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Received 18 May 2018; Revised 25 September 2018; Accepted 11 October 2018; Published 7 November 2018

Guest Editor: Bernardo A. Furtado

Copyright © 2018 Nura M. R. Ahmad et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Today, tuberculosis (TB) is still one of the major threats to humankind, being the first cause of death by an infectious disease
worldwide. TB is a communicable chronic disease that every year affects 10 million people and kills almost 2 million people
in the world. The main key factors fueling the disease are the progressive urbanization of the population and poverty-related
socioeconomic factors.Moreover, the lack of effective tools for TB diagnosis, prevention, and treatment has decisively contributed to
the lack of an effective model to predict TB spread. In Nigeria, the rapid urbanization along with unprecedented population growth
is causing TB to be endemic. This paper proposes a mathematical model to evaluate TB burden in Nigeria by using data obtained
from the local TB control program in the community. This research aims to point out effective strategies that could be used to
effectively reduce TB burden and death due to TB in this country at different levels.The study shows that efforts should be oriented
to more active case finding rather than increasing the treatment effectiveness only. It also reveals that the persistence of the disease
is related to a large number of latently infected individuals and quantifies the lives that could be saved by increasing the notification
rate using active case finding strategy.We conclude that undiagnosis is the bottleneck that needs to be overcome in addition to the
incorporation, improvement, and/or strengthening of treatment management and other essential TB control measures in Nigeria.

1. Introduction

Tuberculosis (TB) is the most challenging infectious disease
that humankind faces. It is estimated that in the last 200 years
TB has killed one billion (1.000.000.000) people [1]. Cur-
rently, TB is still among the main worldwide causes of death
by an infectious disease [2]. In 2017, there were 10.4 million
new TB cases and 1.7 million related deaths worldwide [3]. It
is a very silent disease that has eludedmankind for a very long
time. It affects people of all social statuses, although most TB
cases occur in resource-limited countries.

TB is caused by Mycobacterium tuberculosis (Mtb). This
bacillus is transmitted by the inhalation of infected aerosols
generated by active TB patients. The inhalation of the bacilli
will usually lead to the trigger of an immune response that can
have one of the three different clinical outcomes: (1) complete

clearance of the pathogen, (2) latent TB infection (LTBI),
or (3) progression to primary active disease [4, 5]. LTBI
occurs when the host’s immune response manages the initial
containment of the Mtb by developing and encapsulating
granulomas. More often than not, the bacilli remain phys-
ically contained and immunologically constrained by these
encapsulated granulomas throughout the lifetimes of the
hosts [6, 7]. During this process, an endogenous reinfection
can produce new infection spotlights that will presumably
undergo the same control dynamics [4]. However, even
decades after infection especially in the case of immunocom-
promised hosts (like HIV patients), the control process can
fail and the host can develop an active disease. On average,
about 10% of the LTBI people develop active TB during their
lives [8]. A latent infected host can be reinfected several
times, thereby increasing the load of Mtb in its body and
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hence increasing the chance of progressing to active disease.
According to the World Health Organization (WHO), there
were an estimated number of 2 to 3 billion people with LTBI
in 2015 [9], thus at risk of developing an active disease.

Overcrowding and time in contact with patients are key
factors of TB infection. Paradoxically, TB is often seen as a
XIX century disease, mainly associated with the poor living
conditions of workers in crowded cities. Today, TB is reaching
the highest number of cases in absolute numbers in the
history [9] precisely because of the massive urbanization
of populations. This fact is especially painful in Nigeria, a
country that is undergoing rapid urbanization with a rapidly
growing population. At the current growth rate of about 2.8%
to 3.5% a year, it is estimated that Nigeria’s urban population
will double in the next two decades [10]. As a consequence,
TB is endemic in Nigeria. The control of the disease is
coordinated by theNational Tuberculosis and Leprosy Control
Program (NTBLCP), in line with the End TB Partnership
initiatives whose ultimate target is to eliminate TB as a public
health problem by the year 2050 (meaning reaching less than
1 case per million-person population) [11]. Despite current
global control efforts to reduce TB, Nigeria’s TB incidence is
refusing to show any significant decline [9]. On March 14th,
2017, a wide circulated paper announced that Nigeria ranks
4th in TB infection worldwide [12]. This was followed by
the press release by the NTBLCP national coordinator. The
statistics show that over 80% of TB cases in Nigeria are still
undetected while the disease has been claiming millions of
lives over the years in the country [9, 13].

Many studies show that more intensified case finding is
needed especially in areas with higher prevalence of TB [14–
16]. For instance, Brewer et al. [17] indicated that active case
finding of TB in homeless individuals in the USA is the most
effective strategy that leads to a decrease in the death of theTB
patients. Moreover, a study by Dodd et al. [18] indicates that
policymakers need to alternate between active case finding
and passive case detection strategy from period to period
in order to have effective TB control. This paper aims to
use mathematical modeling in order to evaluate the effect of
an increase in diagnosis rate and treatment success on TB
dynamics in Nigeria.

Assessing TB Policymaking: Mathematical Models for TB
Transmission. Several mathematical models have been used
to estimate long-term dynamics of TB to help to assess the
development of strategies to control it. The literature on
compartment models to describe complex systems is exten-
sive [19–21]. Following a top-down approach, the population
is divided into different compartments (e.g., susceptible,
exposed, infected, and recovered in the case of an SEIR
model) and specific fluxes are set between these compart-
ments. The dynamics of the disease is therefore defined with
ordinary nonlinear differential equations through rigorous
mathematical analysis [22].

Many different studies have been able to draw important
conclusions on TB dynamics by means of models and
other methods [23–33]. Okuonghae and Ikhimwin [16], for
example, developed a model which classified the population
by their TB awareness level, a key factorwhich could affect the

case detection rate. Another factor which could contribute
to better adjust TB models is the HIV dynamics, especially
in the sub-Saharan African region [34]. HIV patients have a
higher risk of becoming infected and also of progressing to
active disease once infected than non-HIV infected people.
According toWHO [35], nearly all HIV-positive people with
active TB will die.

