
2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

Digital Object Identifier

State-based encoding of large
asynchronous controllers
ALBERTO MORENO1, JORDI CORTADELLA1,(Fellow, IEEE)
1Department of Computer Science, Universitat Politècnica de Catalunya, Barcelona 08034, Spain

This work has been partially supported by funds from the Spanish Ministry for Economy and Competitiveness and the European Union
(FEDER funds) under grant TIN2017-86727-C2-1-R, the Generalitat de Catalunya (2017 SGR 786 and FI-DGR 2015).

ABSTRACT State encoding is one of the fundamental problems in the synthesis of asynchronous
controllers. The requirement for a correct hazard-free implementation imposes severe constraints on the
way encoding signals can be inserted in the specification of a controller. Even though some specification
formalisms, such as Burst-mode machines or Signal Transition Graphs, enable to specify behaviors at the
event level, the state encoding methods that provide the best good-quality solutions work at the state level.
This imposes a severe limitation on the size of the controllers that can be handled by these methods. This
paper proposes a method to solve the encoding problem for large asynchronous controllers using state-
based methods. It is based on an iterative process of projection and re-composition that reduces the size
specification by hiding signals, partially solves the encoding problem at the state level and re-composes the
original specification using a synchronous product. The process iterates until all encoding conflicts have
been solved. The method is proved to preserve the behavior of the specification (branching bisimilarity) and
shown to be capable of providing good-quality solutions for controllers of more than 100 signals and 106

states.

INDEX TERMS Asynchronous circuits, Circuit Synthesis, Logic Circuits, State Encoding

I. INTRODUCTION
Asynchronous controllers dictate the sequencing of data
computations and transfers between computational units in
asynchronous dataflow circuits [1]. They can also be used as
pure control devices in some application domains, such as
interfacing between digital and analog components [2].

Asynchronous controllers are typically specified using
state-based formalisms, such as Burst-Mode machines [3],
or event-based formalisms, such as Signal Transition Graphs
(STGs) [4]. A typical specification describes the interaction
of a set of control signals by defining the relationship be-
tween their rising and falling events. Such specifications must
fulfill certain implementability properties to allow a correct
circuit (e.g. hazard-free) to be derived.

When pursuing automatic logic synthesis, the most con-
ventional algorithmic strategies resort to a low-level state-
based representation of the behavior to derive the Boolean
equations of the circuit [5]. This representation is often called
State Graph and can be derived by explicitly enumerating the
reachable states from higher-level representations.

One of the fundamental problems in the synthesis of
asynchronous controllers is state encoding. In general, this
requires the insertion of new internal signals to disambiguate
encoding conflicts. What makes encoding difficult is the

preservation of the implementability properties that ensure
the absence of hazards after the insertion of new events. The
problem is even more challenging when the controllers work
under the input-output mode of operation targeting at the
synthesis of speed-independent circuits [5]. Informally, the
input-output mode allows the signals at the interface of the
circuit to change concurrently even when the circuit has not
reached a stable state. In this paper we will face the problem
of state encoding for the input-output mode of operation.

A. PREVIOUS WORK
The existing methods to solve the state encoding problem can
be divided into two categories: structural and state-based.

Structural methods have been proposed for STGs and
exploit the properties of the underlying Petri nets to avoid
an explicit enumeration of the state space [6], [7]. In state-
base methods, the state space is enumerated explicitly by rep-
resenting all possible interleavings of concurrent events [8],
[9]. State-based methods enable a more accurate exploration
of the space of solutions and can potentially lead to better
circuits. However, they may suffer from the state explosion
problem when the specification is highly concurrent.

The structural methods work directly on the graph rep-
resentation of the specification (e.g., a Petri net) or some

VOLUME 4, 2016 1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185528533?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

unfolded version. They have limitations about the type of
acceptable representations, e.g., safe or free-choice Petri nets,
and the locations where the new signals can be inserted.
Even for structural methods, some controllers may be too
large. For this reason, some techniques have been proposed
to decompose a large controller into smaller ones that can be
synthesized separately [10].

One of the main problems for decomposition techniques is
the appearance of irreducible conflicts that cannot be solved
while preserving implementability. Solutions for that prob-
lem are suggested in [10] by introducing a structure called
gyroscope that inserts new signals with a high degree of
concurrency. However, this structure aims at solving conflicts
without paying attention at the cost of implementing the
circuit, e.g., the complexity of the Boolean equations.

B. CONTRIBUTIONS OF THIS WORK
After many years of experience with asynchronous con-
trollers we have observed the following facts:

• State-based methods can be superior to structural meth-
ods for the state encoding problem. The main reason is
that the exploration space for signal insertion is larger
and better estimators for good-quality solutions can be
used [9].

• Most of the controllers are designed manually by hu-
mans and the largest specifications usually have no more
than 107 states.

• The best-quality state-based methods for encoding can
manage up to 103 states with an affordable runtime.

Therefore, there is a gap of roughly 4 orders of magnitude
between what is computationally affordable for state encod-
ing and the size of large controllers.

In previous work, the decomposition into smaller sub-
controllers has been proposed [10]. Besides the requirement
to insert the gyroscope structures to avoid irreducible con-
flicts, the resolution of conflicts at each sub-controller is
agnostic on the behavior of the other sub-controllers. This
may have a negative effect in the quality of the solutions.

This paper proposes a new approach that explicitly keeps
track of the complete state space. The approach iteratively
projects the behavior of the controller into subsets of relevant
signals and partially solves the encoding problem on the pro-
jections. The new signals are incorporated into the original
specification and the process is re-executed until all encoding
conflicts have been solved.

Unlike other decomposition techniques, irreducible con-
flicts do not pose any hurdle for the proposed method. While
a projection might cause these kind of conflicts, the iterative
nature of the projection and re-composition allows for these
conflicts to be solved in subsequent iterations.

An important aspect of the method is that the projections
can be calculated efficiently. Algorithms with complexity
O(m log n)1 to minimize labelled transitions systems up to

1n and m are the number of states and transitions, respectively.

a+

c+1 d+1 c−1 d−1

b+

c+2 d+2 c−2 d−2

b− a−

(a) STG of a parallelizer.

c+1

d+1

c−1

d−1

c+2
d+2

c−2

d−2

b+

a−

b−

a+

(b) LTS of the parallelizer.

c+1
d+1 x−

1 c−1
d−1

b+
a−x+

1b−
a+

(c) Projection onto channel
1 and insertion of signal x1.

c+2
d+2 x−

2 c−2
d−2

b+
a−x+

2b−
a+

(d) Projection onto channel
2 and insertion of signal x2.

a+

c+1 d+1 x−
1 c−1 d−1

b+

c+2 d+2 x−
2 c−2 d−2

b− a−
x+
1

x+
2

(e) STG after state encoding.

FIGURE 1: State encoding for a parallelizer.

some criterion of behavioral equivalence (branching bisimi-
larity) can be used [11]. Thus, the large controllers can still be
manipulated and the state encoding problem solved in small
controllers using SAT-based methods [9].

The re-composition of the system with the new inserted
signals can be done via synchronous products, which can
have a quadratic runtime in the worst-case, but typically
run in linear time due to the high similarity of the two
components.

II. OVERVIEW
This section sketches the main features of the method pro-
posed in this paper. The example shown in Fig. 1 will be used
to illustrate the method. Fig. 1a shows an STG specifying
the behavior of a parallelizer, which is a controller used in
handshake circuits to fork the execution of two asynchronous
processes.

2 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

Signals a (input) and b (output) are the handshake signals
of the channel that triggers the activity of the parallel pro-
cesses represented by the handshake signals ci (output) and
di (input).

The controller can be represented by a Petri net in a very
succinct way. Yet, due to the high level of concurrency, it
suffers from the state explosion problem. This means that
the number of valid markings, corresponding to states in a
labeled transition system (LTS), grows exponentially with the
number of channels. Fig. 1b shows the LTS representation
of the same parallelizer. To quantify the state explosion,
the following table shows the number of states needed to
represent a parallelizer with n processes:

Processes 2 3 4 5 6 7 8 n
Signals 6 8 10 12 14 16 18 2n+ 2
States 28 128 628 3K 16K 78K 391K 5n + 3

Let us now consider one of the channels, which follows the
sequence 〈ci+, di+, ci−, di−〉. The reader will notice that
the states before ci+ and after di− have the same encod-
ing. This conflict occurs at every channel. In this particular
example, it is sufficient to focus on each channel individually
to solve the corresponding encoding conflict. Thus, a channel
can be freed from conflicts if a signal is inserted between di+
and ci−. This example suggests that not all the information
is relevant to find a solution for certain encoding conflicts.

In order to exploit this feature, this paper proposes the
following method:

1) Find a group of signals to be hidden and project the
behavior onto the remaining signals. For the example,
a good strategy is to hide every signal except a, b, and
one of the channels (ci and di). Initially, the signals c2
and d2 are hidden while c1 and d1 are maintained.

