
Load and Video Performance Patterns of a Cloud Based WebRTC Architecture

Vamis Xhagjika∗†‡, Òscar Divorra Escoda∗, Leandro Navarro† and Vladimir Vlassov‡
∗Tokbox Inc. - a Telefónica company, Barcelona, Spain
†Universitat Politècnica de Catalunya, Barcelona, Spain
‡Royal Institute of Technology, Stockholm, Sweden

Email: {xhagjika, leandro}@ac.upc.edu, {vamis, oscar}@tokbox.com, vladv@kth.se

Abstract—Web Real-Time Communication or Realtime com-
munication in the Web (WebRTC/RTCWeb) is a prolific new
standard and technology stack, providing full audio/video
agnostic communications for the Web. Service providers imple-
menting such technology deal with various levels of complex-
ity ranging anywhere from: high service distribution, multi-
client integration, P2P and Cloud assisted communication
backends, content delivery, real-time constraints and across
clouds resource allocation. This work presents a study of the
joint factors of: multi-cloud distribution, network performance,
media parameters as well as back-end resource loads. To the
best of our knowledge such study has not been explored in
previously work. The monitored workload is sampled from
real users and does not present a synthetically generated load,
additionally the performance data is sampled both by passive
user measurements as well as server side measurements. The
patterns correlating such factors enable designing adaptive
resource allocation algorithms and media Service Level Ob-
jectives (SLO) spanning over multiple data-centers or servers.
Based on our analysis, we discover strong periodical load
patterns even though the nature of user interaction with the
system is mostly not predetermined with variable user churn.

Keywords-load measurements, webrtc, rtp/rtcp, media, bi-
trate, stream allocation

I. INTRODUCTION

WebRTC[1], [2] is the HTML5 extension for real-time
communications, enabling live media communications be-
tween two or more parties using standardised web technolo-
gies. WebRTC/RTCWEB is currently specified through three
main aspects:

• WebRTC W3C standard API specification for use in
web browsers [1].

• RTCWEB IETF standard recommendation for the set
of protocols necessary for media communications for
every connection [2].

• WebRTC reference software media stack (open source
component of Chrome browser), implementing previ-
ous specifications [3].

WebRTC/RTCWEB are a set of standard recommenda-
tions conceived for delay non-tolerant applications where
interactive real-time communication is necessary. One ap-
plication of WebRTC/RTCWEB is multiparty audio/video
conferences. A conference is a session where each partici-
pant, publishes his audio/video sources while simultaneously
receiving audio and video streams from other participants.

WebRTC clients are general purpose Web Browsers or
devices that implement WebRTC/RTCWEB compatible stan-
dards. Common nomenclature for both is WebRTC End-
point1 (hence, both referred as such in the remainder of this
work). The WebRTC/RTCWEB standard includes both P2P
and cloud-relayed communications. This work focuses on
real-time media transmission leveraging WebRTC/RTCWEB
and cloud-relayed architectures. An analysis of quality of
such media architecture operation is of utmost importance
for user experience and the overall performance of the
system.

The protocol in charge to deliver media is the Real-Time
Transport Protocol (RTP) and uses Real-Time Transport
Control Protocol (RTCP) for quality control. RTP/RTCP[4]
is a general purpose transport protocol that provides support
for multi-homing. It is standardized to run over both lower
level UDP and TCP protocols (although UDP is usually the
rule for timeliness performance). RTP is agnostic to specific
codecs and can function as a transport for both video and
audio stream formats. For example, in the framework of
WebRTC/RTCWEB we can encounter VP8, H.264 and VP9
video codecs, while for audio OPUS, ISAC, G.722 or G.711
are common as well.

Live Audio/Video Conferencing in WebRTC/RTCWEB
is implemented to use RTP to deliver media to endpoints
and servers. In middlebox/server based topologies[5], each
endpoint publishes one or more RTP streams for each media
stream, and subscribes to each of the RTP streams of the
other participants in the session. Other typical mechanisms
are also implemented as well by means of a backend, like
STUN and TURN for Nat-Trasversal. WebRTC is supported
natively by major web browsers (e.g. Chrome, Firefox or
Edge) and provides a free real-time communication medium.

Common middlebox/server topologies include using Mul-
tipoint Control Units (MCU) or Selective Forwarding Unit
(SFU). MCUs typically implement both software assisted
multicast as well as media translation as needed, while
SFUs selectively forward to each participant media (and
control) packets in more or less sophisticate ways without
transcoding operations. Fig. 1 shows the high level design
of such an architecture.

