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Abstract: Due to the increasing installation of wind turbines in remote locations, both onshore and1

offshore, advanced fault detection and classification strategies have become crucial to accomplish2

the required levels of reliability and availability. In this work, without using specific tailored devices3

for condition monitoring but only increasing the sampling frequency in the already available (in4

all commercial wind turbines) sensors of the Supervisory Control and Data Acquisition (SCADA)5

system, a data-driven multi-fault detection and classification strategy is developed. An advanced6

wind turbine benchmark is used. The wind turbine we consider is subject to different types of7

faults on actuators and sensors. The main challenges of the wind turbine fault detection lie in their8

nonlinearity, unknown disturbances as well as significant measurement noise at each sensor. First,9

the SCADA measurements are pre-processed by group scaling and feature transformation (from10

the original high-dimensional feature space to a new space with reduced dimensionality) based11

on multiway principal component analysis through sample-wise unfolding. Then, 10-fold cross12

validation support vector machines based classification is applied. In this work, support vector13

machines were used as a first choice for fault detection as they have proven their robustness for14

some particular faults but never accomplished, at the same time, the detection and classification15

of all the proposed faults taken into account in this work. To this end, the choice of the features as16

well as the selection of data are of primary importance. Simulation results show that all studied17

faults are detected and classified with an overall accuracy of 98.2%. Finally, it is noteworthy that the18

prediction speed allows this strategy to be deployed for online (real-time) condition monitoring in19

wind turbines.20

Keywords: wind turbine; fault detection; fault classification; fault diagnosis; principal component21

analysis; support vector machines; FAST22

1. Introduction23

Wind energy offers many advantages, which explains why it is one of the fastest growing24

renewable sources against greenhouse effects. Currently, research efforts are aimed to minimize25

the overall cost of this energy. The tendency to use larger wind turbines (WTs) in harsh operating26

environments (e.g. offshore) implies that one of the main cost drivers is directly related to operation27

and maintenance actions. Thus, fault diagnosis (FD) is crucial for wind power to be cost competitive,28

and even more for offshore wind farms where bad weather conditions (storms, high tides, etc.) can29

prevent any repair actions for several weeks.30

A variety of surveys on FD taking into account different components of a WT have been recently31

published. [1–4]. However, the later trend, in this type of literature review, is to focus in a specific WT32
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sub-assembly: the bearings and planetary gearbox [5,6], the generator and power converter [7,8], the33

blades [9,10], et cetera. Most of these methods (that focus in a specific part of the WT) require to choose34

the most appropriate sensors, their advisable position in the sub-assembly, and the most convenient35

strategy to extract as much information as possible from the obtained data. These are highly localized36

strategies and each one relies on (costly) extra sensors to be installed. However, it should be possible37

to retrofit a multi-fault condition monitoring package onto existing WTs without requiring additional38

sensors and wiring on the machines. In fact, there is a large amount of operational (SCADA) data39

available (already collected at the WT controller), which can be used to diagnose the turbine condition.40

This section addresses the state of the art in FD of WT faults using SCADA data.41

In recent years, there has been efforts to develop FD strategies by analyzing only SCADA data. The42

use of machine learning techniques has been crucial for this area. For example, in [11] fault prediction43

and diagnosis for the WT generator is accomplished using real-world SCADA data from two wind44

power plants located in China based on principal component analysis (PCA) and unsupervised45

clustering methods. In [12] a FD strategy for WT gearboxes is proposed based on artificial neural46

networks (ANN) and tested on real-world SCADA data sets of a wind farm in southern Italy. In47

[13] a strategy to diagnose WT faults from SCADA data using support vector machines (SVM) is48

advised. Generally, the classification methods that deserve special mention are SVM [11,13–17] and49

ANN [12,18,19], because of their ability to handle non-linear and noisy data. On one hand, the use50

of ANN has drawbacks related to their training time and dependability on the optimization of fine51

tuning their parameters. In particular, in [18] the right number of parameters and their corresponding52

value must be carefully selected to create a normal behavior model based on ANN. On the other hand53

