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Abstract: This research presents an experimental programme on the mechanical characterization 

of masonry under monotonic and cyclic uniaxial compression. Two different types of standard 

specimens, running bond walls and stack bond prisms, were built using handmade clay bricks and 

hydraulic lime mortar. The experimental results are compared and discussed in terms of strength, 

stiffness and deformability. It was observed that the two specimen types provided very similar results 

on both strength and stiffness. Cyclic loading tests carried out on a set of samples provided new 

experimental evidence on the stiffness degradation, loss of load carrying capacity for increasing 

irreversible compressive strains and energy dissipation. The paper presents eventually a thorough 

discussion about the comparison between the obtained experimental results with available predictive 

models for strength, stiffness and fracture energy of masonry under monotonic and cyclic compression 

loading. 

Keywords: Masonry, clay brick, lime mortar, size effect, compression test, compressive strength, 

elastic modulus, monotonic loading, cyclic loading, compressive fracture energy.  

Highlights: 

Compression tests on two different standard masonry specimens yielded similar results 



 
 

2 
 

Tests provided new data on clay brick and lime mortar masonry under cyclic loading 

Cyclic tests allowed characterizing the stiffness degradation for increasing strains 

Available analytical and empirical models fit the experimental results satisfactorily 

  

1 Introduction 

 Brick masonry has been largely used for structural purposes up to mid-20th c when, due to the 

increasing labour costs, it became less attractive than other more modern materials such as concrete 

and steel [1,2]. Due to its long historical prevalence, masonry consisting of clay bricks and lime mortar 

is abundant all over the world. Still today, a significant part of the building stock includes structural 

masonry members such as load-bearing walls [2–8]. Due to changes in regulations and uses, masonry 

buildings are often in need of structural re-evaluation and, eventually, of possible retrofitting 

interventions. Within this context, the response of masonry in compression has a critical role in the 

evaluation of the strength capacity of masonry buildings against both vertical actions and the vertical 

load effects caused by horizontal actions. Characterizing the response of masonry in compression 

involves the determination of parameters such as the compressive strength of the composite material, 

its modulus of elasticity and the overall stress-strain curves in compression under both static and cyclic 

loading.  

Traditionally, the characterization of the mechanical behaviour of masonry in compression has 

been carried out by means of tests performed on two different types of composite specimens, namely 

stack bond prisms and small walls. Three recent references [9–11], including inventories of past 

researches on clay brick masonry, refer examples of tests done on either specimen type, although with 

preference for prims. The predilection to carry tests on prisms can be explained because they are easier 

and cheaper to build and the experimental setup needed in the laboratory is simpler.  

The possibility of testing two different types of specimen is also reflected in the standards that 

regulate the experimental determination of the compressive strength of masonry (fc). The European 
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standard EN 1052-1 [12] prescribes the use of small running bond walls with certain geometric 

constraints (Fig. 1a). These samples are supposed to provide a fair estimation of the strength taking 

into account the possible detrimental influence of head mortar joints. In addition, they are sufficiently 

slender as to keep the centre of the specimen free from the influence of possible 3D confinement effects 

caused by the contact between the specimen and the press platens. Conversely, the American ASTM 

C1314 [13] proposes the possibility of testing simpler stack bond prisms consisting of a sufficient 

number of stacked units. The standard specifies the recommended height to thickness ratios of the 

prisms (Fig. 1b). In turn, both types of specimens are considered in the RILEM [14] recommendations. 

 

Fig. 1. Masonry specimens for compression strength tests according to a) EN 1052-1 [12], b) ASTM C1314 [13]. 

 So far, no empirical criterion has been proposed to correlate the experimental results obtained 

with both specimen types. However, this issue has motivated some research in the past. Several authors 

[15–17] have compared the results on prisms with those obtained for wall-like samples. Mann & 

Betzler [18] and Gumaste et al. [19] investigated the effect of the sample shape on the compressive 

strength. Among other specimen types, they analysed the case of non-standardized both stack bond 

prisms and running bond walls. They showed that the comparison between the specimens’ results is 

influenced by the mechanical properties of the constituents, as well as by the specimens’ relative 

slenderness.  
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Many real structures are subjected to cyclic loading caused by variable loads such as thermal 

effects, the passing of trains on railway bridges, or seismic actions. However, most of the research 

effort on the compressive behaviour of masonry has only focused on monotonic loading [20]. A few 

works can be found on cyclically loaded stone [21–23] and concrete block masonry [24]. With regard 

to brick masonry, [25,26] carried out pioneering researches on frogged clay and sand-plast brick 

masonry specimens. These authors developed the concepts of common and stability points to 

characterize the intersections among unloading-reloading branches in masonry. More recently, [27,28] 

contributed with more laboratory results, and [23] explored the possibility of performing and 

registering cycles in the softening range. Two more researches [7,29] dealt with samples obtained from 

historical buildings, while [30] is the only study including masonry built in the laboratory with solid 

clay bricks and hydraulic lime based mortar without cement.  

This paper aims to provide new experimental data on the static and cyclic response of brick 

masonry in compression. The paper focuses on the case of masonry built with solid clay bricks and 

hydraulic lime based mortar, on which there is still limited experimental evidence although being the 

traditional typology in historical masonry in many countries [29,31,32]. The research on the static 

response includes a comparison of results on the masonry compressive strength and elastic modulus 

for two different types of standardized specimens, corresponding to stack bond prisms and running 

bond walls. In turn, the research on the cyclic response includes cyclic tests up to and beyond the peak 

load on stack bond prisms. The performance of different criteria and models for the estimation of the 

masonry compressive properties and the simulation of its cyclic response has been evaluated by 

comparison with the experimental results.  

 

2 Experimental programme 

The experiments were carried out at the Laboratory of Technology of Structures and Materials of 

the Technical University of Catalonia (UPC – BarcelonaTech). As mentioned, the experimental 
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programme included compression tests on two different types of specimens (running bond walls and 

stack bond prisms), under monotonic and cyclic loading.  

 

2.1 Materials 

The masonry specimens were built with materials similar to those existing in historical masonry 

walls, including handmade solid clay bricks and a low mechanical performance lime mortar. 

Handmade fired solid clay bricks were chosen, with average dimensions of 311 (length) x 149 

(width) x 45 (height) mm³ and density of 1700 kg/m³. Given their manual way of manufacturing, these 

bricks presented a moderate compressive strength, rough surfaces and slightly variable dimensions. A 

commercial premixed lime mortar based on NHL 3.5 natural hydraulic lime was selected. Its strength 

category was M5, which was considered to be too high to reproduce the expected compressive strength 

of lime mortar in historical masonry. Hence, a new mix was studied and prepared in laboratory by 

adding an amount of non-reactive material (in this case, limestone filler) to reduce the strength of the 

mortar. The volume ratio of premixed mortar to filler to water was 1 : 1 : 0.65.  

