

UPCommons

Portal del coneixement obert de la UPC

http://upcommons.upc.edu/e-prints

Aquesta és una còpia de la versió *author's final draft* d'un article publicat a la revista "Applied mathematics and computation".

URL d'aquest document a UPCommons E-prints: http://hdl.handle.net/2117/125489

Article publicat / Published paper:

Balbuena, C., González, D., Olsen, M. Bounds on the k-restricted arc connectivity of some bipartite tournaments. "Applied mathematics and computation", 15 Agost 2018, vol. 331, p. 54-60. Doi: 10.1016/j.amc.2018.02.038

ARTICLE IN PRESS

Applied Mathematics and Computation xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Applied Mathematics and Computation

APPLIED MATHEMATICS

journal homepage: www.elsevier.com/locate/amc

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:// creativecommons.org/licenses/by-nc-nd/4.0/

Bounds on the *k*-restricted arc connectivity of some bipartite tournaments

C. Balbuena^{a,b,*}, **D**. González-Moreno^a, **M**. Olsen^a

^a Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México D.F., México ^b Departament de Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya, Barcelona, España

ARTICLE INFO

Keywords: Digraphs Bipartite Tournament Projective plane

Q1

ABSTRACT

For $k \ge 2$, a strongly connected digraph D is called λ'_k -connected if it contains a set of arcs W such that D - W contains at least k non-trivial strong components. The krestricted arc connectivity of a digraph D was defined by Volkmann as $\lambda'_k(D) = \min\{|W| :$ W is a k-restricted arc-cut $\}$. In this paper we bound $\lambda'_k(T)$ for a family of bipartite tournaments T called projective bipartite tournaments. We also introduce a family of "good" bipartite oriented digraphs. For a good bipartite tournament T we prove that if the minimum degree of T is at least 1.5k - 1 then $k(k - 1) \le \lambda'_k(T) \le k(N - 2k - 2)$, where N is the order of the tournament. As a consequence, we derive better bounds for circulant bipartite tournaments.

© 2018 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	1
2.	Projective bipartite tournament	3
	Good oriented bipartite digraphs	
	3.1. <i>k</i> -restricted arc connectivity of good bipartite tournaments	
	rited reference	
	nowledgments	
Ref	erences	7

1 1. Introduction

Through this work only finite digraphs without loops and multiple arcs are considered. For all definitions not given here we refer the reader to the book of Bang-Jensen and Gutin [9]. Let *D* be a digraph with vertex set *V*(*D*) and arc set *A*(*D*). A vertex *u* is adjacent to a vertex *v* if $(u, v) \in A(D)$. The *out-neighborhood* of a vertex *u* is $N^+(u) = \{v \in V(D) : (u, v) \in A(D)\}$ and the *in-neighborhood* of a vertex *u* is $N^-(u) = \{v \in V(D) : (v, u) \in A(D)\}$. The *out-degree* is $d^+(v) = |N^+(v)|$ and the *indegree* $d^-(v) = |N^-(v)|$. We denote by $\delta^+(D)$ the minimum out-degree of the vertices in *D*, and by $\delta^-(D)$ the minimum

E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), dgonzalez@correo.cua.uam.mx (D. González-Moreno), olsen@correo.cua.uam.mx (M. Olsen).

https://doi.org/10.1016/j.amc.2018.02.038 0096-3003/© 2018 Elsevier Inc. All rights reserved.

[•] Corresponding author at: Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Unidad Cuajimalpa, México D.F., México.-

2

ARTICLE IN PRESS

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

7 in-degree of the vertices in *D*. The minimum degree $\delta(D) = \min\{\delta^+(D), \delta^-(D)\}$. Given a vertex subset $X \subset V(D)$, the induced 8 subdigraph of *D* by *X* is denoted by *D*[*X*]. Given two vertex subsets *X*, $Y \subset V(D)$, we denote by (*X*, *Y*) the set of arcs from *X* to 9 *Y*.

In a digraph D a vertex v is reachable from a vertex u if D has an (u, v)-path. A digraph D is strongly connected or strong 10 if, for every pair u, v of distinct vertices in D there exists an (u, v)-path and a (v, u)-path. Clearly, a strong digraph D has 11 both $\delta^+(D) \ge 1$ and $\delta^-(D) \ge 1$, that is, $\delta(D) \ge 1$. For a strong digraph D, a set of arcs $W \subseteq A(D)$ is an arc-cut if D - W is not 12 strong. A strong component of a digraph is a maximal strong induced subdigraph. A digraph D is said to be k-arc-connected if 13 D has no arc-cut with less than k arcs. A parameter that can measure the fault tolerance of a network modeled by a digraph 14 15 D is the classical arc-connectivity $\lambda(D) := \lambda$ of D. The arc connectivity λ of a digraph D is the largest integer k such that D is k-arc-connected. If D is a non-strong digraph, we set $\lambda = 0$. Note that $\lambda > k$ if and only if $|(X, V(D) \setminus X)| > k$ for all proper 16 17 subsets X of V(D). The arc-connectivity is an important measure for the fault tolerance of a network. However, one might be interested in more refined indices of reliability. Even two digraphs with the same arc-connectivity λ may be considered 18 to have different reliabilities, since the number or type of minimum arc-cuts is different or simply because the existence 19 20 of some additional structural properties is required. From here arises the notion of restricted arc-connectivity λ' defined by 21 Volkmann [24] as follows. For a strongly connected digraph D the restricted arc-connectivity λ' is defined as the minimum 22 cardinality of an arc-cut over all arc-cuts W satisfying that D - W contains a non trivial strong component D_1 such that $D - V(D_1)$ has an arc. Some results for λ' can be seen in [4,5,13,24,25]. 23