2) Insert new signals to solve the encoding conflicts of the
simplified controller. Fig. 1c shows the projected LTS
after the insertion of signal x1.

3) Recompose the full controller by doing a synchronous
product between the original controller and the simpli-
fied one with the new inserted signals.

4) If not all conflicts have been solved, go to step 1 and
repeat the process using the full controller with the new
inserted signals.

In this example, the second iteration would generate the
projection shown in Fig. 1d, after hiding c1, d1 and x1. After
recomposing the original LTS, the behavior shown in the
STG of Fig. 1e would be obtained.

By hiding a well selected set of signals, an asynchronous
controller can be simplified enough so that it is possible to
use state encoding techniques that can handle the full state
space.

In general, asynchronous controllers do not show behav-
iors as simple as the one of the parallelizer and the automa-
tion of the process requires smart strategies to calculate pro-
jections. This paper presents a method to simplify arbitrary
asynchronous controllers and obtain small projections that
can be manageable by encoding tools working at state level.

III. BACKGROUND
This section reviews some known concepts on Boolean func-
tions, asynchronous LTSs and speed-independent circuits.
Additionally, it revisits the notion of branching bisimilarity
to characterize systems that are behaviorally equivalent.

A. BOOLEAN FUNCTIONS
An incompletely specified function (ISF) is a functional
mapping F : B → {0, 1,−}, where B = {0, 1} and ’−’
represents the don’t care (DC) value. The subsets of Bn in
which F has the 0, 1 and DC values are called the OFF-,
ON- and DC-set, respectively.

Let F (x1, x2, . . . , xn) be a Boolean function of n Boolean
variables. The set X = {x1, x2, ..., xn} is the support of the
function F. A variable xi ∈ X is essential for function F if
there exist at least two elements of Bn, v1 and v2, that only
differ on the value of xi, such that F (v1) = 0 and F (v2) = 1.

B. ASYNCHRONOUS LABELED TRANSITION SYSTEM
An Asynchronous Labeled Transition Systems (ALTS) is a
4-tuple A = (S,Σ, T, s0) where:
• S is a finite non-empty set of states.
• Σ = In ∪ Out ∪ Int is the set of signals, with In, Out

and Int being disjoint sets of input, output and internal
signals, respectively.

• T ⊂ S × Lτ (Σ)× S is the set of transitions, with
– L(Σ) = Σ× {+,−}
– Lτ (Σ) = L(Σ) ∪ {τ}
– For every (s, a, s′) ∈ T , s 6= s′.
– At most one transition (s, a, s′) ∈ T exists between
s and s′.

• s0 is the initial state.
Henceforth, we will also assume that all states in S are

reachable from s0. The label τ is used to represent a silent
(non-observable) event. A τ -free ALTS is an ALTS in which
there is no transition with label τ . This is an important
property for state-based encoding tools. These tools require
either a τ -free ALTS or all τ transitions to be inert, i.e.,
hidable while preserving the behavior of the specification.

We denote (s, a, s′) ∈ T by s a−→ s′, where a ∈ Lτ (Σ) is
an event (possibly silent). Rising and falling transitions of
signal a ∈ Σ between states s and s′ are represented by

s
a+−−→ s′ and s a−−−→ s′, respectively. We will sometimes refer

to s a±−−→ s′ as a generic transition of signal a.
We will refer to events that possibly have arbitrarily many

τ events interleaved. We use s
a

=⇒ s′ as a possibly empty
(ε) sequence of transitions with the trace τ∗a. In particular,
if s ε

=⇒ s′ (empty transition) then s = s′. Additionally,
α ∈ Lτ (Σ)∗ denotes a sequence of (possibly empty) events,
with α = a1a2 . . . an and s α−→ s′ the sequence of transitions
that leads from s to s′ by following the events of α. If s α

=⇒ s′,
then τ events may be interleaved between events in the form
τ∗a1τ∗a2τ∗ . . . an.

An event a is enabled in state s if there is a transition
s
a−→ s′ for some s′. Furthermore a signal a is enabled in s

VOLUME 4, 2016 3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

if s a±−−→ s′ for some s′. A sequence of events α ∈ Lτ (Σ)∗ is
enabled in state s if s α−→ s′ for some s′.

C. BRANCHING BISIMILARITY
Milner proposed observational equivalence [12] (or weak
bisimilarity) as a branching time semantics to classify sys-
tems according to their capability of being distinguishable
by an external observer under the presence of unobservable
events. Branching bisimilarity was later introduced as a
stronger equivalence that preserves the branching structure
of processes [13]. The difference between both equivalences
is very subtle and irrelevant in most practical cases.

Given an ALTS A = (S,Σ, T, s0) we call a relation
R ⊆ S × S a branching bisimulation relation if for all
s, t ∈ S such that sRt, the following conditions hold for all
a ∈ Lτ (Σ) [14]:
• If s a−→ s′, then

– either a = τ and sRt′, or
– there is a sequence t

τ∗

=⇒ t′ such that sRt′ and
t′

a−→ t′′ with s′Rt′′.
• Symmetrically, if t a−→ t′, then

– either a = τ and sRt′, or
– there is a sequence s

τ∗

=⇒ s′ such that s′Rt and
s′

a−→ s′′ with s′′Rt′.
Two states s and t are branching bisimilar, denoted by

s ≈ t, if there is a branching bisimulation R such that sRt.
Two ALTSs A1 and A2 are branching bisimilar, denoted by
A1 ≈ A2 if their initial states are branching bisimilar.

D. STATE ENCODING
Signals in an ALTS implicitly assign binary codes to the
state. Thus, s(a) = 1 or s(a) = 0 represent the fact that
a has value 1 or 0 in state s, respectively. In particular,

s
a+→ s′ implies s(a) = 0 and s′(a) = 1. Similarly, s a

−

→ s′

implies s(a) = 1 and s′(a) = 0. If s b→ s′, with b ∈ Σ ∪ {τ},
for any b 6= a, then s(a) = s′(a). An ALTS is said to be
consistent if these rules can be applied to every signal and
state without any contradiction. In a consistent ALTS with
Σ = {a1, a2, ..., an}, a code can be assigned to every state:
code(s) = (s(a1), s(a2), ..., s(an)).

The positive and negative excitation regions of signal a,
denoted ER+

a and ER−a respectively, are the sets of states
in which a+ (for ER+

a) and a− (for ER−a) are enabled. The
positive and negative quiescent regions of signal a, denoted
QR+

a and QR−a respectively, are the sets of states in which a
is not enabled and has value 1 (for QR+

a) and 0 (for QR−a).
For convenience we also define ERa = ER+

a ∪ ER−a and
QRa = QR+

a ∪QR−a . When referring to individual states,
ER+

a (s), ER−a (s), QR+
a (s) and QR−a (s) denote that s be-

longs to ER+
a , ER−a , QR+

a and QR−a respectively.
We define the on- and off-regions for signal a as

ONa = ER+
a ∪QR+

a and OFFa = ER−a ∪QR−a . The next-
state function of a signal defines its future value in the
next stable state. Thus, an enabled signal toggles its value,

whereas a stable signal maintains its value. The next-state
function for signal a is an ISF defined as follows:

ONset(a) = ∪s∈ONa
code(s)

OFFset(a) = ∪s∈OFFa
code(s)

DCset(a) = Bn \ (ONset(a) ∪OFFset(a))

An ALTS satisfies the Complete State Coding (CSC)
property if the next-state function for any non-input signal
is well defined, i.e.,

∀s,s′ ∈ S, ∀a ∈ Out ∪ Int :

(s ∈ ONa ∧ s′ ∈ OFFa) =⇒ code(s) 6= code(s′)

The CSC property is a necessary condition for a specifi-
cation to be implementable as a circuit. If the previous con-
dition does not apply for the states s, s′ and signal a, we say
that there is a CSC conflict between s and s′. Furthermore,
we say that a has a CSC conflict in s, s′ when:

CSCa(s, s′) =⇒
code(s) = code(s′) ∧ (s ∈ ONa ∧ s′ ∈ OFFa)

Finally, the number of CSC conflicts for signal a is defined
as the number of pairs of states s, s′ such that a is in CSC
conflict.

E. SPEED INDEPENDENCE AND CONFLICTS
From [12], an ALTS A = (S,Σ, T, s0) is weakly determinis-
tic if, for every state s ∈ S and for every sequence of events
α ∈ Lτ (Σ)∗, whenever s1

α
=⇒ s2 and s1

α
=⇒ s3 then s2 ≈ s3.

For the rest of the paper, the term determinism will refer to
weak determinism.

A signal a triggers another signal b if there is a transition

s
a±→ s′ such that b is enabled in s′ and not enabled in s.