The standard EN 772-1 [33] was considered as reference to obtain the normalized compressive 

strength of the bricks (fb). Their faces were polished until getting a constant height of 40 mm to obtain 

flat surfaces. Pieces of 100 x 100 mm² were cut to fulfil the minimum height to width ratio of 0.4 

required by the standard and then tested. The measured strength values were corrected by applying a 

shape factor of 0.7 in compliance with the standard. The bending tensile strength of the units (fb,fl) was 

determined by three-point-bending tests on full bricks. In the lack of a specific standard for the 

determination of the bending tensile strength of clay units, the tests were carried out according to EN 

772-6 [34] for aggregate concrete masonry units. Similarly, and since there are no available standards 

on the determination of the elastic modulus of bricks, EN 12390-13 [35] on the determination of the 

modulus of elasticity for hardened concrete was used as a reference. Brick prisms measuring 40 x 40 

x 80 mm³ were cut both in longitudinal and transverse directions of the unit. It should be noted that 
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measuring the modulus of the bricks in the direction parallel to the load is hardly feasible due to their 

very small height. Three loading-unloading compressive cycles, with minimum and maximum loads 

equal to 10% and 30% of the estimated peak load, were applied to the specimens. The moduli of 

elasticity in the two directions (Eb,long and Eb,trans) were evaluated as the slope of the last reloading 

branches as suggested in the standard [35]. The results of this characterization are presented in Table 

1. The considerably high coefficients of variation found in the determination of the elastic modulus 

may be explained by the heterogeneity of the handmade bricks. In addition to the scattering related to 

the raw materials, the manual process adds variability during the casting of the bricks and the curing 

inside the traditional furnace. 

Table 1. Mechanical parameters of bricks 

 fb [MPa] fb,fl [MPa] Eb,long [MPa] Eb,trans [MPa] 
Average 17.99 2.44 3718 3331 

Number of samples 20 10 12 17 
CV 8.3% 20.0% 28.0% 51.4% 

 

The compressive strength (fm) and the bending tensile strength (fm,fl) of the mortar were evaluated 

according to EN 1015-11 [36], by using prisms with dimensions of 160 x 40 x 40 mm³ that were casted 

with mortar obtained from the mason’s batch during the construction of the masonry specimens. As 

for the evaluation of bricks elastic modulus, EN 12390-13 [35] was adopted as reference. The 

estimation of the mortar elastic modulus (Em) was carried out on mortar cylinders 200 mm high with 

a diameter of 100 mm. These cylinders were tested under cyclic loading similarly to the brick prisms. 

A summary of the results is presented in Table 2.  

Table 2. Mechanical parameters of mortar 

 fm [MPa] fm,fl[MPa] Em [MPa] 
Average 1.91 0.72 948 

Number of samples 36 18 6 
CV 10.1% 10.9% 18.4% 

 

2.2  Masonry specimens 
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Two different sets of masonry specimens were built and tested. The first set consisted of 4 standard 

running bond walls (RBW) fulfilling the requirements of EN 1052-1 [12]. The second set consisted of 

7 stack bond prisms (SBP) built according to the geometric prescriptions of ASTM C 1314 [13]. As 

previously indicated, one of the aims of the present research lays in the comparison of the strength and 

elasticity parameters measured by means of these two types of standardized specimens. The average 

dimensions of both types of samples are 639 (length, ls) x 148 (thickness, ts) x 658 (height, hs) mm³ 

for walls, with aspect ratio (hs/ts) of 4.45, and 312 x 148 x 288 mm³ for prisms, with aspect ratio (hs/ts) 

of 1.95 (Fig. 2). The samples were built with 15 mm thick mortar joints. This thickness, which is often 

observed in historical clay brick masonry, allowed a sufficiently regular laying of bricks despite of the 

geometrical irregularities of their faces.  

 

Fig. 2. Masonry samples, average dimensions. a) Running bond walls, b) Stack bond prisms. Common average thickness 

ts = 148 mm 

 

The building and storing of the specimens were carried out according to EN 1052-1 [12]. The 

bricks were wetted for one minute before being laid. The samples were all built during the same day, 

by the same highly qualified mason, and stored under the same environmental conditions until the 



 
 

8 
 

performance of the tests. After construction, they were covered with polyethylene sheets in order to 

prevent the dry-out of the mortar. After 3 days, they were uncovered and stored in the laboratory at 15 

ºC and 65 % of relative humidity.  

With the aim of facilitating the handling of the RBW wall specimens, they were built and tested 

on top of metallic beams filled with concrete. Some days before testing, the top face of the RBWs, as 

well as the bottom and top faces of the SBPs, were capped with a layer of high strength cement mortar 

in order to ascertain a smooth contact between the samples and the loading machine plates.  

 

2.3 Test procedures 

The wall and prism masonry samples were tested in compression after 28 days from their 

construction, following EN 1052-1 [12] recommendations. The prisms SBP were tested in a general-

purpose loading machine with a capacity of 3000 kN (Fig. 3a). The walls RBW had to be tested inside 

a steel reaction frame due to their larger dimensions. In the reaction frame, the load was applied by 

means of a double effect hydraulic jack with capacity of 1000 kN (Fig. 3b). A combination of 

instruments was placed on the specimens’ faces in order to capture vertical displacements. Four 

LVDTs (with a displacement range of +/- 5 mm and a precision of 5 μm) were glued between the 

second and fourth bricks of the SBPs. They allowed having a reference length longer than one third of 

the sample height while avoiding possible boundary effects. The same distance was also monitored in 

the case of RBWs with a vertical LVDT placed on each face. This allowed obtaining comparable 

measurements in the two specimen types, with the difference that a head mortar joint was included in 

the walls.  
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Fig. 3. Experimental setups: a) Stack bond prisms, b) Running bond walls. 

 

The tests were carried out in two stages (Fig. 4), the first one was aimed to facilitate the 

measurement of the elastic modulus of masonry and the second one investigated its ultimate capacity. 

In the lack of a specific standard on the measurement of the elastic modulus of masonry, the procedure 

adopted during the first stage was based on standards for the determination of the elastic modulus in 

other materials such as concrete (EN 12390-13 [35], ASTM C 469-02 [37]) and stone (EN 14580 [38]), 

and also on methods applied in former researches [17,20,39].  

