UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió author's final draft d'un article publicat a la revista "Applied mathematics and computation".

URL d'aquest document a UPCommons E-prints:
http://hdl.handle.net/2117/125489

Article publicat / Published paper:

Balbuena, C., González, D., Olsen, M. Bounds on the k-restricted arc connectivity of some bipartite tournaments. "Applied mathematics and computation", 15 Agost 2018, vol. 331, p. 54-60. Doi: 10.1016/j.amc.2018.02.038

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// creativecommons.org/licenses/by-nc-nd/4.0/

Bounds on the k-restricted arc connectivity of some bipartite tournaments

C. Balbuena ${ }^{\text {a,b,*, }, \text {,D. González-Morena }{ }^{\text {a }}, \text { M. Olsen }}{ }^{\text {a }}$

a Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México D.F., México
${ }^{\mathrm{b}}$ Departament de Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya, Barcelona, España

A R T I C L E I N F O

Keywords:

Digraphs
Bipartite
Tournament
Projective plane

Abstract

For $k \geq 2$, a strongly connected digraph D is called λ_{k}^{\prime}-connected if it contains a set of arcs W such that $D-W$ contains at least k non-trivial strong components. The k restricted arc connectivity of a digraph D was defined by Volkmann as $\lambda_{k}^{\prime}(D)=\min \{|W|$: W is a k-restricted arc-cut $\}$. In this paper we bound $\lambda_{k}^{\prime}(T)$ for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of "good" bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least $1.5 k-1$ then $k(k-1) \leq \lambda_{k}^{\prime}(T) \leq k(N-2 k-2)$, where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.

Contents

1. Introduction 1
2. Projective bipartite tournament 3
3. Good oriented bipartite digraphs 4
3.1. k-restricted arc connectivity of good bipartite tournaments. 5
Uncited reference 6
Acknowledgments 6
References 7

1. Introduction

Through this work only finite digraphs without loops and multiple arcs are considered. For all definitions not given here we refer the reader to the book of Bang-Jensen and Gutin [9]. Let D be a digraph with vertex set $V(D)$ and arc set $A(D)$. A vertex u is adjacent to a vertex v if $(u, v) \in A(D)$. The out-neighborhood of a vertex u is $N^{+}(u)=\{v \in V(D):(u, v) \in A(D)\}$ and the in-neighborhood of a vertex u is $N^{-}(u)=\{v \in V(D):(v, u) \in A(D)\}$. The out-degree is $d^{+}(v)=\left|N^{+}(v)\right|$ and the indegree $d^{-}(v)=\left|N^{-}(v)\right|$. We denote by $\delta^{+}(D)$ the minimum out-degree of the vertices in D, and by $\delta^{-}(D)$ the minimum

[^0]in-degree of the vertices in D. The minimum degree $\delta(D)=\min \left\{\delta^{+}(D), \delta^{-}(D)\right\}$. Given a vertex subset $X \subset V(D)$, the induced subdigraph of D by X is denoted by $D[X]$. Given two vertex subsets $X, Y \subset V(D)$, we denote by (X, Y) the set of arcs from X to Y.

In a digraph D a vertex v is reachable from a vertex u if D has an (u, v)-path. A digraph D is strongly connected or strong if, for every pair u, v of distinct vertices in D there exists an (u, v)-path and a (v, u)-path. Clearly, a strong digraph D has both $\delta^{+}(D) \geq 1$ and $\delta^{-}(D) \geq 1$, that is, $\delta(D) \geq 1$. For a strong digraph D, a set of arcs $W \subseteq A(D)$ is an arc-cut if $D-W$ is not strong. A strong component of a digraph is a maximal strong induced subdigraph. A digraph D is said to be k-arc-connected if D has no arc-cut with less than k arcs. A parameter that can measure the fault tolerance of a network modeled by a digraph D is the classical arc-connectivity $\lambda(D):=\lambda$ of D. The arc connectivity λ of a digraph D is the largest integer k such that D is k-arc-connected. If D is a non-strong digraph, we set $\lambda=0$. Note that $\lambda \geq k$ if and only if $|(X, V(D) \backslash X)| \geq k$ for all proper subsets X of $V(D)$. The arc-connectivity is an important measure for the fault tolerance of a network. However, one might be interested in more refined indices of reliability. Even two digraphs with the same arc-connectivity λ may be considered to have different reliabilities, since the number or type of minimum arc-cuts is different or simply because the existence of some additional structural properties is required. From here arises the notion of restricted arc-connectivity λ^{\prime} defined by Volkmann [24] as follows. For a strongly connected digraph D the restricted arc-connectivity λ^{\prime} is defined as the minimum cardinality of an arc-cut over all arc-cuts W satisfying that $D-W$ contains a non trivial strong component D_{1} such that $D-V\left(D_{1}\right)$ has an arc. Some results for λ^{\prime} can be seen in [4,5,13,24,25].

