CPU cput
i , and

maximum CPU resources, averaged over all SN nodes (Chowdhury et
al., 2012).

CPUutil =
1
T

∑
∀t∈T

1
NS (

∑
∀i∈NS

cput
i

CPUi
∗ 100) (23)

5.9.7. Average BW utilization, BWutil
It represents the average utilization of SN edges after all simulation

iterations. And is defined as a ratio between consumed bwt
ij, and the

maximum BW, averaged over all SN edges (Chowdhury et al., 2012).

BWutil =
1
T

∑
∀t∈T

1
ES (

∑
∀(i,j)∈ES

bwt
ij

BWij
∗ 100) (24)

6. OPaCoVNE evaluations

To generally evaluate the new online power aware and fully coordi-
nated virtual network embedding algorithm, OPaCoVNE, three sets of
simulations were conducted in this paper:

1. OPaCoVNE overall performance in terms of acceptance ratio,
embedding cost, in addition to nodes and edges’ utilizations will
be compared against the most referenced online algorithm, D-ViNE
by Chowdhury et al. (2012), as explained in subsection 6.1.

2. To investigate OPaCoVNE’s power aware performance in terms of
average power consumption, average generated revenue, and num-
ber of switched off substrate nodes, the performance of OPaCoVNE
was compared against the state of art algorithm, EAD-VNE, by
Zhongbao et al. (2015), as detailed in subsection 6.2.

Table 2
Comparing OPaCoVNE to D-ViNE algorithm.

Item OPaCoVNE D-ViNE

Scenario Online Online
Goal Minimize total power consumption Minimize embedding cost
Strategy Confirm locations’ constraints Confirm locations’ constraints

Check residual capacities then consolidate Check residual capacities then embed
Embedding coordination Fully coordinated Partially coordinated
Location constraints Yes Yes
Virtual nodes embedding Based on location and residual capacities Based on location and residual capacities
Virtual edges embedding Direct edge between each pair of nodes Using multi-commodity flow algorithm
Power consumption Yes No
End-to-end delay Yes No

130

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

3. Furthermore, four different experiments were also conducted as
shown in subsection 6.3 to test the impacts of varying number,
lifetime, and size of the embedded virtual requests, as well as the
impacts of varying size of substrate edges, on OPaCoVNE’s average
power consumption, acceptance ratio and processing time.

6.1. Evaluating overall performance of OPaCoVNE

The overall performance of OPaCoVNE was compared to D-ViNE,
which targeted minimizing the embedding cost while improving accep-
tance ratio, by mapping the virtual nodes based on the total flow pass-
ing through the edges of a candidate SN, and applies multi-commodity
flow algorithm to map the virtual edges onto paths connecting the host-
ing SN nodes. Table 2 provides a high-level comparison between OPa-
CoVNE and D-ViNE algorithms, listing their used strategies, and how
they embed the virtual nodes and edges.

6.1.1. Simulation settings
Substrate network and virtual network topologies were randomly

generated using Waxman algorithm, setting 𝛼 = 0.7, 𝛽 = 0.9, and
mean probability of a pair of two nodes being connected set equal to
0.5. Similar to (Chowdhury et al., 2012), the substrate network includes
50 nodes, CPU and BW resources given as real numbers, uniformly dis-
tributed between 50 and 100, and delay in each substrate edge was
randomly selected between 1 and 50. Number of virtual nodes per VNR
was randomly determined by a uniform distribution between 2 and 10,
assuming that VNRs arrive according to Poisson process pattern, each

Table 3
Simulation settings to test OPaCoVNE against D-ViNE.

Parameter SN VNR

Nodes 50 2–10
CPU 50–100 0–20
BW 50–100 0–50
Delay 1–50 20–100
PCBusy 15 ∗CPU
pcidle 165 Watts
time units 0–50,000
𝛼 0.7
𝛽 0.9
pwax 0.5
VNRs∕100 time units 4–8
VNR lifetime 1000 time units

having an exponentially distributed lifetime with an average of 1000
time units. Arriving rates of VNRs were varied between 4 and 8 per 100
time units, over simulation time of 50,000 units. The virtual CPU and
BW resources were real numbers uniformly distributed between 0–20
and 0–50 respectively, while delay in each virtual edge was randomly
selected between 20 and 100. Substrate network and virtual network
topologies were assumed located on the same grids, and locations of
virtual nodes were selected based on the corresponding locations of the
substrate nodes. Table 3 summarizes all simulation parameters.