The first stage was common to all the specimens and included three loading-unloading cycles 

performed under load control. The lower and higher load levels applied during the cycles were set to 

5% and 30% of a supposed maximum load (Po) that had been estimated before the tests. In the case of 

the walls, these limits were taken as 26 and 150 kN, while for the prisms the limits were 14 and 83 kN. 

Rates of loading of 2 kN/s and 1 kN/s were selected for walls and prisms respectively to keep the 

duration of the loading/unloading branches around 1 minute. After each loading/unloading branch, the 
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load level was maintained also for 1 minute. As stated by the general standard ASTM E111 [40], the 

lower load was used to minimize the errors due to initial effects of backlash and specimen irregularities 

while the upper load was selected so as to keep the specimen within the elastic range of the material.  

The second stage of the tests explored the strength and non-linear behaviour of the specimens 

under either monotonic or cyclic loading. A displacement controlled loading procedure (at a rate of 

0.6 mm/s) was used during this stage with the intention of capturing the post-peak response. This phase 

was undertaken under monotonically increasing displacement for the 4 running bond walls (identified 

as RBW1, RBW2, RBW3, RBW4) and for 4 stack bond prisms (SBP1, SBP2, SBP3, SBP4).  

In the remaining three stack bond prisms (SBP5, SBP6, SBP7), the displacement was imposed 

cyclically. The aim of these tests was not to represent any example of real structures, which may be 

subjected to cyclic loads characterized by very different frequencies and amplitudes, but to study a 

generic case. The type and number of cycles was decided as to have comparable results with former 

researches [23]. The system was programmed to apply increasing load up to vertical displacement 

values of 2.5, 4, 5.5, 7, and 8.5 mm. These values were defined based on the results of the previous 

monotonic tests. Once those displacements were reached, the specimens were unloaded under force 

control until the previously set level of 5% of the estimated maximum load. The vertical displacement 

was controlled by the loading machine’s internal transducer.  

With regard to the elastic moduli, they were evaluated for all the specimens as the chord modulus 

between the 5% and 30% of the actual maximum load (Pmax) (Fig. 4), of the stress-strain curves 

obtained during the second testing stage.  
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Fig. 4. Generic load (kN) vs. time (min) curve describing the adopted loading history. Load levels: A - 5% of an 

estimated maximum load (Po). B - 30% of an estimated maximum load (Po). C - Actual maximum load registered during 

the test (Pmax). D and F - Loads corresponding to 5% and 30% of the actual maximum load (Pmax), used as limits to 

compute the elastic modulus on the stress-strain curves.  

 

3 Experimental results 

This section presents the results of the experimental campaign for each type of specimen and 

loading protocol. Compressive stresses acting on the samples were computed as the ratio between the 

applied load and the area of the cross section. LVDT readings were divided by their reference lengths 

and averaged to obtain axial strains. In some cases, anomalous individual deviations of one LVDT 

were omitted. Full stress-strain curves, considering both stages of testing, are plotted for all the tests. 

As for the post-peak branches, they are only shown for the cases in which it was possible to obtain 

meaningful results.  

3.1 Running bond walls 

The stress-strain curves resulting for both stages are shown in Fig. 5, for the RBW specimens. The 

effect of the application of the three cycles is illustrated in Fig. 5a. The unloading-reloading branches 

have higher stiffness than the original monotonic loading one. The elastic moduli (Ec) reported in 
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Table 3 were evaluated according to the procedure indicated in section 2.3. The average value is 2744 

MPa. However, the result associated to sample RBW3 is anomalously high compared to the other 

specimens. This high value may be explained by a possible better manufacture or by an unexpected 

localization of better quality materials within the length captured by the measuring instruments. Due 

to the significant deviation of this value with respect to the remaining set of values, it has been deemed 

preferable to also calculate the average value of the elastic modulus without taking it into account. The 

value of this second calculated average is 2318 MPa. This has been the value considered in the 

discussions presented in sections 4 and 5. Other RBW3 results, such as the compressive strength and 

the strain at peak stress, are considered sufficiently representative and have not been disregarded in 

the calculation of the corresponding averages. Globally, the curves depicted in Fig. 5b continue to be 

linear up to around 2 MPa and then experience a progressive reduction of the stiffness until the peak 

stress. Table 3 presents the values of the compressive strengths (fc) and the strains at the peak stresses 

(εp). The average strength is 6.51 MPa and the average strain at peak stress is 0.98%. 

 

Fig. 5. Stress vs. strain experimental curves for running bond walls. a) Detail of the three loading/unloading cycles, b) 

Full curves until failure. 

 

Table 3. Compressive strength, stiffness and strain at peak stress of running bond walls. 

RBW fc (MPa) Ec (MPa) εp (%) 
RBW 1 6.72 2205 0.82 
RBW 2 6.22 2227 1.48 
RBW 3 7.20 4023 0.62 
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RBW 4 5.88 2521 1.00 
Average 6.51 2744 0.98 

CV 8.9% 31.5% 37.6%     
Average  2318*  

CV  7.6%*  
* The value of Ec for RBW3 is not considered in the average. 

 

The failure mode of the RBWs was qualitatively similar for the 4 samples. The first visible cracks 

appeared at about 75% of the maximum load. These cracks were thin and vertical, initially only visible 

in the bricks and mostly located in the external thirds of the front faces of the specimens. At the peak 

load, the cracks were wider and visibly affected both bricks and mortar (Fig. 6a). After the peak, 

degradation continued, with further opening of the cracks and sudden spalling of mortar and brick 

portions. In two samples, sudden transverse splitting, visible from the lateral faces, was produced (Fig. 

6b). Once dismantled (Fig. 6c), the specimens exhibited a typical sandglass failure, characterized by 

the presence of a remaining core.  

  

Fig. 6. Failure of running bond walls. a) Crack pattern at peak load, b) State at the end of the test, c) Dismantled 

specimen.  

 

3.2 Stack bond prisms – Monotonic loading 

Among the 7 stack bond prisms prepared, 4 were tested following the same procedure applied to 

the running bond walls. After the first stage, involving three cycles under load control, they were 

subjected to a steadily increasing imposed displacement. The experimental stress-strain curves are 
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displayed in Fig. 7. Although SBP3 presents a longer linear branch, all 4 specimens have a noticeable 

non-linear behaviour. Significant deformability is observed after 65% of the maximum load, 

particularly for specimens SBP1 and SBP2. Table 4 reports a summary of the experimental results, 

which yielded an average elastic modulus of 2494 MPa, compressive strength of 6.49 MPa, and strain 

at peak stress of 1.2%. 

 

Fig. 7. Stress vs. strain experimental curves of the stack bond prisms with monotonic loading. a) Detail of the three 

loading/unloading cycles and beginning of the second stage, b) Full curves until failure. 