Let $k \geq 2$ be an integer. In the same paper [24] Volkmann also introduced the k-restricted arc-connectivity of a digraph D, λ_{k}^{\prime}, as follows. An arc set W of D is a k-restricted arc-cut if $D-W$ contains at least k non trivial strong components. The k-restricted arc connectivity of D is

$$
\lambda_{k}^{\prime}(D)=\min \{|W|: W \text { is a } k \text {-restricted arc-cut }\} .
$$

A strong digraph D is said to be λ_{k}^{\prime}-connected if $\lambda_{k}^{\prime}(D)$ exists. k-restricted edge connectivity has been used by many author in graphs, sometimes it is also called extra-connectivity [3,15]. This concept was also introduced for (undirected) graphs independently by Chartrand et al. [12], Sampathkumar [21] and Oellerman [20] as k-connectivity. Recently this parameter has been studied under the name of k-component edge connectivity [22].

Volkmann [24] gives a characterization of the λ_{k}^{\prime}-connected digraphs.
Proposition 1.1. [24] Let $k \geq 2$ be an integer. A strongly connected digraph D is λ_{k}^{\prime}-connected if and only if D contains at least k pairwise vertex disjoint cycles.

Meierling et al. [19] characterize the λ_{2}^{\prime}-connected local tournaments and tournaments. They proved that the recognition problem of deciding if a strongly connected local tournament or tournament with n vertices and m arcs is λ_{2}^{\prime}-connected can be solved in polynomial time. Whereas the problem of deciding if $\lambda_{k}^{\prime}(D)$ exists for a strong digraph D when $k \geq 3$ is NP-complete.

Furthermore, Proposition 1.1 states that the number of disjoint cycles in a strong digraph is equal to the maximum k for which the digraph is λ_{k}^{\prime}-connected. Therefore, it is important to know the maximum number of disjoint cycles in a digraph. Bermond and Thomassen [11] established the following conjecture, which relates the number of disjoint cycles in a digraph with the minimum out-degree.
Conjecture 1.1. [11] Every digraph D with $\delta^{+}(D) \geq 2 k-1$ has k disjoint cycles.
This conjecture has been proved for general digraphs by Thomassen [23] when $k=2$, and by Lichiardopolet al. [18] when $k=3$. In 2010, Bessy et al. [10] proved Conjecture 1.1 for regular tournaments. In 2014, Bang-Jensen et al. [10] proved it for tournaments. Thomassen [23] also established the existence of a finite integer $f(k)$ such that every digraph of minimum out-degree at least $f(k)$ contains k disjoint cycles. Alon [1] proved in 1996 that for every integer k, the value $64 k$ is suitable for $f(k)$.

A bipartite tournament is an oriented complete bipartite graph. Hence, the girth of any non acyclic bipartite tournament is four. Very recently, Bai et al. [2], proved Conjecture 1.1 for bipartite tournaments as a consequence of another result related to the numbers of vertex disjoint cycles of a given length in bipartite tournaments with minimum out-degree at least $q r-1$, for $q \geq 2$ and $r \geq 1$ two integers. In [6] it was proved that every bipartite tournament with minimum out-degree at least $2 k-2$ and minimum in-degree at least one contains k disjoint 4 -cycles whenever $k \geq 3$. Moreover, it was shown that every bipartite tournament with both minimum out-degree and minimum in-degree at least $1.5 k-1$ contains at least k disjoint cycle an immediate consequence of Proposition 1.1 and this last result we can write the following result.
Corollary 1.1. Let $k \geq 2$ be an integer. A strongly connected bipartite tournament with minimum degree $\delta \geq 1.5 k-1$ is λ_{k}^{\prime} connected.

In this paper we give bounds on the k-restricted arc-connectivity in some families of bipartite tournaments. This paper is organized as follows. In the next section we give an upper bound on λ_{k}^{\prime} of the projective bipartite tournaments introduced in [7]. In the last section we introduce a family of oriented bipartite digraphs called good. The main theorem concerns with good bipartite tournaments. For this family we prove that if the minimum degree is at least $1.5 k-1$, then $k(k-1) \leq \lambda_{k}^{\prime} \leq$ $k(N-2 k-2)$, where N is the order of the tournament. We also prove that complete p-cycles and certain circulant bipartite tournaments are good and removing the hypothesis on the minimum degree we are able to obtain the same lower bound.

2. Projective bipartite tournament

In [7] a family of bipartite tournaments based on projective planes was introduced. A projective plane (P, \mathcal{L}) consists of a finite set P of elements called points, and a finite family \mathcal{L} of subsets of P called lines which satisfy the following conditions:
(i) Any two lines intersect at a single point.
(ii) Any two points belongs to a single line.
(iii) There are four points of which no three belong to the same line.

It can be shown that for every projective plane, there is an integer $n \geq 2$ such that every line has exactly $n+1$ points and every point is incident with exactly $n+1$ lines. Hence, the projective plane (P, \mathcal{L}) is said to have order n. Moreover, observe that $|P|=|\mathcal{L}|=n^{2}+n+1$.
Definition 2.1. [7] Let $\Pi=(P, \mathcal{L})$ be a projective plane of order k. The projective bipartite tournament $D_{k}(\Pi)$ of order k with partite sets P and \mathcal{L} is defined as follows: For all $p \in P$ and for all $L \in \mathcal{L}$,
$p \in N^{+}(L)$ iff p belongs to $L ; L \in N^{+}(p)$ iff p does not belong to L.
Remark 2.1. Let $D_{k}(\Pi)$ be a projective bipartite tournament of order $k \geq 2$. Then $D_{k}(\Pi)$ has $n=2\left(k^{2}+k+1\right)$ vertices, every vertex $p \in P$ has $d^{+}(p)=k+1, d^{-}(p)=k^{2}$, and every $L \in \mathcal{L}$ has $d^{+}(L)=k^{2}, d^{-}(L)=k+1$. Moreover, the diameter $\operatorname{Diam}\left(D_{k}(\Pi)\right)=3$ which implies that the edge connectivity is maximum, i.e., $\lambda\left(D_{k}(\Pi)\right)=\delta\left(D_{k}(\Pi)\right)=k+1$, see [14].