6.1.2. Discussing results of OPaCoVNE’s overall performance
Analyzing acceptance ratio: The average acceptance ratio of OPa-

Fig. 5. Overall Performance of OPaCoVNE with and without end-to-end delay compared to D-ViNE. In a, the average acceptance ratio of OPaCoVNE was 63.64%
compared to 67.10% for D-ViNE. In b, the average cost using OPaCoVNE was around 92.28 compared to D-ViNE of 169.20. In c, nodes’ utilization using OPaCoVNE
was in average around 37.36% compared to 33.80% for D-ViNE, and in d, average edges’ utilization was around 31.75% lower than D-ViNE of 56.5%.

131

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Table 4
Comparing OPaCoVNE to EAD-VNE algorithm.

Item OPaCoVNE EAD-VNR by Zhongbao et al. (2015)

Scenario Online Online
Goal Minimize power consumption Minimize power consumption, high revenues.
Strategy Confirm locations’ constraints Confirm locations’ constraints

Use resource of residual capacities then consolidate Use resource of residual capacities
Embedding coordination Fully coordinated Partially coordinated
Location constraints Yes Yes
Virtual nodes embedding Based on location and residual capacities Based on location and residual capacities
Virtual edges embedding Direct edge between each pair of nodes Using shortest path algorithm
Power consumption Yes Yes
End-to-end delay Yes No

CoVNE was 63.64% compared to 67.10% for D-ViNE as shown in
Fig. 5a, which indicates the close similarity in the overall performance
of both algorithms. However, the fact that OPaCoVNE strategy in select-
ing only direct edges to minimize the used resources when embedding
virtual edges, in order to minimize the total power consumption, has
negatively impacted the algorithm’s acceptance ratio, yet OPaCoVNE
still managed to show solid and comparable results to D-ViNE in gen-
eral, while leaving more free resources to host more demands. More
precisely, this is due to applying the segment technique which insures
that the virtual nodes and virtual edges were mapped together on the
SN path that, complies with the location constraints and has enough
resources and acceptable end-to-end delay, without any hidden nodes
or edges.

Similar to OPaCoVNE, D-ViNE maps virtual nodes on physical nodes
having enough residual capacities, and maps virtual edges through
applying multi-commodity flow algorithm to find the appropriate SN
edge between the already mapped virtual nodes. Nevertheless, the way
D-ViNE selects the SN nodes to host virtual nodes, may result on select-
ing SN nodes that are further away from each other, which when apply-
ing the multi-commodity flow algorithm to map the virtual edges, could
force using longer paths, therefore, consuming more resources, but
would have better acceptance ratios. That was clear for the acceptance
ratios of D-ViNE when the loads were between 4 and 7. However, the
results of OPaCoVNE started to converge with those of D-ViNE, most
probably due to the multi-commodity flow algorithm’s way of select-
ing more edges, and allowing for splitting the flows between more than
one substrate path, thus, raising the possibilities of congested edges,
which in turn would cause degradation in the acceptance ratio. More-
over, referring to Fig. 5a, and focusing on the load of 8 VNRs per 100
time units, OPaVoVNE acceptance ratio started to get better than that
of D-ViNE, most likely since it would always stick to using less edges
during the embedding process, therefore, keeping more free resources
to be used to fulfill the demands of the new virtualization requests.

Average Cost: Average cost per accepted VNR is shown in Fig. 5b,
confirms the successful strategy of OPaCoVNE in minimizing the use of
substrate network resources as least as possible while embedding VNRs,
by selecting direct edges between the hosting substrate nodes without
any hidden hopes. Therefore, in average OPaCoVNE cost was around
92.28 compared to D-ViNE cost of 169.20, which most likely tends to
use more edges when embedding VNRs than OPaCoVNE. The processing
power unite price 𝜇, and throughput unite price 𝜌 were set equal to 1.

SN nodes Utilization: Fig. 5c shows nodes’ average utilization. SN
nodes in OPaCoVNE are in average moderately utilized resulting on
37.36%, which is very close when compared to 33.80% for D-ViNE.
This is a reflection of the similarity between both OPaCoVNE and D-
ViNE in utilizing SN nodes having enough residual resources to embed
virtual nodes. Also it is important to point out that both algorithms
first select the SN nodes according to the location constraint, then they
check for the residual resources afterwards. In the case of including end-
to-end delay, OPaCoVNE nodes’ utilization is less than without delay,
mainly since OPaCoVNE with end-to-end delay accepted less number of
demands, thus has less utilized SN nodes.