1Standardized in: https://tools.ietf.org/html/draft-ietf-rtcweb-overview-12

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in 
other works. DOI 10.1109/CCGRID.2017.118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185528528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1. System Overview

In this work we will focus on examining media parameters
and load profiles in the scenario where media operations
use a Selective Forwarding Unit (SFU) as media relay
(Fig. 1). Media relaying presents a better alternative to P2P
communications as it permits to lower upstream bandwidth
needs of the clients implementing WebRTC compatible
communication software. Without a selective forwarding
unit clients would need upstream bandwidth proportional
to the the number of endpoints participating in the same
session.

By having a Cloud SFU, each sending endpoint needs to
send at most one stream for each published stream while
the Cloud backend takes care of replication and delivery
to all of the receiving endpoint. Upstream bandwidth is
a limited resource for some network deployments (as an
example we consider both traditional asymmetric ADSL as
well as mobile devices) and thus multi-party sessions would
be limited to the upstream bandwidth of the participants.
In a scenario not supporting Cloud SFUs, and using a p2p
mesh among endpoints, as these join a session and the stream
count increases, the performance would degrade rapidly, and
the use of resources increase rapidly, rendering reliability
unpredictable as it depends on the upstream bandwidth of
each participant.

Compared to an MCU including transcoding, an SFU
provides a much more flexible streaming architecture that is
a better fit to the requirements of modern use cases, at the
same time that it refrains from using and excess of resources
in the cloud. A key benefit of a selective forwarding unit is
the ability to forward to each receiving endpoint a quality
that is as close as possible to the network or cpu capabilities
of that endpoint without having to use expensive transcod-
ing. E.g. When the sending endpoint implements simulcast
(sending multiple video qualities at the same time) the SFU
can pick and send exactly the closest quality that matches
the network requirements of each receiving endpoints.

Network quality of service is of utmost importance for
these communication architectures. Also, one of the most
important properties directly related to video quality is video
bitrate. For resilient real-time communications, bitrate needs
to adapt at every moment to the available resources in clients

and network, and avoid dropping communication. End-to-
end rate-control in combination with RTP/RTCP takes care
of it. In this work, we will focus on studying the impact of
machine load in terms of streams/server towards rate-control
and client received bitrate.

The motivation of this work is thus the study and defi-
nition of stream load patterns (per SFU), bitrate and other
system parameters. With these, one can devise automatic
algorithms to predict resource needs and enforce Service
Level Objective (SLO) limits. This can lead to improved
user experience and service cost management. The observed
patterns concern both: periodic repetitive server loads and
the influence they have on media quality (such as bitrate).
The SFU as a stream relaying, selection and duplication
component directly impacts the quality of the media in a
WebRTC session. Processing delay introduced by the SFU
is directly propagated to the endpoints and as such could
produce various media quality problems such as communica-
tion delays, stream artifacts (poor quality indicators glitches
etc...), and media de-synchronization (inside the same stream
between audio and video, or between different streams of the
same session).

The remainder of this paper is organized as follows: in
Sec. II we provide a study and characterization of server
stream loads for different servers over an extended time
interval. Sec. III provides measurements of video bitrates
in representation of media quality for different clients and
their correlation with load periodicity. Finally, Sec. V draws
conclusions from results and comments future work toward
multi-cloud resource allocation in WebRTC/RTCWEB back-
ends.

II. LOAD CHARACTERIZATION

Load characterization is a critical factor in devising re-
source allocation strategies for a distributed service. The
scenario we are investigating is composed of a distributed
software multicast for a real-time, delay non-tolerant and
subscribers-publishers cloud delivery system. The SFU is
the multicast backend while the subscribers and publishers
are the consumers and producers of media respectively.
Table. I shows the distribution of load measurements taken
on our test cloud as number of streams per server over
2min intervals. Publisher Streams have a mean of 37.31
streams/server while having a 25%− 75% percentile range
of 32−51 streams/server. The number of Subscriber streams,
on the other hand, are centered at 85.52 streams/server and
have a 25%−75% percentile range of 24−125. The number
of streams/server without discriminating subscribers and
publishers is centered around 122.83 and has a 25%− 75%
percentile range of 44− 177.