Based on Corollary 1.1 and the above remark, we can write the following result.
Corollary 2.1. A projective bipartite tournament $D_{k}(\Pi)$ of order $k \geq 2$ is λ_{t}^{\prime}-connected with $t \leq\lfloor 2(k+2) / 3\rfloor$.
In the following theorem we improve the above corollary and we find an upper bound on the t-restricted-arc-connectivity for projective bipartite tournaments.
Theorem 2.1. If $D_{k}(\Pi)$ is the projective bipartite tournament of order $k \geq 2$ having n vertices, then $D_{k}(\Pi)$ is $\lambda_{(n-2) / 4}^{\prime}$-connected, and

$$
\lambda_{(n-2) / 4}^{\prime}\left(D_{k}(\Pi)\right) \leq(3 n-10)(n-2) / 16
$$

Proof. Let $D_{k}(\Pi)$ be the projective bipartite tournament of order k. By Remark 2.1, $D_{k}(\Pi)$ is strong. In order to show that $D_{k}(\Pi)$ is $\lambda_{\alpha}^{\prime}$-connected, by Proposition 1.1, it is sufficient to prove that $D_{k}(\Pi)$ has $\alpha=\frac{k^{2}+k}{2}=(n-2) / 4$ disjoint cycles of length four.

Observe that two points $p_{1}, p_{2} \in \mathcal{P}$ and two lines $l_{1}, l_{2} \in \mathcal{L}$ induce a 4-cycle $\left(p_{1}, l_{1}, p_{2}, l_{2}\right)$ in $D_{k}(\Pi)$ if $p_{1} \in l_{1}, p_{2} \in l_{2}, p_{1} \notin l_{2}$ and $p_{2} \notin l_{1}$.

Let $p \in \mathcal{P}$ and $l \in \mathcal{L}$ be such that $p \notin l$. Let $p_{1}, p_{2, \downarrow \ldots, p_{k+1}}$ be the points of l and let l_{i} be the line through p and p_{i} for $i=1,2, \ldots, k+1$. Let $p_{i}^{j}, j=1,2, \ldots, k$, be the k distinct points in l_{i} others than p, where $p_{i}=p_{i}^{k}$ for all $1 \leq i \leq k+1$. Also denote by $[a, b]$ the line through the points a and b,

Case 1. $k+1$ is odd.
Since $p \notin l,\left(p_{2 i-1}^{k}, l_{2 i-1}, p_{2 i}^{k}, l_{2 i}\right)$ for $i=1,2, \ldots, k / 2$, are $k / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$.
Consider the line l_{1} and note that $p_{k+1}^{k} \notin l_{1}$, and put $p=p_{1}^{0}$. Then

$$
\left(p_{1}^{2 i},\left[p_{1}^{2 i}, p_{k+1}^{k}\right], p_{1}^{2 i+1},\left[p_{1}^{2 i+1}, p_{k+1}^{k}\right]\right) \text { for } i=0,1, \ldots, k / 2-1,
$$

are $k / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$ and also disjoint with the $k / 2$ above. Similarly, note that $p_{1}^{k} \notin l_{k+1}$. Then

$$
\left(p_{k+1}^{2 i-1},\left[p_{k+1}^{2 i-1}, p_{1}^{k}\right], p_{k+1}^{2 i},\left[p_{k+1}^{2 i}, p_{1}^{k}\right]\right) \text { for } i=1,2, \ldots, k / 2
$$

are $k / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$ and also disjoint with the k above. Suppose $k \geq 4$. In this case we can take $p_{i}^{k-1} \in l_{i}$ with $i=2, \ldots, k-1$, such that they are on the same line b and $p_{k}^{k-1} \notin b$. Hence

$$
\left(p_{2 i}^{k-1},\left[p_{2 i}^{k-1}, p_{k}^{k-1}\right], p_{2 i+1}^{k-1},\left[p_{2 i+1}^{k-1}, p_{k}^{k-1}\right]\right) \text { for } i=1,2, \ldots, k / 2-1,
$$

are $k / 2-1$ disjoint 4-cycles in $D_{k}(\Pi)$ and also disjoint with the $3 k / 2$ above.
Finally, observe that $p_{1}^{j} \notin l_{j+1}, j=1, \ldots, k-1$. Thus,

$$
\left(p_{j+1}^{2 i-1},\left[p_{j+1}^{2 i-1}, p_{1}^{j}\right], p_{j+1}^{2 i},\left[p_{j+1}^{2 i}, p_{1}^{j}\right]\right) \text { for } i=1,2, \ldots, k / 2-1,
$$

are $(k / 2-1)(k-1)$ disjoint 4 -cycles in $D_{k}(\Pi)$ and also disjoint with the $2 k-1$ above. Therefore, the number of disjoint 4-cycles in $D_{k}(\Pi)$ is at least

$$
(k / 2-1)(k-1)+2 k-1=\frac{k}{2}+\frac{k^{2}}{2}=\alpha .
$$

Case 2. $k+1$ is even.

