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Self-bound Bose mixtures
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Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain

Recent experiments confirmed that fluctuations beyond the mean-field approximation can lead
to self-bound liquid droplets of ultra-dilute binary Bose mixtures. We proceed beyond the beyond-
mean-field approximation, and study liquid Bose mixtures using the variational hypernetted-chain
Euler Lagrange method, which accounts for correlations non-perturbatively. Focusing on the case of
a mixture of uniform density, as realized inside large saturated droplets, we study the conditions for
stability against evaporation of one of the components (both chemical potentials need to be negative)
and against liquid-gas phase separation (spinodal instability), the latter being accompanied by a
vanishing speed of sound. Dilute Bose mixtures are stable only in a narrow range near an optimal
ratio ρ1/ρ2 and near the total energy minimum. Deviations from a universal dependence on the
s-wave scattering lengths are significant despite the low density.

Ultracold quantum gases provide a rich toolbox to
study correlations in quantum many-body systems [1]
and model condensed matter physics such as magnetic
systems [2], solid state systems [3], or superfluidity [4]. A
recent example is the prediction [5] and two independent
observations [6, 7] of a self-bound liquid mixture of two
ultra-dilute Bose gases (39K atoms in two different hyper-
fine states). In this liquid state, when the attraction be-
tween different species overcomes the single-species aver-
age repulsion, the mean-field approach [8] would predict a
collapse. In Ref. [5], correlations were taken into account
approximatively using the beyond-mean-field (BMF) ap-
proximation [9]. In a regime where the BMF correc-
tions can stabilize the binary mixture by compensation of
the mean-field attraction, self-bound droplets are formed
which live long enough to perform measurements with
the trapping potential switched off. Being self-bound
and three-dimensional, they are different from bright soli-
tons, which are essentially one-dimensional and have a
limited number of particles [10], while droplets can only
be formed with a critical minimum number of atoms.
On a similar footage, self-bound droplets in the region
of mean-field collapse have also been found in dipolar
trapped systems of 164Dy [11–13] and 166Er [14] atoms.
In this case quantum fluctuations compensate the attrac-
tive components of the dipolar interactions, as confirmed
by theory [15, 16]. Bose mixtures and dipolar Bose gases
share similarities (competition between repulsive and at-
tractive interactions), although the latter case is compli-
cated by the anisotropy of the dipolar interaction.

A large enough, saturated droplet has a surface re-
gion, where the density drops to zero, and a uniform in-
terior, with a density plateau at the equilibrium density
ρeq resulting from the balance of attractive and repulsive
interactions. In this work we focus on the effect of self-
binding rather than on the droplet surface. Therefore we
take the thermodynamic limit, N → ∞ and V → ∞,
with ρ = N/V fixed. We investigate the ground state of
a three-dimensional uniform Bose mixture with partial
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FIG. 1. (Color online) Total energy per particle e as function
of ρ1 and ρ2, with contour lines for energies -3.35, -2.68, -2.01,
-1.34, -0.67, and 0.0 Also shown are the spinodal instability
(thick black line), and the zeroes of the chemical potentials µ1

(blue) and µ2 (green). Only in the narrow region pointed at
by the arrow the mixture is stable against evaporation. The
inset shows e and the chemical potentials µ1 and µ2 along the
dashed line intersecting the energy minimum.

densities ρ1 and ρ2 (hence a total density ρ = ρ1 + ρ2),
and equal atom masses m. We explore a wide range
of ρ1 and ρ2 values, finding an optimal ratio ρ1/ρ2 and
the equilibrium density ρeq. We note, however, that in
the presently published experiments [6, 7], the self-bound
droplets are not saturated: they do not exhibit a central
density plateau, but an approximately Gaussian density
profile, and are so small that they are dominated by sur-
face effects.
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The Hamiltonian of a Bose mixture is given by

H =
∑

i,α

~
2

2m
∆i,α +

1

2

∑

α,β

∑′

i,j

vα,β(|ri,α − rj,β |) (1)

where a Greek index α labels the component, and a Latin
index i numbers the atoms of species α. The prime indi-
cates that we only sum over i 6= j for α = β. We use the
Lennard-Jones-like interactions

vα,β(r) = sα,β

[

(σα,β

r

)10

−
(σα,β

r

)6
]