Conversely, a disables b if b is enabled in s and not in s′.
An ALTS is said to be output persistent if for any pair of
signals a and b such that a disables b, then both a and b are
input signals.

An ALTS is said to be commutative if for any state s in
which s ab−→ s′ and s ba−→ s′′, then s′ = s′′.

A Well-Formed ALTS (WF-ALTS) is an ALTS such that is
deterministic, commutative and output persistent. An impor-
tant result on speed independence is the following [8]:

A WF-ALTS that satisfies the CSC property is
implementable as a speed-independent circuit.

An additional important property is input-properness. An
ALTS is input-proper if no internal signal triggers any input
signal. This guarantees that the behavior of the environment
does not depend on any unobservable signal of the circuit.

A signal a is said to be in conflict if there is another signal
b such that either a disables b or b disables a. We say that σ
is a conflict-free set of signals if every signal a ∈ σ is not in
conflict.

Solving the state encoding problem is based on inserting
new signals to disambiguate CSC violations. The insertion of

4 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

FIGURE 2: ALTS with CSC conflicts.

new signals proposed in this paper preserves the conditions
for speed-independence and input-properness.

F. EXAMPLE

Fig. 2 depicts an ALTS with five input signals (a, . . . , e) and
two output signals (y, z). The pairs of states (s1, s5) with
code abcdeyz = 1000000 and (s10, s14) with code 0100000
are in CSC conflict, since states in each pair share code but
differ in onset for y and z.

There are two signals in conflict, a and b, since they disable
each other at state s0. The ALTS is a WF-ALTS since it is
deterministic, output persistent and commutative.

IV. ALTS TRANSFORMATIONS
This section describes a collection of transformations over
WF-ALTSs. The purpose of these transformations is to pro-
vide an infrastructure to insert/hide signals and recompose
the original specification with new signals that solve the
CSC conflicts. All these transformations must satisfy two
properties:

• The behavior of the system must be preserved (branch-
ing bisimilarity).

• The implementatibility conditions must hold.

The most important result of this section indicates that the
projections of the specification should never hide signals in
conflict. This strategy allows to work with τ -free WF-ALTSs
when inserting new signals to solve CSC conflicts.

A. SIGNAL INSERTION

The insertion of a new internal signal is now described.
This transformation is always applied to a τ -free WF-ALTS.
Signal insertion was proposed in [8], [15] and proved to pre-
serve trace equivalence when the new inserted signal is silent.
Since WF-ALTS are also deterministic, signal insertion also
preserves branching bisimilarity [16].

Henceforth, the new inserted signal will be named x /∈ Σ,
whereas the signals from the original ALTS will be named
a, b ∈ Σ. The signal insertion process requires all states in S
to be partitioned into four sets2: ER+, ER−, QR+ and QR−.
These sets will determine the future ERs and QRs of x.

2When no subscript is specified in the sets, they are assumed to refer to
the new inserted signal.

s1ER+

s2QR+ s3 ER−

s4 ER− s1 ŝ1

s2 s3 ŝ3

s4 ŝ4

a+

b−
c+

x+

a+

b−
c+

x−

x−

c+

FIGURE 3: ALTS before and after signal insertion.

a
b dQR+ QR-

ER-
ER+

f

h

c

e

a
b dQR+ QR-

ER-
ER+

f

h

c

e

b c

x+ x+ x+

x-

g

g

FIGURE 4: Partitioning of the state space into the ER and QR
regions of x before (left) and after (right) the insertion.

After inserting signal x, some transitions will be delayed
(triggered) by x. These are the transitions that exit ER :

EXIT ={s a→ s′ |
(ER+(s) ∧ ¬ER+(s′)) ∨ (ER−(s) ∧ ¬ER−(s′))}

Some other transitions will become concurrent with x. These
are transitions that will remain inside ER :

CONC ={s a→ s′ |
(ER+(s) ∧ ER+(s′)) ∨ (ER−(s) ∧ ER−(s′))}

The set of new states created by the insertion of x is called
Ŝ. For every state s ∈ ER a new sibling state ŝ ∈ Ŝ is
added. New transitions are also added with the new states.
In particular, the new sets of transitions are:

Tx ={s x+

−−→ ŝ : s ∈ ER+} ∪ {s x−

−−→ ŝ : s ∈ ER−}
Td ={ŝ a−→ s′ : s

a−→ s′ ∈ EXIT}
Tc ={ŝ a−→ ŝ′ : s

a−→ s′ ∈ CONC}
with Tx referring to the transitions between siblings, Td to
the delayed transitions and Tc to the concurrent transitions.

The new ALTS (S′,Σ′, T ′, s′0), obtained after the inser-
tion of x in the original ALTS (S,Σ, T, s0) is defined as:
• s′0 = s0
• S′ = S ∪ Ŝ
• T ′ = (T ∪ Tx ∪ Td ∪ Tc) \ EXIT
• Σ′ = Σ ∪ {x}
Fig. 3 shows an example of signal insertion on a fragment

of an ALTS. On the left, the figure shows the ALTS before
signal insertion in which every state has been tagged with
one of the ERs or QRs of x. On the right, states in the ER
of x have been duplicated and the new transitions defined
accordingly.

A generic view of signal insertion is depicted in Fig. 4. On
the left, the partition of S into the four ER/QR regions of x is
shown. On the right, the state space after adding the sibling
states is shown.

VOLUME 4, 2016 5

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

z

a

c

b

d

(a) Original

z

τ

c

τ

d

(b) Silence a, b

z

τ

τ c d

(c) τ -priorization

z c d

(d) τ -compression

FIGURE 5: Process to hide signals a and b.

B. HIDING SIGNALS
Given an LTS A = (S,Σ, T, s0), a set of signals σ can
be silenced, denoted silence(A, σ), if every event of every
signal a ∈ σ is substituted by τ . Fig. 5b shows an example of
the silence operation on Fig. 5a for signals a and b.

We are now interested in removing the new τ transi-
tions that appear after a silence operation. This will yield
a smaller ALTS. One of the ways of achieving this is by
using τ -priorization and τ -compression operations described
in [17].

The τ -priorization operation consists on the following: if
there is a transition s τ−→ s′, then any other transition s a−→ s′

is removed.
Intuitively, this operation assumes zero-delay τ -transitions

and non-zero delay for the other transitions. This makes the
model prioritize τ ’s over other transitions. Fig. 5c shows the
τ -priorization for the ALTS 5b.

The τ -compression is an operation aimed at removing
sequences of τ transitions. If a state s has only one transition,
and this transition is s τ−→ s′, then s is merged with s′. An
example for this operation can be seen in Fig. 5d.

Important results about these operations can be found
in [17]. In particular, these operations preserve branch bisim-
ilarity. If the τ transitions are persistent, then applying both
operations yields a τ -free ALTS.

Finally, given an ALTS A1 = (S1,Σ1, T1, s
1
0), a set of

signals σ is said to be hidden in A2 = (S2,Σ2, T2, s
2
0),

denotedA2 = hide(A1, σ), ifA2 is the τ -compression of the
τ -priorization of silence(A1, σ).

We can now define the concept of branch bisimilarity
with respect to a set of signals. Let A1 = (S1,Σ1, T1, s

1
0),

A2 = (S2,Σ2, T2, s
2
0) be two ALTS, then A1 is branch-

ing bisimilar with respect to σ, denoted A1 ≈σ A2, iff
silence(A1, σ) ≈ silence(A2, σ).

With these definitions and results we can now state that,
given the τ -free WF-ALTS A1, and A2 = hide(A1, σ), then
A1 ≈σ A2. Furthermore, if σ is conflict-free, then A2 is
τ -free.

On the other hand, hiding a signal in conflict does not yield
a τ -free ALTS. Fig. 6a shows an ALTS with a non-persistent

a

τ

d

b

c

a

(a) Non-persistent τ transition.

a

d b

c

a

(b) Removed τ transition.

FIGURE 6: Removing a non-persistent τ transition does not
preserve branching bisimilarity.

τ transition. In this case, τ -priorization cannot be applied
without breaking branching bisimilarity. The τ transition can
still be removed, as shown in Fig. 6b, but this ALTS only
preserves trace equivalence, which is a weaker equivalence
class.