SVM is simpler and has successfully proven its suitability in this type of problem. Thus, SVM is the54

selected classifier in this paper.55

Regarding FD methods based on SVM classifiers, that analyze only SCADA data, considerable56

research has been done. For example, in [14] different faults are studied but, unfortunately, faults in the57

pitch actuators could not be detected and, furthermore, the sampling period is unfeasible (0.01 s). Note58

that SCADA data is typically recorded at 10-minute intervals to reduce transmitted data bandwidth59

and storage. In [15], SVM could isolate some faults, except for high varying dynamics (this includes a60

pitch actuator fault), where the use of an observer, which is model-based, was found necessary and,61

again, the sampling period is 0.01 s. Later references based on SVM are, mainly, specifically tailored62

for a particular type of fault. For example, in [16] a SVM based method is proposed to classify the63

misalignment type of fault; in [11] generator faults are diagnosed; in [17] only actuator faults are64

considered; and in [13] generator and power feeder cables faults are diagnosed. In this paper, we65

widen the number and type of the studied faults with a unique strategy to cope with them all: three66

different pitch actuator faults (high air content in oil, pump wear, hydraulic leakage), a generator67

speed sensor fault (gain factor of 1.2), three different pitch sensor faults (stuck in 5 deg, stuck in 10 deg,68

and with a gain factor of 1.2), and a torque actuator offset fault.69

As it has been noted previously, one of the major drawbacks in using SCADA data is the 10-minute70

sampling period. This low frequency resolution negatively affects the diagnosis capabilities and may71

hide short-lived events. On the other hand, high-resolution (but feasible) SCADA data should allow72

the dynamic turbine behavior to be identified with higher fidelity and thus improve detection efficiency.73

As stated in [20,21], in this work a research frame work is proposed that takes SCADA data with an add74

on high but feasible (1 s) frequency from the sensors. That is, the only requirement is to increase the75

frequency rate in the SCADA data from the already available sensors. Following this idea, in this work,76

we propose a strategy to detect and classify (through SVM) multiple WT faults using only conventional77

SCADA data with an add on, but feasible (sampling period of 1 s), high frequency sampling from the78

sensors and without the added cost of retrofitting additional sensors to the turbine.79

The paper is organized as follows. In Section 2, the WT benchmark model is introduced and the80

proposed FD strategy is described. The obtained results are presented and discussed in Section 3.81

Section 4 states the conclusions and future work.82
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2. Fault Diagnosis Strategy83

2.1. Model overview84

The utmost importance of WT fault diagnosis, as mentioned in the introduction, stimulated the85

proposal of a model encompassing the prevailing faults accounted in practice (see [22]). This early86

version of the model described a generic 4.8 MW three-blade horizontal-axis variable-speed WT and it87

was issued by the company KK Wind Solutions [23] together with MathWorks, Inc. [24] and Aalborg88

University to release an international competition on fault detection and isolation in WTs. Several89

teams participated in the contest, and five of the solutions are compared in [25]. Then, a second90

enhanced model was presented in [26] that incorporated a more realistic WT simulated using the91

FAST software. This is an aeroelastic WT simulator designed by the U.S. National Renewable Energy92

Laboratory’s (NREL) National Wind Technology Center and widely used by the research community.93

Several FAST models of WTs of varying sizes are available in the public domain, including NREL’s 594

MW baseline turbine which is the one used by the model. It is noteworthy that this simulator is able95

to consider the WT flexible modes that are present in practice making fault detection more difficult96

compared to simpler models neglecting these modes (as in [22]). Thus, the second enhanced model,97

see [26], is the one utilized in this work.98

The model proposes to simulate the sensors in the block diagram environment Simulink by adding99

signals from band limited white noise blocks that are parameterized by noise power, to the actual100

variables provided by the FAST software. These random noise blocks represent measurement noise101

either due to to electrical noise in the system or due to the measuring principle. The different sensors102

provided in the model are shown in Table 1 with the measurement noise modeled as a Gaussian white103

noise. Finally, a sampling period of 0.0125 s is used in the simulations.

Table 1. Available sensors (measured data).

Number Sensor type Symbol Unit Noise power

S1 Generated electrical power Pe,m W 10
S2 Rotor speed ωr,m rad/s 10−4

S3 Generator speed ωg,m rad/s 2 · 10−4

S4 Generator torque τc,m Nm 0.9
S5 Pitch angle of first blade β1,m deg 1.5 · 10−3

S6 Pitch angle of second blade β2,m deg 1.5 · 10−3

S7 Pitch angle of third blade β3,m deg 1.5 · 10−3

S8 Tower top fore-aft acceleration a f a,m m/s2 5 · 10−4

S9 Tower top side-to-side acceleration ass,m m/s2 5 · 10−4

104

The most important features of the WT are detailed in Table 2. In this paper, we deal with the full105

load region of operation in the sense that the proposed controller main objective is that the electric106

power closely follows the rated power.107

A set of fault scenarios are defined at the WT model. These scenarios are primarily introduced in108

sensors and actuators. More precisely, the types of faults are gain factors, offsets, changes in the system109

dynamics and stuck, as shown in Table 3. These faults are inspired by research in both proprietary and110

public domain sources [26]. A comprehensive description of these faults and their importance is given111

in [27].112

The stochastic, full-field, turbulent-wind simulator TurbSim —developed by NREL— is used to113

generate the wind velocity fields applied in the simulations. It employs a stochastic model —as opposed114

to a physics-based model— to numerically simulate time series of three-component wind-speed vectors.115

It provides the ability to drive simulations of complex turbine designs with realistic but simulated116

inflow turbulence environments that combine many of the main fluid dynamic features known to117
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Table 2. Gross Properties of the Wind Turbine.