,

with v12 = v21. The parameters of vα,β are adjusted to
set the s-wave scattering length aα,β to a desired value,
which can be done analytically[17]. Since vα,β has two
parameters, we further characterize vα,β(r) by the effec-
tive range reffα,β , evaluated numerically [18]. In all calcu-
lations, sα,β and σα,β are chosen such that there are no
two-body bound states.
Previously, Lee-Huang-Yang corrections to the mean-

field approximation [5] and quantum Monte Carlo
(QMC) methods [19, 20] have been employed. Here we
use a different approach, the variational hypernetted-
chain Euler Lagrange (HNC-EL) method. HNC-EL is
computationally very economical like the BMF approxi-
mation, but has the advantage of including correlations
in a non-perturbative manner. This leads to a strictly
real ground state energy, in contrast to the BMF ap-
proximation where the energy of a uniform self-bound
mixture has an unphysical small imaginary part. The
two-component HNC-EL method has been described in
Ref. [21] and in a different formulation in Ref. [22],
and has been recently generalized to multi-component
Bose mixtures [23]. The starting point is the variational
Jastrow-Feenberg ansatz [24] for the ground state con-
sisting of a product of pair correlation functions for a
multi-component Bose system,

Ψ0({ri,α}) = exp
[1

4

∑

α,β

∑′

i,j

uα,β(|ri,α − rj,β |)
]

. (2)

The many-body wave function Ψ0 does not contain
one-body functions uα(ri,α) because we consider a uni-
form system. Higher order correlations such as triplets
uα,β,γ(ri,α, rj,β , rk,γ) have been incorporated approxi-
mately for helium [25, 26], but are neglected here because
their contribution is very small at low density.
We solve the Euler-Lagrange equations δe/δgα,β(r) =

0, where the energy per particle e = 1
N

〈Ψ0|H|Ψ0〉
〈Ψ0|Ψ0〉

is

e =
∑

α,β

ραρβ
2ρ

∫

d3r gα,β(r)
[

vα,β(r)−
~
2

4m
∆uα,β(r)

]

(3)

in terms of the pair distribution function

gα,β(r) =
1 + δαβ
ραρβ

δ ln〈Ψ0|Ψ0〉
δuα,β

.

Partial summation of the Meyer cluster diagrams for
ln〈Ψ0|Ψ0〉 in the HNC/0 approximation provides a re-
lation between gα,β and uα,β [27, 28]. A practical formu-
lation of the resulting HNC-EL equations to be solved
for gα,β can be found in Ref. [23]. From gα,β(r) we
can calculate the static structure functions Sα,β(k) =
δαβ +

√
ραρβ FT[gα,β − 1] (FT denotes Fourier transfor-

mation), needed for the calculation of excitations.

At low densities, a uniform binary Bose mixture of two
species of equal mass is characterized by the scattering
lengths a11, a12, and a22, and the partial densities ρ1
and ρ2. However, our results depend also on the next
term in the expansion of the scattering phase shift, the
effective range reffα,β [29] leading to a total of 8 parameters

{ρα, aα,β, reffα,β} to characterize our uniform binary Bose

mixtures. We use a11 as length unit and E0 ≡ ~
2/ma211

as energy unit. For 39K used in experiments [6, 7], we
have a11 = 35.2aB and E0 = 3.55mK.

We use the combinations of scattering lengths aαβ
from the experiments reported in Ref. [6], which are
very similar to those in Ref. [7]. A negative value of
δa = a12+

√
a11a22 is necessary for a self-bound mixture.

Before investigating the dependence on δa, we study the
dependence on the partial densities ρ1 and ρ2. Fig. 1
shows a map of the energy per particle e as function of
ρ1 and ρ2 for the experimental scattering length values
corresponding to δa = −5.5aB, which is δa = −0.156
in our length unit a11 and the most negative value in
Ref. [6]. The other scattering lengths are a22 = 1.86
and a12 = −1.52. The effective ranges are reff11 = 5.2,
reff12 = 33.0, and reff22 = 43.2. Negative energies, where the
mixture is a self-bound liquid, are shown by a red color
range, together with contour lines, positive energies by
a blue color range. Thus, as predicted by BMF calcula-
tions [5] and confirmed by experiments [6, 7], we find a
liquid state for δa < 0. In the phase space (ρ1, ρ2) the
self-bound states form a narrow valley following a typical
optimal ratio ρ1/ρ2. The phase space of meaningful com-
binations (ρ1, ρ2) ends at the spinodal line (thick black
line in Fig.1). Approaching this line, the uniformmixture
becomes sensitive to long-wavelength density oscillations
(see below). At the spinodal line infinitesimal density
fluctuations trigger a liquid-gas phase separation.

