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a b s t r a c t 

For k ≥ 2, a strongly connected digraph D is called λ′ 
k 
-connected if it contains a set

of arcs W such that D − W contains at least k non-trivial strong components. The k- 

restricted arc connectivity of a digraph D was defined by Volkmann as λ′ 
k 
(D ) = min {| W | :

W is a k -restricted arc-cut } . In this paper we bound λ′ 
k 
(T ) for a family of bipartite tour- 

naments T called projective bipartite tournaments. We also introduce a family of “good”

bipartite oriented digraphs. For a good bipartite tournament T we prove that if the mini- 

mum degree of T is at least 1 . 5 k − 1 then k (k − 1) ≤ λ′ 
k 
(T ) ≤ k (N − 2 k − 2) , where N is the

order of the tournament. As a consequence, we derive better bounds for circulant bipartite

tournaments.

© 2018 Elsevier Inc. All rights reserved.
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1. Introduction 

Through this work only finite digraphs without loops and multiple arcs are considered. For all definitions not given here

we refer the reader to the book of Bang-Jensen and Gutin [9] . Let D be a digraph with vertex set V ( D ) and arc set A ( D ). A

vertex u is adjacent to a vertex v if (u, v ) ∈ A (D ) . The out-neighborhood of a vertex u is N 

+ (u ) = { v ∈ V (D ) : (u, v ) ∈ A (D ) }
and the in-neighborhood of a vertex u is N 

−(u ) = { v ∈ V (D ) : (v , u ) ∈ A (D ) } . The out-degree is d + (v ) = | N 

+ (v ) | and the in-

degree d −(v ) = | N 

−(v ) | . We denote by δ+ (D ) the minimum out-degree of the vertices in D , and by δ−(D ) the minimum
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in-degree of the vertices in D . The minimum degree δ(D ) = min { δ+ (D ) , δ−(D ) } . Given a vertex subset X ⊂ V ( D ), the induced

subdigraph of D by X is denoted by D [ X ]. Given two vertex subsets X , Y ⊂ V ( D ), we denote by ( X , Y ) the set of arcs from X to

Y . 

In a digraph D a vertex v is reachable from a vertex u if D has an (u, v ) -path. A digraph D is strongly connected or strong

if, for every pair u, v of distinct vertices in D there exists an (u, v ) -path and a (v , u ) -path. Clearly, a strong digraph D has

both δ+ (D ) ≥ 1 and δ−(D ) ≥ 1 , that is, δ( D ) ≥ 1. For a strong digraph D , a set of arcs W ⊆A ( D ) is an arc-cut if D − W is not

strong. A strong component of a digraph is a maximal strong induced subdigraph. A digraph D is said to be k-arc-connected if

D has no arc-cut with less than k arcs. A parameter that can measure the fault tolerance of a network modeled by a digraph

D is the classical arc-connectivity λ( D ) := λ of D . The arc connectivity λ of a digraph D is the largest integer k such that D

is k -arc-connected. If D is a non-strong digraph, we set λ = 0 . Note that λ≥ k if and only if |( X , V ( D ) �X )| ≥ k for all proper

subsets X of V ( D ). The arc-connectivity is an important measure for the fault tolerance of a network. However, one might

be interested in more refined indices of reliability. Even two digraphs with the same arc-connectivity λ may be considered

to have different reliabilities, since the number or type of minimum arc-cuts is different or simply because the existence

of some additional structural properties is required. From here arises the notion of restricted arc-connectivity λ′ defined by

Volkmann [24] as follows. For a strongly connected digraph D the restricted arc-connectivity λ′ is defined as the minimum

cardinality of an arc-cut over all arc-cuts W satisfying that D − W contains a non trivial strong component D 1 such that

D − V (D 1 ) has an arc. Some results for λ′ can be seen in [4,5,13,24,25] . 

Let k ≥ 2 be an integer. In the same paper [24] Volkmann also introduced the k -restricted arc-connectivity of a digraph

D , λ′ 
k 
, as follows. An arc set W of D is a k-restricted arc-cut if D − W contains at least k non trivial strong components. The

k-restricted arc connectivity of D is 

λ′ 
k (D ) = min {| W | : W is a k -restricted arc-cut } . 