A very interesting aspect of such distribution is that the
maximum number of streams per machine is orders of mag-
nitude higher than the respective mean and 75% percentile
range. This aspect is very important as once the first stream



Table I
DATA DISTRIBUTION LOAD TEST CLOUD 2MIN INTERVAL

Property Publisher Streams Subscriber Streams Streams
Count 190279 190279 190279
Mean 37.31 85.52 122.83
25% 32 24 44
75% 51 125 177
Max 159 868 980

is allocated to a server, the following streams associated to
the same session need to be allocated on the same server. We
conduct this study with the assumption that a session does
not span multiple servers, while different sessions can be
allocated in different servers or Clouds. Additionally session
can’t migrate to a different servers as the real-time nature of
the service would be severely impacted. Migrating sessions
would require additional setup time for resources, and brief
service disruption to handle hand-over, this challenges make
resource scheduling a critical task for a Cloud back-end
SFU. If multiple big sessions would be allocated on the same
machine, that could cause such sessions to hit the machine
stream capacity limit. Once such limit is reached, it would
cause problems for streams joining the session as the SFU
would not be able to handle the load.

Figure 2. Test Datacenter/Server Load Distribution 7days period

We visualize in Fig. 2 the average count of streams/server
as measured for one week worth of data (a subset of the
dataset used for this resource allocation part). Visualization
of the entire dataset would be tedious for longer periods.
The load presented in Fig. 2 is sampled in 2min intervals
as measured from server logs over our test data-center. In
general, we observe from data that the there is a strong
periodic load pattern. Further exploring such pattern, we
examine the load distribution in the form of a lag plot
(Fig. 3) where each lag unit represents a duration of 2min.

The lag plot shows a clustering of values around the
diagonal, which represents a strong positive auto-correlated
sequence. Data-center centric load as such can be well
approximated by an auto-regressive (or running-averages)
model. The linear regression equation covering the lag obser-
vations is written in Eq. 1 with parameters slope = 0.9974
and intercept = 2.8282.

Figure 3. Datacenter total load lag plot 1month period

Yt+1 = 0.9974 ∗ Yt + 2.8282 (1)

Even though we are able to predict the total load going
to a defined data-center, a resource allocation algorithm can
still get into problems under the restrictions that once the
first stream of a session is assigned to one server all other
streams of that session will be assigned to the same server.
As such, extra care needs to be taken in allocating sessions
to servers, so that the load is spread fairly.

III. MEDIA BITRATE ANALYSIS

A. Bitrate Distribution

Given a media codec, bitrate is a key quality metric as
it is directly related to resolution, quality and frequency of
video frames being encoded at the endpoints. As such, we
separate our analysis into the following video resolutions
for (width x height) QVGA(320x240), VGA(640x480)
and HD(1280x720), all at 30 frames/second. The codec
used for the analysis is VP8 (MtI2 in WebRTC/RTCWEB
endpoints). From previous measurements and also domain
knowledge, we can consider that for each of these resolu-
tions, and a wanted frame rate of 30frames/second, a good
enough average video bitrate for single layer streaming (only
one video resolution encoded at the source) is respectively:
QVGA (300kbs), VGA (500kbs) and HD (1.2Mbps).

The first thing we examine is the distribution of bitrate
values for both publishers and subscribers. As shown in
Fig. 4, VGA and QVGA comply with the expected be-
haviour and exhibit normal distributions centered around
317.9Kbps and 492Kbps respectively. These two distribu-
tion are well centered and have an acceptable standard devi-
ation of 90.7 and 130.8 respectively. In the case of the HD
resolution, a different behaviour is exhibited in which the
bitrate profile is distributed over a longer range of values and

2Mandatory to Implement



Figure 4. Subscribers Probability Distribution Functions

only a portion of the values is within the upper acceptable
range of bitrates. Based on the data gathered, we conclude
that such behaviour is mostly due to still common limited
upload bandwidths of client access networks (i.e. ADSL),
together with its effect on WebRTC software rate-control
behavior[3]. That clearly restricts subscribers’ statistically
received bitrate and quality of experience.

Figure 5. HD Publisher Probability Distribution Functions

The distribution of outgoing bitrates for Publishers in
the HD resolution shows the same distribution seen for
Subscribers. If we compare the distributions for HD Sub-
scribers in Fig. 4 and Publishers in Fig. 5, it is clear that
the limiting factor that causes low level bitrates is actually
upload bandwidth. The publishers cannot keep up with the
needed bitrate to stream HD video, congestion is generated
limited by the underlying network infrastructure, and rate-
control algorithms keep bitrate lower than desired in order
to avoid congestion.

B. Bitrate and Load correlation

From data, we can discern a clear pattern of decreasing
bitrate with the increase of in number of streams allocated
in a datacenter. Such pattern provides a good limiting factor
for QoS specific optimizations. Knowing this behaviour in
advance, for a given bandwidth and server cpu capacities,
we can limit the number of streams per machine in order

to guarantee a minimum bitrate range. This can effectively
give rise to allocation algorithms that are QoS aware and try
to optimize video quality on the platform.