SN Edges Utilization: Average edges utilization in OPaCoVNE resulted
on 31.75%, and was lower than D-ViNE of 56.5% as shown in Fig. 5d.
This is mainly because OPaCoVNE is allocating precisely the same num-
ber of SN edges as the demanded edges without any hidden edges or
nodes. However, the way D-ViNE embedding virtual edges using the
multi-commodity flow algorithm, could have resulted on using longer
paths including more SN edge than requested, which raises its overall
edges’ utilization.

Impact of delay on OPaCoVNE: The impact of end-to-end delay on
OPaCoVNE, was negative in general over all simulations as shown in
Fig. 5. However, since D-ViNE did not use delay as a constraint, the
results of OPaCoVNE were shown just to reflect how much the perfor-
mance of OPaCoVNE without delay is better than when it was included.

6.2. Evaluating power consumption performance of OPaCoVNE

This subsection compares the power aware performance of OPa-
CoVNE against EAD-VNE algorithm, which applies power aware with
dynamic demands as well (Zhongbao et al., 2015). Table 4 compares
the two algorithms, giving that for virtual nodes’ embedding, both algo-
rithms first use location constraint to select the substrate nodes, then
embed the virtual nodes if enough residual resources are available. For
the virtual edges, EAD-VNE uses shortest path, which may include addi-
tional edges, while OPaCoVNE uses direct edges connecting the pair of
substrate nodes, without any hidden nodes or additional edges. Table 5
provides general settings to compare OPaCoVNE against EAD-VNE.

6.2.1. OPaCoVNE versus EAD-VNE
Exact simulation settings of EAD-VNE were applied on OPaCoVNE,

assigning 4 VNRs to be embedded per 100 time units, each having aver-
age lifetime of 500 time units, and number of nodes per VNR were ran-
domly distributed between 2 and 10. As shown in Fig. 6a, the average
power consumption per SN node using OPaCoVNE is 23.54% lower than

Table 5
Simulation settings to test OPaCoVNE against
EAD-VNE.

Parameter SN VNR

Nodes 50
CPU 50–100 0–20
BW 50–100 0–50
Delay 1–50 20–100
PCBusy 15 ∗CPU
pcidle 165 Watts
time units 0–50,000
𝛼 0.7
𝛽 0.9
pwax 0.5
Experiment-1
VNRs∕100 time units 4
VNR lifetime 500 time units
VNRs’ nodes Random 2–10

132

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Fig. 6. OPaCoVNE performance against EAD-VNE. In a, the average power consumption per substrate node using OPaCoVNE is 23.54% lower than EAD-VNE, while
in b it shows that OPaCoVNE revenues are almost near to those of EAD-VNE, which in average were less by 4.4%, and in c it shows that OPaCoVNE managed to
turn-off more substrate nodes than EAD-VNE by 22.2%.

EAD-VNE along the simulation duration, confirming the better power
aware performance of OPaCoVNE. Fig. 6b presents average revenue in
the substrate network, showing that OPaCoVNE revenues are almost
near to those of EAD-VNE, and in average were less by 4.4%. Noting
that OPaCoVNE and EAD-VNE embed virtual nodes based on location
and residual nodes’ resources constraints, yet, in contrary to EAD-VNE,
which uses shortest path to embed virtual edges, OPaCoVNE’s way in
embedding each virtual edge on a single substrate edge, may cause
some VNRs to be rejected, which would reduce the overall revenues of
OPaCoVNE in general.

Nevertheless, the fact of using direct edges by OPaCoVNE is pre-
cisely why its power consumption is better than EAD-VNE, since OPa-
CoVNE strategy uses least substrate network resources as much as pos-
sible, through using direct edges with no hidden hopes at all. This is
confirmed referring to Fig. 6c, which shows that OPaCoVNE strategy
managed to turn-off more substrate nodes than EAD-VNE by 22.2%.

6.3. Varying number, lifetime, size of VNRs, and size of substrate edges

Table 6 lists specific settings for experiments 2–5 that were designed
to evaluate OPaCoVNE in more details. The four experiments were
specifically designed to evaluate the online power consumption and
acceptance ratio behaviors of OPaCoVNE, when end-to-end delay was
included as a major embedding constraint. In the second experiment,
number of arriving VNRs were varied between 2 and 10 each 100
time units, while the third experiment varied VNRs’ lifetime between
200 and 1000 time units, and the fourth experiment varied number of
nodes per each embedded VNR between 2 and 10. Finally, fifth exper-
iment evaluated OPaCoVNE power consumption and acceptance ratios
for five different substrate network topologies.