Let $k \ge 2$ be an integer. In the same paper [24] Volkmann also introduced the *k*-restricted arc-connectivity of a digraph D, λ'_k , as follows. An arc set W of D is a *k*-restricted arc-cut if D - W contains at least *k* non trivial strong components. The *k*-restricted arc connectivity of D is

 $\lambda'_k(D) = \min\{|W|: W \text{ is a } k \text{-restricted arc-cut}\}.$

A strong digraph *D* is said to be λ'_k -connected if $\lambda'_k(D)$ exists. *k*-restricted edge connectivity has been used by many author in graphs, sometimes it is also called extra-connectivity [3,15]. This concept was also introduced for (undirected) graphs independently by Chartrand et al. [12], Sampathkumar [21] and Oellerman [20] as *k*-connectivity. Recently this parameter has been studied under the name of *k*-component edge connectivity [22].

Volkmann [24] gives a characterization of the λ'_{k} -connected digraphs.

Proposition 1.1. [24] Let $k \ge 2$ be an integer. A strongly connected digraph D is λ'_k -connected if and only if D contains at least k pairwise vertex disjoint cycles.

Meierling-et al. [19] characterize the λ'_2 -connected local tournaments and tournaments. They proved that the recognition problem of deciding if a strongly connected local tournament or tournament with *n* vertices and *m* arcs is λ'_2 -connected can be solved in polynomial time. Whereas the problem of deciding if $\lambda'_k(D)$ exists for a strong digraph *D* when $k \ge 3$ is **NP**-complete.

Furthermore, Proposition 1.1 states that the number of disjoint cycles in a strong digraph is equal to the maximum k for which the digraph is λ'_k -connected. Therefore, it is important to know the maximum number of disjoint cycles in a digraph. Bermond and Thomassen [11] established the following conjecture, which relates the number of disjoint cycles in a digraph with the minimum out-degree.

42 **Conjecture 1.1.** [11] Every digraph D with $\delta^+(D) \ge 2k - 1$ has k disjoint cycles.

This conjecture has been proved for general digraphs by Thomassen [23] when k = 2, and by Lichiardopoket al. [18] when k = 3. In 2010, Bessy et al. [10] proved Conjecture 1.1 for regular tournaments. In 2014, Bang-Jensen et al. [10] proved it for tournaments. Thomassen [23] also established the existence of a finite integer f(k) such that every digraph of minimum out-degree at least f(k) contains k disjoint cycles. Alon [1] proved in 1996 that for every integer k, the value 64k is suitable for f(k).

A bipartite tournament is an oriented complete bipartite graph. Hence, the girth of any non acyclic bipartite tournament is four. Very recently, Bai et al. [2], proved Conjecture 1.1 for bipartite tournaments as a consequence of another result related to the numbers of vertex disjoint cycles of a given length in bipartite tournaments with minimum out-degree at least qr - 1, for $q \ge 2$ and $r \ge 1$ two integers. In [6] it was proved that every bipartite tournament with minimum out-degree at least 2k - 2 and minimum in-degree at least one contains k disjoint 4-cycles whenever $k \ge 3$. Moreover, it was shown that every bipartite tournament with both minimum out-degree and minimum in-degree at least 1.5k - 1 contains at least k disjoint cycle an immediate consequence of Proposition 1.1 and this last result we can write the following result.

55 **Corollary 1.1.** Let $k \ge 2$ be an integer. A strongly connected bipartite tournament with minimum degree $\delta \ge 1.5k - 1$ is λ'_k -56 connected.

In this paper we give bounds on the *k*-restricted arc-connectivity in some families of bipartite tournaments. This paper is organized as follows. In the next section we give an upper bound on λ'_k of the projective bipartite tournaments introduced in [7]. In the last section we introduce a family of oriented bipartite digraphs called *good*. The main theorem concerns with good bipartite tournaments. For this family we prove that if the minimum degree is at least 1.5k - 1, then $k(k - 1) \le \lambda'_k \le$ k(N - 2k - 2), where N is the order of the tournament. We also prove that complete *p*-cycles and certain circulant bipartite tournaments are good and removing the hypothesis on the minimum degree we are able to obtain the same lower bound.

ARTICLE IN PRESS

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

63 2. Projective bipartite tournament

In [7] a family of bipartite tournaments based on projective planes was introduced. A *projective plane* (P, L) consists of a finite set P of elements called *points*, and a finite family L of subsets of P called *lines* which satisfy the following conditions:

66 (i) Any two lines intersect at a single point.