By means of mathematical models, Wallis [36] was able
to identify individuals with an innate resistance to Mtb. He
concluded that understanding the mechanisms of resistance
may lead to therapeutic strategies to counter immune evasion
by Mtb. Moreover, models were also used by Wallis [36]
to assess the affinity of LTBI reactivation when patients
are administered with drugs with TNF blockers. Similarly,
another research project by Moualeu-Ngangue et al. [37]
worked with a model simulating the global TB dynamics.
The study showed that TB spreading crucially depends on
the basic reproduction number (number of new cases one
case generates during its sick period, which is estimated to
be between 10 and 15 [36, 38]). The research was done in
Cameroon where the roles of TB diagnosis, treatment, TB
awareness level, and traditional medicine in the dynamics
of TB were assessed. Song et al. [39] investigated the epi-
demiological time scales of TB and they evaluated the risk
of infection from both close contacts (clusters) and casual
contacts (random). They concluded that the risk of infection
depends on the source of infection as well as on different
environmental characteristics.

Lastly, Guzzeta et al. [40] presented three different
ways to model TB dynamics: (1) an ODE model with no
age structure and constant population size, (2) an age-
structured, stochastic version of the ODE model, and (3) a
sociodemographic Individual-Based Model (IBM). An IBM
is a model formed by autonomous agents which interact
among them, including their environment, to follow their
objectives. The models were fitted to epidemiological data
from Arkansas, USA. The authors concluded that different
modeling techniques have their advantages and drawbacks
and they should be chosen carefully. For example, an ODE
model is best suited to describe the evolution of prevalence,
incidence, and mortality. On the other hand, an IBM would
be best to estimate the fraction of reactivated cases or to fit
age-specific incidence of active TB.

Although there aremany studies into TB epidemic, cause,
spread, and suggestive measures for therapy and control,
none of the aforementioned studies uses a mathematical
model to evaluate the actual epidemic of TB in Nigeria using
data obtained from the local TB control program in the
community. This paper proposes a mathematical model that
will be used to evaluate TB burden in this country. We aim to
point out effective strategies that could be used to effectively
reduce TB burden and death due to TB in Nigeria.

Specifically, we present a mathematical model that aims
to investigate if more TB active case finding is needed
in Nigeria, in order to help policymakers to make sound
decisions in implementing effective TB control measures in
the country. Section 2 shows the developedmethodology and
explains the proposed model. Sections 3 and 4 present and
discuss the results obtained as well as their limitations and
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other possibilities for further research. Finally, the last section
highlights the main conclusions drawn from this study.

2. Materials and Methods

Our goal is to develop a close-enough-to-reality mathemati-
cal model of the TB epidemic that can allow us to investigate
effects of demographics and notification of TB epidemics in a
population of Nigeria, as well as to estimate the actual burden
of the disease including death toll and case fertility ratio in
some of the regions in the country.

2.1. Model Description. Figure 1 represents the model dia-
gram, which we briefly outline. Birth occurs at a constant
rate Π into the susceptible class S with the assumption that
all newborns are susceptible toMtb.𝐸1, 𝐸2, . . . , 𝐸7, 𝐸>7 repre-
sent the noninfectious population infected with tuberculosis
without any clinical symptoms (LTBI) in their various years
of infection; i.e., an individual who was infected recently
(less than one year ago) will be assigned to 𝐸1, while an
individual whowas infected last yearwould be assigned to the𝐸2 population. The last LTBI compartment, 𝐸>7, consists of
the whole latently infected population with more than 7 years
of infection. 𝐼1 and 𝐼2 represent the population that is sick; i.e.,
they have an active disease with clinical symptoms and they
can infect the general population;𝑇 is the sick population that
was diagnosed and is receiving effective chemoprophylaxis,
thus unable to infect anyone. As shown in the diagram, only
people in the 𝐼2 compartment will be diagnosed and will
move towards the 𝑇 compartment, while the 𝐼1 compartment
accounts for the missed TB cases. Death rates in the model
depend on disease status; they are fixed into 𝜇𝑆 for susceptible
population, ]1 for exposed classes, and 𝜇𝐼1 , 𝜇𝐼2 , and 𝜇𝑇 for
sick individuals of 𝐼1, 𝐼2, and 𝑇, respectively. Based on the
disparate time scale of natural death versus death due to TB
disease, we assume that 𝜇𝑆 ≤ ]1 ≤ 𝜇𝑇 ≤ 𝜇𝐼2 ≤ 𝜇𝐼1 .

Transmission of Mtb TB occurs following adequate
contact between the sick infectious individuals (𝐼1 and 𝐼2)
and the susceptible population. We assume that the latently
infected (𝐸𝑖) are not infectious and thus not capable of
transmitting the bacteria. We use the incidence expression𝛼(𝜃𝐼1 + 𝐼2)/𝑁 to indicate successful transmission ofMtb due
to nonlinear contact dynamics in a large population [41]. 𝛼
is the transmission rate that represents possible interactions
that may occur among the susceptible population and the
sick infectious population, which is defined as the average
contact per unit time. Infectivity of 𝐼1 is assumed to be
lower (0 ≤ 𝜃 ≤ 1), as the undiagnosed long-term sick
individuals probably reduce their activity due to their poor
health conditions.