6.3.1. Average power consumption of OPaCoVNE
As shown in Fig. 7a–d, average power consumption and impacts

of adding delay constraint on OPaCoVNE’s performance were reported
using different settings according to experiments 2–5. From Fig. 7a,
varying number of embedded VNRs between 2 and 10 per 100 time
units, reflects the loading impacts on OPaCoVNE’s power consumption,
which showed increasing trend in general from 76% when the number
of embedded VNRs were as low as 2, to 96% for 10 loaded VNRs each
100 time units. Same increasing trends are also shown in Fig. 7b, but in
this case number of embedded VNRs were fixed on 4 per 100 time units,
while varying their lifetime from 200 to 1000 time units. In both exper-
iments, impact of delay on the overall power consumption resulted on
less values than the cases when delay was not included, yet it showed
increasing trends in both settings.

Furthermore, Fig. 7c presents the results when fixing number of
embedded VNRs per 100 time units to 4, while varying number of
virtual nodes per VNR between 4 and 10, which resulted on slight

Table 6
Experiments 2–5 to test OPaCoVNE.

Experiment-2 Varying number of arriving VNRs
VNRs∕100 time units 2–10
VNR lifetime 500 time units
VNRs’ nodes Random 2–10
Experiment-3 Varying VNRs’ lifetime
VNRs∕100 time units 4
VNR lifetime 200–1000 time units
VNRs’ nodes Random 2–10
Experiment-4 Varying number of nodes per VNR
VNRs∕100 time units 4
VNR lifetime 500 time units
VNR’s nodes from 4 to 10
Experiment-5 Different SN topologies
VNRs∕100 time units 4
VNR lifetime 500 time units
VNR’s nodes Random 2–10
Topologies Average SN edges (Edges/Node)
T1 380(7)
T2 530(10)
T3 630(12)
T4 770(15)
T5 860(17)

increases in the average power consumption when delay was not
included, suggesting that the change in VNRs’ size has minor impact
in general. However, this conclusion changed dramatically when delay
was included, where power consumption was higher for low sized
VNRs, but decreased for larger VNRs. This result on power consump-
tion with delay would most likely be due to high rejections of large
sized VNRs.

Finally, Fig. 7d reported the average power consumption of OPa-
CoVNE for five different substrate network topologies, which were var-
ied by increasing the number of edges per each of them. As shown,
increasing number of connected edges per topology did not have any
significant impact on OPaCoVNE’s average power consumption in gen-
eral, but when delay was include OPaCoVNE’s power consumption
showed slight decreasing trend for larger connected topologies, yet still
it did not show any significant impact too. This is expected, since OPa-
CoVNE uses location constraint, suggesting that performance of OPa-
CoVNE will very slightly be affected, regardless of the size of connected
edges in the infrastructure.

6.3.2. Average acceptance ratio of OPaCoVNE
OPaCoVNE’s average acceptance ratios for experiments 2–4 had

a decreasing trend with and without delay as shown in Fig. 7e–g.
For experiment-2, number of arriving VNRs per 100 time units var-
ied between 2 and 10, the average acceptance ratio varied between
92.68% in the case of low number of arriving VNRs, and decreased

133

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Fig. 7. OPaCoVNE performance for experiments 2–5 evaluating its online power consumption, acceptance ratio, and processing time. The results of the second
experiment are shown in a, e, and i, where the number of arriving VNRs varied between 2 and 10 each 100 time units. Third experiment results are shown in b, f,
and j, which varied VNRs’ lifetime between 200 and 1000 time units. Fourth experiment results are shown in c, g, and k, which varied the number of nodes per each
embedded VNR between 2 and 10, and finally, the fifth experiment results are shown in d, h, and l, which evaluated OPaCoVNE power consumption, acceptance
ratios, and processing times for five different substrate network topologies.

134

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

to 78.39% when number of arriving VNRs was 10. Same trend was
reported for experiment-3, when VNRs’ lifetimes varied between 200
and 1000, which resulted on average acceptance ratio between 94.49%
for short lifetimes, down to 79.90% for lifetimes as long as 1000
time units. Moreover, the average acceptance ratio for experiment-
4, when number of virtual nodes per VNR varied between 2 and 10
resulted on 93.87% for small sized VNRs, decaying to 72.97% for larger
VNRs.