67 (ii) Any two points belongs to a single line.

68 (iii) There are four points of which no three belong to the same line.

It can be shown that for every projective plane, there is an integer $n \ge 2$ such that every line has exactly n + 1 points and every point is incident with exactly n + 1 lines. Hence, the projective plane (P, \mathcal{L}) is said to have order n. Moreover, observe that $|P| = |\mathcal{L}| = n^2 + n + 1$.

Definition 2.1. [7] Let $\Pi = (P, \mathcal{L})$ be a projective plane of order *k*. The projective bipartite tournament $D_k(\Pi)$ of order *k* with partite sets *P* and \mathcal{L} is defined as follows: For all $p \in P$ and for all $L \in \mathcal{L}$,

 $p \in N^+(L)$ iff p belongs to L; $L \in N^+(p)$ iff p does not belong to L.

Remark 2.1. Let $D_k(\Pi)$ be a projective bipartite tournament of order $k \ge 2$. Then $D_k(\Pi)$ has $n = 2(k^2 + k + 1)$ vertices, every vertex $p \in P$ has $d^+(p) = k + 1$, $d^-(p) = k^2$, and every $L \in \mathcal{L}$ has $d^+(L) = k^2$, $d^-(L) = k + 1$. Moreover, the diameter *Diam* $(D_k(\Pi)) = 3$ which implies that the edge connectivity is maximum, i.e., $\lambda(D_k(\Pi)) = \delta(D_k(\Pi)) = k + 1$, see [14].

77 Based on Corollary 1.1 and the above remark, we can write the following result.

Corollary 2.1. A projective bipartite tournament $D_k(\Pi)$ of order $k \ge 2$ is λ'_t -connected with $t \le \lfloor 2(k+2)/3 \rfloor$.

In the following theorem we improve the above corollary and we find an upper bound on the *t*-restricted-arc-connectivity
 for projective bipartite tournaments.

81 **Theorem 2.1.** If $D_k(\Pi)$ is the projective bipartite tournament of order $k \ge 2$ having *n* vertices, then $D_k(\Pi)$ is $\lambda'_{(n-2)/4}$ -connected, 82 and

$$\lambda'_{(n-2)/4}(D_k(\Pi)) \le (3n-10)(n-2)/16$$

Proof. Let $D_k(\Pi)$ be the projective bipartite tournament of order k. By Remark 2.1, $D_k(\Pi)$ is strong. In order to show that $D_k(\Pi)$ is λ'_{α} -connected, by Proposition 1.1, it is sufficient to prove that $D_k(\Pi)$ has $\alpha = \frac{k^2+k}{2} = (n-2)/4$ disjoint cycles of length four.

Observe that two points $p_1, p_2 \in \mathcal{P}$ and two lines $l_1, l_2 \in \mathcal{L}$ induce a 4-cycle (p_1, l_1, p_2, l_2) in $D_k(\Pi)$ if $p_1 \in l_1, p_2 \in l_2, p_1 \notin l_2$ and $p_2 \notin l_1$.

Let $p \in \mathcal{P}$ and $l \in \mathcal{L}$ be such that $p \notin l$. Let $p_1, p_2, \ldots, p_{k+1}$ be the points of l and let l_i be the line through p and p_i for $i = 1, 2, \ldots, k+1$. Let p_i^j , $j = 1, 2, \ldots, k$, be the k distinct points in l_i others than p, where $p_i = p_i^k$ for all $1 \le i \le k+1$. Also denote by [a, b] the line through the points a and b,

91 *Case 1.* k + 1 *is odd.*

92 Since $p \notin l$, $(p_{2i-1}^k, l_{2i-1}, p_{2i}^k, l_{2i})$ for i = 1, 2, ..., k/2, are k/2 disjoint 4-cycles in $D_k(\Pi)$.

Consider the line l_1 and note that $p_{k+1}^k \notin l_1$, and put $p = p_1^0$. Then

$$(p_1^{2i}, [p_1^{2i}, p_{k+1}^k], p_1^{2i+1}, [p_1^{2i+1}, p_{k+1}^k])$$
 for $i = 0, 1, \dots, k/2 - 1$

94 are k/2 disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the k/2 above. Similarly, note that $p_1^k \notin I_{k+1}$. Then

$$(p_{k+1}^{2i-1}, [p_{k+1}^{2i-1}, p_1^k], p_{k+1}^{2i}, [p_{k+1}^{2i}, p_1^k])$$
 for $i = 1, 2, ..., k/2$,

95 are k/2 disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the k above. Suppose $k \ge 4$. In this case we can take $p_i^{k-1} \in l_i$ with 96 i = 2, ..., k - 1, such that they are on the same line b and $p_k^{k-1} \notin b$. Hence

$$(p_{2i}^{k-1}, [p_{2i}^{k-1}, p_k^{k-1}], p_{2i+1}^{k-1}, [p_{2i+1}^{k-1}, p_k^{k-1}])$$
 for $i = 1, 2, ..., k/2 - 1$,

are k/2 - 1 disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the 3k/2 above.