A strong digraph D is said to be λ′ 
k 
-connected if λ′ 

k 
(D ) exists. k -restricted edge connectivity has been used by many author

in graphs, sometimes it is also called extra-connectivity [3,15] . This concept was also introduced for (undirected) graphs

independently by Chartrand et al. [12] , Sampathkumar [21] and Oellerman [20] as k -connectivity. Recently this parameter

has been studied under the name of k -component edge connectivity [22] . 

Volkmann [24] gives a characterization of the λ′ 
k 
-connected digraphs. 

Proposition 1.1. [24] Let k ≥ 2 be an integer. A strongly connected digraph D is λ′ 
k 
-connected if and only if D contains at least k

pairwise vertex disjoint cycles. 

Meierling et al. [19] characterize the λ′ 
2 -connected local tournaments and tournaments. They proved that the recognition

problem of deciding if a strongly connected local tournament or tournament with n vertices and m arcs is λ′ 
2 
-connected

can be solved in polynomial time. Whereas the problem of deciding if λ′ 
k 
(D ) exists for a strong digraph D when k ≥ 3 is

NP -complete. 

Furthermore, Proposition 1.1 states that the number of disjoint cycles in a strong digraph is equal to the maximum k for

which the digraph is λ′ 
k 
-connected. Therefore, it is important to know the maximum number of disjoint cycles in a digraph.

Bermond and Thomassen [11] established the following conjecture, which relates the number of disjoint cycles in a digraph

with the minimum out-degree. 

Conjecture 1.1. [11] Every digraph D with δ+ (D ) ≥ 2 k − 1 has k disjoint cycles. 

This conjecture has been proved for general digraphs by Thomassen [23] when k = 2 , and by Lichiardopol et al. [18] when

k = 3 . In 2010, Bessy et al. [10] proved Conjecture 1.1 for regular tournaments. In 2014, Bang-Jensen et al. [10] proved it for

tournaments. Thomassen [23] also established the existence of a finite integer f ( k ) such that every digraph of minimum 

out-degree at least f ( k ) contains k disjoint cycles. Alon [1] proved in 1996 that for every integer k , the value 64 k is suitable

for f ( k ). 

A bipartite tournament is an oriented complete bipartite graph. Hence, the girth of any non acyclic bipartite tournament

is four. Very recently, Bai et al. [2] , proved Conjecture 1.1 for bipartite tournaments as a consequence of another result

related to the numbers of vertex disjoint cycles of a given length in bipartite tournaments with minimum out-degree at

least qr − 1 , for q ≥ 2 and r ≥ 1 two integers. In [6] it was proved that every bipartite tournament with minimum out-degree

at least 2 k − 2 and minimum in-degree at least one contains k disjoint 4-cycles whenever k ≥ 3. Moreover, it was shown

that every bipartite tournament with both minimum out-degree and minimum in-degree at least 1 . 5 k − 1 contains at least

k disjoint cycles. As an immediate consequence of Proposition 1.1 and this last result we can write the following result. 

Corollary 1.1. Let k ≥ 2 be an integer. A strongly connected bipartite tournament with minimum degree δ ≥ 1 . 5 k − 1 is λ′ 
k 
-

connected. 

In this paper we give bounds on the k -restricted arc-connectivity in some families of bipartite tournaments. This paper is

organized as follows. In the next section we give an upper bound on λ′ 
k 

of the projective bipartite tournaments introduced

in [7] . In the last section we introduce a family of oriented bipartite digraphs called good . The main theorem concerns with

good bipartite tournaments. For this family we prove that if the minimum degree is at least 1 . 5 k − 1 , then k (k − 1) ≤ λ′ 
k 

≤
k (N − 2 k − 2) , where N is the order of the tournament. We also prove that complete p -cycles and certain circulant bipartite

tournaments are good and removing the hypothesis on the minimum degree we are able to obtain the same lower bound. 
Please cite this article as: C. Balbuena et al., Bounds on the k-restricted arc connectivity of some bipartite tournaments, 
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2. Projective b ipartite t ournament 

In [7] a family of bipartite tournaments based on projective planes was introduced. A projective plane (P, L ) consists of a

finite set P of elements called points , and a finite family L of subsets of P called lines which satisfy the following conditions:

(i) Any two lines intersect at a single point. 