As in the above case, since $p \notin l$, $\left(p_{2 i-1}^{k}, l_{2 i-1}, p_{2 i}^{k}, l_{2 i}\right)$ for $i=1,2, \ldots,(k+1) / 2$, are $(k+1) / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$. Consider the line l_{1} and note that $p_{k+1}^{k} \notin l_{1}$. Then

$$
\left(p_{1}^{2 i},\left[p_{1}^{2 i}, p_{k+1}^{k}\right], p_{1}^{2 i+1},\left[p_{1}^{2 i+1}, p_{k+1}^{k}\right]\right) \text { for } i=1,2, \ldots,(k-1) / 2,
$$

are $(k-1) / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$ and also disjoint with the $(k+1) / 2$ above.
Finally, observe that $p_{1}^{j} \notin l_{j+1}, j=1, \ldots, k$. Thus,

$$
\left(p_{j+1}^{2 i-1},\left[p_{j+1}^{2 i-1}, p_{1}^{j}\right], p_{j+1}^{2 i},\left[p_{j+1}^{2 i}, p_{1}^{j}\right]\right) \text { for } i=1,2, \ldots,(k-1) / 2,
$$

are $k(k-1) / 2$ disjoint 4 -cycles in $D_{k}(\Pi)$ and also disjoint with the k above. Therefore, the number of disjoint 4-cycles in $D_{k}(\Pi)$ is at least

$$
k \frac{k-1}{2}+k=\frac{k}{2}+\frac{k^{2}}{2}=\alpha .
$$

In order to prove the upper bound on λ_{k}^{\prime}, we count the number of arcs out-coming or in-coming from a 4-cycle in $D_{k}(\Pi)$. Let $C_{0}=\left(p, l, p^{\prime}, l^{\prime}\right)$ be a 4-cycle. Since $d^{+}(p)=d^{+}\left(p^{\prime}\right)=d^{-}(l)=d^{-}\left(l^{\prime}\right)=k+1$ and $d^{-}(p)=d^{-}\left(p^{\prime}\right)=d^{+}(l)=d^{+}\left(l^{\prime}\right)=k^{2}$, it follows that the minimum number of arcs needed to disconnect C_{0} from $T-V\left(C_{0}\right)$ is at least $2\left(k^{2}+k-1\right)$. Let $D_{1}=$ $D_{k}(\Pi)-V\left(C_{0}\right)$, and let C_{1} be a 4-cycle in D_{1}. The minimum number of arcs needed to disconnect C_{1} from $D_{1}-V\left(C_{1}\right)$ is at least $2\left(k^{2}+k-1\right)-2$, because $\left|V\left(C_{0}\right) \cap N^{-}\left(C_{1}\right)\right| \geq 2$ or $\left|V\left(C_{0}\right) \cap N^{+}\left(C_{1}\right)\right| \geq 2$ (note that if $\left|V\left(C_{0}\right) \cap N^{-}\left(C_{1}\right)\right| \leq 1$, then $\left|V\left(C_{0}\right) \cap N^{+}\left(C_{1}\right)\right| \geq 2$, because $D_{k}(\Pi)$ is a bipartite tournament). Let $D_{2}=D_{1}-V\left(C_{1}\right)$, and let C_{2} be a 4-cycle in D_{2}. The minimum number of arcs needed to disconnect C_{2} is at least $2\left(k^{2}+k-1\right)-4$, because either $\left|\left(V\left(C_{0}\right) \cup V\left(C_{1}\right)\right) \cap N^{-}\left(C_{2}\right)\right| \geq 4$ or $\left|\left(V\left(C_{0}\right) \cup V\left(C_{1}\right)\right) \cap N^{+}\left(C_{2}\right)\right| \geq 4$. If $D_{\alpha-1}$ is the digraph obtained after removing $\alpha-1$ disjoint 4 -cycles, then the minimum number of arcs needed to disconnect a 4-cycle C_{α} is at least $2\left(k^{2}+k-1\right)-2(\alpha-1)$, because either $\mid \cup_{i=0}^{\alpha-2} V\left(C_{i}\right) \cap$ $\left.N^{-}\left(C_{\alpha-1}\right)\right) \mid \geq 2(\alpha-1)$ or $\left|\cup_{i=0}^{\alpha-2} V\left(C_{i}\right) \cap N^{+}\left(C_{\alpha-1}\right)\right| \geq 2(\alpha-1)$. Hence, the minimum order to disconnect α disjoint 4 -cycles is

$$
\begin{aligned}
\sum_{i=1}^{\alpha}\left(2\left(k^{2}+k-1\right)-2(i-1)\right) & =2 \alpha\left(k^{2}+k-1\right)-\alpha(\alpha-1) \\
& =\alpha \frac{3 k^{2}+3 k-2}{2} \\
& =3 \alpha^{2}-\alpha
\end{aligned}
$$

Therefore, the theorem holds.