Finally, observe that $p_1^j \notin l_{j+1}$, j = 1, ..., k - 1. Thus,

$$(p_{i+1}^{2i-1}, [p_{i+1}^{2i-1}, p_1^j], p_{i+1}^{2i}, [p_{i+1}^{2i}, p_1^j])$$
 for $i = 1, 2, ..., k/2 - 1$,

99 are (k/2 - 1)(k - 1) disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the 2k - 1 above. Therefore, the number of disjoint 100 4-cycles in $D_k(\Pi)$ is at least

$$(k/2-1)(k-1)+2k-1=\frac{k}{2}+\frac{k^2}{2}=\alpha.$$

101 *Case 2.* k + 1 *is even.*

ARTICLE IN

4

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

As in the above case, since $p \notin l$, $(p_{2i-1}^k, l_{2i-1}, p_{2i}^k, l_{2i})$ for $i = 1, 2, \dots, (k+1)/2$, are (k+1)/2 disjoint 4-cycles in $D_k(\Pi)$. Consider the line l_1 and note that $p_{k+1}^k \notin l_1$. Then

$$(p_1^{2i}, [p_1^{2i}, p_{k+1}^k], p_1^{2i+1}, [p_1^{2i+1}, p_{k+1}^k])$$
 for $i = 1, 2, ..., (k-1)/2$,

are (k-1)/2 disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the (k+1)/2 above.

Finally, observe that $p_1^j \notin l_{j+1}$, j = 1, ..., k. Thus,

$$(p_{j+1}^{2i-1}, [p_{j+1}^{2i-1}, p_1^j], p_{j+1}^{2i}, [p_{j+1}^{2i}, p_1^j])$$
 for $i = 1, 2, ..., (k-1)/2$,

are k(k-1)/2 disjoint 4-cycles in $D_k(\Pi)$ and also disjoint with the *k* above. Therefore, the number of disjoint 4-cycles in $D_k(\Pi)$ is at least

$$k\frac{k-1}{2} + k = \frac{k}{2} + \frac{k^2}{2} = \alpha.$$

In order to prove the upper bound on λ'_k , we count the number of arcs out-coming or in-coming from a 4-cycle in $D_k(\Pi)$. 108 Let $C_0 = (p, l, p', l')$ be a 4-cycle. Since $d^+(p) = d^+(p') = d^-(l) = d^-(l') = k+1$ and $d^-(p) = d^-(p') = d^+(l) = d^+(l') = k^2$, 109 it follows that the minimum number of arcs needed to disconnect C_0 from $T - V(C_0)$ is at least $2(k^2 + k - 1)$. Let $D_1 = 0$ 110 $D_k(\Pi) - V(C_0)$, and let C_1 be a 4-cycle in D_1 . The minimum number of arcs needed to disconnect C_1 from $D_1 - V(C_1)$ 111 is at least $2(k^2 + k - 1) - 2$, because $|V(C_0) \cap N^-(C_1)| \ge 2$ or $|V(C_0) \cap N^+(C_1)| \ge 2$ (note that if $|V(C_0) \cap N^-(C_1)| \le 1$, then 112 $|V(C_0) \cap N^+(C_1)| \ge 2$, because $D_k(\Pi)$ is a bipartite tournament). Let $D_2 = D_1 - V(C_1)$, and let C_2 be a 4-cycle in D_2 . The min-113 imum number of arcs needed to disconnect C_2 is at least $2(k^2 + k - 1) - 4$, because either $|(V(C_0) \cup V(C_1)) \cap N^-(C_2)| \ge 4$ 114 or $|(V(C_0) \cup V(C_1)) \cap N^+(C_2)| \ge 4$. If $D_{\alpha-1}$ is the digraph obtained after removing $\alpha - 1$ disjoint 4-cycles, then the mini-115 mum number of arcs needed to disconnect a 4-cycle C_{α} is at least $2(k^2 + k - 1) - 2(\alpha - 1)$, because either $| \bigcup_{i=0}^{\alpha-2} V(C_i) \cap V(C_i) | = 0$ 116 $N^{-}(C_{\alpha-1}))| \ge 2(\alpha-1)$ or $|\bigcup_{i=0}^{\alpha-2} V(C_i) \cap N^{+}(C_{\alpha-1})| \ge 2(\alpha-1)$. Hence, the minimum order to disconnect α disjoint 4-cycles 117 118 is

$$\sum_{i=1}^{\alpha} (2(k^2 + k - 1) - 2(i - 1)) = 2\alpha (k^2 + k - 1) - \alpha (\alpha - 1)$$
$$= \alpha \frac{3k^2 + 3k - 2}{2}$$
$$= 3\alpha^2 - \alpha.$$

119 Therefore, the theorem holds. \Box

120 3. Good oriented bipartite digraphs

121 Let *D* be an oriented bipartite digraph with $\delta^+(D) \ge 1$. Let *f*: $V(D) \to V(D)$ be a function such that $f(x) \in N^+(x)$. Let us 122 denote by $x_f^+ = N^+(x) \cup N^+(f(x))$, and $x_f^- = N^-(x) \cup N^-(f(x))$. Note that $x \in x_f^-$, $f(x) \in x_f^+$ and $x_f^+ \cap x_f^- = \emptyset$ because *D* is ori-123 ented and bipartite.