Reference wind turbine

Rated power 5 MW
Number of blades 3
Rotor/Hub diameter 126 m, 3 m
Hub Height 90 m
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Rated generator speed (ωng) 1173.7 rpm
Gearbox ratio 97

Table 3. Fault scenarios.

Number Fault Type

F1 Pitch actuator - High air content in oil Change in system dynamics
F2 Pitch actuator - Pump wear Change in system dynamics
F3 Pitch actuator - Hydraulic leakage Change in system dynamics
F4 Generator speed sensor Gain factor (1.2)
F5 Pitch sensor Stuck value (β3,m = 5 deg)
F6 Pitch sensor Stuck value (β3,m = 10 deg)
F7 Pitch sensor Gain factor (1.2)
F8 Torque actuator Offset value (2000 Nm)

negatively affect turbine aeroelastic response and loading. In this work, the generated wind data has118

the following features: Kaimal turbulence model with intensity set to 10%, mean speed is set to 18.2119

m/s and simulated at hub height, logarithmic profile wind type, and the roughness factor is set to 0.01120

m. In this work, each simulation is ran with a different wind data set. More precisely, 260 different121

wind data sets of a duration of 600 seconds each are used.122

2.2. (Non-) Noise Handling123

To deal with noise in a data set, two broad ways can be considered, in general: (i) it might be124

filtered out; or (ii) left as it is. Obviously, pros and cons appear when adopting any one of these two125

approaches. By filtering out the noisy instances from the data, there is a trade-off between the amount126

of information available for building the classifier and the amount of noise retained in the data set.127

Robust algorithms do not require preprocessing of the data (the data set is taken as is, with the noisy128

instances), but a classifier built from a noisy data set may be less predictive and its representation may129

be less compact that it could have been if the data were not noisy. In this work, this second approach is130

used. Since multiway PCA (a statistical procedure that uses an orthogonal transformation to convert a131

set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables132

called principal components) is used for the pre-treatment of the data, the strategy can be considered as133

robust. Besides, the 10-fold cross-validation (model validation technique for assessing how the results134

of a statistical analysis will generalize to an independent data set) is also considered and therefore the135

impact of a particular noisy subset of data is minimized.136

2.3. Data Collection137

In this work, a total of 260 simulations are conducted. In particular 100 with a healthy WT, and138

20 simulations for each studied fault. That is (recall there are 8 types of faults, see Table 3), a total of139

160 simulations with a faulty WT. All simulations have a duration of 600 seconds. However, only the140

last 400 seconds of simulation are used to avoid the transient due to initialization of the numerical141
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simulations as in [28]. Measurements are taken from the nine SCADA available sensors, see Table 1.142

Note that the wind sequence is not used as a known measurement.143

It is noteworthy that a time step of 0.0125 seconds is needed in the simulations due to the144

fixed-step-size time-integration scheme used by the FAST simulation software [29]. However the145

data used for FD is down-sampled to a sampling period of 1 second. Traditional SCADA data has146

a 10-minute average sampling frequency. In this paper, following [21], it is proposed to make use147

of conventional SCADA data with a realistic add on higher frequency sampling from the sensors (1148

sample per second). Some condition monitoring systems might surpass the expense of the necessary149

additional equipment, however may also exhibit high rates of false positive alarms while the diagnosis150

is dedicated to a unique component or assembly rather than system-wide [30]. In this work, without151

using specific tailored devices for condition monitoring, only increasing the sampling ratio to a feasible152

frequency in the already available sensors of the SCADA system, a cost effective multi-fault monitoring153

tool is obtained.154

2.4. Data Reshape and Tensor Unfolding155

The main objective is, using all the available SCADA information, to minimize detection time156

while preserving overall accuracy. Recall that after the classification model is built, in order to diagnose157

a WT, a sample has to be given as an input to the model. The smaller the needed sample, the smaller158

will be the detection time (as less time is needed to collect the data from the sensors). Here detection159

time refers to the time from when the fault occurs to when it is detected. Assuming Td is the detection160

time, the fault detection requirements given in the model [26] for the corresponding faults are described161

in terms of the sampling time for the control system, Ts, which, in this case, is equal to 1 s. In particular:162