(ii) Any two points belongs to a single line. 

(iii) There are four points of which no three belong to the same line. 

It can be shown that for every projective plane, there is an integer n ≥ 2 such that every line has exactly n + 1 points and

every point is incident with exactly n + 1 lines. Hence, the projective plane (P, L ) is said to have order n . Moreover, observe

that | P | = |L| = n 2 + n + 1 . 

Definition 2.1. [7] Let � = (P, L ) be a projective plane of order k . The projective bipartite tournament D k ( �) of order k with

partite sets P and L is defined as follows: For all p ∈ P and for all L ∈ L , 

p ∈ N 

+ (L ) iff p belongs to L ; L ∈ N 

+ (p) iff p does not belong to L. 

Remark 2.1. Let D k ( �) be a projective bipartite tournament of order k ≥ 2. Then D k ( �) has n = 2(k 2 + k + 1) vertices,

every vertex p ∈ P has d + (p) = k + 1 , d −(p) = k 2 , and every L ∈ L has d + (L ) = k 2 , d −(L ) = k + 1 . Moreover, the diameter

Diam (D k (�)) = 3 which implies that the edge connectivity is maximum, i.e., λ(D k (�)) = δ(D k (�)) = k + 1 , see [14] . 

Based on Corollary 1.1 and the above remark, we can write the following result. 

Corollary 2.1. A projective bipartite tournament D k ( �) of order k ≥ 2 is λ′ 
t -connected with t ≤ 	 2(k + 2) / 3 
 . 

In the following theorem we improve the above corollary and we find an upper bound on the t -restricted-arc-connectivity

for projective bipartite tournaments. 

Theorem 2.1. If D k ( �) is the projective bipartite tournament of order k ≥ 2 having n vertices, then D k ( �) is λ′ 
(n −2) / 4 

-connected,

and 

λ′ 
(n −2) / 4 (D k (�)) ≤ (3 n − 10)(n − 2) / 16 . 

Proof. Let D k ( �) be the projective bipartite tournament of order k . By Remark 2.1 , D k ( �) is strong. In order to show that

D k ( �) is λ′ 
α-connected, by Proposition 1.1 , it is sufficient to prove that D k ( �) has α = 

k 2 + k 
2 = (n − 2) / 4 disjoint cycles of

length four. 

Observe that two points p 1 , p 2 ∈ P and two lines l 1 , l 2 ∈ L induce a 4-cycle ( p 1 , l 1 , p 2 , l 2 ) in D k ( �) if p 1 ∈ l 1 , p 2 ∈ l 2 , p 1 �∈ l 2
and p 2 �∈ l 1 . 

Let p ∈ P and l ∈ L be such that p �∈ l . Let p 1 , p 2 , . . . , p k +1 be the points of l and let l i be the line through p and p i for

i = 1 , 2 , . . . , k + 1 . Let p 
j 
i 
, j = 1 , 2 , . . . , k, be the k distinct points in l i others than p , where p i = p k 

i 
for all 1 ≤ i ≤ k + 1 . Also

denote by [ a , b ] the line through the points a and b , 

Case 1. k + 1 is odd. 

Since p �∈ l, (p k 
2 i −1 

, l 2 i −1 , p 
k 
2 i 

, l 2 i ) for i = 1 , 2 , . . . , k/ 2 , are k /2 disjoint 4-cycles in D k ( �). 