Definition 3.1. Let *D* be an oriented bipartite digraph with $\delta^+(D) \ge 1$ and let *f*: $V(D) \to V(D)$ be a function such that $f(x) \in N^+(x)$. Then *D* is said to be *f*-good if the following assertions hold:

126 1. Let $u, v \in x_f^{\epsilon}$, with $\epsilon \in \{-, +\}$. If $v \in u_f^+$, then $u_f^+ \cap v_f^- \subset x_f^{\epsilon}$. 127 2. Let $u, v, w \in x_f^{\epsilon}$, with $\epsilon \in \{-, +\}$. If $v \in u_f^+ \cap w_f^-$, then $u_f^- \cap w_f^- \subset v_f^-$ and $u_f^+ \cap w_f^+ \subset v_f^+$.

In general, we say that *D* is good if *D* is *f*-good for some *f*.

129 Next we present two distinct families of bipartite oriented digraphs which are good.

Let *D* be a digraph such that V(D) can be partitioned into $p \ge 2$ parts V_{α} , $\alpha = 1, 2, ..., p$, in such a way that the vertices in the partite set V_{α} are only adjacent to vertices of $V_{\alpha+1}$, where the sum is in \mathbb{Z}_p . These digraphs are known as *p*-cycles, see [17]. In [4] some sufficient conditions for guaranteeing optimal restricted arc-connectivity λ' of *p*-cycles are proved. Clearly, the girth of a *p*-cycle is at least *p* and when *p* is even *D* is bipartite. Moreover, if every vertex of V_{α} is adjacent to every vertex of $V_{\alpha+1}$, then *D* is known as a *complete p*-cycle.

Proposition 3.1. Let $p \ge 4$ be an even number and D a complete p-cycle. Then D is a good oriented bipartite digraph.

136 **Proof.** Let $v_{\alpha,j} \in V_{\alpha}$ with $j = 1, 2, ..., |V_{\alpha}|$. Let us consider the function f: $V(D) \rightarrow V(D)$ such that $f(v_{\alpha,j}) = v_{\alpha+1,j}$, where j is 137 taken modulo $|V_{\alpha+1}|$.

Therefore for every $x \in V_{\alpha}$, we have $x_f^+ = V_{\alpha+1} \cup V_{\alpha+2}$ and $x_f^- = V_{\alpha-1} \cup V_{\alpha}$. Without loss of generality suppose that $\alpha = 1$ and $x \in V_1$. Let us see that both assertions of Definition 3.1 hold.

ARTICLE IN PRESS

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

Suppose $u, v \in x_f^+ = V_2 \cup V_3$ (for $\epsilon = -$ the proof is analogous) and $v \in u_f^+$. If $u \in V_3$, then $u_f^+ = V_4 \cup V_5$ yielding that $v \in (V_4 \cup V_5) \cap (V_2 \cup V_3) = \emptyset$, which is impossible. Hence, $u \in V_2$ and $u_f^+ = V_3 \cup V_4$ yielding that $v \in (V_3 \cup V_4) \cap (V_2 \cup V_3) = V_3$, implying that $v_f^- = V_2 \cup V_3$. Hence, $u_f^+ \cap v_f^- = V_3 \subset x_f^+$, and assertion 1 of Definition 3.1 holds.

Next, let $u, v, w \in x_f^+$ and $v \in u_f^+ \cap w_f^-$. Reasoning as above we have $u \in V_2$ and $u_f^+ = V_3 \cup V_4$. If $w \in V_2$, then $w_f^- = V_1 \cup V_2$ yielding that $u_f^+ \cap w_f^- = \emptyset$, which is impossible. Therefore, $w \in V_3$ and $w_f^- = V_2 \cup V_3$ implying that $v \in u_f^+ \cap w_f^- = V_3$. We can check that $u_f^- \cap w_f^- = (V_1 \cup V_2) \cap (V_2 \cup V_3) = V_2 \subset v_f^- = V_2 \cup V_3$; and $u_f^+ \cap w_f^+ = (V_3 \cup V_4) \cap (V_4 \cup V_5) = V_4 \subset v_f^+$. Hence, assertion 2 of Definition 3.1 holds. \Box

147 Let $t \ge 0$ be an integer number and $B = \vec{c}_{4n+2t}(1, 3, \dots, 2n-1)$ be a circulant bipartite digraph in which $V(B) = \mathbb{Z}_{4n+2t}$ 148 and $A(B) = \{ij : j = i + s \text{ with } s = 1, 3, \dots, 2n-1\}$. Observe that if t = 0, then *B* is a bipartite tournament.

Proposition 3.2. The circulant digraph $\vec{C}_{4n+2t}(1, 3, \dots, 2n-1)$ is a good oriented bipartite digraph.