While in a uniform mixture we can choose any ρ1 and
ρ1, a finite droplet adjusts its radius to minimize the
energy, attaining the equilibrium (zero pressure) density
inside the droplet. The situation is more complicated
for a mixture because the droplet radius affects only
the total density, but not necessarily the ratio ρ1/ρ2.
The latter can be adjusted by evaporating one compo-
nent or by phase separation. Therefore we calculate
the chemical potential of component α, µα(ρ1, ρ2) =

e(ρ1, ρ2) + ρ∂e(ρ1,ρ2)
∂ρα

. If µα > 0 a particle of species
α is not bound to the mixture – the energy is lowered by
removing it. A stable droplet requires both e < 0 (red
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valley in Fig.1) and µα < 0. The blue line in Fig.1 are
the zeroes of µ1, with µ1 < 0 above this line. Similarly
the green line are the zeroes of µ2, with µ2 < 0 below

this line. Hence only the narrow region pointed at by the
arrow is stable against evaporation; this region includes
of course the equilibrium energy eeq = min[e]. The inset
of Fig.1 shows e, µ1 and µ2 along the dashed line as func-
tion of ρ1 for a fixed value ρ2a

3
11 = 0.934, such that we

intersect the equilibrium energy. µα is very sensitive to
the partial density, which explains why the region where
both µα < 0 is so narrow. If a droplet is prepared out-
side the stable region, particles evaporate and the system
moves on the energy surface until it is stable.

Our results for e and µα mean that large droplets
will reach the equilibrium energy eeq by a combination
of evaporating superfluous particles and adjusting the
droplet radius. In the case discussed so far, δa = −0.156,
the density ratio at the equilibrium energy predicted from
our HNC-EL results in Fig.1) is ρ1/ρ2 = 1.380, which is
to be compared with the optimal mean-field ratio [30]
ρ1/ρ2 =

√

a22/a11 = 1.363. The latter is a very good
approximation even though the mean-field approxima-
tion does not even predict a liquid state. As seen in the
inset of Fig.1, e changes very little if the density ratio
is slightly changed; therefore for further calculations of e
we use the mean-field ratio.
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FIG. 2. (Color online) Energy per particle e as function of
the total density ρ for several values δa. Closed circles denote
the equilibrium density ρeq and energy eeq; open circles denote
spinodal points. The black dashed and dash-dotted lines are
the real and imaginary parts, the latter using a different scale,
of the BMF energy for δa = −0.156.

When δa increases towards zero, the liquid becomes
less bound, until it is no longer self-bound at δa = 0. In
Fig. 2 the energy per particle e as function of total density
ρ is shown for several values of δa in the range [−0.156, 0],
corresponding to the range of values in experiments [6, 7]

δa[aB] δa a22 reff22 ρ1/ρ2 106eeq 105ρeq

−5.5 −0.156 1.86 43.2 1.363 −3.364 2.221

−5.0 −0.142 1.90 40.3 1.377 −2.426 1.756

−4.4 −0.125 1.94 37.0 1.394 −1.571 1.294

−3.2 −0.091 2.04 31.2 1.428 −0.544 0.609

−2.4 −0.068 2.10 27.7 1.450 −0.214 0.319

0.0 0.0 2.31 19.1 1.519 – –

TABLE I. Values for δa, a22, r
eff
22 , and ρ1/ρ2 used to obtain

the results shown in Fig. 2, as well as the equilibrium energy
and density obtained from these results. Lengths and energies
are in units of a11 and E0 (see text) if not otherwise stated.

where δa is adjusted by changing the s-wave scattering
length a22 via a magnetic field. We follow this protocol
and modify the strength s22 of v22(r) to obtain the cor-
responding a22, which also changes reff22 ; v11 and v12 are
not changed and chosen as above. Table I lists the values
of a22, r

eff
22 , and ρ1/ρ2 for Fig. 2. The equilibrium en-

ergies eeq and densities ρeq are marked by filled circles,
and are also listed in table I. Naturally, both eeq → 0
and ρeq → 0 as δa → 0. For δa = 0, e > 0 and the mix-
ture is not liquid anymore. The spinodal densities, where
a uniform liquid becomes unstable against infinitesimal
density fluctuations, are marked by open circles in Fig. 2.
Also shown in Fig. 2 is the energy per particle eBMF cal-
culated in the BMF approximation [5] for δa = −0.156.
Since eBMF is complex, we show both the real and the
small imaginary part of eBMF (note the different energy
scale for the latter). The BMF approximation fails to
predict the spinodal instability and eBMF extends all the
way to ρ = 0
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FIG. 3. (Color online) Equilibrium density ρeq of the uniform
Bose mixture as function of δa, varied by changing a22, see
table I. For all curves, a12 = −1.52. The circles and squares
are the present HNC-EL results obtained for reff12 = 33.0 and
18.2, respectively. The line is the BMF result.

The density is more accessible to measurement than
the energy, e.g. in Refs. [6, 7] the central density of
droplets was measured. In Fig.3 we summarize the re-
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sults shown in Fig.2 by plotting the equilibrium total
density ρeq as a function of δa (filled circles). Also shown
in Fig.3 is the BMF result for ρeq(δa), obtained as the
minimum of the real part of the BMF energy, which
qualitatively agrees with HNC-EL, but predicts a some-
what lower equilibrium density. The square symbols in
Fig.3 show our results for ρeq(δa), if we choose differ-
ent parameters s12 and σ12 in v12(r) such that we keep
a12 = −1.519, while changing the effective range from
reff12 = 33.0 (upper curve) to reff12 = 18.2 (lower curve).
This demonstrates that the results are not universal; they
depend not only the s-wave scattering lengths, but at
least also on the effective ranges.
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FIG. 4. (Color online) e(ρ) for δa = −0.156 and four models
for the inter-species interaction v12 corresponding to effective
ranges reff12 = 18.2; 23.0; 33.0; 44.8. Also shown is the BMF
result Re[eBMF].