Consider the line l 1 and note that p k 
k +1 

�∈ l 1 , and put p = p 0 
1 
. Then 

(p 2 i 1 , [ p 
2 i 
1 , p 

k 
k +1 ] , p 

2 i +1 
1 , [ p 2 i +1 

1 , p k k +1 ]) for i = 0 , 1 , . . . , k/ 2 − 1 , 

are k /2 disjoint 4-cycles in D k ( �) and also disjoint with the k /2 above. Similarly, note that p k 
1 

�∈ l k +1 . Then 

(p 2 i −1 
k +1 

, [ p 2 i −1 
k +1 

, p k 1 ] , p 
2 i 
k +1 , [ p 

2 i 
k +1 , p 

k 
1 ]) for i = 1 , 2 , . . . , k/ 2 , 

are k /2 disjoint 4-cycles in D k ( �) and also disjoint with the k above. Suppose k ≥ 4. In this case we can take p k −1 
i 

∈ l i with

i = 2 , . . . , k − 1 , such that they are on the same line b and p k −1 
k 

�∈ b. Hence 

(p k −1 
2 i 

, [ p k −1 
2 i 

, p k −1 
k 

] , p k −1 
2 i +1 

, [ p k −1 
2 i +1 

, p k −1 
k 

]) for i = 1 , 2 , . . . , k/ 2 − 1 , 

are k/ 2 − 1 disjoint 4-cycles in D k ( �) and also disjoint with the 3 k /2 above. 

Finally, observe that p 
j 
1 

�∈ l j+1 , j = 1 , . . . , k − 1 . Thus, 

(p 2 i −1 
j+1 

, [ p 2 i −1 
j+1 

, p j 
1 
] , p 2 i j+1 , [ p 

2 i 
j+1 , p 

j 
1 
]) for i = 1 , 2 , . . . , k/ 2 − 1 , 

are (k/ 2 − 1)(k − 1) disjoint 4-cycles in D k ( �) and also disjoint with the 2 k − 1 above. Therefore, the number of disjoint

4-cycles in D k ( �) is at least 

(k/ 2 − 1)(k − 1) + 2 k − 1 = 

k 

2 

+ 

k 2 

2 

= α. 

Case 2. k + 1 is even. 
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As in the above case, since p �∈ l, (p k 
2 i −1 

, l 2 i −1 , p 
k 
2 i 

, l 2 i ) for i = 1 , 2 , . . . , (k + 1) / 2 , are (k + 1) / 2 disjoint 4-cycles in D k ( �).

Consider the line l 1 and note that p k 
k +1 

�∈ l 1 . Then 

(p 2 i 1 , [ p 
2 i 
1 , p 

k 
k +1 ] , p 

2 i +1 
1 , [ p 2 i +1 

1 , p k k +1 ]) for i = 1 , 2 , . . . , (k − 1) / 2 , 

are (k − 1) / 2 disjoint 4-cycles in D k ( �) and also disjoint with the (k + 1) / 2 above. 

Finally, observe that p 
j 
1 

�∈ l j+1 , j = 1 , . . . , k . Thus, 

(p 2 i −1 
j+1 

, [ p 2 i −1 
j+1 

, p j 
1 
] , p 2 i j+1 , [ p 

2 i 
j+1 , p 

j 
1 
]) for i = 1 , 2 , . . . , (k − 1) / 2 , 

are k (k − 1) / 2 disjoint 4-cycles in D k ( �) and also disjoint with the k above. Therefore, the number of disjoint 4-cycles in

D k ( �) is at least 

k 
k − 1 

2 

+ k = 

k 

2 

+ 

k 2 

2 

= α. 

In order to prove the upper bound on λ′ 
k 
, we count the number of arcs out-coming or in-coming from a 4-cycle in D k ( �).

Let C 0 = (p, l, p ′ , l ′ ) be a 4-cycle. Since d + (p) = d + (p ′ ) = d −(l) = d −(l ′ ) = k + 1 and d −(p) = d −(p ′ ) = d + (l) = d + (l ′ ) = k 2 ,

it follows that the minimum number of arcs needed to disconnect C 0 from T − V (C 0 ) is at least 2(k 2 + k − 1) . Let D 1 =
D k (�) − V (C 0 ) , and let C 1 be a 4-cycle in D 1 . The minimum number of arcs needed to disconnect C 1 from D 1 − V (C 1 )