Proof. Let $B = \vec{C}_{4n+2t}(1, 3, \dots, 2n-1)$. Let us consider the function $f: V(B) \to V(B)$ such that f(x) = x + 1 modulo 4n + 2t. For simplicity we denote $x_f^+ = x^+$ and $x_f^- = x^-$. Moreover, since B is a vertex transitive digraph, we may assume that x = 0for proving both assertions 1 and 2 of Definition 3.1. We also assume that $\epsilon = -$ and the case $\epsilon = +$ can be done in a similar way.

154 Let $u, v \in 0^- = N^-(0) \cup N^-(1) = \{0, 4n + 2t - 1, ..., 2n + 2t + 1\}$. Since $v \in u^+$, $u \neq 0$ because $0^- \cap 0^+ = \emptyset$ and $v \neq u$. 155 Hence, u = 2n + 2t + j with $1 \le j \le 2n - 1$ and then

$$u^{+} = N^{+}(u) \cup N^{+}(u+1) = \{j, j-1, \ldots, 0, 4n+2t-1, \ldots, 2n+2t+j+1\}.$$

156 Since $v \in u^+ \cap 0^-$, v = 2n + 2t + h with $j + 1 \le h \le 2n$, it follows that

 $v^{-} = N^{-}(v) \cup N^{-}(v+1) = \{2n+2t+h, 2n+2t+h-1, \dots, 2n+2t, \dots, 2t+h+1\}.$

157 Let $i \in u^+ \cap v^-$, then $2n + 2t + j + 1 \le i \le 2n + 2t + h$ yielding that $i \in 0^-$ and assertion 1 holds.

Let $u, v, w \in 0^- = \{0, 4n + 2t - 1, \dots, 2n + 2t + 1\}$, then w = 2n + 2t + r with $0 \le r \le 2n$, and u as before. Since $v \in u^+ \cap w^-$, it follows that $v = 2n + 2t + h \in w^-$, yielding that w = 2n + 2t + r with $h < r \le 2n$ (h < r because $w \ne v$). Therefore we have $1 \le j < h < r \le 2n$. Thus, if $x \in u^- \cap w^-$, then $x \in \{2n + 2t + j, 2n + 2t + j - 1, \dots, r + 2t + 1\} \subset v^-$ giving $u^- \cap w^- \subset v^-$. If $x \in u^+ \cap w^+$, then $x \in \{2n + 2t + r + 1, \dots, 0, \dots, 2t + j + 1\} \subset v^+$, implying $u^+ \cap w^+ \in v^+$. Thus assertion 2 of Definition 3.1 also holds. \Box

163 The following result is a direct consequence for paths of length two from Definition 3.1.

164 **Corollary 3.1.** Let *D* be a *f*-good oriented bipartite digraph and $D[i_f^{\epsilon}]$ with $\epsilon \in \{-, +\}$ the induced subdigraph in *D* by the set i_f^{ϵ} . 165 Then

166 1. If (u, v, w) is a path in $D[i_f^{\epsilon}]$, then $u_f^- \cap w_f^- \subset v_f^-$ and $u_f^+ \cap w_f^+ \subset v_f^+$.

167 2. If D is a bipartite tournament and (u, v, w) is a path in $D[i_f^{\epsilon}]$, then $w \in u_f^+$.

Proof. 1. If (u, v, w) is a path, then $v \in N^+(u) \cap N^-(w)$, and therefore $v \in u_f^+ \cap w_f^-$. Since $u, v, w \in i_f^\epsilon$ it follows the result by assertion 2 of Definition 3.1.

2. If (u, v, w) is a path in $D[i_f^c]$, then by the above point we have $u_f^- \cap w_f^- \subset v_f^-$. If $w \in u_f^-$ then $w \in u_f^- \cap w_f^- \subset v_f^-$, which is a contradiction because $w \in N^+(v) \subset v_f^+$ and $v_f^- \cap v_f^+ = \emptyset$. Hence, $w \in u_f^+$. \Box

172 3.1. k-restricted arc connectivity of good bipartite tournaments

173 In this subsection we bound the λ'_{ν} -connectivity of good bipartite tournaments.

174 **Lemma 3.1.** Let T be a f-good bipartite tournament. Let $i \in V(T)$ and (a, b, c, d) be a C_4 in T - i and suppose that $b, d \in N^-(i)$. 175 Then $|\{a, c\} \cap i_f^-| = 1$.

Proof. For simplicity we denote $x_f^+ = x^+$ and $x_f^- = x^-$ for all $x \in V(T)$. Suppose $d \in b^+$. Since $b, d \in N^-(i) \subset i^-$, by item 1 of Definition 3.1, it follows that $b^+ \cap d^- \subset i^-$, implying that $c \in i^-$. Conversely, if $c \in i^-$, then (b, c, d) is a path in $T[i^-]$ yielding that $d \in b^+$ by item 2 of Corollary 3.1.