3. Good oriented bipartite digraphs

Let D be an oriented bipartite digraph with $\delta^{+}(D) \geq 1$. Let $f: V(D) \rightarrow V(D)$ be a function such that $f(x) \in N^{+}(x)$. Let us denote by $x_{f}^{+}=N^{+}(x) \cup N^{+}(f(x))$, and $x_{f}^{-}=N^{-}(x) \cup N^{-}(f(x))$. Note that $x \in x_{f}^{-}, f(x) \in x_{f}^{+}$and $x_{f}^{+} \cap x_{f}^{-}=\emptyset$ because D is oriented and bipartite.

Definition 3.1. Let D be an oriented bipartite digraph with $\delta^{+}(D) \geq 1$ and let $f: V(D) \rightarrow V(D)$ be a function such that $f(x) \in$ $N^{+}(x)$. Then D is said to be f-good if the following assertions hold:

1. Let $u, v \in x_{f}^{\epsilon}$, with $\epsilon \in\{-,+\}$. If $v \in u_{f}^{+}$, then $u_{f}^{+} \cap v_{f}^{-} \subset x_{f}^{\epsilon}$.
2. Let $u, v, w \in x_{f}^{\epsilon}$, with $\epsilon \in\{-,+\}$. If $v \in u_{f}^{+} \cap w_{f}^{-}$, then $u_{f}^{-} \cap w_{f}^{-} \subset v_{f}^{-}$and $u_{f}^{+} \cap w_{f}^{+} \subset v_{f}^{+}$.

In general, we say that D is good if D is f-good for some f.
Next we present two distinct families of bipartite oriented digraphs which are good.
Let D be a digraph such that $V(D)$ can be partitioned into $p \geq 2$ parts $V_{\alpha}, \alpha=1,2, \ldots, p$, in such a way that the vertices in the partite set V_{α} are only adjacent to vertices of $V_{\alpha+1}$, where the sum is in \mathbb{Z}_{p}. These digraphs are known as p-cycles, see [17]. In [4] some sufficient conditions for guaranteeing optimal restricted arc-connectivity λ^{\prime} of p-cycles are proved. Clearly, the girth of a p-cycle is at least p and when p is even D is bipartite. Moreover, if every vertex of V_{α} is adjacent to every vertex of $V_{\alpha+1}$, then D is known as a complete p-cycle.

Proposition 3.1. Let $p \geq 4$ be an even number and D a complete p-cycle. Then D is a good oriented bipartite digraph.
Proof. Let $v_{\alpha, j} \in V_{\alpha}$ with $j=1,2, \ldots,\left|V_{\alpha}\right|$. Let us consider the function $f: V(D) \rightarrow V(D)$ such that $f\left(v_{\alpha, j}\right)=v_{\alpha+1, j}$, where j is taken modulo $\left|V_{\alpha+1}\right|$.

Therefore for every $x \in V_{\alpha}$, we have $x_{f}^{+}=V_{\alpha+1} \cup V_{\alpha+2}$ and $x_{f}^{-}=V_{\alpha-1} \cup V_{\alpha}$. Without loss of generality suppose that $\alpha=1$ and $x \in V_{1}$. Let us see that both assertions of Definition 3.1 hold.

Suppose $u, v \in x_{f}^{+}=V_{2} \cup V_{3}$ (for $\epsilon=-$ the proof is analogous) and $v \in u_{f}^{+}$. If $u \in V_{3}$, then $u_{f}^{+}=V_{4} \cup V_{5}$ yielding that $v \in\left(V_{4} \cup V_{5}\right) \cap\left(V_{2} \cup V_{3}\right)=\emptyset$, which is impossible. Hence, $u \in V_{2}$ and $u_{f}^{+}=V_{3} \cup V_{4}$ yielding that $v \in\left(V_{3} \cup V_{4}\right) \cap\left(V_{2} \cup V_{3}\right)=V_{3}$, implying that $v_{f}^{-}=V_{2} \cup V_{3}$. Hence, $u_{f}^{+} \cap v_{f}^{-}=V_{3} \subset x_{f}^{+}$, and assertion 1 of Definition 3.1 holds.

Next, let $u, v, w \in x_{f}^{+}$and $v \in u_{f}^{+} \cap w_{f}^{-}$. Reasoning as above we have $u \in V_{2}$ and $u_{f}^{+}=V_{3} \cup V_{4}$. If $w \in V_{2}$, then $w_{f}^{-}=V_{1} \cup V_{2}$ yielding that $u_{f}^{+} \cap w_{f}^{-}=\emptyset$, which is impossible. Therefore, $w \in V_{3}$ and $w_{f}^{-}=V_{2} \cup V_{3}$ implying that $v \in u_{f}^{+} \cap w_{f}^{-}=V_{3}$. We can check that $u_{f}^{-} \cap w_{f}^{-}=\left(V_{1} \cup V_{2}\right) \cap\left(V_{2} \cup V_{3}\right)=V_{2} \subset v_{f}^{-}=V_{2} \cup V_{3}$; and $u_{f}^{+} \cap w_{f}^{+}=\left(V_{3} \cup V_{4}\right) \cap\left(V_{4} \cup V_{5}\right)=V_{4} \subset v_{f}^{+}$. Hence, assertion 2 of Definition 3.1 holds.