• Fault 8 (F8) is required to fulfill Td < 3Ts. This is the most restrictive detection time as this is the163

most severe fault. It is related to the torque actuator and it is noteworthy that the torque rate164

limit for the NREL 5-MW WT is 15000 Nm/s [29].165

• Fault 1 (F1) is required to fulfill Td < 8Ts. This fault has a high varying dynamic and is related to166

the pitch actuator (high air content in oil). In this case, note that the blade-pitch rate limit for the167

NREL 5-MW WT is 8 deg/s as this is speculated to be the blade pitch rate limit of conventional168

5-MW machines based on General Electric (GE) Wind’s long blade test program [29].169

• Faults 4 to 7 (F4, F5, F6, F7) are required to fulfill Td < 10Ts. These faults are related to the170

generator speed sensor and the pitch sensors.171

• Finally, faults 2 and 3 (F2, F3) are required only to satisfy Td < 100Ts as these are faults with a172

very slow dynamic. These faults are related to the pitch actuator (pump wear and hydraulic173

leakage).174

Using the three most restrictive requirements, it is proposed to organize the available data from175

the simulations in three different manners:176

a) In samples of only J = 3 time steps (this will lead to a detection time of approximately 3Ts).177

b) In samples of J = 8 time steps (in this case, detection time is close to 8Ts).178

c) In samples of J = 10 time steps (for a detection time around to 10Ts).179
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The goal of the reminder of this section is to show how the data is reshaped in samples of J time
steps. As said before, the data comes from 260 simulations of 400 s of duration each (with a time step
of 1 s) and nine sensors available. This data is initially stored, for each sensor, in a matrix as follows:

x(k)1,1 x(k)1,2 · · · x(k)
1,
⌊

400
J

⌋
J

x(k)2,1 x(k)2,2 · · · x(k)
2,
⌊

400
J

⌋
J

...
...

. . .
...

x(k)i,1 x(k)i,2 · · · x(k)
i,
⌊

400
J

⌋
J

...
...

. . .
...

x(k)260,1 x(k)260,2 · · · x(k)
260,

⌊
400

J

⌋
J


∈ M

260×
⌊

400
J

⌋
J
(R) (1)

where the super-index (k) is related to the different sensors k = 1, 2, . . . , 9. That is, there is one of these180

matrices for each sensor. The matrix has as many rows as simulations (260). The number of columns is181

taken as
⌊

400
J

⌋
J, where b·c is the floor function, to ensure that the matrix can be afterwards reshaped182

in a matrix of J columns. When J = 8 or J = 10 this results in using the whole 400 s of each simulation183

(
⌊

400
J

⌋
J = 400 in these two cases, as 8 and 10 are divisors of 400). However, when J = 3 it is obtained184

that
⌊

400
J

⌋
J = 399, thus in this case only 399 s of each simulation are used.185

As said before, when a WT has to be diagnosed it is desirable that with a few seconds of measured
data a diagnose can be obtained. Thus, instead of working with the matrices in Equation (1) (where
each sample would correspond to 399 or 400 s of data), data is reshaped in a matrix with only J
columns (as stated before, in this work J = 3, 8, or 10) as follows:

x(k)1,1 x(k)1,2 · · · x(k)1,J

x(k)1,J+1 x(k)1,J+2 · · · x(k)1,2J
...

...
. . .

...

x(k)1,400−J+1 x(k)1,400−J+2 · · · x(k)
1,
⌊

400
J

⌋
J

x(k)2,1 x(k)2,2 · · · x(k)2,J

x(k)2,J+1 x(k)2,J+2 · · · x(k)2,2J
...

...
. . .

...

x(k)2,400−J+1 x(k)2,400−J+2 · · · x(k)
2,
⌊

400
J

⌋
J

...
...

. . .
...

x(k)260,1 x(k)260,2 · · · x(k)260,J

x(k)260,J+1 x(k)260,J+2 · · · x(k)260,2J
...

...
. . .

...

x(k)260,400−J+1 x(k)260,400−J+2 · · · x(k)
260,

⌊
400

J

⌋
J



∈ M
260
⌊

400
J

⌋
×J
(R) (2)

where J defines the number of seconds of each sample, and recall that the super-index (k) is related to186

the different sensors k = 1, 2, . . . , 9. Note that the total number of samples is given by I = 260 ·
⌊

400
J

⌋
,187

that is188

a) I = 34580 samples when J = 3.189

b) I = 13000 samples when J = 8.190
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Simulations

Time

1

1

260

2

1 J

Samples (i)

J 2J
Sensors

Time (j)

1

ISensors (k)

=

Figure 1. Reshape data from long run simulations (left) into a third-order tensor X (I × J × K) with
short time samples of J seconds (right).