179 If $d \in b^-$ then (d, a, b) is a path in $T[b^-]$ yielding that $b \in d^+$ by item 2 of Corollary 3.1. We have $d^+ \cap b^- \subset i^-$ by item 1 180 of Definition 3.1, yielding that $a \in i^-$. And reciprocally, suppose $a \in i^-$. Since $b, d \in N^-(i)$ it follows that (a, b, i) is a path in 181 $T[i^-]$ and by item 2 of Corollary 3.1, we have $a^- \cap i^- \subset b^-$ yielding that $d \in b^-$.

Since *T* is a tournament it follows that either $d \in b^+$ or $d \in b^-$ it follows that either $c \in i^-$ or $a \in i^-$ and the lemma holds. \Box

Lemma 3.2. Let T be a f-good bipartite tournament. Then, for every pair C_1 , C_2 of disjoint 4-cycles,

 $|(C_1, C_2)| \ge 2.$

6

ARTICLE IN PRESS

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

Proof. Let $C_1 = (a, b, c, d, a)$ and $C_2 = (y, z, w, x, y)$. Let T = (X, Y) and suppose that $a, c, w, y \in X$ and $b, d, x, z \in Y$. Let us suppose that $|(C_1, C_2)| \le 1$. Without loss of generality, we may assume that $\{xa, za, xc, zc, yd, wd\} \subseteq (C_2, C_1)$.

For simplicity we denote $x_f^+ = x^+$ and $x_f^- = x^-$ for all $x \in V(T)$. Then $x, z, d \in N^-(a) \subset a^-$. By Lemma 3.1, we have $|\{y, w\} \cap a^-| = 1$. Without loss of generality assume that $y \in a^-$ and $w \in a^+$. Let us show that $d \in z^-$. Suppose $d \in z^+$, since $z, d \in a^-$, by item 1 of Definition 3.1, it follows that $z^+ \cap d^- \subset a^-$, implying that $w \in a^-$ because $w \in z^+ \cap d^-$ and $wd \in A(T)$. Since this is a contradiction with our assumption $w \in a^+$, we have $d \in z^-$. Moreover (x, y, d) is a path in $D[a^-]$ because $yd \in A(T)$. Since by item 2 of Corollary 3.1, we get $d \in x^+$. Hence, $x, z, d \in a^-$ and $d \in x^+ \cap z^-$. By item 2 of Definition 3.1, it follows that $x^+ \cap z^+ \subset d^+$, yielding that $c \in d^+$ since $xc, zc \in A(T)$. This is a contradiction because $c \in d^-$. Hence, $|(C_1, C_2)| \ge 2$.

Note that $D_k(\Pi)$ is not a good bipartite tournament for k = 2. In this case it is possible to find two disjoint C_4 such that there is only one arc from one to another and by the above Lemma 3.2 we get that $D_2(\Pi)$ is not a good bipartite tournament.

196 As a consequence of the above results we obtain the following theorem.

197 **Theorem 3.1.** Let $k \ge 2$ be an integer. Let T be a λ'_{k} -connected good bipartite tournament with N vertices. Then

$$k(k-1) \le \lambda'_k(T) \le k(N-2k-2).$$

Proof. Since *T* is λ'_k -connected, it has at least *k*-vertex disjoint C_4 by Proposition 1.1. Hence, the lower bound on $\lambda_k(T)$ follows by Lemma 3.2. To obtain the upper bound observe that the number of arcs from a cycle *C* to T - V(C) plus the number of arcs from T - V(C) to *C* is at most 2(N - 4). Then one of the two arc sets has cardinality at most N - 4. Let C_1, \ldots, C_k be *k* vertex disjoint cycles contained in *T*. Thus, the maximum number of arcs that we need to remove from *T* to disconnect these *k* cycles is

$$(N-4) + (N-8) + \dots + (N-4k) = kN - 2k(k+1) = k(N-2k-2),$$

203 and the result follows. \Box

Corollary 3.2. Let $k \ge 2$ be an integer. Let T be a good bipartite tournament with N vertices and $\delta(T) \ge 1.5k - 1$. Then

$$k(k-1) \le \lambda'_k(T) \le k(N-2k-2).$$

Proof. Since $\delta(T) \ge 1.5k - 1$, it follows that *T* is λ'_k -connected by Corollary 1.1. The result is a direct consequence of Theorem 3.1. \Box

For circulant bipartite tournaments $\vec{C}_{4n}(1, 3, \dots, 2n-1)$ we have the following known result.

Theorem 3.2. [16] If $n \ge 2$, then for every $i \in V(\overrightarrow{C}_{4n}(1,3,\ldots,2n-1)), \ \overrightarrow{C}_{4n}(1,3,\ldots,2n-1) - \{i,i+1,i+2n,i+2n+1\} \cong \overrightarrow{C}_{4(n-1)}(1,3,\ldots,2(n-1)-1).$

From the above theorem it follows that $\vec{c}_{4n}(1, 3, \dots, 2n-1)$ has *n* disjoint 4-cycles. Therefore, by Theorem 3.2 and Proposition 3.2 we can write the following result.