C. SYNCHRONOUS PRODUCT
The synchronous product of two LTSs can be defined as
follows. LetA1 = (S1,Σ1, T1, s

1
0),A2 = (S2,Σ2, T2, s

2
0) be

two ALTS. The synchronous product of A1 and A2, denoted
by A1 ×A2 is another LTS (S,Σ, T, s0) defined by:

• s0 = 〈s10, s20〉 ∈ S
• Σ = Σ1 ∪ Σ2

• S ⊆ S1 × S2 is the set of states reachable from s0
according to the following definition of T ′:

• Let 〈s1, s2〉 ∈ S:
– If a ∈ Σ1 ∩ Σ2, s1

a−→ s′1 in T1 and s2
a−→ s′2 in T2,

then 〈s1, s2〉 a−→ 〈s′1, s′2〉 in T ′

– If a ∈ Σ1 \ Σ2 and s1
a−→ s′1 in T1, then

〈s1, s2〉 a−→ 〈s′1, s2〉 in T ′

– If a ∈ Σ2 \ Σ1 and s2
a−→ s′2 in T2, then

〈s1, s2〉 a−→ 〈s1, s′2〉 in T ′

– No other transitions belong to T ′

• T ⊆ T ′ is the set of transitions between states in S that
belong to T ′.

Theorem 1. Let A1 = (S1,Σ1, T1, s
1
0) and

A2 = (S2,Σ2, T2, s
2
0) be two τ -free WF-ALTS, with

σ1 = Σ1 \ Σ2 and σ2 = Σ2 \ Σ1. Let A3 = A1 ×A2. If
A1 ≈σ1∪σ2

A2 then A3 ≈σ2
A1 and A3 ≈σ1

A2.

See the proof in the appendix.
Informally, the synchronous product of two ALTS that are

branching bisimilar with respect to their common signals
will also be branching bisimilar to the original ALTSs with
respect to their common signals. This becomes important
later to ensure that the approach presented in this paper
preserves branching bisimilarity at all steps.

V. CSC RESOLUTION ALGORITHM
Intuitively, solving CSC conflicts is an iterative process with
the following steps:

• Hide a subset of signals to reduce the size of the ALTS.
• Insert a new signal to solve some of the CSC conflicts

of the remaining signals.

6 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

• Re-compose the ALTS by recovering the previously
hidden signals.

• Reduce concurrency of the newly inserted signal.
This process is repeated until all CSC conflicts have been

solved. A high-level description of the algorithm is shown in
Algorithm 1.

The projection step (line 1) is necessary to reduce the
ALTS to a size that is manageable by CSC solving algo-
rithms. Preserving the relevant signals of the CSC conflicts
is essential to derive good-quality solutions. The insertion
of a new signal xi (line 2) will solve only conflicts of the
remaining signals. The details of the projection step are
discussed in Section V-A.

The hidden signals are recovered by re-composing the
original ALTS with the new inserted signal. This is achieved
by computing a synchronous product (line 3) between the
new ALTS (with the new inserted signal) and the original
one.

Re-composition implicitly creates a high-degree of con-
currency of the new inserted signal with the signals that were
hidden by the projection. In particular, the CSC conflicts
for the hidden signals are not solved by the new signal. To
mitigate this effect, the concurrency of the new signal is
reduced (line 4). As a side-effect, new CSC conflicts are
solved and the size of the ALTS is also reduced.

An accurate description of concurrency reduction is out of
the scope of this paper. An in-depth discussion can be found
in [18].

Algorithm 1: SOLVECSC(A)
input : An ALTS with CSC conflicts.
output: An ALTS without CSC conflicts.
begin

while A has CSC conflicts do
1 B = Project(A) /* Hiding signals */
2 xi =insertSignal(B) /* Solving CSC */
3 A = A×B /* Re-composition */
4 reduceConcurrency(A, xi)

return A

The following subsections describe few more details about
projection and re-composition. Afterwards a discussion about
some of the properties of this algorithm is presented.

A. PROJECTION
The main objective of the projection step is to reduce the
size of the ALTS by means of hiding signals. The only
constraint is that none of the hidden signals can be in conflict.
The reason is that τ events become inert if they are not
in conflict [17] and, thus, they can be completely removed
during state minimization. That means that any ALTS can
become τ -free if no signals in conflict are hidden.

The set of signals to hide has an impact on the quality
of the solution. Next, a set of concepts useful to define the
criteria to select the signals are discussed:

a+ b+ a− b−

a+ b+ b− a−

FIGURE 7: Top: lock relation between a and b. Bottom: a and
b are not in lock relation.

a+ b+ c+ a− b− c−

FIGURE 8: Hiding signals a, b and c causes the CSC conflict
represented by the dots to collapse.

• Concurrency: Hiding signals with high concurrency
has a bigger impact on the size of the ALTS. It is thus
convenient to hide signals with a large ER.

• Lock relation: Two signals a and b are in lock relation
when, for every possible trace in the ALTS, there must
be a transition b between two transitions for signal
a and vice versa. Fig. 7 shows an example of lock
relation. Signals in lock relation are helpful to solve
conflicts [19].

• Signals with CSC conflicts: Hiding signals with many
CSC conflicts generate ALTSs with fewer conflicts. This
gives less information to the signal insertion process. In
general, preserving signals with many conflicts leads to
more informed decisions and better solutions.

• Conflict collapse: A CSC conflict between the states
s and s′ collapses when all the signals present in a
path between s and s′ are hidden. Fig. 8 shows an
example of a collapsing conflict. A collapsed conflict
is not observed and cannot be solved in the projected
ALTS. It is thus convenient not to hide signals that
collapse conflicts, whenever possible.

Algorithm 2 shows a high level description of the pro-
jection algorithm. The first step is to choose the signal a
with the largest amount of CSC conflicts. This signal will
be the anchor of the new ALTS and will not be hidden. The
objective is to solve as many conflicts as possible for a. Next,
signals are iteratively hidden until the size of the ALTS is
below a threshold. At each iteration, the best candidate signal
for hiding is obtained.
The criteria (in priority order) to select the best candidates is
as follows:

• From the set of signals that do not collapse conflicts, and
are not in lock relation with a, the best candidate is the
one with the largest ER (highest concurrency).

• In case of a tie, the signal with the smallest number of
CSC conflicts is selected.

• If no such signal exists, the lock relation constraint is
dropped and the best candidate is selected.

• In case of a tie, the signal that collapses the smallest
number of conflicts is selected.

VOLUME 4, 2016 7

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

Algorithm 2: PROJECT(A)
input : An ALTS with CSC conflicts.
output: An ALTS with a size under thresholdSize
begin

a = signalWithLargestCSCconflictNumber(A)
while size(A) > thresholdSize do

b = findSignalToHide(A, a)
hideSignal(A, b)

return A

B. RE-COMPOSITION

Re-composition aims to re-introduce the hidden signals after
signal insertion. This is achieved by calculating the syn-
chronous product of the original ALTS with the projection
after solving CSC.

The conflicts solved in the projected ALTS will also be
solved in the re-composed ALTS, whereas the other ones will
remain. If some conflicts were collapsed during signal hiding,
they will also remain after re-composition.

Re-composition greatly increases concurrency, specially
when a high number of signals were hidden during the pro-
jection. This may have the undesired effect of increasing the
total number of CSC conflicts, thus precluding convergence
of the algorithm. For this reason, concurrency reduction is an
effective way of avoiding this effect.

C. CONCURRENCY REDUCTION

We resort to the concurrency reduction transformation pro-
posed in [18]. A concurrency reduction operation over a sig-
nal a reduces the size of the ER for that signal and preserves
commutativity, determinism and persistency. In particular, it
also preserves branching bisimilarity with respect to a.

Concurrency reduction has two positive effects:

• The size of the ALTS is reduced.
• Additional CSC conflicts are solved.

This operation makes some states unreachable and, as a
by-product, CSC conflicts are reduced if some of these states
are involved in the conflicts. Furthermore, the reduction of
states also increases the DC-set of the logic functions and the
opportunities to simplify the Boolean equations.

There are multiple ways of performing concurrency reduc-
tion, each one deriving a different solution. Fig. 9 shows an
example with different valid reductions.

In this work, a greedy approach has been used to decide
how concurrency must be reduced. At every state, the number
of possible reductions may be potentially of the order of
2k, with k being the number of enabled signals at the state.
To avoid a worst-case exponential cost in the exploration
of highly-concurrent controllers, a limit is defined for the
maximum number of solutions that are evaluated.

a) b) c) d)

y−

a+

b+

x+

z−

y−

a+

b+ x+

z−

y−

a+

b+

x+

z−

y−

a+

b+

x+

z−

FIGURE 9: Concurrency reduction of x: a) full concurrency;
b) no concurrency with a; c) no concurrency with a and b, b
triggers x; d) no concurrency with a and b, x triggers a.

The following criteria are taken into account to estimate
the quality of each solution:
• The number of CSC conflicts that disappear.
• The number of states that become unreachable.
• The number of new trigger signals that

appear/disappear.
The number of CSC conflicts that disappear after the

reduction is used to maximize the utility of the inserted
signal. Furthermore, reducing the number of states as much
as possible is important to prevent the size of the ALTS
from growing excessively. Finally, the number of triggers is
highly correlated with the number of essential literals. This
is, at the same time, correlated with the number of literals
after logic synthesis [9]. Ideally, the concurrency reduction
operation would minimize the number of essential literals.
This work proposes to use the trigger events as proxy for
essential literals for the sake of performance.