However, in the case of experiment-5, which was designed to exam-
ine the impact of different substrate topologies on OPaCoVNE’s perfor-
mance while using location constraint, acceptance ratio trend slightly
increased, from 86.98% for small connected substrates, to 87.96% for
larger connected configurations as shown in Fig. 7h. This result implies
that solving VNEs using location constraints was barely affected by the
size of substrate network topology, compared to the resources’ capaci-
ties of substrate network.

6.3.3. Average processing time of OPaCoVNE
The average processing time results for OPaCoVNE while perform-

ing experiments 2–5 are shown in Fig. 7i–l. In experiment-2, the aver-
age processing time was about 25.60 ms when the number of arriving
VNRs were low, then increased as the number of arriving VNRs was
increased up to 7 per 100 time units. Nevertheless, for larger number
of arriving VNR between 8 and 10, average processing time decreased
again, most probably due to an already loaded and limited substrate
resources, which caused high rejected VNRs, therefore decreasing the
processing time accordingly.

On the other hand, for experiment-3, average processing time was
in the range of 37.96 ms as shown in Fig. 7j, giving that the number of
arriving VNRs was fixed to 4, but varying VNRs’ lifetimes between 200
and 1000 time units. This result suggests that OPaCoVNE’s processing
time performance was slightly affected when varying VNRs’ lifetimes.

However, the general behavior of average processing time had an
increasing trend when changing the size of VNRs or substrate network
topologies as shown in Fig. 7k and l. The processing time trend for
smaller VNRs varied between 1.42 and 7.49 ms, while for substrate net-
works that has large number of connected pairs of nodes, the average
processing time varied considerably between 15.59 ms for topology T1
where average number of substrate edges was 380, to 238.23 ms for the
case of topology T5, which had 860 edges.

In all previous experiments, OPaCoVNE code was developed using
Eclipse IDE for Java Developers, version: Mars.2 Release (4.5.2). The
used machine was Lenovo laptop, system model 20CLS2RG00, proces-
sor Intel(R) Core(TM) i7-5600U CPU, 2.60 GHz, 2 Cores, 4 logical pro-
cessors, RAM 8 GB, and the operating system was Microsoft Windows
10 Enterprise.

6.3.4. Impact of delay on OPaCoVNE’s performance
All simulation results showed that impact of delay on VNE pro-

cess was clearly the most significant parameter among all varied vari-
ables while testing OPaCoVNE. Specifically, referring to Fig. 7e–h,
OPaCoVNE’s average acceptance ratios with delay, were less than
when it was not included by 13.05%,14.38%,17.69%, and 17.39% for
experiment-2 to experiment-5 respectively. Similar trends can be seen
by referring to OPaCoVNE’s results for average power consumption and
processing time shown in Fig. 7.

In all experiments, values of SN delays were randomly assigned in
the range 1–50 ms (5G Americas, 2017) and between 20 and 100 ms
for VNRs. Accordingly, each time OPaCoVNE attempts to embed any
VNR, it carefully tries to guarantee embedding on substrate edges con-
necting directly the selected substrate nodes, having enough bandwidth
resources and end-to-end delay within the demanded ranges.

These values confirm the importance of including end-to-end delay
as a major constraint when solving VNE problem, as a direct evaluation
metric for real world 5G networks.

6.4. Summery of the findings from the simulations

To summarize the overall results from the three simulation sets men-
tioned in subsections 6.1, 6.2, and 6.3, the following points highlight
the main findings:

1. Inclusion of end-to-end delay had significantly impacted VNE pro-
cess, as reflected by lower acceptance ratios across all simulations
in the range of 16%, when compared to the ratios without delay.
Suggesting the importance of including end-to-end delay as a major
VNE constraint when applied on the delay sensitive 5G networks.

2. Overall online performance of OPaCoVNE, measured by acceptance
ratio was in average in the range of 63.64%, giving that it used less
resources than the most referenced online algorithm by Chowdhury
et al. (2012).

3. In terms of power consumption, OPaCoVNE managed to save
23.54% of the substrate network power compared to the online
energy aware VNE algorithm, EAD-VNE by Zhongbao et al. (2015).

4. The results confirmed the effectiveness of the proposed segmenta-
tion approach, which allowed for a very precise and full coordi-
nation between the embeddings of both, virtual nodes and edges,
together at the same time, without including any hidden resources.

5. The use of direct edges when embedding the virtual edges, guaran-
teed minimizing the use of substrate network resources to the mini-
mum before activating others. In this way more substrate resources
were left free to accept more virtual network requests, while insur-
ing less power consumptions in the substrate network, and including
end-to-end delay as a main constraint.