 

Table 4. Compressive results of stack bond prisms. 

SBP 
mono fc (MPa) Ec (MPa) εp (%) SBP 

cyclic fc (MPa) Ec (MPa) εp (%) 

SBP 1 5.98 2249 1.45 SBP 5 6.91 1957 0.90 
SBP 2 6.15 2782 1.05 SBP 6 7.34 2549 1.09 
SBP 3 7.31 2443 1.10 SBP 7 7.03 2634 1.00 
SBP 4 6.52 2502 1.05     

        
Average 6.49 2494 1.16 Average 7.10 2380 1.00 

CV 9.1% 8.8% 16.4% CV 3.1% 15.5% 9.4% 
 

The mechanical behaviour and failure of the stack bond prisms are illustrated in Fig. 8. Before the 

peak load, vertical cracks developed in the bricks, mainly on the three central ones and near the edges 

of the faces. After the peak load, these cracks propagated and opened leading to the spalling of some 

brick and mortar portions. A remaining core forming a sandglass shape could be observed for some of 

the specimens (Fig. 8c). 
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Fig. 8. Stack bond prisms after failure. a) Front view, b) Lateral view, c) Dismantled specimen. 

 

3.3 Stack bond prisms – Cyclic loading 

As explained in section 2.3, three stack bond prisms were tested cyclically at the second loading 

stage until displacement controlled failure. As shown in Fig. 9, the stress-strain curves of specimens 

SBP5 and SBP6 present a complete set of 8 cycles, composed of the three initial ones corresponding 

to the first stage, two more cycles on the pre-peak range and three additional cycles after the peak load. 

The post-peak response of specimen SBP7 could not be plotted since it was not properly captured by 

the LVDTs.  
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Fig. 9. Stress vs. strain experimental curves of the stack bond prisms with cyclic loading until failure. a) SBP5, b) SBP6, 

c) SBP7. 

 

The displayed curves clearly reveal the non-linear behaviour, the accumulation of non-reversible 

strains and the stiffness degradation experienced by masonry under cyclic loading. As stated by former 

researches [7,25,27,41], the cyclic behaviour is characterized by the presence of intersecting points 

between the reloading branches and the unloading branches of previous cycles, the so-called ‘common 

points’. In the tests here presented, the reloading branches are almost straight lines for cycles before 

the peak load, while after the peak load they present a more complex shape. This is consistent with the 

findings of similar experimental campaigns, e.g. Naraine et al. [41]. 

One important feature shown by the experimental curves is the stiffness degradation experienced 

at each cycle, which is accentuated after the peak load. Fig. 10 illustrates the evolution of the elastic 
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modulus as a function of strain by means of normalized values. The normalized elastic modulus is 

calculated as the ratio between the elastic modulus of each reloading branch (Ec,i) and the maximum 

elastic modulus found for that specimen (Ec,max). The normalized compressive strain used here for each 

reloading branch is the ratio between the strain at the end of the branch (εr,i) and the strain at peak 

stress (εp) reported in Table 4. As can be observed, values of Ec are maximum and almost constant for 

the first cycles, corresponding to strains below 25% of the strain at peak stress. At peak stress, the 

stiffness degradation attains 20 to 40% of the initial one. After the peak load, the decrease of the elastic 

modulus is very significant due to the damage experienced by the material.  

 

Fig. 10. Normalized elastic modulus (Ec,i/Ec,max) of the reloading branches vs. normalized compressive strain (εr,i/εp), for 

the stack bond prisms tested under cyclic loading.  

 

The crack patterns and mechanical behaviour of the prisms under cyclic loading were essentially 

the same as the ones reported for the monotonically loaded prisms in section 3.2. The resulting 

experimental values are included in Table 4 and are characterized by an average elastic modulus of 

2380 MPa, compressive strength of 6.95 MPa, and strain at peak stress of 1.0%. 

Additionally, an estimation of the compressive fracture energy (Gfc) could be done for specimens 

SBP5 and SBP6 since their post-peak response was captured until low values of residual load. It was 

calculated as the area below the envelope stress-displacement curve through a Riemann sum. Results 

are 8700 N/m for SBP5 and 10800 N/m for SBP6.  
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4 Analytical studies 

The aim of this section is to investigate the validity of existing predictive equations and models 

for the estimation of the compressive strength and the elastic modulus of masonry and the simulation 

of its compressive behaviour. The experimental results are compared with analytical and empirical 

expressions. 

 

4.1 Masonry compressive strength 

In the absence of experimental evidence obtained through standardized tests, such as the ones 

described in EN 1052-1 [12] or ASTM C1314-09 [13], building codes propose the use of some 

expressions for the determination of the masonry compressive strength from the properties of the 

component materials. Eurocode 6 [42] allows the use of an equation (Appendix. Eq. A1) that relates 

the characteristic compressive strength of masonry with the compressive strengths of brick and mortar. 

Similarly, the American ACI, ASTM and TMS, on a Commentary on the Specification for Masonry 

Structures ACI 530.1-02 [43], proposes the use of an empirical expression (Appendix. Eq. A2) that 

relates the compressive strength of masonry to the compressive strength of the units only. 

Several authors have derived analytical models or closed form expressions to estimate the 

compressive strength of masonry. Among others, Hilsdorf [44], Khoo & Hendry [45], and Ohler [46], 

developed models based on equilibrium and the multiaxial stress states experienced by the masonry 

components at failure. The proposed formulations (Appendix. Eq. A3 to A5) depend on the relative 

thicknesses of the components, the compressive strength of mortar, and both the compressive and 

tensile strength of the units. The reader is referred to [10,47] for details about these models and the 

standards’ expressions. 

The compressive strength of masonry was evaluated for the different equations aforementioned. 

A specific investigation has been carried out on the sensitivity of the models to the variation of the 



 
 

19 
 

material properties. For that purpose, a virtual sample of data normally distributed was created for each 

of the material properties reported in Table 1 and Table 2. The tensile strength of the bricks was 

determined from the bending tensile one by applying the conversion formula proposed by Eurocode 2 

[48]. This formula (Appendix. Eq. A6) was used in the lack of a more specific one available for clay 

bricks. Each virtual sample was composed of 5000 data and characterized by the mean and the standard 

deviation of each property. 5000 strength estimations were obtained for each equation. A summary of 

the results indicating the mean value and the coefficient of variation is shown in Table 5. All the 

predictions can be compared with the average experimental values (fc,exp). To convert the characteristic 

value provided by the European code [42] to the average one, the former was multiplied by a factor 

equal to 1.2 as proposed by the EN 1052-1 [12]. In the table, fc,EC6 and fc,ACI refer to the values calculated 

with Eurocode 6 [42] or ACI 530.1-02 [43], while fc,Hilsdorf, fc,K&H and fc,Ohler correspond to those 

calculated according to [44], [45] and [46] respectively. All the analytical predictions present 

reasonable estimations of the compressive strength of masonry, being fc,EC6 and fc,K&H the lower and 

upper bounds respectively. 