D. PROPERTIES OF THE ALGORITHM
There are two main properties that this algorithm must have
to be an effective and valid technique:
• The computational complexity must be affordable.
• It must preserve the behavior of the specification

(branching bisimilarity).

Complexity. For projection, hiding a signal is done
by a step of silencing, followed by τ -priorization and
τ -compression. Silencing can be trivially done in O(|T |),
whereas τ -priorization and τ -compression can also be solved
in O(|T |) [17].

The other important operation for the projection is select-
ing the signal to be hidden. The worst-case cost is dominated
by the detection of pairs of conflicts that collapse. Theoret-
ically, this operation is O(|C| + |S|), with |C| representing
the number of CSC conflicts and |S| the number of states.
Although a theoretical upper bound for |C| is |S|2, in practice
|C| < |S| for realistic controllers. Since the projection step is
repeated on the order of O(|Σ|), the average complexity for
projection is O(|S| × |Σ|).

The complexity of the re-composition step is the one of the
synchronous product. However this is a singular synchronous
product A1 × A2 in which A2 is a projection of A1 with

8 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

a newly inserted signal. If A1 has |S| states, the product
will have at most 2|S| states, under the assumption that
the new signal can be highly concurrent with the original
specification. Thus, the synchronous product can run in linear
time.

The cost of concurrency reduction is maintained as
O(|S| × |Σ|) and guaranteed by the heuristic that explores a
small amount of options at each state in which the new signal
is enabled (discussed in Section V-C).

In general, the average runtime for solving CSC of a large
controller can be modeled as:

Runtime(CSC) = O (|X| × (|S| × |Σ|+ Runtime(CSCproj)))

where |X| is the number of inserted signals. For every
signal, the cost might be dominated by the projection/re-
composition steps (O(|S| × |Σ|)) or the runtime for solving
CSC of the projected controllers. The dominating term will
depend on the size of the projected controllers. If they are
small, the effort will be dominated by the projection/re-
composition. Conversely, a little effort in projection (hiding
few signals) will result in larger controllers and a major effort
in solving CSC. Defining the appropriate size of the projected
controllers is a tuning parameter of the method.

Branching bisimilarity. We need to show that the insertion
of a new signal x through the following transformations
preserves branching bisimilarity:

A1
hide(A1,σ)−−−−−−−→ A2

insert(A2,x)−−−−−−−−→ A3
A3×A1−−−−−→ A4 ≈x A1

Theorem 2. Let A1 = (S1,Σ1, T1, s
1
0) be a τ -

free WF-ALTS, A2 = (S2,Σ2, T2, s
2
0) such that

A2 = hide(A1, σ), with σ being a conflict-free set of signals,
A3 = (S3,Σ3, T3, s

3
0) such that A3 = insert(A2, x), with

x /∈ Σ1, andA4 = (S4,Σ4, T4, s
4
0) such thatA4 = A3 ×A1.

Then A1 ≈x A4.

Proof. First note that the hiding operation and the inser-
tion operation preserves branching bisimilarity, soA1 ≈σ A2

and A2 ≈x A3. Since branching bisimilarity is transi-
tive, A1 ≈σ∪{x} A3. Then, by Theorem 1, A4 ≈σ A3 and
A4 ≈x A1.

From [18] it can be easily observed that the basic trans-
formation for concurrency reduction (forward reduction) is
equivalent to a τ -priorization assuming the new inserted
signal x is silent and confluent. Thus, branching similarity
is also preserved when applying concurrency reduction.

VI. RIP-OFF AND RE-ENCODE
Besides the basic algorithm previously described, there is an
improvement that can be done as a post-processing step. The
idea is very simple: hide one of the inserted signals (rip-
off) and find a different solution (re-encode). This process
is repeated until no further improvements are observed. This
step improves the quality of the results, at the expense of a
cost in execution time.

This technique exploits the fact that signals are inserted
sequentially and some CSC conflicts might be resolved by
more than one signal. Typically, the first inserted signals are
eager to resolve a large amount of conflicts. But some of the
conflicts may also be resolved later by new inserted signals.
By ripping-off some of the first signals and re-encoding, the
constraints of are relaxed, i.e., they number of CSC conflicts
is smaller, and better solutions can be found. In some rare
cases, it may even occur that ripping-off some signal does
not introduce any CSC conflict, thus detecting that the signal
was redundant.

For a fast estimation of the quality of the solutions, this
work uses a cost function based on the one proposed in [9],
which accounts for the number of essential literals, entry
points and size of the excitation regions.

Algorithm 3: RIPOFFREENCODE(A)
input : An ALTS with CSC property.
output: A re-encoded ALTS.
begin

C = costSolution(A)
do

improved = False
X = insertedSignals(A)
sortByEssentialLiterals(X)
/* in descending order */
foreach x ∈ X do

B = hideSignal(A, x)
solveCSC(B)
newC = costSolution(B)
if newC < C then

improved = True
C = newC
A = B
break

while improved
return A

Algorithm 3 shows the strategy proposed in this work.
The algorithm consists of two nested loops. The external
loop repeats the process until no further improvements are
found. The set of inserted signals (X) is visited in descending
order of essential literals, which is an estimation of the logic
complexity of the signal. The rationale behind this order is
that signals with more literals offer more opportunities for
improvement after logic synthesis.

The inner loop stops when some improvement has been
detected. After that, the cost of the signals is re-evaluated
and the outer loop starts again. An algorithm for calculating
essential literals is described at the appendix.

VII. PREVIOUS ART
We next discuss the main differences with the most relevant
approaches proposed for asynchronous controllers working

VOLUME 4, 2016 9

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

in input/output mode. We can distinguish two main cate-
gories:
• Structural methods working at Petri net level, such as

MPSAT [7] and structural methods using integer-linear
programming [6].

• State-based methods, such as Petrify [8] and
PBASE [9].

Regarding the exploration of insertion points for the new
signals, the main limitation of the structural methods is that
the original specification acts as a corset. The new events
must be anchored in existing nodes of the Petri net (or its
unfolding). If two different Petri nets have the same reach-
ability graph, the space of solutions is also different and a
subset of the solutions available at ALTS level. Moreover,
the insertion must be done in such a way that the causality
relations can be expressed with the semantics of a Petri
net. This has the disadvantage that many valid solutions
are not explored. On the other hand, structural methods do
not require to enumerate all possible markings, thus dealing
effectively with the state explosion problem.

Petrify is a special case. The insertion of signals is done
at state level, however the sets of states for insertion are built
based on combinations of regions (that correspond to Petri
net places). Petrify only uses simple combinations of regions
that prevent the exploration of intricate solutions that could
potentially be better.

PBASE, on the other hand, works exclusively at the state
level. It uses a combination of SAT and pseudo-Boolean
optimization in order to find high quality solutions. It requires
to explicitly enumerate all states and encode a SAT formula
that is satisfiable if and only if a solution is valid. A posterior
pseudo-Boolean optimization step ensures that the solution
returned is the optimum according to an heuristic. Since
pseudo-Boolean optimization is NP-hard, this approach has
the risk of falling into a worst-case scenario. This makes
PBASE the most sensitive approach to the state explosion
problem. On the other hand, its ability to encode any possible
solution and the high quality heuristics used to find solutions
allows it to often find solutions with the fewer number of
literals than other approaches.

VIII. EXPERIMENTAL RESULTS
This section presents experimental results for the projection
and recomposition technique, henceforth called SEPR (State
Encoding using Projection and Re-composition). The signal
insertion step is performed with PBASE, even though it is
possible to use any other state graph based approach (like
Petrify). Experimental results include a comparison of the
method against PBASE as a baseline and MPSAT for large
controllers. Versions with the rip-off and re-encode technique
(SEPR-R) are also included.

In every case, the projection steps of the algorithm are per-
formed until the ALTS satisfies all the following conditions:
• |S| × |Σ| < 500.
• At least one signal has been hidden.

The last condition is included for the smallest controllers.
Some of them are small enough to already satisfy the first
condition. Hiding at least one signal guarantees that the
technique is used in every instance.

The benchmarks are divided into three groups: small,
medium and large. The following subsections present and
discuss the results for the different groups, as well as experi-
ments testing the scalability of the approach.

A. SMALL CONTROLLERS
Controllers in this group have been taken from [9] and
have less than 1000 states (with the exception of c10). This
experiment is performed to give a baseline comparison with
PBASE, since it cannot be used for larger controllers due to
the execution time. Additionally, a comparison with the rip-
off and re-encode technique is included.

Table I shows the results, with column Signals/Literals re-
porting the number of state signals that were inserted and the
number of literals of the Boolean equations (in factored form)
after logic synthesis. CPU(sec) reports the CPU time required
to solve CSC. The number of states (|S|) and input/output
signals (I/O) are also reported. The table compares PBASE
(PB), SEPR (SP) and SEPR-R (RR). In some cases, PBASE
was not able to solve CSC in less than 10 hours. This is
denoted as Time in the table.