6. The drawback of the proposed algorithm is that, it had to make
a trade-off between minimizing the total power consumption and
accepting more virtualization demands, by limiting the use of the
substrate network to minimum. Nevertheless, the suggested algo-
rithm managed to provide very solid performance compared to oth-
ers.

7. Conclusions

This paper introduced a new online embedding algorithm, OPa-
CoVNE, solving the two subproblems of VNE process in full coordina-
tion using end-to-end delay as a main constraint. The algorithm restruc-
tures virtual nodes and edges’ demands in one set of segments, and
formulates an exact similar set of segments for a specifically selected
physical path topology, which comply with the exact demanded loca-
tions to embed the virtual nodes. Consequently, the embeddings occurs
by comparing the two segments, one-to-one, and checking if each ele-
ment in the physical segment can accommodate the demands of their
counterparts from the virtual segment. In addition to that, to minimize
the total power consumption in the whole substrate network, the pro-
posed algorithm insures that each pair of the substrate network nodes
hosting the virtual nodes, are directly connected by a single edge with
no hidden hops or edges, which guarantees utilizing the least substrate
network resource as low as possible.

The overall performance results of OPaCoVNE showed that, with-
out delay, it managed to minimize the average power consumptions in
the substrate network by 23.54%, however, when end-to-end delay was
factored in, performance of OPaCoVNE was degraded across all evalu-
ation metrics, suggesting that, introducing end-to-end delay as a major
constraint, had clear impact on the whole VNE process, and therefore,
it has to be one of the main metrics when evaluating real world 5G
networks.

As a future work, the authors are planning to conduct further
research, about reducing the power consumption of the OPaCoVNE
algorithm and increase the acceptance ratio when non-direct edges are
considered, considering end-to-end delay for specific 5G applications.

135

K. Hejja, X. Hesselbach Journal of Network and Computer Applications 124 (2018) 121–136

Acknowledgment

This work has been partially supported by the Ministerio de Econ-
omy of the Spanish Government under project TEC2016-76795-C6-1-R
and AEI/FEDER, UE.

References

3GPP TR 28.801 (V15.0.0), 2017. Study on Management and Orchestration of Network
Slicing for Next Generation Network. 3GPP TR 28.801.

5G Americas, 2017. 5G Network Transformation, White Paper. 5G Network
Transformation.

Bianchi, F., Presti, F., 2017. A Markov reward based resource-latency aware heuristic for
the virtual network embedding problem. SIGMETRICS Perform. Eval. Rev. 44 (4),
57–68, https://doi.org/10.1145/3092819.3092827.

Botero, J., Hesselbach, X., 2013. Greener networking in a network virtualization
environment. Comput. Network. 57 (9), 20121–22039, https://doi.org/10.1016/j.
comnet.2013.04.004.

Botero, J., Hesselbach, X., Fischer, A., Meer, H., 2012a. Optimal mapping of virtual
networks with hidden hops. Telecommun. Syst. 51 (4), 273–282, https://doi.org/10.
1007/s11235-011-9437-0.

Botero, J., Hesselbach, X., Duelli, M., Schlosser, D., Fischer, A., de Meer, H., 2012b.
Energy efficient virtual network embedding. Commun. Lett., IEEE 16 (5), 756–759,
https://doi.org/10.1109/LCOMM.2012.030912.120082.

Botero, J., Molina, M., Hesselbach, X., Amazonas, J., 2013. A novel paths algebra-based
strategy to flexibly solve the link mapping stage of VNE problems. J. Netw. Comput.
Appl. 36 (6), 1735–1752, https://doi.org/10.1016/j.jnca.2013.02.029.

Bradley, Hax, Magnanti, 1977. Applied Mathematical Programming. Addison-Wesley.
Chen, X., Li, C., Jiang, Y., 2016. A feedback control approach for energy efficient virtual

network embedding. Comput. Commun. 80, 16–32, https://doi.org/10.1016/j.
comcom.2015.10.010.

Chowdhury, M., Rahman, M., Boutaba, R., 2012. ViNEYard: virtual network embedding
algorithms with coordinated node and link mapping. IEEE/ACM Trans. Netw. 20
(1), 206–219, https://doi.org/10.1109/TNET.2011.2159308.

Dayarathna, M., Wen, Y., Fan, R., 2016. Data center energy consumption modeling: a
survey. IEEE Commun. Surv. Tutor. 18 (1), 732–794, https://doi.org/10.1109/
COMST.2015.2481183.