Let $t \geq 0$ be an integer number and $B=\vec{C}_{4 n+2 t}(1,3, \ldots, 2 n-1)$ be a circulant bipartite digraph in which $V(B)=\mathbb{Z}_{4 n+2 t}$ and $A(B)=\{i j: j=i+s$ with $s=1,3, \ldots, 2 n-1\}$. Observe that if $t=0$, then B is a bipartite tournament.
Proposition 3.2. The circulant digraph $\vec{C}_{4 n+2 t}(1,3, \ldots, 2 n-1)$ is a good oriented bipartite digraph.
Proof. Let $B=\vec{C}_{4 n+2 t}(1,3, \ldots, 2 n-1)$. Let us consider the function $f: V(B) \rightarrow V(B)$ such that $f(x)=x+1$ modulo $4 n+2 t$. For simplicity we denote $x_{f}^{+}=x^{+}$and $x_{f}^{-}=x^{-}$. Moreover, since B is a vertex transitive digraph, we may assume that $x=0$ for proving both assertions 1 and 2 of Definition 3.1. We also assume that $\epsilon=-$ and the case $\epsilon=+$ can be done in a similar way.

Let $u, v \in 0^{-}=N^{-}(0) \cup N^{-}(1)=\{0,4 n+2 t-1, \ldots, 2 n+2 t+1\}$. Since $v \in u^{+}, u \neq 0$ because $0^{-} \cap 0^{+}=\emptyset$ and $v \neq u$. Hence, $u=2 n+2 t+j$ with $1 \leq j \leq 2 n-1$ and then

$$
u^{+}=N^{+}(u) \cup N^{+}(u+1)=\{j, j-1, \ldots, 0,4 n+2 t-1, \ldots, 2 n+2 t+j+1\}
$$

Since $v \in u^{+} \cap 0^{-}, v=2 n+2 t+h$ with $j+1 \leq h \leq 2 n$, it follows that

$$
v^{-}=N^{-}(v) \cup N^{-}(v+1)=\{2 n+2 t+h, 2 n+2 t+h-1, \ldots, 2 n+2 t, \ldots, 2 t+h+1\}
$$

Let $i \in u^{+} \cap v^{-}$, then $2 n+2 t+j+1 \leq i \leq 2 n+2 t+h$ yielding that $i \in 0^{-}$and assertion 1 holds.
Let $u, v, w \in 0^{-}=\{0,4 n+2 t-1, \ldots, 2 n+2 t+1\}$, then $w=2 n+2 t+r$ with $0 \leq r \leq 2 n$, and u as before. Since $v \in$ $u^{+} \cap w^{-}$, it follows that $v=2 n+2 t+h \in w^{-}$, yielding that $w=2 n+2 t+r$ with $h<r \leq 2 n$ ($h<r$ because $w \neq v$). Therefore we have $1 \leq j<h<r \leq 2 n$. Thus, if $x \in u^{-} \cap w^{-}$, then $x \in\{2 n+2 t+j, 2 n+2 t+j-1, \ldots, r+2 t+1\} \subset v^{-}$giving $u^{-} \cap$ $w^{-} \subset v^{-}$. If $x \in u^{+} \cap w^{+}$, then $x \in\{2 n+2 t+r+1, \ldots, 0, \ldots, 2 t+j+1\} \subset v^{+}$, implying $u^{+} \cap w^{+} \in v^{+}$. Thus assertion 2 of Definition 3.1 also holds.

The following result is a direct consequence for paths of length two from Definition 3.1.
Corollary 3.1. Let D be a f-good oriented bipartite digraph and $D\left[i_{f}^{\epsilon}\right]$ with $\epsilon \in\{-,+\}$ the induced subdigraph in D by the set i_{f}^{ϵ}. Then

1. If (u, v, w) is a path in $D\left[i_{f}^{\epsilon}\right]$, then $u_{f}^{-} \cap w_{f}^{-} \subset v_{f}^{-}$and $u_{f}^{+} \cap w_{f}^{+} \subset v_{f}^{+}$.
2. If D is a bipartite tournament and (u, v, w) is a path in $D\left[i_{f}^{\epsilon}\right]$, then $w \in u_{f}^{+}$.

Proof. 1. If (u, v, w) is a path, then $v \in N^{+}(u) \cap N^{-}(w)$, and therefore $v \in u_{f}^{+} \cap w_{f}^{-}$. Since $u, v, w \in i_{f}^{\epsilon}$ it follows the result by assertion 2 of Definition 3.1.
2. If (u, v, w) is a path in $D\left[i_{f}^{\epsilon}\right]$, then by the above point we have $u_{f}^{-} \cap w_{f}^{-} \subset v_{f}^{-}$. If $w \in u_{f}^{-}$then $w \in u_{f}^{-} \cap w_{f}^{-} \subset v_{f}^{-}$, which is a contradiction because $w \in N^{+}(v) \subset v_{f}^{+}$and $v_{f}^{-} \cap v_{f}^{+}=\emptyset$. Hence, $w \in u_{f}^{+}$.

3.1. k-restricted arc connectivity of good bipartite tournaments

In this subsection we bound the λ_{k}^{\prime}-connectivity of good bipartite tournaments.
Lemma 3.1. Let T be a f-good bipartite tournament. Let $i \in V(T)$ and (a, b, c, d) be a C_{4} in T - i and suppose that $b, d \in N^{-}(i)$. Then $\left|\{a, c\} \cap i_{f}^{-}\right|=1$.