Newly infected individuals progress directly to the
infected class𝐸1 and stay there for a period of one year, where
the probability of developing active disease is 𝑝1. If they do
not become sick, they progress to 𝐸2 (at a per capita rate𝑘1) the subsequent year, where the probability of developing
the active disease is 𝑝2. The progression through the latently
infected compartment will continue yearly at a constant per
capita rate 𝑘1. Finally, all latently infected patients with more
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Figure 1:Themodel: a compartment model for tuberculosis transmis-
sion in Nigeria. The model shows the dynamic flow of tuberculosis
(TB) including susceptible population 𝑆; the latently infected pop-
ulation are discerned based on the time since they were infected;
therefore 𝐸1 stands for people latently infected for a period of one
year, 𝐸2 stands for people infected for 2 years, etc.; 𝐸>7 stands for
people that have been infected for more than 7 years; two types of
the nondiagnosed sick population are considered, 𝐼1 and 𝐼2, and the
sick under treatment is shown as 𝑇. Birth occurs at constant rateΠ. Transmission of Mtb depends on 𝛼(𝜃𝐼1 + 𝐼2)/𝑁 and probability
leading to active TB is given as 𝑝𝑖 = 𝑎𝑖2+𝑏𝑖+𝑐, where 𝑖 is the 𝑖𝑡ℎ year
of infection. 𝑘1 indicate succession from one infected compartment
to the next. A fraction of the sick, 𝛽, will be detected and notified;𝑘2 is related to diagnosis time delay before starting treatment and 𝛾
indicates a fraction of relapse for the sick under treatment. Recovery
rate is given as 𝑘3 while 𝑘4 represents the fraction of the infected
population that gets rid of the disease spontaneously. We account
for all courses of death, 𝜇𝑠, ]𝑖, 𝜇𝐼2 , and 𝜇𝑇, and death due to active
TB, 𝜇𝐼1 .

than seven years of infection will remain in the compartment𝐸>7 for a very long period of time, where the probability of
becoming sick (𝑝8) is very low and later would be integrated
back into the susceptible society at a constant per capita rate
of 𝑘4.

The probability of developing an active disease decreases
across the latently infected compartment, 𝑝𝑖, which is
assumed to be an autonomous decreasing quadratic function,
given as 𝑝𝑖 = 𝑎𝑖2 + 𝑏𝑖 + 𝑐, where 𝑖 is the 𝑖𝑡ℎ year of
infection. The sum (∑𝑝𝑖𝐸𝑖) represents the 10–13% of the
latently infected population that will become sick in seven
years or more, and 𝑝1𝐸1 + 𝑝2𝐸2 is about 5-6% of the latently
infected population that will become sick in the first two years
of infection.

We define 𝑇 as the fraction of the sick infectious popula-
tion that were notified and are receiving effective chemopro-
phylaxis, 𝑘2 as the rate of effective per capita notification, and𝑘3 as the per capita rate of successful therapy completion. We
assume that starting a treatment removes an individual from
infectious class 𝐼2 and places them into 𝑇. We also assume
that individuals receiving chemoprophylaxis can abandon
therapy, thus showing a relapse at a per capita rate 𝛾.
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2.1.1. Model Formulation. We used a system of nonlinear
differential equations to model the dynamics of individuals
within the population settings. Setting 𝑁(𝑡) = 𝑆(𝑡) + 𝐸1(𝑡)
+ 𝐸2(𝑡) + 𝐸3(𝑡) + 𝐸4(𝑡) + 𝐸5(𝑡) + 𝐸6(𝑡) + 𝐸7(𝑡) + 𝐸>7(𝑡) +𝐼1(𝑡) + 𝐼2(𝑡) + 𝑇(𝑡) and suppressing time dependence, 𝑡, for
each variable,𝑁(𝑡) represent the total population size at time𝑡. The twelve model equations are

𝑑𝑆
𝑑𝑡 = Π + 𝑘4𝐸>7 + 𝑘3𝑇 − (

𝛼 (𝜃𝐼1 + 𝐼2)𝑁 + 𝜇𝑠) 𝑆, (1)

𝑑𝐸1𝑑𝑡 = (
𝛼 (𝜃𝐼1 + 𝐼2)𝑁 )𝑆 − (]1 + 𝑘1) 𝐸1 + 𝑝1𝐸1, (2)

𝑑𝐸2𝑑𝑡 = 𝑘1𝐸1 − (]1 + 𝑘1) 𝐸2 + 𝑝2𝐸2, (3)

𝑑𝐸3𝑑𝑡 = 𝑘1𝐸2 − (]1 + 𝑘1) 𝐸3 + 𝑝3𝐸3, (4)

𝑑𝐸4𝑑𝑡 = 𝑘1𝐸3 − (]1 + 𝑘1) 𝐸4 + 𝑝4𝐸4, (5)

𝑑𝐸5𝑑𝑡 = 𝑘1𝐸4 − (]1 + 𝑘1) 𝐸5 + 𝑝5𝐸5, (6)

𝑑𝐸6𝑑𝑡 = 𝑘1𝐸5 − (]1 + 𝑘1) 𝐸6 + 𝑝6𝐸6, (7)

𝑑𝐸7𝑑𝑡 = 𝑘1𝐸6 − (]1 + 𝑘1) 𝐸7 + 𝑝7𝐸7, (8)

𝑑𝐸>7𝑑𝑡 = 𝑘1𝐸7 − (]1 + 𝑘1) 𝐸>7 + 𝑝8𝐸>7, (9)

𝑑𝐼1𝑑𝑡 = ∑(1 − 𝛽) (𝑝𝑖𝐸𝑖) + (1 − 𝛽) 𝑝8𝐸>7 − 𝜇𝐼1𝐼1,
𝑖 = 1, 2, 3 . . . , 7.

(10)

𝑑𝐼2𝑑𝑡 = ∑𝛽 (𝑝𝑖𝐸𝑖) + 𝛽𝑝8𝐸>7 + 𝛾𝑇 − (𝜇𝐼2 + 𝑘2) 𝐼2,
𝑖 = 1, 2, 3 . . . , 7.