Fan, X., Weber, W.D., Barroso, L.A., 2007. Power provisioning for a warehouse-sized
computer. In: Pro. 34th Annu. ISCA, pp. 13–23, https://doi.org/10.1145/1250662.
1250665.

Fischer, A., Botero, J., Beck, M., de Meer, H., Hesselbach, X., 2013. Virtual network
embedding: a survey. IEEE Commun. Surv. Tutor. 15 (4), 1888–1906, https://doi.
org/10.1109/SURV.2013.013013.00155.

Ghazisaeedi, E., Huang, C., 2017. Off-peak energy optimization for links in virtualized
network environment. IEEE Trans. Cloud Comput. 5 (2), 155–167, https://doi.org/
10.1109/TCC.2015.2440246.

Hou, W., Yu, C., Guo, L., Wei, X., 2016. Virtual network embedding for power savings of
servers and switches in elastic data center networks. Sci. China Inf. Sci. 59 (12),
122307:1–122307:14, https://doi.org/10.1007/s11432-016-5590-0.

ITU-T Focus Group, 2017. IMT-2020 Deliverables. ITU-T Focus Group.
Kleinberg, J., Tardos, E., 2009. Algorithms Design. Addison-Wesley.
Kolliopoulos, S., Stein, C., 1997. Improved approximation algorithms for unsplittable

flow problems. In: Proceedings 38th Annual Symposium on Foundations of
Computer Science, Miami Beach, FL, pp. 426–436.

Nia, N., Adabi, S., Nategh, M., 2017. A coordinated heuristic approach for virtual
network embedding in cloud infrastructure. KSII Trans. Internet Inf. Syst. 11 (5),
2346–2361, https://doi.org/10.3837/tiis.2017.05.002.

Nonde, L., El-Gorashi, T., Elmirghani, J., 2015. Energy efficient virtual network
embedding for cloud networks. J. Lightwave Technol. 33 (9), 1828–1849, https://
doi.org/10.1109/JLT.2014.2380777.

Ogino, N., Kitahara, T., Arakawa, S., Murata, M., 2017. Virtual network embedding with
multiple priority classes sharing substrate resources. J. Computer Netw. 112 (C),
52–66, https://doi.org/10.1016/j.comnet.2016.10.007.

Su, S., Zhang, Z., Liu, A., Cheng, X., Wang, Y., Zhao, X., 2014. Energy-aware virtual
network embedding. IEEE/ACM Trans. Netw. 22 (5), 1607–1620, https://doi.org/
10.1109/TNET.2013.2286156.

Triki, N., Kara, N., El Barachi, M., Hadjres, S., 2015. A green energy-aware hybrid
virtual network embedding. Comput. Netw. 91, 712–737, https://doi.org/10.1016/
j.comnet.2015.08.016.

Yu, M., Yi, Y., Rexford, J., Chiang, M., 2008. Rethinking virtual network embedding:
substrate support for path splitting and migration. ACM SIGCOMM CCR 38 (2),
17–29, https://doi.org/10.1145/1355734.1355737.

Zhang, Z., Su, S., Zhang, J., Shuang, K., Xu, P., 2015. Energy aware virtual network
embedding with dynamic demands: online and offline. Comput. Network. 93,
448–459, https://doi.org/10.1016/j.comnet.2015.09.036.

Khaled Hejja a PhD student at the networks engineering
department, Universitat Politecnica de Catalunya, Barcelona,
Spain. Worked for the Palestinian Telecommunication incum-
bent operator PalteGroup between 1998 and 2015, as the head
of network planning and optimization. His research interests
include, core and radio network virtualization, network plan-
ning and applications of artificial intelligence in the optimiza-
tion of the telecommunication network.

Dr. Xavier Hesselbach (http://www-entel.upc.edu/
xavierh/), Associate Professor at the Department of Network
Engineering (Dept. Enginyeria Telematica) at the UPC, and
IEEE Senior Member, received the M.S. degree with honors
in Telecommunications Engineering in 1994 and the PhD.
degree with honors in 1999, from the Universitat Politecnica
de Catalunya (UPC). In 1993, he joined the Design, modelling
and evaluation of broadband networks group in the Network
Engineering Department of the UPC. His research interests
include networks virtualization, resources management,
broadband networks, quality of service and green networking.
He has been involved in several national and international
projects, and is author in 4 books and more than 100 national
and international publications in conferences and journals.
In 1994 he received the award from the COIT/AEIT of
Spain for the best Master Thesis on Networks and Telecom-
munication Services. He has participated in the technical
program committees of several conferences, he has been the
Information Systems and Internet Chair in Infocom 2006,
and guest editor of the Ad Hoc Networks Journal and the
Journal of Electrical and Computer Engineering. He has taken
part in several European and Spanish research projects, such
as the EuroNGI/FGI/NF Network of Excellence, COST293,
Mantychore and All4Green, being main UPC researcher in the
Mantychore and All4Green projects.