Proof. For simplicity we denote $x_{f}^{+}=x^{+}$and $x_{f}^{-}=x^{-}$for all $x \in V(T)$. Suppose $d \in b^{+}$. Since $b, d \in N^{-}(i) \subset i^{-}$, by item 1 of Definition 3.1, it follows that $b^{+} \cap d^{-} \subset i^{-}$, implying that $c \in i^{-}$. Conversely, if $c \in i^{-}$, then (b, c, d) is a path in $T\left[i^{-}\right]$yielding that $d \in b^{+}$by item 2 of Corollary 3.1.

If $d \in b^{-}$then (d, a, b) is a path in $T\left[b^{-}\right]$yielding that $b \in d^{+}$by item 2 of Corollary 3.1. We have $d^{+} \cap b^{-} \subset i^{-}$by item 1 of Definition 3.1, yielding that $a \in i^{-}$. And reciprocally, suppose $a \in i^{-}$. Since $b, d \in N^{-}(i)$ it follows that (a, b, i) is a path in $T\left[i^{-}\right]$and by item 2 of Corollary 3.1, we have $a^{-} \cap i^{-} \subset b^{-}$yielding that $d \in b^{-}$.

Since T is a tournament it follows that either $d \in b^{+}$or $d \in b^{-}$it follows that either $c \in i^{-}$or $a \in i^{-}$and the lemma holds.

Lemma 3.2. Let T be a f-good bipartite tournament. Then, for every pair C_{1}, C_{2} of disjoint 4-cycles,

$$
\left|\left(C_{1}, C_{2}\right)\right| \geq 2
$$

Proof. Let $C_{1}=(a, b, c, d, a)$ and $C_{2}=(y, z, w, x, y)$. Let $T=(X, Y)$ and suppose that $a, c, w, y \in X$ and $b, d, x, z \in Y$. Let us suppose that $\left|\left(C_{1}, C_{2}\right)\right| \leq 1$. Without loss of generality, we may assume that $\{x a, z a, x c, z c, y d, w d\} \subseteq\left(C_{2}, C_{1}\right)$.

For simplicity we denote $x_{f}^{+}=x^{+}$and $x_{f}^{-}=x^{-}$for all $x \in V(T)$. Then $x, z, d \in N^{-}(a) \subset a^{-}$. By Lemma 3.1, we have $\mid\{y, w\} \cap$ $a^{-} \mid=1$. Without loss of generality assume that $y \in a^{-}$and $w \in a^{+}$. Let us show that $d \in z^{-}$. Suppose $d \in z^{+}$, since $z, d \in a^{-}$, by item 1 of Definition 3.1, it follows that $z^{+} \cap d^{-} \subset a^{-}$, implying that $w \in a^{-}$because $w \in z^{+} \cap d^{-}$and $w d \in A(T)$. Since this is a contradiction with our assumption $w \in a^{+}$, we have $d \in z^{-}$. Moreover (x, y, d) is a path in $D\left[a^{-}\right]$because $y d \in A(T)$. By item 2 of Corollary 3.1, we get $d \in x^{+}$. Hence, $x, z, d \in a^{-}$and $d \in x^{+} \cap z^{-}$. By item 2 of Definition 3.1, it follows that $x^{+} \cap z^{+} \subset d^{+}$, yielding that $c \in d^{+}$since $x c, z c \in A(T)$. This is a contradiction because $c \in d^{-}$. Hence, $\left|\left(C_{1}, C_{2}\right)\right| \geq 2$.

Note that $D_{k}(\Pi)$ is not a good bipartite tournament for $k=2$. In this case it is possible to find two disjoint C_{4} such that there is only one arc from one to another and by the above Lemma 3.2 we get that $D_{2}(\Pi)$ is not a good bipartite tournament.

As a consequence of the above results we obtain the following theorem.
Theorem 3.1. Let $k \geq 2$ be an integer. Let T be a λ_{k}^{\prime}-connected good bipartite tournament with N vertices. Then

$$
k(k-1) \leq \lambda_{k}^{\prime}(T) \leq k(N-2 k-2) .
$$

Proof. Since T is λ_{k}^{\prime}-connected, it has at least k-vertex disjoint C_{4} by Proposition 1.1. Hence, the lower bound on $\lambda_{k}(T)$ follows by Lemma 3.2. To obtain the upper bound observe that the number of arcs from a cycle C to $T-V(C)$ plus the number of arcs from $T-V(C)$ to C is at most $2(N-4)$. Then one of the two arc sets has cardinality at most $N-4$. Let C_{1}, \ldots, C_{k} be k vertex disjoint cycles contained in T. Thus, the maximum number of arcs that we need to remove from T to disconnect these k cycles is

$$
(N-4)+(N-8)+\cdots+(N-4 k)=k N-2 k(k+1)=k(N-2 k-2),
$$

and the result follows.
Corollary 3.2. Let $k \geq 2$ be an integer. Let T be a good bipartite tournament with N vertices and $\delta(T) \geq 1.5 k-1$. Then

$$
k(k-1) \leq \lambda_{k}^{\prime}(T) \leq k(N-2 k-2) .
$$

Proof. Since $\delta(T) \geq 1.5 k-1$, it follows that T is λ_{k}^{\prime}-connected by Corollary 1.1. The result is a direct consequence of Theorem 3.1.