(11)

𝑑𝑇
𝑑𝑡 = 𝑘2𝐼2 − (𝛾 + 𝑘3 + 𝜇𝑇) 𝑇. (12)

Equation (1) describes the rate of change of the susceptible
population 𝑆. There is a gain into this population through
constant birth rate Π. A loss in this population occurs as a

result of infection with Mtb with transmission rate 𝛼(𝜃𝐼1 +𝐼2)𝑆/𝑁 and constant death rate 𝜇s. Equations (2) through (9)
represent the rate of change of the latently infected population
over time. The rate of change of 𝐸1 increases as a result of
Mtb infection that results in latent infection at a rate 𝛼(𝜃𝐼1 +𝐼2)𝑆/𝑁 and decreases by developing active TB at a rate 𝑝1𝐸1,
natural death ]1, and movement to the second year of latent
infection class at a rate 𝑘1𝐸1. 𝐸2(𝑡), 𝐸3(𝑡), . . . , 𝐸>7(𝑡) increase
by successive movement of latently infected individuals from
one class to the next and decrease by progressive movement
to the next infected class, natural death ]1, and developing of
active TB at the rate 𝑝𝑖𝐸𝑖 in each 𝑖𝑡ℎ latently infected class.
A fraction (1 − 𝛽) of the Mtb infection which progress to
active TB and were undetected decrease by death due to TB
and other causes at the rate 𝜇𝐼1, and the detected fraction are
increased by relapse at a rate 𝛾𝑇 and decrease by diagnosis
at a rate 𝑘2𝐼2 and by death at a rate 𝜇𝐼2. The rate of change
of sick individuals under treatment is increased at a rate 𝑘2𝐼2
and reduced at a rate 𝛾𝑇, recovery rate 𝑘3𝑇, and natural death
at the rate 𝜇𝑇.
2.1.2. Model Calibration and Validation. In order to deter-
mine the effects of various parameters on the dynamics of TB
inNigeria, (1) to (12) are integrated by a Runge–Kutta method
of order 4, using Matlab software (Ode45). We started by
fitting ourmodel to the 2000–2010 prevalence data onNigeria
from the official WHO reports and Nigerian epidemiological
fact sheets [42]. The reason why this period was chosen
is because of reliability of available data together with the
fact that all parameters can be approximately considered
constant for that period, which would not be applicable
if the period was longer. We used the least squares curve
fitting in Matlab, by specifying the lower and upper bounds
of specific parameters to be estimated. The recruitment
rate of the susceptible was chosen and calculated such that
the population of the country remains constant during the
simulation. The treatment efficacy (1 − 𝛾) is considered to be
80% with probability of relapse taken as 20%. The parameter
values that gave the best fit are given in Table 1 and were
obtained with 𝑅2 = 0.9992.

The initial conditions were chosen in accord with avail-
able data when possible (i.e., for the total population, esti-
mates of global LTBI population, the population in sick
compartments, and the ratio 𝐼1/𝐼2). The distribution of LTBI
among time-since-infection compartments was also fitted
in this process. We finally obtained these initial conditions
(considering a population of 100,000):

(𝑆 (0) , 𝐸1 (0) , 𝐸2 (0) , 𝐸3 (0) , 𝐸4 (0) , 𝐸5 (0) , 𝐸6 (0) , 𝐸7 (0) , 𝐸>7 (0) , 𝐼1 (0) , 𝐼2 (0) , 𝑇 (0))
= (58303, 6100, 5000, 4438, 4020, 3550, 3140, 2860, 12250, 284, 55, 0) . (13)

This corresponds to initial prevalence of 339 and a notifi-
cation rate of 16%. Figure 2 shows the epidemiological data
together with the best fit of the model.

As a validation of the previous calibration, we took data
from a wider period (1990–2015) and confronted it with the

model. Keeping all the parameters constant but with a small
change in the force of infection value, as well as in the initial
conditions, the new𝑅2 was 0.9706.Therefore, we assumed the
calibration for the 2000–2010 period to be the baseline for our
subsequent virtual experiments.
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Table 1: Summary description of parameters of the model fitted to Nigeria data (2000-2015).

Parameter Parameter description Values (𝑚𝑜𝑛𝑡ℎ−1) Source
Π Birth rate in S class Constant NA
𝜇𝑠 Death rate in S 0.012 calibrated
𝜇𝑖1 Death rate in 𝐼1 0.146 calibrated
𝜇𝑖2 Death rate in 𝐼2 0.146 calibrated
𝜇𝑇 Death rate in 𝑇 0.01 calibrated
]1 Death rate in LTBI 0.0108 calibrated
𝛼 Contact rate of sick population 3.54 calibrated
𝑘1 Movement rate in LTBI population 1

12 calibrated

𝑝𝑖 Probability of developing active TB 𝑎𝑖2 + 𝑏𝑖 + 𝑐 derived
𝛽 Notification rate 0.16 [35]
𝜃 Reduced probability for sick individuals in 𝐼1 0.78 calibrated
𝑘3 Recovery rate 1

6 [35]

𝑘4 Inverse TB clearance rate 1
120 calibrated

𝛾 Relapse rate 0.20 [35]
]8 Death rate in 𝐸>7 0.008 calibrated
𝑘2 Inverse of diagnosis delay time 1

3 [11]

𝑎 Probability component for active TB 0.001035 calibrated
𝑏 Probability component for active TB -0.0152 calibrated
𝑐 Probability component for active TB 0.06 calibrated
(1 − 𝛾) Effective TB treatment rate 0.80 [35]

Epidemiological data
Calibrated model

2002 2004 2006 2008 20102000
Time (years)
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Figure 2:Model simulation calibrated against tuberculosis prevalence
data in Nigeria: The figure shows the tuberculosis prevalence curve
of the model, calibrated with 2000–2010 data, compared with the
data estimates from WHO in that period. The model prevalence
curve is obtained by solving (1) to (12), using the initial conditions
in (13) and parameter values in Table 1.The goodness-of-fit measure(𝑅2) for simulation trajectories was evaluated and found to be
0.9992.