A summary of the results for Table I can be found in
Table II, which presents a pairwise comparison between dif-
ferent techniques. Row Solved reports the number of solved
instances. The remaining data in the table only reports the
total results for the benchmarks that were solved by both
techniques under comparison (i.e. ignoring controllers not
solved by both). Ratio reports the average ratio of literals
between every pair of techniques.

The comparison between PBASE and SEPR shows a sig-
nificant difference in execution time, without hardly sacrific-
ing quality: the number of literals only increases by 1%. The
addition of the rip-off technique has a very minor impact on
quality, while increasing execution time. The main reason is
because the number of inserted signals is small (less than 3 in
most cases), giving few opportunities to explore different re-
encodings. Thus, the rip-off technique is not well suited for
small controllers. Nonetheless, all controllers were solvable
with SEPR-R.

Although the work of this paper was not originally meant
to be used for small controllers, the experiments show that
the technique contributes to reduce runtime without having a
significant impact on quality.

B. MEDIUM CONTROLLERS
In this experiment, the controllers have up to 14,000 states.
This size is already out of the scope of the controllers
manageable by PBASE. For this reason, MPSAT is used as
reference.

The controllers come from different sources. Some of
them (master-read versions) come from [9]. The art(m,n) are

10 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

TABLE I: Experimental results for small controllers. Comparing PBASE (PB), SEPR (SP) and SEPR-R (RR).

CPU(sec) Signals/Literals CPU(sec) Signals/Literals
Example I/O |S| PB SP RR PB SP RR Example I/O |S| PB SP RR PB SP RR
adfast 3/3 44 5.6 1.2 1.3 2/14 2/14 2/14 pla 0/3 12 0.2 0.1 0.1 1/14 2/16 2/16
alloc-outbound 4/3 17 0.8 0.2 0.3 2/16 2/16 2/16 ram-read-sbuf 5/5 36 1.2 0.3 0.3 1/22 1/22 1/22
c10 0/10 2046 32.7 4.1 15.4 1/31 2/32 1/31 sbuf-ram-write 5/5 58 9.1 1.9 2.1 2/23 2/24 2/24
c6 0/6 126 1.1 0.2 0.3 1/19 1/19 1/19 sbuf-read-ctl 2/4 14 0.2 0.1 0.1 1/15 1/15 1/15
duplicator 2/2 20 0.5 0.2 0.2 2/13 2/13 2/13 seq2 3/3 12 0.1 0.1 0.1 1/8 1/8 1/8
future 4/4 36 0.4 0.1 0.1 1/18 1/18 1/18 seq3 4/4 16 0.6 0.2 0.3 2/14 2/14 2/14
glc 2/1 17 0.1 0.1 0.2 1/10 1/11 1/11 seq4 5/5 20 1.4 0.4 0.6 2/19 2/19 2/19
lazy_ring.noncsc 5/3 160 27.6 0.9 1.0 1/22 1/22 1/22 seq8 9/9 36 108.7 41.0 56.6 3/44 5/43 5/43
mmu0 4/4 174 89.1 1.8 2.9 3/28 3/29 3/29 seq-mix 4/4 20 2.0 0.5 0.9 3/18 3/20 3/20
mmu1 4/4 82 8.1 1.0 2.1 2/25 2/24 2/24 vbe4a.nousc 3/3 58 5.1 1.4 2.2 3/18 3/18 3/18
mod4_counter 1/2 16 0.3 0.1 0.2 2/26 2/26 2/26 vbe5a 3/3 44 4.2 0.7 0.9 2/14 2/14 2/14
mr0 5/6 302 Time 1.2 2.7 -/- 4/31 3/30 vbe6a.nousc 4/4 128 41.0 1.2 1.7 2/30 2/30 2/30
mr1 4/5 190 91.6 7.5 11.1 3/26 3/26 3/26 vbe6x.nousc 3/3 48 4.4 0.3 0.3 2/23 2/22 2/22
nak-pa 4/5 56 0.7 0.2 0.2 1/18 1/18 1/18 vme_read 8/6 251 16.2 0.7 0.7 1/30 1/31 1/31
nowick 3/2 18 0.2 0.1 0.1 1/13 1/13 1/13 vme_read_write 3/3 28 1.0 0.5 0.3 1/22 1/22 1/22
par2 3/3 28 4.4 0.5 0.8 2/16 2/16 2/16 vme_write 8/6 817 Time 1.0 1.0 -/- 1/36 1/36
par4 5/5 628 Time 3.6 10.7 -/- 4/32 4/32 vmebus 3/3 24 0.5 0.2 0.2 1/19 1/19 1/19

TABLE II: Summary for the benchmarks in Table I.

PB SP PB RR SP RR
Solved 31 34 31 34 34 34
CPU (sec) 459 68 459 104 74 118
Signals 53 57 53 56 66 64
Literals 628 634 628 633 733 731
Ratio 1.00 1.01 1.00 1.01 1.00 1.00

FIGURE 10: Art(m,n). Source: [20].

parameterized controllers from [20]. They model a synchro-
nization of m pipelines, as shown by the STG depicted in
Figure 10. These controllers have a high number of states
and require a moderately high number of signals to guarantee
CSC.

Another set of parameterized controllers is PpArb(m,n),
obtained from [21]. They model m pipelines synchronized
with arbitration. Figure 11 shows an example for PpArb(2,3).
These controllers are highly concurrent and have a large set
of states, but a comparatively small number of signals. They

can be solved with few signal insertions.
The ParMix(m,n) controllers are based on the ones pre-

sented in [20]. These controllers show a handshake of se-
quencers, parallelizers and mixers, as represented by Fig-
ure 12. The original controllers in [20] did not have any
CSC conflict. The ones presented here have been modified
(by hiding internal signals) such that the sequencer and every
parallelizer have conflicts. The result is a controller with a
high number of signals and CSC conflicts.

Finally, the SeqPar(n) controllers are introduced in this
work. Like the ParMix(m,n), they represent a handshake
of smaller controllers. A SeqPar(n) controller represents an
n-level tree of alternating handshakes of sequencers and
controllers. Fig. 13 shows an example with three levels. Since
every parallelizer and sequencer has CSC conflicts, this class
of controllers also contains a high number of signals and CSC
conflicts.

Table III shows results for this experiment. The codeword
Time is used when a controller could not be solved in less
than 10 hours. The codeword Fail marks an instance in which
a solution could not be found. A summary for Table III can
be found in Table IV.

The results show that SEPR generates slightly better re-
sults than MPSAT, even before the rip-off technique. In gen-
eral, the execution time is slightly higher than MPSAT, with
the exception of the controller ParMix(2,4). This controller
biases the total execution time for MPSAT in Table IV.
Nonetheless, this result is important because it hints at a
trend in the ParMix and SeqPar controllers: MPSAT takes
too long to solve these classes of problems and hits the 10-
hour timeout for most of them. A possible explanation is later
discussed in Section VIII-D.

Another singularity is the master-read controller. This
controller is the original specification of master-read2, in-

VOLUME 4, 2016 11

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

FIGURE 11: PpArb(2,3). Source [21].

TABLE III: Experimental results for medium controllers. Comparing MPSAT (MP), SEPR (SP) and SEPR with Rip-off (RR).

CPU(sec) Signals/Literals
Example I/O |S| MP SP RR MP SP RR
art(3,4) 0/12 2048 4.1 16.5 21.6 6/54 4/49 4/49
art(3,5) 0/15 4000 10.2 12.9 16.8 6/57 4/53 4/53
art(3,6) 0/18 6912 38.7 23.5 28.0 6/60 4/56 4/56
art(4,3) 0/12 10368 8.7 39.5 81.8 10/70 5/69 5/69
master-read 6/7 8932 Fail 42.9 160.7 -/- 9/74 6/59
master-read2 0/13 8932 15.6 147.6 201.1 5/75 7/69 7/69
master-read.1098 6/7 1098 3.6 4.4 12.4 6/43 6/44 4/39
PpArb(2,3) 2/9 1088 0.3 0.1 0.2 1/39 1/42 1/42
PpArb(3,3) 3/13 14336 0.3 2.9 4.5 2/61 2/69 2/69
sis-master-read 6/7 1882 0.4 0.4 0.5 1/39 1/37 1/37
ParMix(2,4) 0/38 13852 766.8 53.4 99.2 5/123 6/121 6/121
ParMix(3,3) 0/46 3796 Time 76.8 134.3 -/- 6/157 6/157
SeqPar(4) 0/72 7452 Time 194.5 817.2 -/- 11/210 9/195

FIGURE 12: ParMix(4,3). Source [20].