In Fig.4 shows the dependence of the energy per par-
ticle e(ρ) on reff12 for δa = −0.156, with a12 = −1.519 and
the other scattering lengths as above, for different values
reff12 = 18.2; 23.0; 33.0; 44.8. The dependence on reff12 is sig-
nificant, with e varying by 10% and ρeq varying by 13%
for this range of reff12 values. The BMF energy Re[eBMF]
agrees better with HNC-EL for smaller reff12 . Alkali in-
teraction potentials have a finite effective range that is
often much larger than the s-wave scattering length, see
e.g. table 1 in Ref [31]. Considering the low equilibrium
densities ρeq, it might appear surprising to find this non-
universal behavior. We note, however, that for small δa
the mean-field energy is the result of large cancellations
of negative and positive contributions. Therefore it is
plausible that a dependence on higher-order parameters
such as the effective range becomes visible.
The spinodal instability (thick black line in Fig. 1)

can be relevant for the preparation of the liquid droplets,
achieved by ramping one of the scattering lengths. Dur-
ing a fast ramp, the mixture may visit the “forbidden”
region of the (ρ1, ρ2)-phase space and can condense into

multiple droplets. To characterize the uniform liquid
mixture near this instability in more detail, we choose
aα,β and reffα,β as for Fig. 1 corresponding to δa = −0.156,
and the mean-field optimal ratio ρ1/ρ2 = 1.363. A sim-
ple approximation for the excitation spectrum of a Bose
mixture is given by the Bijl-Feynman approximation[32],
which provides a good estimate of the long wave length
dispersion. A mixture supports density and concen-
tration oscillations, with dispersion relations ǫ1(k) and
ǫ2(k), respectively. They can be easily calculated from
the static structure functions Sαβ(k) by solving the eigen-

value problem ~
2k2

2m ψi = ǫi(k)S(k)ψi where S is the 2×2
matrix with elements Sαβ(k) and ψi are 2-component
vectors. Fig. 5 shows the long-wavelength phase veloc-
ities ci = limk→0 dǫi(k)/dk for the density and concen-
tration mode. The density mode has lower energy than
the concentration mode for all densities shown in Fig. 5,
including the equilibrium density. While c2 is finite and
hence the mixture is stable against demixing, the density
mode becomes soft for k → 0 as ρ is lowered, evidenced
by the vanishing speed of sound c1 at the spinodal insta-
bility (vertical line), where phase separation into liquid
and gas occurs. This is similar to the onset of the mod-
ulational instability in dipolar Bose gases[33, 34], which
however is triggered by a vanishing roton energy with a
finite wave number [35, 36].
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FIG. 5. Long-wavelength phase velocities in the two-
component Bijl-Feynman approximation for density oscil-
lations (lower curve) and concentration oscillations (upper
curve) as function of total density. The vertical line denotes
the spinodal instability.

In summary, we analyze the properties of a liquid, i.e.
self-bound, uniform Bose mixture using s-wave scatter-
ing lengths as in Refs. [6, 7]. With the HNC-EL method,
which includes pair correlations non-perturbatively, we
find a narrow regime of partial densities ρα where the
conditions for a stable liquid mixture are met: the en-
ergy per particle and both chemical potentials µα(ρ1, ρ2)
are negative. If µα > 0, atoms of component α evap-
orate until reaching either equilibrium or the spinodal
line. Despite their ultra-low density, the properties of
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these liquids depend also on the effective ranges reffα,β .
This deviation from universality was not observed in two-
dimensional liquids [19]. Comparison of the energies and
equilibrium densities between the BMF approximation
and our HNC-EL calculations shows that the difference
can probably be attributed to the neglect of the effective
range in the BMF approximation. Unlike BMF energies,
HNC-EL energies do not have an unphysical imaginary
part for δa < 0, as HNC-EL is not based on an expansion
about the (unstable) mean-field result. We find that the
liquid can have a spinodal instability, where the speed of
sound vanishes and infinitesimal density fluctuations lead
to a separation into a liquid and gas phase. This can be
relevant during a nonadiabatic evolution of a droplet in
experiments. In the presently available experiments [6, 7]
the liquid droplets are far from saturation, as evidenced
by the Gaussian shaped density profiles, and possibly not
in equilibrium. Describing small unsaturated droplets
will require an inhomogeneous generalization of HNC-EL
based on the energy functional (3).
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