Table 5. Experimental and analytical compressive strength values (MPa). The coefficient of variation is indicated in 

brackets. 

Sample fc,exp fc,EC6 fc,ACI fc,Hilsdorf fc,K&H fc,Ohler 
RBW 6,51 (8.9%) 

6,06 (6.7%) 6,36 (4.8%) 6,80 (9.3%) 7,14 (10.0%) 6,47 (9.8%) SBP,mono 6,49 (9.1%) 
SBP,cyclic 7,1 (3.1%) 

 

4.2 Masonry stiffness 

In the case of the elastic modulus of masonry, building codes also propose some simple 

relationships to estimate this parameter in the lack of experimental results. Eurocode 6 [42] proposes 

to evaluate the elastic modulus (Ec,EC6) through a linear relationship with the masonry characteristic 

compressive strength. The recommended constant of proportionality is 1000. The American 

Requirements for Masonry Structures [49] follow a similar approach and suggest to estimate the elastic 

modulus (Ec,ACI) as 700 times the compressive strength. These criteria were applied to the masonry 
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herein investigated by using the strength estimates obtained in the previous section 4.1. The 

comparison with the experimental results (Ec,exp) is included in Table 6. The experimental value shown 

for the SBPs is an average of all the static and cyclic tests on prisms (7 tests) since they do not differ 

in the procedure used for the measurement of the elastic modulus. 

Based on the findings of Pande et al. [50], Pelà et al. [39] proposed a very simple one-dimensional 

homogenization method for the estimation of the elastic modulus of masonry. This model considers 

the interaction of units with bed and head mortar joints as a system of series-parallel uniaxial springs, 

by incorporating the elastic moduli of the material components. It allows using different expressions 

for the different testing specimens such as stack bond prisms -without head joints-, and running bond 

walls -with head joints. The model (Appendix. Eq. A7 and A8) was applied with the material properties 

specified in Table 1 and Table 2. In the lack of a specific measurement, the elastic modulus of the 

bricks in the direction parallel to the load was estimated as the average of the values of the other two 

perpendicular directions. Table 6 presents the results of the homogenization method (Ec,1D) that 

provides more accurate Young’s moduli estimations than the expressions provided by the 

aforementioned standards.  

Table 6. Experimental and analytical elastic modulus values (MPa). 

Sample Ec,exp Ec,1D Ec,EC6 Ec,ACI 
RBW 2318 2075 5050 4445 SBP, all 2445 2098 

 

4.3 Stress-strain relationships under cyclic loading 

The literature review presented in section 1 reported a limited number of references dealing with 

the experimental testing of masonry under cyclic compression. The number of references studying the 

constitutive stress-strain laws of the masonry cyclic compressive response is even more reduced. 

Naraine & Sinha [41] proposed a simple mathematical model to predict the unloading and reloading 

curves of brick masonry. It consisted of exponential stress-strain relationships, which were calibrated 

to fit previous experimental data obtained by them [25]. The same data were used by Eibl et al. [51] to 
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define another simple model, which proposed exponential unloading curves and linear reloading 

curves. Similar formulations, representing the curves with exponential or polynomial functions are 

also included in [52–54] for different types of masonry. None of the former models considered the 

case of partial unloading-reloading.  

Sima et al. [55] proposed a more complex constitutive model based on a damage parameter. The 

model was also calibrated using experimental results of Naraine and Sinha [25]. The newest available 

approach is the one formulated by Facconi et al. [28], which is partially based on the work of Crisafulli 

[56]. Its equations were calibrated for different types of masonry tested by different authors 

[7,25,28,53,57,58].  

The latter two models are able to also predict the case of partial unloading-full reloading. In 

addition to their larger generality, these two models have been selected for the present investigation 

because of their ability to model cyclic loading processes not reaching zero stress as in the case of the 

experiments presented in section 3.3.  

The two investigated models consider the strain at the onset of unloading as the internal variable 

that completely defines a whole cycle of unloading-reloading. The rest of parameters controlling the 

cycle are obtained from this strain by means of relationships adjusted from experimental data. The 

parameters of the model of Sima et al. [55] have been recalibrated in this work by using the 

experimental results of tests SBP5, SBP6 and SBP7 as reference data. The new calibration is displayed 

in Fig. 13 in terms of relationships between unloading strain to plastic strain ratio (r) and the unloading 

damage (δun), between the final unloading stiffness to initial stiffness ratio (R) and the unloading 

damage (δun), and between the reloading damage (δre) and the unloading damage (δun). 

The model of Sima et al. [55] defines the envelope curve based on the modulus of the initial linear 

branch (Eo), the strain value limiting the initial branch (εo), the compressive strength (fc) and the strain 

at the peak stress (εp). The model of Facconi et al. [28] considers the same parameters with the 
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exception of the strain limiting the initial branch. Instead, their model uses the ultimate strain at zero 

stress (εu) to also delimit the post-peak response.  

In both cases, unloading branches are defined via nonlinear equations. Sima et al. [55] proposes 

straight reloading branches. Conversely, Facconi et al. [28] implements a more refined double-

curvature law for the reloading response, although the limits of the resulting curves are also based on 

a linear relationship. In addition, the model of Facconi et al. offers the possibility to modify the value 

of some parameters to obtain a better adjustment of the curves and specifically the parameter γun, which 

governs the initial slope of the unloading curves. 

Both models have been used to simulate the tests on specimens SBP5 and SBP6, with the input 

data indicated in Table 7. Fig. 11a and Fig. 12a show the comparison between the experimental stress-

strain curves of specimens SBP5 and SBP6, respectively, and the analytical curves obtained through 

the direct application of Facconi et al. model [28]. Fig. 11b and Fig. 12b display the comparison with 

the model of Sima et al. [55] with the new calibration previously indicated.  

Table 7. Model input data for comparison with the experimental results of specimens SBP5 and SBP6. 