c) I = 10400 samples when J = 10.191

Figure 1 illustrates how the available data from the 260 long run simulations, see Equation (1), is192

reorganized in a third-order tensor (multidimensional array with three indices) with short time samples193

of J time steps, see Equation (2). The first J data-points determine the first sample (represented by194

the light blue color box in Figure. 1). Right after, the next J data-points determine the second sample195

(red color box), et cetera. After the last J data-points of the first simulation (light green), the first J196

data-points of the second simulation (orange box) define the next sample, and so on. In general, let us197

consider we have at j = 1, 2, . . . , J time instants, different sensors k = 1, 2, . . . , K stored. Similar data is198

generated for a number of samples i = 1, 2, . . . , I. This results in the third-order tensor X (I × J × K)199

as illustrated in Figure 1, where the height (I) gives the number of samples; the width (J) gives the200

number of time instants; and the length (K) gives the number of sensors.201

The crux of the matter for fault detection by SVM is the definition of the features to be used for
classification [14]. In this work, statistical analysis by multiway PCA is used for pretreatment of the
raw data. This is equivalent to implementing basic PCA on a large two-dimensional matrix assembled
by unfolding the third-order tensor X , see Figure 1. There are three possible ways of unfolding this
tensor as suggested by [31]. In general, sample-wise unfolding facilitates the analysis of the variability
among samples by summarizing the information related to the measured variables (sensors) and their
variations over time. Thus, in this work, the sample-wise unfolding is used, see Figure 2, where

X (I × J × K) −→ X(I × JK). (3)

That is, the I× J planes are concatenated into a large two-dimensional matrix X. In summary, multiway202

PCA of the third-order tensor X in Figure 1 is implemented considering PCA of the sample-wise203

unfolded matrix X in Equation (2).204
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Samples (i)

Sensors (k)

Time (j)

Sensor (1) Sensor (2) Sensor (K)Sensor (k) Samples (i)

1 2JJ JK

=

X =

Figure 2. Unfolding of the third-order tensor X into matrix X.

2.5. Autoscaling or Standardization205

The reason to autoscale the raw data is two-fold: to deal with data that comes from different206

sensors and with different magnitudes, and to simplify the computations for the multiway PCA207

decomposition.208

Autoscaling is a relatively frequent pre-processing method that uses column-wise mean-centering
followed by division of each column by the standard deviation of that column of matrix X. The result
is that each column of the new autoscaled matrix, X̃, has a mean of zero and a standard deviation of
one. This idea is used in this work to rectify for different sensor measurements, magnitudes and units
where the prevalent source of variance is due to the signal itself rather than noise. In particular, it is
computed

µj =
1
I

I

∑
i=1

xij, j = 1, . . . , JK, (4)

σj =

√√√√1
I

I

∑
i=1

(xij − µj)2, j = 1, . . . , JK, (5)

where µj and σj are the mean and the standard deviation, respectively, of all the measures at column j.
Accordingly, the elements of matrix X are normalized to create a new matrix X̃ as

x̃ij :=
xij − µj

σj
, i = 1, . . . , I, j = 1, . . . , JK. (6)

2.6. Multiway PCA209

Recall that, before using a classifier, the raw data coming from the sensors must be processed to210

obtain the most suitable features. In this work, after the autoscaling step, multiway PCA is selected as211

the main objective is to keep as much information as possible with the minimum amount of data.212
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Since the input data is given in a mean-centered matrix X̃, the empirical covariance matrix, S, can
be computed as

S =
1

I − 1
X̃TX̃ ∈ M(JK)×(JK)(R). (7)

Then the singular value decomposition of S is computed,

S = PDPT (8)

where D is a matrix in diagonal form composed by the eigenvalues λ1, λ2, . . . , λJK in decreasing order,
and P ∈ M(JK)×(JK)(R) is an orthogonal matrix that contains the eigenvectors. Matrix P is usually
called the loading matrix. As the main objective is to reduce the overall size of the data set, only a
reduced number of d < JK principal components are used. In this work, the number of principal
components is selected based on keeping 99.98% of the variance. The proportion of the variance
directed along (explained by) the first d components is given by:

λ1 + · · ·+ λd
λ1 + · · ·+ λJK

. (9)

In the first case, when J = 3, from a total of J × K = 3× 9 = 27 components, 99.98% of the variance
is accomplished by the first d = 16 components. When J = 8, from a total of J × K = 8× 9 = 72
components, the first d = 42 components are needed to keep 99.98% of the variance. Finally, when
J = 10, from a total of J × K = 10× 9 = 90 components, the demanded variance is accomplished by
the first d = 52 components. Thus, the matrix Pd ∈ M(JK)×(d)(R), with only the first d columns of P is
used. Finally, the score matrix Y ∈ M(I)×(d)(R) (transformed coordinates of the X̃ data in the new
basis given by the first d principal components), whose columns will be used as features by the SVM
strategy, is computed