We present in Fig. 6 temporal samples of average bit-
rates sampled over the machines of our test data-center for
a period of 9 Days in 2min client samples, in order to try and
find a correlation between load and impact on bitrate quality.
We calculate the Pearson correlation coefficient and p-values
in order to see if there is some linear correlation between
load and bitrate quality. On these measurements, servers
never hit their limit capacity, and as such, machine overload
does not impact the results. Pearson coefficients in case of
QVGA and HD are both 0 and show no correlation, although
in the case of VGA we have a coefficient of −0.48 with
p-values 0 which mean that there is a correlation between
the two. Further work will be focused on understanding and
exploiting this pattern for performance/bitrate trade-offs.

IV. MONITORING AND SYSTEM ARCHITECTURE

The testbed used to gather the data used in this work,
is built in a Cloud environment that was constructed from
a micro deployment of a full Cloud relayed WebRTC in-
frastructure. We allocate a number of bare-metal machines
instances in a Cloud provider on which we deploy Service
API, Control Signaling Services and Media Selective For-
warding Units infrastructure. The data is sampled from both
the server-side and the clients sides. WebRTC endpoints are
software based components running a Javascript compatible
client. All servers were allocated in the same data center
and provided seamless access to the machines while each
one of the sessions is allocated by a load balancer based
on the actual load of servers. In our experimental setup,
sessions are not permitted to span multiple servers in order to
limit the spread of stream latency as well as increase system
stability. The components of our monitoring systems and
the testbed setup are shown in Fig. 1 where the relationship
between the various components are presented. Our testbed
incorporates the following components supporting a full
WebRTC production level deployment:

1) Service API is the entry point to the infrastructure
and is a HTTPS based application that functions as a
resource selection service and authentication.

2) Control Signaling Services Is a software component
implementing HTTP message communication and is
used to exchange messages based on Session Descrip-
tion Protocol (SDP) protocol specification, which is
used to negotiate stream parameters between WebRTC
endpoints. Each server is configured to have one
Signaling service instance.

3) Media Selective Forwarding Units This software
component is present in all of the servers allocated
and handles media stream forwarding for the sessions
that are allocated in each of the machines.



0.0bps

488.3Kbps

976.6Kbps

1.4Mbps

1.9Mbps

2.4Mbps

2.9Mbps

A
v
g
 B
it
ra
te

HD

0.0bps

97.7Kbps

195.3Kbps

293.0Kbps

390.6Kbps

488.3Kbps

585.9Kbps

683.6Kbps

781.2Kbps

A
v
g
 B
it
ra
te

QVGA

97.7Kbps

195.3Kbps

293.0Kbps

390.6Kbps

488.3Kbps

585.9Kbps

683.6Kbps

781.2Kbps

878.9Kbps

976.6Kbps

A
v
g
 B
it
ra
te

VGA

0.0bps

50.0bps

100.0bps

150.0bps

200.0bps

250.0bps

300.0bps

350.0bps

A
v
g
 B
it
ra
te

avg_cnt

09
Jul

20
16

10 11 12 13 14 15 16 17

Timeline 2min ticks

0.0bps

500.0bps

1000.0bps

1.5Kbps

2.0Kbps

2.4Kbps

2.9Kbps

3.4Kbps

A
v
g
 B
it
ra
te

tot_clients

Figure 6. Bitrate and Respective Loads over time

The Service API is a HTTPS based server which is in
charge of allocating sessions and streams based on machine
loads. In our test bed, there is only one centralized instance
of the allocator service api as this is only used to decide
where to allocate streams the first time that the request for a
stream is made. In having such one time only usage nature, it
is guaranteed that this system component is not a bottleneck
for the use-case analyzed in this work. Service API is only
responsible to direct client to the Signaling and SFU servers,
and does not transport media traffic, or is subject to high load
in any case.

In order to setup endpoint capabilities a Signaling Service
is needed that takes care of configuring endpoints with
compatible features. In general in WebRTC the signaling
component is not a media transport protocol, and as such is
used only to setup the stream parameters and does not trans-
port any kind of media. For this work, endpoints implement a
websocket-based signaling protocol that is used to exchange
SDP compliant messages and to setup the media protocols

Service API Units Service x1

Signaling Units Service x9

Selective Forwarding Units Service x9

Total Servers x9

Table II
TESTBED SERVICE COUNT

and capabilities for the actual audio/video communication.
WebRTC as a standard does not define specific protocols
for signaling on purpose. The choice for signaling is a
non-functional API of the architecture which can depend
on the application and/or use-case. The application nature
of endpoints make a standard for signalling the less and
less necessary now-a-days. Through using this signaling
service, the endpoints negotiate a common set of features
that are supported by them all and enables direct or relayed



media inter-communications, and keep the status of the call
updated.