Specimen Model Eo (MPa) εo (%) fc (MPa) εp (%) εu (%) γun (-) 

SBP 5 Facconi et al. [28] 1100 - 6.91 0.90 1.60 3 
Sima et al. [55] 1030 0.5 6.91 0.90 - - 

SBP 6 Facconi et al. [28] 1600 - 7.34 1.09 2.00 3 
Sima et al. [55] 1463 0.2 7.34 1.09 - - 
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Fig. 11. Experimental (dashed) and analytical (solid) stress-strain curves for specimen SBP5. a) Analytical model by 

Facconi et al. [28], b) Analytical model by Sima et al. [55], with new calibration. 

 

 

Fig. 12. Experimental (dashed) and analytical (solid) stress-strain curves for specimen SBP6. a) Analytical model by 

Facconi et al. [28], b) Analytical model by Sima et al. [55], with new calibration. 
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Fig. 13. New relationships for the model proposed by Sima et al. [55], obtained by curve fitting of the present work’s 

experimental data. Notation according to [55]. a) Relationship between unloading strain – plastic strain ratio (r) and the 

unloading damage (δun), b) Relationship between the final unloading stiffness – initial stiffness ratio (R) and the 

unloading damage (δun), c) Relationship between the reloading damage (δre) and the unloading damage (δun). In the 

above, rc² is the coefficient of determination R squared. 

 

5 Discussion 

Masonry specimens of two different configurations, consisting in running bond walls (RBWs) 

built according to EN 1052-1 [12] and stack bond prisms (SBPs) built following ASTM C1314 [13], 

have been tested under uniaxial compression. The failure modes observed during the tests have been 

very similar for both sets of samples. The response of both types of specimen was characterized by an 

initial crack pattern consisting of thin vertical cracks in the bricks, appearing mainly near the 

specimens’ edges. With the increase of load, these cracks become later apparent across the mortar 
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joints and propagated over the whole height of the specimens. Additional vertical cracks affected the 

central part of the faces after the peak load. A final remaining core was observed showing a sandglass 

shape, as typically obtained in compression tests. Due to their similar failure mode, both types of 

sample can be considered able to represent the complex mechanism of the compressive response of 

masonry. 

The average value of the compressive strength obtained for stack bond prisms tested under cyclic 

loading is 7.10 MPa, which is slightly higher than the strength obtained for monotonically loaded 

prisms, equal to 6.49 MPa. The associated variabilities, the scattering of the materials (see Table 1 

and Table 2), and the limited amount of specimens tested might justify such a difference derived from 

monotonic and cyclic testing. The monotonic curves seem to provide, however, a good estimate of the 

peaks’ envelope of cyclic curves, as also seen by [7,25,27].  

The strength obtained for the stack bond prisms is very similar to that obtained for the running 

bond walls, equal to 6.51 MPa. The difference is very small and may be only due to the scattering of 

the material properties. The almost null influence of the head joints in the wall specimens may be 

explained as the consequence of a careful construction in laboratory involving the accurate filling of 

all joints with mortar. It should be noted that the presence of head joints could have a more detrimental 

effect in not-so-carefully built masonries. 

Very moderate coefficients of variation, of 9.1% for SBP under monotonic load, 3.1% for SBP 

under cyclic load and 8.9% for RBW, have been obtained. These coefficients are lower than the ones 

obtained for the material properties. It can be said that, as shown in the experiments, the scattering of 

the results on composite specimens is smaller than that shown by the component materials.  

 The equations available in the standards for the prediction of the compressive strength have 

provided satisfactory estimations of the strengths measured experimentally, as reported in Table 5. In 

the case of the ACI equation [43], a satisfactory estimation has been obtained in spite of the fact that 

it was originally adjusted for more resistant masonry types than the one studied herein [43].  
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Table 5 also includes the results of the application of three closed form expressions to predict the 

compressive strength. The three equations yield very accurate values fully comprised within the limits 

of the experimental ones taking into account the obtained scattering. Nevertheless, former researches 

such as [39,47] have found that these formulas may in some cases overestimate the experimental 

strength. A possible explanation for this overestimation can be found in the fact that the three 

equations, based on equilibrium considerations, are very sensitive to the value of the tensile strength 

of the units. The latter is a mechanical parameter of difficult determination whose measurement is not 

covered by any available standard. Due to it, these equations or similar closed form ones should only 

be used when reliable values of the material properties have been made available through accurate 

experimental tests.  

Table 5 also presents the coefficients of variation obtained for the simulations. In a way consistent 

with the experimental results, the 5 studied equations provide coefficients of variation lower than the 

ones of the component material properties.  

The elastic modulus of masonry has been evaluated as the chord modulus of the stress-strain curves 

between the 5% and 30% of the maximum compressive load obtained after three initial loading cycles. 

The execution of the cycles is done, among other reasons, to cancel possible effects related to the first 

contact between the specimens and the loading machine platens. As shown in Fig. 5a and Fig. 7a, and 

highlighted in [30], the performance of cycles introduces irreversible strains in the specimen, which 

leads to an increase in the stiffness of the reloading branches. In addition to the platen-specimen contact 

effects, these irreversible strains might be due to an initial compaction of the material motivated by 

the closing of micro-cracks in the unit-mortar interface and voids within the mortar joints [20]. The 

elastic moduli computed following this approach, after the application of cycles, are considered to be 

more realistic than the very low ones that would be obtained from the initial curves. 

A very similar value of the elastic modulus has been obtained for both types of specimen (RBW 

and SBP), with a difference of only 5%. The average elastic modulus obtained for running bond walls 
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is 2318 MPa, while for all stack bond prisms is 2445 MPa. The latter value has been obtained as an 

average for the 7 SBPs, since there is no difference between monotonic and cyclic tests at this test 

stage. The similitude of the values for both specimen types was expected since the LVDTs were placed 

considering the same reference lengths, which included two bed joints and one full brick. 

The small difference between the elastic modulus obtained in the two specimen types may be 

explained as due to the scattering of the material properties. It might be also explained by the presence 

of the head joint in the case of the RBWs. In fact, the applied spring model detects a certain influence 

of the head joint, as shown by the results included in Table 6 for the simple 1-D homogenization, with 

a slightly lower value for the case of RBWs. In both cases, this simple method has provided a very 

satisfactory estimation of the experimental values. The relative errors, from -10% to -15%, are of the 

same magnitude of those found by [39]. However, it is worth mentioning that this method is based on 

mechanical parameters (the elastic modulus of both units and mortar) that are difficult to be accurately 

measured in laboratory. 