2.2. Facts and Hypotheses. For the purpose of this paper, we
assume a constant birth rate Π. All newborns into the model
susceptible class are uninfected, and TB/HIV coinfection is
not explicitly modeled.These assumptions are simplifications
that are not relevant to the current purpose, which is the
identification of significant damage caused by poor case
detection in the TB control program. They will be modified
in a subsequent study in order to account for the effects

of changes in the birth rate over time and to evaluate the
significance of TB/HIV coinfection.

We propose to use the model in the exploration of dif-
ferent situations in Nigeria as a virtual experiments platform.
The situations evaluated have been selected to start working
on four wide hypotheses, although the final confirmation
of all of them would require further research including on-
field projects and incorporating experts from other involved
disciplines. The four starting hypotheses are the following:

(1) TB prevalence still remains a major health challenge
in Nigeria due to poor case detection

(2) Increase in effective treatment may not necessarily
cause a significant decrease in the prevalence of TB in
the country if active case finding is not implemented.
In other words, increasing the notification rate is
necessary for decreasing TB transmission in Nigeria

(3) The persistence and nondecreasing dynamics of TB in
Nigeria are also related to a large number of latently
infected individuals

(4) Poor notification rate has resulted in a large number
(hundreds of thousands) of deaths of TB patients

3. Results

Numerical simulations of the model allowed us to estimate
some important parameters associated with TB in Nigeria.
In addition, we were able to observe and quantify the effect
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of the infected population on the prevalence of TB in the
country. They also allowed us to make a distinct connection
between the notification parameter and the death toll on
the sick population (infectious) population, the relationship
between the death and the prevalence of the disease in the
country. To illustrate these effects, we divide this section
into 3 subsections. Hypotheses 1 and 2 were used to explain
the case detection and how effective treatment affects TB
dynamics in Nigeria; we made a prediction of new TB cases
and provide an alternative strategy for TB control.Hypothesis
3 was used to explain the relationship between LTBI and the
dynamics of TB prevalence. Finally, by means of Hypothesis
4 we quantified the death due to TB and estimate the death
toll due to TB for the next decade in Nigeria, and we also
estimate lives that could be saved with the alternative strategy
proposed.

3.1. Hypotheses 1 and 2: Case Detection and Effective Treat-
ment. The model was successfully fitted into WHO data
of TB prevalence in Nigeria. Then, we compared the fitted
tendency with predictions regarding an increase in notifica-
tion parameter. The parameter values obtained after fitting
the model into data of Nigeria are briefly summarized and
discussed in Table 1. As shown in Figure 2, the obtained
baseline simulation represents the epidemic TB situation
in Nigeria successfully. Values for many parameters were
determined from vital statistics: TB data from NTBLCP
in Gombe State, official TB data from the World Health
Organization (WHO), and other recent literaturesmentioned
in Table 1. When the values could not be estimated from data
or literature, as in the case of the parameters associated with
the contact rate, they were obtained with the model’s fitting
into epidemiological data (𝑅2 = 0.9992).

Recall,WHOestimates that about 30%of theworld popu-
lation is infectedwith LTBI [43].However, themodel revealed
that about 34–37%(depending on the choice of contact rate
for the sick population and some other parameters that where
calibrated) of Nigeria’s population is latently infected with
TB.This population is distributed across the various infected
classes ranging from 𝐸1 to 𝐸>7, and the time since infection
in this population was also fitted.

We then used our model to investigate how the noti-
fication of new TB cases affects the dynamics of TB in
Nigeria. We tested the hypothesis that the nonimprovement
in notification observed in the situation of Nigeria may
partially explain why the prevalence of TB in this country
is very persistent and not declining as compared to others,
showing an incidence rate between 400 and 500/100,000
(more than 130 times the incidence rate in the USA) [44–
46]. The notification rate of TB in Nigeria is about 16% [35].
Therefore, initial conditions for new TB cases were calculated
by assigning 16% of new cases to 𝐼2 (i.e., the compartment that
gathers the sick population that goes to hospital and receives
care at some point), and 84% were assigned to 𝐼1 (i.e., the
population that remain sick throughout their life cycle until
death).

Figure 3 shows the fitting of themodel into the prevalence
of TB in Nigeria, namely, baseline, together with some

Figure 3: Hypothesis 1: baseline simulation and effect of the notifica-
tion rate. Model fitted to the prevalence of tuberculosis in Nigeria.
The blue star represents the epidemiological data of tuberculosis
prevalencewhile the red line-circle represents themodel simulation.
The fitting was done with 16% of the sick population being notified.
The experiment was repeated with 20% (yellow curve), 25% (green
curve), 30% (black curve), 60% (magenta curve), and 85% (cyan
curve) notification, respectively.

simulations where an increase in the notification rate was
explored. The mean prevalence for the epidemiological data
is 330.64 with a standard deviation of 6.7, while the mean for
the model is 330.39with a standard deviation of 6.6 and an𝑅2
coefficient of 0.9992 (Table 2). The model is pretty consistent
with the epidemiological data.Themean resultant prevalence
for each simulated notification rate is recorded in Table 2 as
well. These results show a clear decrease in the prevalence of
TB when the notification of the new TB cases increases.

In the baseline simulation, the model predicted 62,000
deaths due to TB in the year 1990, 72,000 deaths in the year
1995, and 118,000 in the year 2014.These results are within the
range of annual TB deaths estimated by WHO [35]. Figure 4
shows the predicted decline in prevalence after 10 years for
each of the notification rates tested. In fact, a simply 10%
relative increase in case notification of people with active TB
reduces the TB prevalence by 15% when compared with the
current situation. Predicted TB deaths also would decline by
more than 15% when compared with the baseline simulation
that fitted the epidemiological data.