136

http://refhub.elsevier.com/S1084-8045(18)30315-1/sref1
http://refhub.elsevier.com/S1084-8045(18)30315-1/sref2
https://doi.org/10.1145/3092819.3092827
https://doi.org/10.1016/j.comnet.2013.04.004
https://doi.org/10.1016/j.comnet.2013.04.004
https://doi.org/10.1007/s11235-011-9437-0
https://doi.org/10.1007/s11235-011-9437-0
https://doi.org/10.1109/LCOMM.2012.030912.120082
https://doi.org/10.1016/j.jnca.2013.02.029
http://refhub.elsevier.com/S1084-8045(18)30315-1/sref8
https://doi.org/10.1016/j.comcom.2015.10.010
https://doi.org/10.1016/j.comcom.2015.10.010
https://doi.org/10.1109/TNET.2011.2159308
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1145/1250662.1250665
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/SURV.2013.013013.00155
https://doi.org/10.1109/TCC.2015.2440246
https://doi.org/10.1109/TCC.2015.2440246
https://doi.org/10.1007/s11432-016-5590-0
http://refhub.elsevier.com/S1084-8045(18)30315-1/sref16
http://refhub.elsevier.com/S1084-8045(18)30315-1/sref17
http://refhub.elsevier.com/S1084-8045(18)30315-1/sref18
https://doi.org/10.3837/tiis.2017.05.002
https://doi.org/10.1109/JLT.2014.2380777
https://doi.org/10.1109/JLT.2014.2380777
https://doi.org/10.1016/j.comnet.2016.10.007
https://doi.org/10.1109/TNET.2013.2286156
https://doi.org/10.1109/TNET.2013.2286156
https://doi.org/10.1016/j.comnet.2015.08.016
https://doi.org/10.1016/j.comnet.2015.08.016
https://doi.org/10.1145/1355734.1355737
https://doi.org/10.1016/j.comnet.2015.09.036
http://www-entel.upc.edu/xavierh/
http://www-entel.upc.edu/xavierh/

	Online power aware coordinated virtual network embedding with 5G delay constraint
	1. Introduction
	2. Related work
	3. Segments for full coordinated solution of the VNE problem
	3.1. General definition of the basic segment
	3.2. VNR set of segments formulation (Setr)
	3.3. Segment formulation for a substrate graph (SetS)

	4. Evaluation scenario
	5. Online problem formulation
	5.1. Substrate network model
	5.2. Virtual network model
	5.3. Power consumption model
	5.4. Online objective function definition and formulation
	5.4.1. Constraints definition and formulation

	5.5. OPaCoVNE to solve VNE in full coordination
	5.6. OPaCoVNE explained
	5.6.1. Initialization
	5.6.2. Segmentation
	5.6.3. Embedding decision
	5.6.4. Updating

	5.7. PaCoVNE computational time complexity
	5.8. General illustrative example
	5.9. Evaluation metrics
	5.9.1. Average acceptance ratio, AR
	5.9.2. Average power consumption, PC
	5.9.3. Average saved power, PS
	5.9.4. Average cost, Co
	5.9.5. Average revenues, Rev
	5.9.6. Average CPUutilization, CPUutil
	5.9.7. Average BWutilization, BWutil

	6. OPaCoVNE evaluations
	6.1. Evaluating overall performance of OPaCoVNE
	6.1.1. Simulation settings
	6.1.2. Discussing results of OPaCoVNE's overall performance

	6.2. Evaluating power consumption performance of OPaCoVNE
	6.2.1. OPaCoVNE versus EAD-VNE

	6.3. Varying number, lifetime, size of VNRs, and size of substrate edges
	6.3.1. Average power consumption of OPaCoVNE
	6.3.2. Average acceptance ratio of OPaCoVNE
	6.3.3. Average processing time of OPaCoVNE
	6.3.4. Impact of delay on OPaCoVNE's performance

	6.4. Summery of the findings from the simulations

	7. Conclusions
	Acknowledgment
	References