Corollary 3.3. Let k, n be integers such that $2 \le k \le n$. Let $T = \overrightarrow{C}_{4n}(1, 3, 4, ..., 2n - 1)$ be a circulant bipartite tournament. Then T is λ'_k -connected and

 $k(k-1) \le \lambda'_k(T) \le 2(2n-k)(k-1).$

214 Analogously, we can write the following result for 4-cycles.

Corollary 3.4. Let T be a complete 4-cycle with N vertices and $|V_{\alpha}| \ge k$ for each $\alpha = 1, 2, 3, 4$. Then T is λ'_{ν} connected and

$$k(k-1) \le \lambda'_k(T) \le k(N-2k-2).$$

216 Uncited reference

[8].

217

221

218 Acknowledgments

First author (C. Balbuena) acknowledges the support provided by the Ministry of "Economía y Competitividad", Spain, and the European Regional Development Fund (ERDF) (m) er project MTM2014-60127-P. The second author (D. González-Moreno) acknowledges the support provided by the CONACYT-México, under project CB-222104.

ARTICLE IN PRESS

7

C. Balbuena et al./Applied Mathematics and Computation xxx (2018) xxx-xxx

222 References

236 237

- 223 [1] N. Alon, Disjoint directed cycles, J. Combin. Theory Ser. B 68 (1996) 167-178.
- [2] Y. Bai, B. Li, H. Li, Vertex-disjoint cycles in bipartite tournaments, Discrete Math. 338 (2015) 1307–1309.
- [3] C. Balbuena, Extraconnectivity of s-geodetic digraphs and graphs, Discrete Math. 195 (1-3) (1999) 39-52.
- [4] C. Balbuena, P.G. a Vázquez, A. Hansberg, L.P. Montejano, Restricted arc-connectivity of generalized *p*-cycles, Discrete Appl. Math. 160 (2012) 1325– 1332.
- [5] C. Balbuena, P.G. a Vázquez, A. Hansberg, L.P. Montejano, On the super-restricted arc-connectivity of s-geodetic digraphs, Networks 61 (1) (2013)
 20-28.
- [6] C. Balbuena, D. González-Moreno, M. Olsen, Vertex-disjoint 4-cycles in bipartite tournaments, Discr.Math. (in press), https://doi.org/10.1016/j.disc.2017.
 10.023.
- [7] C. Balbuena, M. Olsen, On the acyclic disconnection and the girth, Discrete Appl. Math. 186 (2015) 13–18.
- [8] J. Bang-Jensen, S. Bessy, S. Thomassé, Disjoint 3-cycles in tournaments: a proof of the Bermond-Thomassen conjecture for tournaments, J. Graph Theory 75 (2014) 284–302.
- [9] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, second ed., Springer-Verlag, London, 2009.
 - [10] S. Bessy, N. Lichiardopol, J.S. Sereni, Two proofs of the Bermond-Thomassen conjecture for tournaments with bounded minimum in-degree, Discrete Math. 310 (2010) 557-560.
- [11] J.C. Bermond, C. Thomassen, Cycles in digraphs-a survey, J. Graph Theory 5 (1) (1981) 1-43.
- 239 [12] G. Chartrand, S.F. Kapoor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1-6.
- [13] X. Chen, J. Liu, J. Meng, λ' -optimality digraphs of bipartite digraphs, Inf. Process. Lett. 112 (2012) 701–705.
- [14] Fàbrega, M.A. Fiol, Bipartite graphs and digraphs with maximum connectivity, Discrete Appl. Math. 69 (1996a) 269–278.
- [15] Fàbrega, M.A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155 (1996b) 49–57.
- [16] A.P. Figueroa, B. Llano, M. Olsen, E. Rivera-Campo, On the acyclic disconnection of multipartite tournaments, Discrete Appl. Math. 160 (2012) 1524–
 1531.
- [17] J. Gómez, C. Padró, S. Perennes, Large generalized cycles, Discrete Appl. Math. 89 (1998) 107–123.
- [18] N. Lichiardopol, A. Pór, J.S. Sereni, A step towards the Bermond-Thomassen conjecture about disjoint cycles in digraphs, SIAM J Discrete Math 23 (2009) 979–992.
- [19] D. Meierling, L. Volkmann, S. Winzen, Restricted arc-connectivity of generalized tournaments, Australas. J. Comb. 40 (2008) 269-278.
- [20] O.R. Oellerman, On the *l*-connectivity of a graph, Graphs Comb. (3-1) (1987) 285–291.
- 250 [21] E. Sampathkumar, Connectivity of a graph generalization, J. Comb. Inf. Syst. Sci. 9 (1984) 71-78.
- [22] S. Zhao, W. Yang, S. Zhang, Component connectivity of hypercubes, in: Theoretical Computer Science Volume 640, 2016, pp. 115–118.
- 252 [23] C. Thomassen, Disjoint cycles in digraphs, Combinatorica 2 (3-4) (1983) 393-396.
- 253 [24] L. Volkmann, Restricted arc-connectivity of digraphs, Inf. Process. Lett. 103 (2007) 234–239.
- 254 [25] S. Wang, S. Lin, λ-optimal digraphs, Inf. Process. Lett. 108 (2008) 386-389.