A new simulation series was designed in order to explore
the effect of an improvement of effective treatment, i.e., a
decrease in 𝛾. The results showed that a 10% improvement of
effective treatment among active TB individuals produces a
decline of only 5% in the prevalence of TB and related deaths
compared with the baseline fitting, as shown in Figure 5(a).
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Table 2: Summary of the mean prevalence of data and model simulations, as well as 𝑅2 of the fitting.
Case detection rate Mean prevalence Standard deviation References
Epidemiological data 330.64 6.7 [35]
Model 16%Notification 330.40 6.8, 𝑅2 = 0.9992 Model
Model 20%Notification 311 NA Model
Model 25%Notification 288 NA Model
Model 30%Notification 266 NA Model
Model 60%Notification 156 NA Model
Model 85%Notification 105 NA Model
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Figure 4: Hypothesis 1: evolution of tuberculosis prevalence in
Nigeria after 10 years of simulation with different notification rate.
Each point on the curve shows the prevalence of tuberculosis in
Nigeria when simulated with the corresponding notification value
on the x-axis for 10 years.

Given these results, the most effective intervention for reduc-
ing future TB cases and related deaths in Nigeria as predicted
by the model is active case finding.

A final virtual experiment was designed in order to ex-
plore the effect of an improvement of effective treatment in
a context with a high case detection rate. In this simulation
series, the detection rate was fixed at 80% and different
treatment success rates were explored. The results showed
that, in this case, the improvement in treatment effective-
ness would provide a significant decrease in TB prevalence
(Figure 5(b)). With a notification rate of 80%, the increase
in effective treatment by 10% will lead to a decline in
the prevalence of 23% and associated deaths by almost
30%. In the case of a poor case detection rate, increase
in 10% of effective treatment is associated with only 5%
decrease in prevalence and related deaths. Therefore, an
increase in the treatment effectiveness is only relevant if it
is combined with active case finding or in a scenario where
the notification rate is significantly high. Nevertheless, with
the growing problem multidrug-resistant TB, investment in
treatment becomes more relevant and needs to be main-
tained.

3.1.1. TB Prediction in Nigeria. Looking at the current TB
situation in Nigeria, one can wonder what the situation will
be if all parameters are left unchanged especially in terms of
passive case finding.We envisioned this scenario andwith the
help of the baseline simulation results, the following results
are presented. Figure 6(a) shows the predicted evolution
of TB when the notification rate is gradually increased,
while Figure 6(b) shows the effect of a sudden increase in
this parameter. The simulation starts with the baseline that
represents the current situation (16% notification, red-dashed
line). Keeping the notification at this ratewithout any changes
may keep the prevalence of TB in the country between 350
and 320/100,000 even after 40 years from the present day.
This is precisely the present situation of TB in Nigeria, where
there have not been any significant changes or decline in TB
prevalence for the past 25 years (323/100,000 in 1990 and
332/100,000 in 2015 [35]). Increasing the notification rate up
to 20% in 10 years could keep the prevalence between 300
and 290/100,000 people. If no more effort is made to increase
the notification further, the prevalence would remain in
this range even after a period of 50 years. Increasing the
notification further to 25% in another 10 years would reduce
the prevalence to between 290 and 260/100,000 people, and a
further increase in notification to 30% would bring down the
prevalence to between 220 and 240/100,000.We repeated the
experiment with a sudden increase in the notification from
16% to 30% as seen in Figure 6(b) when the prevalence would
remain in the range of 270/100,000 to 280/100,000.

For a successful and reasonable decline in TB cases in
Nigeria to be achieved, case finding needs to be active and
increased from period of time to time. Although a 30%
notification rate is viable, a real TB prevalence decrease
in Nigeria can only be achieved with a notification rate
around 80%. Both strategies presented in Figures 3 and 6
produce the same results in the long run in terms of TB
prevalence decline. However, in terms of public health, a
progressive decreasing strategy would be more feasible due
to the economic resources that need to be allocated by health
authorities. In contrast, increasing the notification rate by
a large percentage could be very ambitious and resource
demanding. At this junction, the most important point is to
be able to make interventions as soon as possible given the
long time required to actually see changes in TB prevalence.

3.2. Hypothesis 3: Latently Infected Population. Although it
is known that latently infected individuals are connected
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(a) 16% case notification

Epidemiological data
80% Treatment success rate
85% Treatment success rate
90% Treatment success rate
95% Treatment success rate

0
50

100
150
200
250
300
350
400

Pr
ev

al
en

ce
/1

00
,0

00

2005 2010 20152001
Time (years)

(b) 80% case notification

Figure 5: Hypothesis 2: effective treatment in the population with good surveillance and poor surveillance. (a) The figure depicts a relative
increase in effective treatment from 80%, 85%, and 90% to 95% in a population with poor case detection, where the notification rate is only
16%. (b) The figure shows a significant decrease in prevalence due to increase in effective treatment from 80%, 85%, and 90% to 95%, in a
population with very good case detection, where the notification rate is 80%.
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Figure 6:Hypothesis 1: effective strategies in a gradual increase in tuberculosis notification in the case of poor tuberculosis surveillance. (a) Result
of the prediction made by the model when the notification of new tuberculosis cases is gradually increased. The red curve shows the poor
notification rate situation, which represents the present situation of tuberculosis in Nigeria (the blue stars). The rest of the curves represent a
change in case detection and increasing in the notification of new cases by some percentages over a period of time. (b) Result of the prediction
made when the notification of new tuberculosis cases is suddenly increased.

with the incidence of TB, it is not completely clear how this
connection can influence the dynamics of the disease in
a population. Our first hypothesis implied that poor case
detection leads to a higher number of unnotified TB cases,
which leads to a high number of latently infected individuals
that are at risk of developing active TB, thus resulting in
persistent high TB prevalence. Our model was also used as
a virtual experimental device to test the effect of the latently
infected population in Nigeria, which can provide significant
information that can be very difficult or impossible to guess
otherwise. We are going to show why the prevalence of TB
in Nigeria is substantially high and nondecreasing for a very
long period of time.