Compared to the compressive strengths, Ec/fc ratios equal to 356 and 362 are obtained respectively 

for running bond walls and stack bond prisms. The ratios proposed by the building codes, equal to 

1000 in the case of the European Eurocode 6 [42] and to 700 in the American requirements [49], clearly 

overestimate the measured elastic modulus. This provides further evidence on the fact that these 

expressions, derived mainly for new masonry, don’t apply for historical or existing masonry made of 

solid clay bricks and lime mortar. Previous researches on clay brick masonry have also obtained Ec/fc 

ratios significantly below those indicated by the codes, as for instance [59] with a ratio of 550, [60] 

with a ratio of 422, or the inventory presented in [10] with an average ratio of 356. In any case, the 

ratios obtained herein are very similar for both types of specimen. Additionally, the coefficients of 

variation associated to the estimation of the elastic modulus are moderately low (7.6% for RBWs, and 

8.8% and 15.5% for SBPs). The performance of initial load cycles during the tests may have 

contributed to reduce the scattering obtained in the measurement of this mechanical property. 
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A much higher scattering, with a variation coefficient between 9.4% for stack bond prisms under 

cyclic loading and 37.6% for running bond walls, has been obtained for the values of the strain at peak 

stress. However, the average values attained for the different samples are similar and equal to 1.2% 

and 1% for SBPs tested monotonically and cyclically respectively and to 0.98% for RBWs. The strain 

at peak stress shows a strong dependence on the compressive strength, and tends to decrease as the 

strength increases.  

 In the case of the cyclic tests performed on stack bond prisms it has been possible to record the 

evolution of stiffness along the full tests and its progressive reduction with the accumulation of 

damage, as shown in Fig. 10. Additionally, it has been possible to capture a significant fraction of the 

post-peak response, as in the researches made by Oliveira et al. [23] and De Felice [30]. The tests here 

presented have confirmed the loss of load-carrying capacity with increasing strains, but also the ability 

of the specimens to resist full unloading-reloading cycles after the peak load. In tests SBP5 and SBP6 

the reloading branches recovered the stresses level attained before the unloading.  

Taking advantage of the almost complete curves obtained for SBP5 and SBP6 specimens, the 

compressive fracture energy was evaluated. Lourenço [61] introduced the concept of ductility index 

as the ratio between the compressive fracture energy and the compressive strength. The experimental 

ductility indices computed for this campaign are 1.24 mm for test SBP5 and 1.47 mm for test SBP6. 

These values are close to the recommendation of 1.6 mm found in literature [61] for masonry with 

compressive strength lower than 12 MPa.  

The two cyclic constitutive models studied are in good agreement with the experimental results 

obtained for specimens SBP5 and SBP6. Sima et al. model [55] is simpler and requires a lesser number 

of input parameters. However, in order to obtain a satisfactory agreement with the experimental results 

it has been necessary to recalibrate the parameters of the model based on the current tests. Conversely, 

Facconi et al. [28] model has provided a satisfactory agreement by directly applying the parameter 

values originally recommended by the authors, which were adjusted based on a set of different 
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experimental campaigns. Compared to Sima et al model [46], the envelope curve formulated by 

Facconi et al. [28] has provided a better fit to the test results. The nonlinear shape proposed for the 

reloading branches is also more realistic. The prediction of the intersection of the reloading branches 

with the envelope curve for post-peak cycles, however, could be improved with an expanded series of 

experimental results.  

 

6 Conclusions 

This paper has presented an experimental programme with new insights on the mechanical 

behaviour of brick masonry under compression. Two different sets of specimens were tested consisting 

of running bond walls built according to the geometric prescriptions of EN 1052-1 and stack bond 

prisms built according to ASTM C1314. They were tested in the laboratory under uniaxial compression 

to evaluate their compressive strength, elastic modulus and post-peak behaviour. A set of three stack 

bond prisms was tested under cyclic loading. The following conclusions can be drawn from these 

experiments: 

- For the specific combination of materials studied, the tests on the two types of standard 

specimens have provided similar results in terms of compressive strength and deformability. 

Additional research should be carried out to extend this conclusion to other types of masonry. 

- New experimental evidence on the behaviour of masonry under uniaxial cyclic loading has 

been obtained. Consistently with previous researches, the tests have shown the stiffness 

degradation of masonry for increasing strains. They have also shown that the static strain-stress 

curves can be used as a satisfactory estimation of the peak envelope of cyclic tests.  

- The evaluation of the elastic modulus of masonry has been done after the application of three 

initial loading-unloading cycles. This approach is consistent with the recommendations of 

standards on other materials specifically devoted to the determination of this parameter. Given 
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the consistency of the experimental results obtained herein, it is recommended to measure the 

elastic modulus of masonry, as a general rule, after the application of several cycles. 

- The expressions provided by the European and American standards and some authors for the 

evaluation of the compressive strength of masonry have provided values in agreement with the 

experimental ones. Conversely, the criteria proposed by these standards for the calculation of 

elastic modulus have strongly overestimated the experimental corresponding values. The 

elastic modulus has been satisfactorily estimated, however, by means of a simple one-

dimensional homogenization model. Two cyclic constitutive models investigated, proposed by 

different authors, have shown their ability to satisfactorily simulate the cyclic response 

obtained in the experimental tests. As opposite to Facconi et al. model, the use of Sima et al. 

model has required significant previous calibration. 
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Appendix: Equations used in Section 4. Analytical studies 

Masonry compressive strength 
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The equation proposed by Eurocode 6 [42] is 

𝑓𝑓𝑐𝑐,𝑘𝑘 = 𝐾𝐾𝑓𝑓𝑏𝑏,𝑐𝑐
0.7𝑓𝑓𝑚𝑚,𝑐𝑐

0.3 (A.1) 

where fc,k (MPa) is the characteristic compressive strength of the masonry, fb,c (MPa) is the normalised 

mean compressive strength of the units, fm,c (MPa) is the compressive strength of the mortar and K, α, 

β are constants. For the case studied herein, masonry made with general purpose mortar and solid clay 

units, the values of these constants are 0.55, 0.7 and 0.3 respectively. 

The equation proposed in the Commentary on Specification for Masonry Structures (ACI 530.1-

02/ASCE 6-02/TMS 602-02) [43] for clay brick masonry is 

𝑓𝑓𝑐𝑐,𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴(400 + 𝐵𝐵𝑓𝑓𝑏𝑏,𝑐𝑐) (A.2) 

where fc,ACI is the specified compressive strength of masonry (psi), fb,c is the average compressive 

strength of brick (psi), A and B are constants. A is equal to 1 for inspected masonry and B is equal to 

0.2 for Type N mortar.  