S

P P

S S S S

FIGURE 13: SeqPar(3).

TABLE IV: Summary for the benchmarks in Table III.

MP SP MP RR SP RR
Solved 10 13 10 13 13 13
CPU (sec) 849 301 849 466 615 1578
Signals 48 40 48 38 66 59
Literals 621 609 621 604 1050 1015
Ratio 1.00 0.98 1.00 0.97 1.00 0.97

cluding the inputs and outputs (all signals in master-read2
are artificially declared as outputs). The presence of inputs
reduces the space of valid solutions since the input proper-
ness property prevents the insertion of a signals triggering
inputs. While MPSAT can solve master-read2, it fails to
find a solution for master-read. This highlights the increased

12 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

power of the state-based techniques to find intricate solutions
in highly restrictive specifications.

Finally, the rip-off technique shows an overall reduction
of 2% in the number of literals with respect to the base
approach, at the cost of a higher execution time. The higher
number of inserted signals with respect to the small con-
trollers allows this technique to improve the SEPR solutions.

C. LARGE CONTROLLERS
The last experimental results are for large controllers, which
was the main motivation for this work. These controllers can
have up to several million of states. The aim of this experi-
ment is to show the scalability of the approach presented in
this paper.

The controllers in this test come from the same sources as
the ones in the previous results. Table V reports the results
for large controllers, which are summarized in Table VI.

SEPR can solve problems up to 4.5 million states in a
reasonable time. The rip-off technique significantly increases
the execution time, even more than in previous results. This
is because there are more candidates to rip-off, which also
increases the opportunities to generate better results. This last
approach allows for solutions with higher quality than those
of MPSAT. Every instance can be solved with the SEPR and
SEPR-R.

Even though MPSAT uses structural methods, it solves
CSC using a SAT formulation of the problem [7]. The
runtime highly depends on the size of the SAT formula,
which is mainly determined by the size of the unfolding
and the number of signals. Although the unfolding can grow
exponentially under the presence of multiple choices in the
specification, in practice the number of signals is the one
that has the largest impact on MPSAT runtime. The following
section discusses the scalability of different approaches.

It is also important to note that only examples suitable
for MPSAT have been selected, which need to have an
underlying safe Petri net. These constraints do not apply for
state-based methods.

D. SCALABILITY
This section studies the scalability of SEPR with regard to
MPSAT, with the goal of comparing a state-based method
with a structural one. The experiments are performed with
three suites of benchmarks: Sequencer(n), Art(m,n) and
Parallelizer(n). The circuits have been scaled with the pa-
rameter n. In the case of Art(m,n), m has been set at 3. The
following table shows how these circuits grow with n:

Seq(n) Art(3,n) Par(n)
Signals 2n+ 2 3n 2n+ 2
States 4n+ 4 32n3 5n + 3

Signals grow linearly with n in all cases. The main dif-
ference is in the size of the set of states. For Seq, it grows
linearly, whereas for Art and Par the growth is cubic and
exponential, respectively.

Fig. 14 reports the execution time of these benchmarks for
MPSAT, SEPR and SEPR-R. The x-axis represents n and the
y-axis represents the execution time in seconds (log scale).
Table VII reports the total sum of literals after logic synthesis
for all controllers of every class.

Fig. 14a depicts the results for Seq. The dashed line repre-
sents a linear regression of SEPR, with R2 = 0.946. SEPR
and SEPR-R manifest a linear asymptotic behavior, whereas
MPSAT hits a computational wall around n = 20. The main
reason is that MPSAT does not scale well with the number of
signals.

The results for Art are reported in Fig. 14b. In this case, the
dashed line is a cubic polynomial regression of SEPR, with
R2 = 0.988. This is consistent with the cubic polynomial
growth of the number of states. MPSAT shows an exponential
behavior, mostly dominated by the number of signals.

Finally, Fig. 14c shows results for Par. In this case, the
complexity of the ALTS is dominated by the number of
states, rather than the number of signals. The dashed line rep-
resents an exponential regresion of SEPR3. Clearly, MPSAT
overtakes the state-based methods since the number of states
grows much faster than the number of signals. Working with
the unfolding of a Petri net, rather than its reachability set, is
a clear advantage in this case.

MPSAT is more scalable for large state spaces that can be
succinctly represented by a Petri net. However, the runtime
grows exponentially with the number of signals. The main
reason is the way that MPSAT estimates the logic complexity
of the circuit, using a quadratic number of SAT variables to
encode the trigger relations between pairs of signals [7].

E. FINAL REMARKS
The results show a good picture of how SEPR scales. For
small controllers, it reduces runtime while maintaining qual-
ity. For medium controllers, the quality of the solution and
runtime are slightly better than the structural methods.

For controllers with a large number of signals, SEPR can
go much beyond the complexity wall hit by other tools (e.g.,
MPSAT or petrify). The base version of the tool, SEPR,
sometimes provides solutions with slightly lower quality than
MPSAT, but the re-encoding strategy using rip-off gives
an opportunity to improve the results, specially in those
controllers that require a larger number of encoding signals.
In fact, it generates the best results for most cases, with the
exceptions of the PpArb class of controllers, which are solved
with just one signal.

Finally, the strongest advantages of SEPR are in the num-
ber of problems solved and the scalability of the approach.
Structural methods depend on the Petri net structure, which
limits the solutions that can be found. In the case of MPSAT,
for example, it cannot solve unsafe nets. But even when
safe Petri nets are used (as in the case of the benchmarks

3The regression is on the order of 4.5n (states grow on the order ofÂň5n).
Given the small number of points and the dominance of the large values,
the regression may not be sufficiently meaningful. However it helps to
hypotesize the exponential relationship with the state space.

VOLUME 4, 2016 13

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

TABLE V: Experimental results for large controllers. Comparing MPSAT (MP) and SEPR (SP).

CPU(sec) Signals/Literals
Example I/O |S| MP SP RR MP SP RR
art(4,4) 0/16 0.3 · 105 17.0 38.3 129.7 9/76 6/74 6/72
art(5,4) 0/20 5.2 · 105 25.4 677.7 1676.2 10/104 7/100 7/100
art(5,5) 0/25 16 · 105 225.8 2210.3 6422.0 12/105 8/115 8/102
par8 9/9 3.9 · 105 9.9 554.7 1833.7 8/64 8/64 8/64
PpArb(2,6) 2/15 0.7 · 105 1.6 7.5 8.6 1/69 1/72 1/72
PpArb(2,9) 2/21 44.6 · 105 6.5 808.0 826.8 1/99 1/102 1/102
ParMix(4,4) 0/86 1.1 · 105 Time 480.2 1911.6 -/- 11/313 11/298
ParMix(5,4) 0/110 2.2 · 105 Time 812.9 7126.0 -/- 16/411 14/387
SeqPar(5) 0/126 2.4 · 105 Time 892.2 4505.0 -/- 12/396 10/394

0 5 10 15 20 25 30

10-1

100

101

102

103

104

105

SEPR-R

SEPR

MPSAT

Regression

(a) Seq(n)

2 4 6 8 10 12 14 16 18 20

10-1

100

101

102

103

104

105

SEPR-R

SEPR

MPSAT

Regression

(b) Art (3,n)

2 3 4 5 6 7 8 9

10-1

100

101

102

103

104

105 SEPR-R

SEPR

MPSAT

Regression

(c) Par(n)

FIGURE 14: Runtime growth, in seconds (y-axis) with the size of the ALTS, defined by n (x-axis).

TABLE VI: Summary for large controllers.

MP SP MP RR SP RR
Solved 6 9 6 9 9 9
CPU (sec) 286 4296 286 10897 6482 24440
Signals 41 31 41 31 70 66
Literals 517 527 517 512 1647 1591
Ratio 1.00 1.02 1.00 0.99 1.00 0.97

TABLE VII: Total number of literals for controller classes.

Seq(n) Art(3,n) Par(n)
MPSAT 1339 567 352
SEPR 1240 565 352
SEPR-R 1220 521 352

presented here), some other limitations might arise. As for
scalability, this approach grows linearly with the number
of signals and states. In the case of state explosion typical
of high concurrency, this limits the size of the controllers
than can be solved (to the order of 106 states). But when
the controllers have large number of signals, results show
that SEPR still manages to grow linearly, as opposed to the
exponential growth of MPSAT.

IX. CONCLUSIONS
This work has presented a novel technique to address the
problem of state encoding for large asynchronous controllers.
The approach allows to project a large specification onto a

subset of signals and obtain a smaller one suitable to be
handled by state-based encoding techniques. The complete
asynchronous controller is recovered by re-composing the
original specification with the projected solution.

Results show that asynchronous controllers of several mil-
lion states are now within reach of state-based encoding tech-
niques. Furthermore, it can speed up the encoding for con-
trollers of smaller sizes. This allows state-based techniques
to effectively compete with structural methods and handle
controllers that can be generated from different formalisms
for which no encoding tools exist yet.