We explored the effect of increasing the notification rate
or the treatment success on the LTBI population (Figure 7).
Figure 7(a) shows the result of various simulations of
the latently infected population carried out with different
notification parameters. The latently infected population
consistently declines with each increase in notification rate.
This result explains why a population with a poor case
detection program can fail to achieve significant progress
in reducing new TB cases, because the latently infected
population remains the same for a very long period of time
due to what is called the replacement principle, where each
sick TB patient produces at least one sick patient before death
or progress to receiving treatment (the number of new cases
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Figure 7: Hypothesis 3: changes in latent tuberculosis with respect to an increase in notification rate or in effective treatment. (a) Simulated
dynamics of the latently infected population (LTBI) with different notification levels, with all other parameters kept constant in the population
of Nigeria. The red curve shows the LTBI population that remained constant for more than 20 years, thereby producing new sick people
constantly. With an increase in notification up to 30%, the pool of the LTBI starts decreasing (blue curve), and a further increase in
notification shows a much higher decrease in the pool of LTBI (black curve, 85% notification rate). (b) Simulation of the LTBI population
with improvement in effective treatment, with all other parameters kept constant in the population of Nigeria. There is little or no change in
the number of LTBI cases before and after increasing the effective treatment.

that receive treatment is very low). This type of situation
guaranteed the consistent production of newer TB cases if
active case finding is not implemented.

The increase in notification rate affects not only the active
new TB cases but also the latently infected population. A 10%
increase in notification was associated with a 38% decline in
latent infectedTB (Figures 7(a) and 8), while a 10% increase in
effective treatment showed only a 2.9% decline in the latently
infected population (Figure 7(b)).

3.3. Hypothesis 4: Poor Notification and Mortality in Sick Pop-
ulation. Wefinally tested the hypothesis that low notification
rate has resulted in massive deaths in the sick population.
This phenomenon might be a mystery in Nigeria as not every
death is reported to the authorities. Only the deaths that
occur in a notified case of TB are recorded as a death due to
this disease. As the notification rate of TB in Nigeria is just
16%, one can wonder how many death cases due to TB went
unnoticed. As mentioned earlier, we used the notification of
16% to fit the data to the model.

Figure 9 shows the estimated TB-related mortality per a
hundred thousand individuals in the population of Nigeria
obtained from the model. The present-day mortality rate in
Nigeria is shown by the red curve, which shows that mortality
due to TB in Nigeria is between 70 and 65 individuals per
100,000 individuals. This result is very consistent with the
report from WHO [35]. The model shows that an increase
in the notification by 10% would lead to the decrease in
mortality by 20%. Actually, we see from Figure 9 that if
the notification is increased from 16% to 25%, the mortality
declines to less than 60/100,000 individuals, which implies
hundreds of thousands of lives that would be saved. In

Latently infected population after 10 years
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Figure 8: Hypothesis 3: latently infected population after 10 years
of simulation of the model with different notification levels. Each
point of the curve represents the corresponding population of the
latently infected compartments, when the model is simulated with
the corresponding notification rate on the x-axis.

order to better understand these dynamics, we estimated the
mortality rate in Nigeria after 10 years of simulation with
the model by using different notification parameters, starting
from the current situation in Nigeria (notification rate of
16%). The result of this experiment is shown in Figure 10.

The expected cumulative number of deaths due to TB
with the 16% notification after 10 years of simulation is
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Figure 9: Hypothesis 4: The figure shows the decrease in mortality
due to tuberculosis in the sick population for a period of 10 years
with different notification levels. The red curve represents the
current mortality due to tuberculosis in Nigeria (baseline), and the
rest of the curves show what the situation would look like if the
notification were to be different.

4,748,971. An increase in notification to a rate of 20% could
save up to 292,244 lives within this period. If the notification
rate was increased to 25%, up to 584,489 lives could be saved
within this period.

Although the estimated TB prevalence in Nigeria from
1990 to the year 2016 remains the same, the estimated number
of new cases increases annually. These are attributed to the
increase in the population of the country, but, at the same
time, it shows a massive increase in the number of deaths
due to TB in the population as estimated by the model. The
estimated new TB cases rise from 310,000 in 1990 to more
than 600,000 in 2015, and the estimated number of TB-related
deaths by the model rises from 62,000 in 1990 to more than
120,000 in 2015. If the population ofNigeria continues to grow
at the rate of 3.2% annually [47] and the case finding remains
passive at 16% notification, then TB-related deaths will reach
up to 3,456,640 in the year 2030; this is twice the current
number of deaths due to TB in the world reported by WHO
in 2017 [3]. Depending on availability of funds, political
willingness to implement active case finding in Nigeria, and
the strategy implemented, millions of lives could be saved
from 2018 to 2030. Globally, the model predicted a total
death number of 11,872,530 individuals from 2017 to 2030.
An increase in case detection by 15% within this period could
save up to 2,557,160 lives and would reduce the incidence by
more than 30%.

4. Discussion

Epidemiological data from Nigeria shows that the TB situa-
tion in this country is very persistent over time, in spite of
the efforts made by all the stakeholders battling the disease.
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Figure 10:Hypothesis 4: the result of 10-year simulation of themodel
using different notification rates. Each point on the curve represents
the mortality in the sick population after the model is simulated for
10 years with the corresponding notification rate on the x-axis.