Y = X̃Pd. (10)

2.7. Support Vector Machines213

Since their introduction by Vladimir Vapnik [32], SVM have been successfully applied to a number214

of real world problems such as face detection, object detection, and handwritten digit and character215

recognition in machine vision. SVM exhibit a remarkable resistance to overfitting and their training is216

performed by maximizing a convex functional which means that there is a unique solution that can217

always be found in polynomial time [33]. In this section, basic hints about SVM classification are given.218

SVM classification is fundamentally a binary classification technique. Let us consider a training
set {(xi, yi)}N

i=1 with d-dimensional data xi ∈ Rd and their corresponding label yi ∈ {−1,+1}. Figure
3 shows these data where one class is labeled as (+) and the other one as (-). The main goal is to find
the optimal hyperplane that defines the widest margin to separate both classes, see Figure 3. Formally,
the hyperplane is given by

h(x) = ωTx + b, (11)

where b is known as the bias term and ω is the weight vector. The optimal hyperplane can be
characterized in an infinite number of different ways by scaling of b and ω. As a matter of agreement,
among all the possible descriptions of the hyperplane, it is chosen the so-called canonical hyperplane
that satisfies

ωTxsv
+ + b = 1, (12)

ωTxsv
− + b = −1, (13)
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Figure 3. Linear SVM in a two-dimensional example.

where xsv
+ and xsv

− symbolize the (+) and (−) training samples closest to the hyperplane, that is the so
called support vectors, see Figure 3. The distance between a point x and the hyperplane h is given by

d(x, h) =
|ωTx + b|
||ω|| . (14)

In particular, for the canonical hyperplane, when x is a support vector, the numerator |ωTx + b| is
equal to one and the distance to the support vector is,

d(xsv
± , h) =

1
||ω|| . (15)

The width of the margin is twice this distance, that is 2
||ω|| . Thus, to maximize the margin is equivalent

to minimize the expression ||ω||2 , which is equivalent to the following minimization problem

min
ω,b

1
2
||ω||2 subject to

{
h(xi) ≥ 1, ∀yi = 1 samples;
h(xi) ≤ −1, ∀yi = −1 samples.

(16)

The two previous restrictions can be rewritten in one single equation by taking the product h(x)y,

min
ω,b

1
2
||ω||2 subject to h(xi)yi ≥ 1, i = 1, . . . , N. (17)

This problem, to find the extrema of a function with constraints, can be solved using Lagrange
multipliers, thus leading to

min
ω,b

L(ω, b) =
1
2
||ω||2 −

N

∑
i=1

αi

[
yi(ω

Txi + b)− 1
]

, (18)

where αi are the Lagrange multipliers. Taking partial derivative with respect to ω equal to zero,

∂L(ω, b)
∂ω

= ω−
N

∑
i=1

αiyixi = 0⇔ ω =
N

∑
i=1

αiyixi. (19)
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This equation states that the decision vector, ω, is a linear combination of the data samples. Taking
partial derivative with respect to b equal to zero,

∂L(ω, b)
∂b

= −
N

∑
i=1

αiyi = 0. (20)

Finally, substitution of Equations (19) - (20) into Equation (18) leads to

min
αi

1
2

(
N

∑
i=1

αiyixi

)T ( N

∑
j=1

αjyjxj

)
−

N

∑
i=1

αiyi

(
N

∑
j=1

αjyjxj

)T

xi − b
N

∑
i=1

αiyi︸ ︷︷ ︸
=0

+
N

∑
i=1

αi

 , (21)

that can be rewritten as

min
αi

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjxT
i xj

]
. (22)

If the data does not admit a separating hyperplane, SVM can use a soft margin, meaning a219

hyperplane that separates many, although not all data points. Consequently, the previous problem is220

generalized by means of slack variables, εi, and a penalty parameter, C. The general formulation for221

the linear kernel is in this case:222

min
ω,b,εi

1
2
||ω||2 + C

N

∑
i=1

εi subject to

{
h(xi)yi ≥ 1− εi, i = 1, . . . , N;
εi ≥ 0, i = 1, . . . , N.

(23)

In this case, using Lagrange multipliers, the problem reads

min
αi

[
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjxT
i xj

]
subject to

{
∑N

i=1 αiyi = 0;
0 ≤ αi ≤ C, i = 1, . . . , N.