At last the Selective Forwarding Service component is
loaded in each of the servers of our setup and is respon-
sible for implementing audio/video communication relay
units. Media communications are implemented using the
RTP/RTCP protocol and can accept streams of custom video
resolutions based on VP8 video codec. Supported audio
codec is Opus which is the Mandatory to Implement choice
for production ready WebRTC environments.

The exact number of resources used in conducting this
study are listed in Tab. II. We have a total number of 9 bare-
metal machines hosted into a Cloud resource providers, on
each one of the machines we have deployed both a Signaling
Service component as well as a Selective Forwarding
media component. On one of the allocated machines we
have allocated one instance of the Service API responsible
for allocating sessions to servers.

V. CONCLUSIONS

Previous work conducted in [6] deals with both perfor-
mance aspects and bitrate estimation algorithms, but the
study is limitted to a small controlled environment. Work
conducted in [7] [8] explore the behaviour of multiple rate-
control algorithms and streaming properties, as well as intro-
ducing novel rate-control algorithms. Resource allocation for
WebRTC in [9] leads to a Network Virtual Functions based
cloud architecture to interconnect IP Media Subsystems and
WebRTC.

Based on such previous research and the results presented
in this work, we observe that load is predictable and the
discovered patterns can be used in load mitigation and
adaptive resource allocation for cloud based SFUs. This
work provides evidence of strong load and video bit rate
temporal patterns that can be further exploited in order to
guarantee better user experience. Such patterns can be used
as well in order to consider potential trade-offs between
overall user experience and operational costs.

This study focuses on WebRTC sessions that do not span
multiple servers, in order to have a more stable Cloud
backend and lower potential latency and bandwidth bottle-
necks. Future work will focus not only on the potential to
exploit the discovered patterns in ensuring media quality for
WebRTC clients, but also on providing novel SFU models
with sessions spanning multiple servers. By spanning a
session over multiple servers more advanced load allocation
policies can be enforced, which are not possible otherwise.
By breaking the assumption of sessions running within the
confines of one machine, load can be mitigated as streams
join the session thus lowering their impact on overall media
quality.

ACKNOWLEDGMENT

This work was done in the framework of an Erasmus
Mundus Joint Doctorate in Distributed Computing (EMJD-

DC) from the Education, Audiovisual and Culture Executive
Agency (EACEA) of the European Commission under FPA
2012-0030, and Spanish government under TIN2013-47245-
C2-1-R. A special mention is for Tokbox Inc. a Telefónica
company, for funding this research work, and providing the
testing environment and underlying technology to build on.
We thank as well Michael Wilson and Jose Carlos Pujol
from Tokbox Inc. for fruitful discussions.

REFERENCES

[1] World Wide Web Consortium. (2016, Nov.) Webrtc 1.0: Real-
time communication between browsers. [Online]. Available:
https://www.w3.org/TR/webrtc/

[2] The Internet Engineering Task Force. (2016, Nov.) Real-
time communication in web-browsers. [Online]. Available:
https://datatracker.ietf.org/wg/rtcweb/documents/

[3] The webrtc project. [Online]. Available: https://webrtc.org/

[4] Network Working Group. (2003, Jul.) Rtp: A transport
protocol for real-time applications. [Online]. Available:
https://tools.ietf.org/html/rfc3550

[5] Internet Engineering Task Force (IETF). (2015,
Nov.) Rtp topologies. [Online]. Available:
https://tools.ietf.org/html/rfc7667

[6] V. Singh, A. A. Lozano, and J. Ott, “Performance analysis of
receive-side real-time congestion control for webrtc,” in 2013
20th International Packet Video Workshop, Dec 2013, pp. 1–8.

[7] L. D. Cicco, G. Carlucci, and S. Mascolo, “Understanding
the dynamic behaviour of the google congestion control for
rtcweb,” in 2013 20th International Packet Video Workshop,
Dec 2013, pp. 1–8.

[8] S. Islam, M. Welzl, D. Hayes, and S. Gjessing, “Managing
real-time media flows through a flow state exchange,” in NOMS
2016 - 2016 IEEE/IFIP Network Operations and Management
Symposium, April 2016, pp. 112–120.

[9] D. T. Nguyen, K. K. Nguyen, S. Khazri, and M. Cheriet, “Real-
time optimized nfv architecture for internetworking webrtc and
ims,” in 2016 17th International Telecommunications Network
Strategy and Planning Symposium (Networks), Sept 2016, pp.
81–88.