While TB prevalence in Nigeria in 1990was 323/100,000 indi-
viduals, today it is around the same number (330/100,000)
according to WHO. The same situation is observed in the
number of deaths due to the disease (70/100,000 today
compared to 65/100,000 in 1990). The reason for this steady
state of the TB epidemic in the country is still unclear. Many
associate it with poverty and population growth. Nigeria
recently overtook India as the world’s poverty capital [48]
with about 87 million people in abject poverty [48]. Its
unprecedented demographic growth (from 95,62 million
people in 1990 to 206,20 in 2018) is mainly due to a very high
fertility rate (5.526 according to the World Bank in 2016).
Others presume that there is a need for a better strategy in
order to fight the disease towards a significant decline in the
near future [11].

Nigeria is a particular setting where several healthcare
options (medical pluralism) including orthodox medicine
(public, private, or drugstores), traditional medicine, and
spiritual healers operate freely [11].The public health facilities
where the TB control program operates are distanced from
the citizens. More often than not, these health facilities are
not the first choice during health seeking decisions. Unlike
the theory of Dim and Dim [11] and Zwerling et al. [49],
we believe that high TB prevalence in Nigeria has a lot
to do with policies of its TB control program, as stated in
other studies [18, 45, 50, 51]. Today, Nigeria is ranked as
number 3 in the world in terms of TB burden [52] just
behind China and India. The country has adopted passive
case finding as recommended by WHO [42], based on a
study conducted in India [53, 54]. Nevertheless, the Indian
context has completely different demographic, cultural, and
literacy settings fromNigeria.However, successful TB control
only happens when social and cultural factors are taken into
consideration [55]. It is therefore imperative to revise and
consider the means of extending the NTBLCP strategy.
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In this study, we applied epidemic models to real pop-
ulations to draw conclusions about one of the leading
health challenges in Nigeria. We numerically showed that
an increase in the diagnosis rate together with a treatment’s
success of TB patients is an essential step towards TB control
in Nigeria. In order to increase notification rate of TB in
Nigeria using the current passive case detection strategy, the
people at the community level should be empowered with
adequate knowledge of the growing burden of the disease
and accessible potentials for a cure. Alternatively, active
case finding strategies could be explored and implemented,
although the existence of many remote communities in some
Nigerian areas would dramatically make this task difficult. In
any case, the analysis reveals that, with current strategies, it
will be impossible to actualize the aims of the EndTB strategy,
with targets to reduce TB deaths by 95% and to cut new TB
cases by 90% between 2015 and 2035 [56].

Even with a high increase in the notification and with-
out considering HIV/TB coinfection and the problem of
multidrug-resistant (MDR) strains, mortality from TB in
Nigeria will still be dramatic for the next few decades to come.
Two main facts will contribute to this increase in mortality:
first, Nigeria’s population growth of more than 3.2% annually
[47, 57] and, second, the resulting deaths due to TB which
are expected to drastically increase by 2030 unless effective
TB control is implemented in the country. The results we
obtained in our study confirm this situation. This issue poses
a great threat not only to Nigeria but also to the entire world’s
TB program and to the ambitious End TB Partnership [56] by
2030.

The increase of TB diagnosis by applying active case find-
ing along with specific actions to guarantee TB treatment’s
adherence and success could be used to achieve the goals set
by WHO in Nigeria by reducing TB mortality significantly,
TB prevalence, and LTBI population. Perhaps the time has
come for a critical reexamination of the costs, risks, and
benefits of active case finding in this country. Indeed, the
strategies evaluated in this paper would require substantial
resources and extraordinary mobilization of international
attention, since the greater part of TB control program
funding comes from external sources [42]. We have not
attempted to estimate the cost difference of the control
strategies proposed. Initiating and sustaining such a large-
scale effort of active case finding would be very challenging.
However, the first step needs to include both a realistic
assessment of implementing these ambitious initiatives and
the identification of an optimal way to implement them. For
that, the socioeconomic context of the different Nigerian ter-
ritories and the social inequalities within and between them
should be taken into account, so that they can be transformed
into feasible policy recommendations. Furthermore, success
could not be guaranteed without both realistic evaluation of
the costs of pursuing active case finding and the treatment of
new diagnosed TB sick individuals.

Our results exploring different scenarios show the high
relevance of increasing the notification rate in contrast to the
modest effects of an improvement of treatment efficacy only.
Nevertheless, the treatment efficacy would probably turn out
to be crucial if we included the problem of MDR, which

would be addressed in further studies. Despite contemplating
the absence of MDR as a limitation of the model, our
conclusions cannot be questioned, since the main problem
is still the pool of nondiagnosed TB sick individuals. Future
studies could also include the study of the reinfection effect
in the model. This new setting would allow a detailed study
of the LTBI population and its distribution between old and
recent infections. Nonetheless, the reinfection effect would
not change the main dynamics given by the current model
and the recommendations that arose from it.

5. Conclusions

The model shows that WHO targets stated by the End
TB strategy [56] would not be achieved with the current
public management of TB in Nigeria. In fact, its forecasted
situation for 2030 suggests being far away from ending the
TB epidemics as aimed in the United Nations Sustainable
Development Goals under Goal 3. The high percentage of
undiagnosed TB sick individuals in this country is a huge
obstacle for the target incidence’s disease. It is essential
to increase the number of the diagnosed and successfully
treated, thus requiring not only a significant economic effort
but also a boost in social work in the community. This result
is valid not only for Nigeria, but also for such countries where
nondiagnosis is a serious problem. In all cases, a signifi-
cant TB incidence’s decrease can only be achieved by both
increasing the notification rate to the 80%-90% range and
providing appropriate management of diagnosed patients.
With both measures, new infections can be prevented and
the treatment’s success can be guaranteed. This situation is
the bottleneck that needs to be overcome in addition to
the incorporation, improvement, and/or strengthening of
other essential TB control measures such as directly observed
treatment or contact tracing.
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