(24)

The final set of restrictions shows why the penalty parameter C is frequently called a box constraint, as223

it keeps the admissible values of the Lagrange multipliers in a bounded region. In this work, the box224

constraint value has been tuned to optimize the performance of the SVM, as is shown in Section 4.225

From Equations (22) and (24) is obvious that optimization depends only on dot products of pairs
of samples. Also, the decision rule depends only on the dot product. Furthermore, the optimization
problem is solved in a convex space (in contrast to neural networks), thus it never obtains a local
extrema but the global one. When the space is not linearly separable (the classification problem does not
have a simple hyperplane as a useful separating criterion even using a soft margin), a transformation
to another space can be used, φ(·). In fact, the transformation itself is not needed, but just the dot
product, the so called kernel function,

K(xi, xj) = φ(xi)φ(xj). (25)

The kernel function permits the computation of the inner product between the mapped vectors without
expressly calculating the mapping. This is advantageous as it implies that if data is transformed into a
higher dimensional space (which helps to better classification) there is no need to compute the exact
transformation of the data, but only the inner product of the data in that higher dimensional space
(which is computationally cheaper). This fact is known as the kernel trick [34]. Different kernels can
be used, namely polynomial, hyperbolic tangent or Gaussian radial basis function. On one hand, the
feature space mapping of the Gaussian kernel has infinite dimensionality. On the other hand, the
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Gaussian kernel has a ready interpretation as a similarity measure as its value decreases with distance
and ranges between zero and one. For these reasons, in this work the Gaussian kernel is used, namely,

K(xi, xj) = e−γ(||xi − xj||2), (26)

where γ is a free parameter, hereafter denoted as kernel scale, related to the Gaussian kernel width. In226

this work, the kernel scale is computed as the inverse of the square root of the number of features. It227

is noteworthy that, in this work, the same features and the same kernel scale value for the Gaussian228

kernel are used to detect all faults. In other words, a unique trained SVM is able to classify among229

all the studied classes (eight faulty classes and one healthy class). That is not the case in the previous230

literature related to WT fault detection (e.g., [14,35]) where the features and the variance were adjusted231

case by case to detect each different fault, thus leading to a much more complex strategy that needed232

as many different SVM classifiers as faults to detect. Regarding computational effort, there is a clear233

advantage related to the feature computation, as only one set of features is needed in our proposed234

approach.235

As it has been mentioned earlier, SVM classification is essentially a binary (two-class) classification236

technique, which has to be modified to deal with the multi-fault classification. Two of the most common237

methods to enable this adaptation include the one-vs-one and one-vs-all approaches. The one-vs-all238

technique represents the earliest and most common SVM multiclass approach [36] and comprises239

the division of an N class dataset into N two-class cases and it chooses the class which classifies the240

test with greatest margin. The one-vs-one strategy comprises constructing a machine for each pair of241

classes, thus resulting in N(N − 1)/2 machines. When this approach is applied to a test point, each242

classification gives one vote to the winning class and the point is labeled with the class having most243

votes. The one-vs-one strategy is more computationally demanding since the results of more SVM244

pairs ought to be computed. In this work, the one-vs-all approach is used.245

2.8. k-Fold Cross Validation246

Normally, a data-based classifier is inferred based on training data and considering a classifier247

learning algorithm. A prediction error —also known as true error— is associated to each classifier.248

However, this prediction error is usually unknown, cannot be computed and must be estimated based249

on data. Different estimators of the prediction error can be considered, from the simple hold-out [37]250

and resubstitution [38] to the more sophisticated bootstrap [39]. One of these techniques, and possibly251

the most popular, is k-fold cross validation [40]. In k-fold cross validation, the data set is distributed252

into k folds, the classifier is then learned using k− 1 folds, and the prediction error is computed by253

testing the classifier in the fold that is not used in the learning step. In the end, the estimation of the254

error is the numerical mean of the errors committed in each fold. In this paper, 10-fold cross validation255

is used to estimate the performance of the proposed FD strategy.256

3. Results, Analysis and Discussion257

The results of the proposed multi-fault diagnosis strategy introduced in Section 2 in the dataset258

under study are presented in this section.259

First, a flowchart of the proposed approach and how it is applied is given in Figure 4. When a WT260

has to be diagnosed, data coming from the WT sensors is scaled and then, using the already computed261

PCA projection, the features are computed. Then the already trained SVM classifies the data.262

Note that the box constraint value is tuned to optimize the SVM performance. Making this value263

large increases the weight of misclassification, see Equation (23), which leads to a stricter separation.264

However, increasing its value leads to longer training times. The value C = 50 is used in this work265

because, as shown in Figure (5), with smaller values the overall accuracy is degraded and with larger266

values similar results are obtained (with longer training times).267
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Figure 4. Data coming from a WT to be diagnosed is first scaled, then projected into the vectorial space
spanned by the first principal components and finally the projection enters the classifier.
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Figure 5. Box constraint value with respect to overall accuracy.