For circulant bipartite tournaments $\vec{C}_{4 n}(1,3, \ldots, 2 n-1)$ we have the following known result.
Theorem 3.2. [16] If $n \geq 2$, then for every $i \in V\left(\vec{C}_{4 n}(1,3, \ldots, 2 n-1)\right), \vec{C}_{4 n}(1,3, \ldots, 2 n-1)-\{i, i+1, i+2 n, i+2 n+1\} \cong$ $\vec{C}_{4(n-1)}(1,3, \ldots, 2(n-1)-1)$.

From the above theorem it follows that $\vec{C}_{4 n}(1,3, \ldots, 2 n-1)$ has n disjoint 4 -cycles. Therefore, by Theorem 3.2 and Proposition 3.2 we can write the following result.

Corollary 3.3. Let k, n be integers such that $2 \leq k \leq n$. Let $T=\vec{C}_{4 n}(1,3, \ldots, 2 n-1)$ be a circulant bipartite tournament. Then T is λ_{k}^{\prime}-connected and

$$
k(k-1) \leq \lambda_{k}^{\prime}(T) \leq 2(2 n-k)(k-1) .
$$

Analogously, we can write the following result for 4-cycles.
Corollary 3.4. Let T be a complete 4 -cycle with N vertices and $\left|V_{\alpha}\right| \geq k$ for each $\alpha=1,2,3,4$. Then T is λ_{k}^{\prime} connected and

$$
k(k-1) \leq \lambda_{k}^{\prime}(T) \leq k(N-2 k-2) .
$$

Uncited reference

[8].

Acknowledgments

First author (C. Balbuena) acknowledges the support nrovided by the Ministry of "Economía y Competitividad", Spain, and the European Regional Development Fund (ERDF) er project MTM2014-60127-P. The second author (D. GonzálezMoreno) acknowledges the support provided by the CONACyT-México, under project CB-222104.

References

[1] N. Alon, Disjoint directed cycles, J. Combin. Theory Ser. B 68 (1996) 167-178.
[2] Y. Bai, B. Li, H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015) 1307-1309.
[3] C. Balbuena, Extraconnectivity of s-geodetic digraphs and graphs, Discrete Math. 195 (1-3) (1999) 39-52.
[4] C. Balbuena, P.G. a Vázquez, A. Hansberg, L.P. Montejano, Restricted arc-connectivity of generalized p-cycles, Discrete Appl. Math. 160 (2012) 13251332.
[5] C. Balbuena, P.G. a Vázquez, A. Hansberg, L.P. Montejano, On the super-restricted arc-connectivity of s-geodetic digraphs, Networks 61 (1) (2013) 20-28.
[6] C. Balbuena, D. González-Moreno, M. Olsen, Vertex-disjoint 4-cycles in bipartite tournaments, Discr.Math. (in press), https://doi.org/10.1016/j.disc.2017. 10.023.
[7] C. Balbuena, M. Olsen, On the acyclic disconnection and the girth, Discrete Appl. Math. 186 (2015) 13-18.
[8] J. Bang-Jensen, S. Bessy, S. Thomassé, Disjoint 3-cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75 (2014) 284-302.
[9] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, second ed., Springer-Verlag, London, 2009.
[10] S. Bessy, N. Lichiardopol, J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (2010) 557-560.
[11] J.C. Bermond, C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1) (1981) 1-43.
[12] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
[13] X. Chen, J. Liu, J. Meng, λ^{\prime}-optimality digraphs of bipartite digraphs, Inf. Process. Lett. 112 (2012) 701-705.
[14] Fàbrega, M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity, Discrete Appl. Math. 69 (1996a) 269-278.
[15] Fàbrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155 (1996b) 49-57.
[16] A.P. Figueroa, B. Llano, M. Olsen, E. Rivera-Campo, On the acyclic disconnection of multipartite tournaments, Discrete Appl. Math. 160 (2012) 15241531.
[17] J. Gómez, C. Padró, S. Perennes, Large generalized cycles, Discrete Appl. Math. 89 (1998) 107-123.
[18] N. Lichiardopol, A. Pór, J.S. Sereni, A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J Discrete Math 23 (2009) 979-992.
[19] D. Meierling, L. Volkmann, S. Winzen, Restricted arc-connectivity of generalized tournaments, Australas. J. Comb. 40 (2008) $269-278$.
[20] O.R. Oellerman, On the l-connectivity of a graph, Graphs Comb. (3-1) (1987) 285-291.
[21] E. Sampathkumar, Connectivity of a graph generalization, J. Comb. Inf. Syst. Sci. 9 (1984) 71-78.
[22] S. Zhao, W. Yang, S. Zhang, Component connectivity of hypercubes, in: Theoretical Computer Science Volume 640, 2016, pp. 115-118.
[23] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 2 (3-4) (1983) 393-396.
[24] L. Volkmann, Restricted arc-connectivity of digraphs, Inf. Process. Lett. 103 (2007) 234-239.
[25] S. Wang, S. Lin, λ-optimal digraphs, Inf. Process. Lett. 108 (2008) 386-389.

[^0]: * Corresponding author at: Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México D.F., México.

 E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), dgonzalez@correo.cua.uam.mx (D. González-Moreno), olsen@correo.cua.uam.mx (M. Olsen).