The equation proposed by Hilsdorf [44] is 

𝑓𝑓𝑐𝑐,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =
𝑓𝑓𝑏𝑏,𝑐𝑐

𝑈𝑈𝑢𝑢
𝑓𝑓𝑏𝑏,𝑡𝑡 + 𝜇𝜇𝑓𝑓𝑚𝑚,𝑐𝑐

𝑓𝑓𝑏𝑏,𝑡𝑡 + 𝜇𝜇𝑓𝑓𝑏𝑏,𝑐𝑐
 (A.3) 

in the above, fc,Hisldorf is the compressive strength of masonry, fb,t is the tensile strength of brick (MPa), 

fb,c is the compressive strength of brick (MPa) and fm,c is the compressive strength of mortar (MPa). µ 

is a geometric factor relating the mortar joint thickness to brick height (µ = hm / (4.1hb)). Uu is a 

nonuniformity coefficient at failure. In this research, its value has been taken as 1.5. 

The equation proposed by Khoo and Hendry [45] is 

𝐴𝐴𝑓𝑓𝑐𝑐,𝐾𝐾&𝐻𝐻
3 + 𝐵𝐵𝑓𝑓𝑐𝑐,𝐾𝐾&𝐻𝐻

2 + 𝐶𝐶𝑓𝑓𝑐𝑐,𝐾𝐾&𝐻𝐻 + 𝐷𝐷 = 0 (A.4a) 

where fc,K&H is the compressive strength of masonry (MPa) and the parameters A, B, C and D are 

computed as 
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𝐴𝐴 = −0.2487𝑓𝑓𝑏𝑏,𝑡𝑡 �
1
𝑓𝑓𝑏𝑏,𝑐𝑐

�
3

+ 0.0018𝛿𝛿 �
1
𝑓𝑓𝑚𝑚,𝑐𝑐

�
2

 

𝐵𝐵 = 1.2781𝑓𝑓𝑏𝑏,𝑡𝑡 �
1
𝑓𝑓𝑏𝑏,𝑐𝑐

�
2

− 0.0529𝛿𝛿 �
1
𝑓𝑓𝑚𝑚,𝑐𝑐

� 

𝐶𝐶 = −2.0264𝑓𝑓𝑏𝑏,𝑡𝑡 �
1
𝑓𝑓𝑏𝑏,𝑐𝑐

� − 0.1126𝛿𝛿 

𝐷𝐷 = 0.9968𝑓𝑓𝑏𝑏,𝑡𝑡 + 0.1620𝛿𝛿𝑓𝑓𝑚𝑚,𝑐𝑐 

(A.4b) 

in the above, fb,t is the tensile strength of brick (MPa), fb,c is the compressive strength of brick (MPa) 

and fm,c is the compressive strength of mortar (MPa). δ is a geometric factor equal to the ratio of the 

mortar joint thickness to brick height (δ = hm / hb).  

The equation proposed by Ohler [46] is 

𝑓𝑓𝑐𝑐,𝑂𝑂ℎ𝐻𝐻𝑙𝑙𝐻𝐻 =  𝑓𝑓𝑚𝑚,𝑐𝑐 +
𝑠𝑠𝑓𝑓𝑏𝑏,𝑐𝑐 − 𝑓𝑓𝑚𝑚,𝑐𝑐

1 +
𝑡𝑡ℎ𝑚𝑚𝑓𝑓𝑏𝑏,𝑐𝑐
𝑚𝑚ℎ𝑏𝑏𝑓𝑓𝑏𝑏,𝑡𝑡

 (A.5) 

where fc,Ohler is the compressive strength of masonry (MPa), fb,t is the tensile strength of brick (MPa), 

fb,c is the compressive strength of brick (MPa) and fm,c is the compressive strength of mortar (MPa). hm 

is the mortar joint thickness and hb is the brick height. s and t are parameters defining the brick failure 

envelope and m is the slope of the mortar failure envelope [47]. 

Flexural to tensile strength relationship 

The equation provided by Eurocode 2 [48] that relates the flexural and tensile strengths of concrete is 

𝑓𝑓𝑐𝑐𝑡𝑡𝑚𝑚 =
𝑓𝑓𝑐𝑐𝑡𝑡𝑚𝑚,𝐻𝐻𝐻𝐻

�1.6 − ℎ
1000�

 (A.6) 

where fctm is the tensile strength of concrete, fctm,fl is the flexural strength of concrete and h is the height 

of the element in mm. In the lack of a specific expression for bricks, it has been used herein with the 

tensile strength of brick fb,t and the flexural strength of brick fb,fl. 
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Masonry stiffness 

The equation of the simple one-dimensional homogenization model for the stack bond prisms is 

𝐸𝐸1𝐷𝐷 =
𝑙𝑙𝐻𝐻𝑙𝑙𝐻𝐻

ℎ𝑏𝑏,1
𝐸𝐸𝑏𝑏

+
ℎ𝑚𝑚,1
𝐸𝐸𝑚𝑚

+
ℎ𝑏𝑏,2
𝐸𝐸𝑏𝑏

+
ℎ𝑚𝑚,2
𝐸𝐸𝑚𝑚

+
ℎ𝑏𝑏,3
𝐸𝐸𝑏𝑏

 (A.7) 

where E1D is the equivalent elastic modulus of masonry, Eb is the elastic modulus of brick and Em is 

the elastic modulus of mortar. The expression applies to the specific geometry of this test and the 

reference length (lref) measured by the LVDTs (Fig. A1). hb,i is the height of the i brick portion and hm,i 

is the thickness of the i mortar joint.  

In the case of the running bond walls, the middle term of the denominator incorporates the influence 

of the mortar head joint 

𝐸𝐸1𝐷𝐷 =
𝑙𝑙𝐻𝐻𝑙𝑙𝐻𝐻

ℎ𝑏𝑏,1
𝐸𝐸𝑏𝑏

+
ℎ𝑚𝑚,1
𝐸𝐸𝑚𝑚

+
ℎ𝑏𝑏,2 ∗ 𝑡𝑡

𝐸𝐸𝑏𝑏 ∗ (𝑡𝑡𝑏𝑏1 + 𝑡𝑡𝑏𝑏2) + 𝐸𝐸𝑚𝑚 ∗ 𝑡𝑡𝑚𝑚
+
ℎ𝑚𝑚,2
𝐸𝐸𝑚𝑚

+
ℎ𝑏𝑏,3
𝐸𝐸𝑏𝑏

 (A.8) 

where t is the total contributing width considered in the computation, tb is the width of the bricks and 

tm is the width of the mortar head joint.  
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Fig. A.1. One-dimensional homogenization model for elastic modulus estimation. a) and b) Sketches of the portions 
of specimen being measured by the LVDTs for stack bond prisms and running bond walls respectively. c) and d) 
Representation by spring-like elements of the simplified models for stack bond prisms and running bond walls 

respectively.  
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