Table 4 summarizes the results obtained from the proposed strategy. It presents not only the268

overall accuracy, but also the training time and prediction speed, as both parameters are critical in real269

application. Notice that prediction speed, in all cases, allows this strategy to be deployed for online270

(real-time) condition monitoring in WTs. Besides, a comprehensive decomposition of the error between271

the true classes and the predicted classes is shown by means of the so called confusion matrices, see272
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Figures 6, 7, and 8 (note that an empty blank square means 0%). In these matrices, each row represents273

the instances in a true class while each column represents the instances in a predicted class (by the274

classifier). In particular, first row (and first column) is labeled as 0 and corresponds to the healthy275

case. Next labels (for rows and columns) correspond to each fault (from Fault 1 to Fault 8). From the276

confusion matrices and Table 4 the following issues can be highlighted.277

When detection time is approximately 3 seconds (J = 3), the overall accuracy is 95.5%. In this278

case, the healthy class has a true positive rate (TPR), that is percentage of correctly classified instances,279

higher than 99% and a false negative rate (FNR), that is percentage of incorrectly classified instances,280

smaller than 1%. Fault 1 (the most difficult to classify in previous references and related to the pitch281

actuator fault with high dynamics) has a TPR of 77% and a FNR of 23%. This FNR percentage is mainly282

obtained from 17% missing faults and 6% confusion with Fault 2, which is also a fault located in the283

pitch actuator. Fault 6, related to a stuck value (10 deg) of the pitch sensor measurement, is 5% of the284

times misclassified as healthy, 3% of the times confused with the same type of fault but with only a 5285

deg stuck value (Fault 5), and 2% misclassified as Fault 2 (pitch actuator fault). The other faults have286

a TPR higher than 92%. It is noteworthy that Fault 8, the most severe one and related to the torque287

actuator, has a 100% TPR with this most restrictive detection time.288

When detection time is approximately 8 seconds (J = 8), the overall accuracy is 98%. As in the289

previous case, the healthy class has a TPR higher than 99%. Fault 1 increases its TPR to 79% (where290

16% are missed faults and 5% confusion with Fault 2), and all the other classes increase their TPR to291

values higher than 98%. It is noteworthy that Fault 4, related to the generator speed sensor, reaches a292

100% TPR. The generator speed measurement from the sensor is used as input in the torque and pitch293

controllers, thus being able to correctly diagnose this type of fault is extremely important. As in the294

previous case, Fault 8 keeps a 100% TPR.295

Finally, when J = 10 the overall accuracy is 98.2%. In this case, Fault 1 is improved to have a TPR296

of 80%. In this case, all misclassifications are 1% or lower, except for Fault 1 that is 15% of the times297

misclassified as healthy and 5% of the times misclassified as Fault 2 (recall, also a pitch actuator fault).298

Note that Fault 1, 4, and 8 obtain a remarkable 100% TPR.299

Table 4. Summary of the obtained results.

J = 3 J = 8 J = 10

Accuracy (%) 95.5 98 98.2
Training time (s) 2990 202 181
Prediction speed (obs/s) 3000 3500 3600

Access to real SCADA datasets if often proprietary. And, therefore, it is not accessible by the300

scientific community. To overcome this difficulty, in this work simulated data is obtained by one301

of the most widely accepted WT simulators in the scientific community (FAST). The drawbacks of302

using simulated data is that there is no possibility to evaluate the proposed method in a full test set303

representing the true distribution of real-world data where class imbalance is a challenging problem304

[41]. However, there are several references , e.g. [13], where this problem is solved in the training stage305

using under/oversampling the training data.306

4. Conclusion307

Because of its standard low sampling rate, there is a lack of knowledge on the potential of SCADA308

data for condition monitoring. In this work, a promising strategy to detect and classify multiple WT309

faults has been presented using only conventional SCADA data with an add on, but feasible, high310

frequency sampling from the sensors (one sample per second). That is, the FD strategy does not311

involve supplementary installation of costly purpose-built data sensing equipment for wind power312

plants.313
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Figure 6. Confusion matrix when J = 3.

It is noteworthy that in this work, in contrast to the previous literature, the same features and the314

same variance for the Gaussian kernel are used to detect all the faults detailed in the benchmark. Thus,315

leading to a unique trained classifier capable to cope with all the studied faults by computing only one316

set of features from the data to diagnose.317

As future work, other faults will be included involving misalignment, ice accumulation, and318

tower damage. Finally, it will be studied the contribution of an effective predictive maintenance319

strategy based on this same principle in order to further optimize operation and maintenance in WTs.320
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