.

APPENDIX A PROOF OF THEOREM 1
Proof.
We will denote the set of states of Ai as Si and we will use
si, s

′
i, s
′′
i , . . ., to denote different states in Si. By construction

of A3 = A1 ×A2, every state in S3 is a pair s3 = 〈s1, s2〉
with s1 ∈ S1 and s2 ∈ S2.

Let us first prove that A3 ≈σ2
A1. Consider

A4 = silence(A3, σ2). Then, it suffices to show that
A1 ≈ A4.

Since A4 has the same states as A3, we can also represent
every state in S4 as a pair s4 = 〈s1, s2〉. Let us define a
binary relation R between S1 and S4 as follows: for every
state s4 = 〈s1, s2〉, s1Rs4. It is trivial to see that this relation
exists for every s4 ∈ S4. Similarly, since A1 ≈σ1∪σ2

A2, it
follows that by construction of the synchronous product the

14 VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2872678, IEEE Access

relation R also exists for every s1 ∈ S1. We only need to
prove that R is a branching bisimulation, i.e.,

1) Whenever s1Rs4 and s1
a−→ s′1, then either a = τ and

s′1Rs4, or there exists a path s4
τ∗

=⇒ s′′4
a−→ s′4 such that

s1Rs
′′
4 and s′1Rs

′
4.

2) Whenever s1Rs4 and s4
a−→ s′4, then either a = τ and

s1Rs
′
4, or there exists a path s1

τ∗

=⇒ s′′1
a−→ s′1 such that

s′′1Rs4 and s′1Rs
′
4.

1) Since A1 is τ -free, we know that a 6= τ . If s1
a−→ s′1

and s4 = 〈s1, s2〉 then the product also creates a state
s′4 = 〈s′1, s′2〉 and a path s4

a−→ s′4. In case a /∈ Σ2, then
s2 = s′2. Therefore, τ∗ is empty and s4 = s′′4 . By the defi-
nition of R, we have that s1Rs′′4 and s′1Rs

′
4.

2) Let us assume s4 = 〈s1, s2〉. We need to consider two
cases: a = τ and a 6= τ . If a = τ then τ is hiding a sig-
nal in Σ2 \ Σ1. Therefore, the product generates the state
s′4 = 〈s1, s′2〉, since A1 does not move and, thus, s1Rs′4. If
a 6= τ then A1 and A2 synchronize with a and the prod-
uct generates the state s′4 = 〈s′1, s′2〉. Therefore, the path
s1

a−→ s′1 exists in A1 and s′1Rs
′
4. Notice also that s′′1 = s1

and, thus, s′′1Rs4.
By symmetry, A3 ≈σ1

A2 can be proved identically.

APPENDIX B COMPUTATION OF ESSENTIAL LITERALS
A signal a is said to be an essential literal for a signal b if
there exits a pair of states s, s′ ∈ S such that:
• s ∈ ONb and s′ ∈ OFFb

• ∀c ∈ Σ | c 6= a : s(c) = s′(c)
• s(a) 6= s′(a)

In this case, if s(a) = 1 and s′(a) = 0, a is a positive
essential literal of b. If s(a) = 0 and s′(a) = 1, then a is a
negative essential literal of b.

Essential literals are important because they are guaranteed
to be in the support of the Boolean function. In particular,
if a is positive essential literal of b, a will be a literal for
the function of b after synthesis. If a is a negative essential
literal, then ¬a will be a literal for the function of b after
synthesis. A more in-depth discussion about the correlation
between essential literals and literals after synthesis can be
found in [9].

Given a signal a, it is possible to efficiently compute the set
of signals for which a is essential. This can be accomplished
by grouping all the states that have the same encoding (minus
the code for signal a) and checking, for each non-input signal,
which ones meet the condition for a to be essential. If the en-
codings are stored in a hash table, the worst-case complexity
is in the order of O(|S| × |Σ|). Nonetheless, by exploiting
bitwise and vectorial instructions in actual hardware, a linear
cost O(|S|) can be obtained, as long as |Σ| is on the order of
the word size.

Finally, to compute the essential literals for all signals, the
previously described computation needs to be executed for
every signal. The cost of finding all the essential literals is
O(|S| × |Σ|2), or O(|S| × |Σ|) if the size of |Σ| is on the
order of the word size.

REFERENCES
[1] J. Sparsø and S. Furber, Eds., Principles of Asynchronous Circuit Design:

A Systems Perspective. Kluwer Academic Publishers, 2001.
[2] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and

A. Yakovlev, “Benefits of asynchronous control for analog electronics:
Multiphase buck case study,” in Proc. Design, Automation and Test in
Europe (DATE), Mar. 2017, pp. 1751–1756.

[3] K. Y. Yun and D. L. Dill, “Automatic Synthesis of Extended Burst-Mode
Circuits: Part I (Specification and Hazard-Free Implementation),” IEEE
Transactions on Computer-Aided Design, vol. 18, no. 2, pp. 101–117, Feb.
1999.

[4] L. Y. Rosenblum and A. V. Yakovlev, “Signal graphs: from self-timed to
timed ones,” in Proceedings of International Workshop on Timed Petri
Nets. Torino, Italy: IEEE Computer Society Press, Jul. 1985, pp. 199–
207.

[5] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, Logic Synthesis of Asynchronous Controllers and Interfaces.
Springer-Verlag, 2002.

[6] J. Carmona and J. Cortadella, “Encoding large asynchronous controllers
with ILP techniques,” IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, no. 1, pp. 20–33, 2008.

[7] V. Khomenko, “Efficient automatic resolution of encoding conflicts using
STG unfoldings,” IEEE Transactions on VLSI Systems, vol. 17, no. 7, pp.
855–868, 2009.

[8] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “A region-based theory for state assignment in speed-
independent circuits,” IEEE Transactions on Computer-Aided Design,
vol. 16, no. 8, pp. 793–812, Aug. 1997.

[9] A. Moreno and J. Cortadella, “State encoding of asynchronous controllers
using pseudo-boolean optimization,” in Asynchronous Circuits and Sys-
tems (ASYNC), 2018 24rd IEEE International Symposium on. IEEE,
2018, pp. 9–16.

[10] D. Wist, R. Wollowski, M. Schaefer, and W. Vogler, “Avoiding irreducible
CSC conflicts by internal communication,” Fundamenta Informaticae,
vol. 95, no. 1, pp. 1–29, 2009.

[11] J. F. Groote, D. N. Jansen, J. J. A. Keiren, and A. J. Wijs, “AnO(m logn)
Algorithm for Computing Stuttering Equivalence and Branching Bisimu-
lation,” ACM Trans. Comput. Logic, vol. 18, no. 2, pp. 13:1–13:34, Jun.
2017.

[12] R. Milner, Communication and concurrency. Prentice hall New York etc.,
1989, vol. 84.

[13] R. J. V. Glabbeed and W. P. Weikland, “Branching time and abstraction
in bisimulation semantics,” Journal of the ACM, no. 3, pp. 555–600, May
1996.

[14] J. Groote and M. Mousavi, Modeling and Analysis of Communicating
Systems. The MIT Press, 2014.

[15] P. Vanbekbergen, B. Lin, G. Goossens, and H. De Man, “A generalized
state assignment theory for transformations on signal transition graphs,”
Journal of VLSI signal processing systems for signal, image and video
technology, vol. 7, no. 1-2, pp. 101–115, 1994.

[16] R. J. van Glabbeek, “The linear time - branching time spectrum,” in CON-
CUR ’90 Theories of Concurrency: Unification and Extension, J. C. M.
Baeten and J. W. Klop, Eds. Springer Berlin Heidelberg, 1990, pp. 278–
297.

[17] J. F. Groote and J. van de Pol, “State space reduction using partial τ -
confluence,” in International Symposium on Mathematical Foundations of
Computer Science. Springer, 2000, pp. 383–393.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Automatic handshake expansion and reshuffling using con-
currency reduction,” in Proc. of HWPN, vol. 98, 1998, pp. 86–110.

[19] P. Vanbekbergen, G. Goossens, F. Catthoor, and H. J. De Man, “Optimized
synthesis of asynchronous control circuits from graph-theoretic specifica-
tions,” IEEE transactions on computer-aided design of integrated circuits
and systems, vol. 11, no. 11, pp. 1426–1438, 1992.

[20] J. Carmona, J.-M. Colom, J. Cortadella, and F. García-Vallés, “Synthesis
of asynchronous controllers using integer linear programming,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 25, no. 9, pp. 1637–1651, 2006.

[21] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state encod-
ing conflicts in STG unfoldings using SAT,” Fundamenta Informaticae,
vol. 62, no. 2, pp. 221–241, 2004.

VOLUME 4, 2016 15