is at least 2(k 2 + k − 1) − 2 , because | V (C 0 ) ∩ N 

−(C 1 ) | ≥ 2 or | V (C 0 ) ∩ N 

+ (C 1 ) | ≥ 2 (note that if | V (C 0 ) ∩ N 

−(C 1 ) | ≤ 1 , then

| V (C 0 ) ∩ N 

+ (C 1 ) | ≥ 2 , because D k ( �) is a bipartite tournament). Let D 2 = D 1 − V (C 1 ) , and let C 2 be a 4-cycle in D 2 . The min-

imum number of arcs needed to disconnect C 2 is at least 2(k 2 + k − 1) − 4 , because either | (V (C 0 ) ∪ V (C 1 )) ∩ N 

−(C 2 ) | ≥ 4

or | (V (C 0 ) ∪ V (C 1 )) ∩ N 

+ (C 2 ) | ≥ 4 . If D α−1 is the digraph obtained after removing α − 1 disjoint 4-cycles, then the mini-

mum number of arcs needed to disconnect a 4-cycle C α is at least 2(k 2 + k − 1) − 2(α − 1) , because either | ∪ 

α−2 
i =0 

V (C i ) ∩
N 

−(C α−1 )) | ≥ 2(α − 1) or | ∪ 

α−2 
i =0 

V (C i ) ∩ N 

+ (C α−1 ) | ≥ 2(α − 1) . Hence, the minimum order to disconnect α disjoint 4-cycles

is 

α∑ 

i =1 

(2(k 2 + k − 1) − 2(i − 1)) = 2 α(k 2 + k − 1) − α(α − 1) 

= α
3 k 2 + 3 k − 2 

2 

= 3 α2 − α. 

Therefore, the theorem holds. �

3. Good oriented bipartite digraphs 

Let D be an oriented bipartite digraph with δ+ (D ) ≥ 1 . Let f : V ( D ) → V ( D ) be a function such that f (x ) ∈ N 

+ (x ) . Let us

denote by x + 
f 

= N 

+ (x ) ∪ N 

+ ( f (x )) , and x −
f 

= N 

−(x ) ∪ N 

−( f (x )) . Note that x ∈ x −
f 
, f (x ) ∈ x + 

f 
and x + 

f 
∩ x −

f 
= ∅ because D is ori-

ented and bipartite. 

Definition 3.1. Let D be an oriented bipartite digraph with δ+ (D ) ≥ 1 and let f : V ( D ) → V ( D ) be a function such that f (x ) ∈
N 

+ (x ) . Then D is said to be f -good if the following assertions hold: 

1. Let u, v ∈ x ε
f 
, with ε ∈ {−, + } . If v ∈ u + 

f 
, then u + 

f 
∩ v −

f 
⊂ x ε

f 
. 

2. Let u, v , w ∈ x ε
f 
, with ε ∈ {−, + } . If v ∈ u + 

f 
∩ w 

−
f 
, then u −

f 
∩ w 

−
f 

⊂ v −
f 

and u + 
f 

∩ w 

+ 
f 

⊂ v + 
f 

. 

In general, we say that D is good if D is f -good for some f . 

Next we present two distinct families of bipartite oriented digraphs which are good. 

Let D be a digraph such that V ( D ) can be partitioned into p ≥ 2 parts V α , α = 1 , 2 , . . . , p, in such a way that the vertices

in the partite set V α are only adjacent to vertices of V α+1 , where the sum is in Z p . These digraphs are known as p -cycles, see

[17] . In [4] some sufficient conditions for guaranteeing optimal restricted arc-connectivity λ′ of p -cycles are proved. Clearly,

the girth of a p -cycle is at least p and when p is even D is bipartite. Moreover, if every vertex of V α is adjacent to every

vertex of V α+1 , then D is known as a complete p-cycle . 

Proposition 3.1. Let p ≥ 4 be an even number and D a complete p-cycle. Then D is a good oriented bipartite digraph. 

Proof. Let v α, j ∈ V α with j = 1 , 2 , . . . , | V α| . Let us consider the function f : V ( D ) → V ( D ) such that f (v α, j ) = v α+1 , j , where j is

taken modulo | V α+1 | . 
Therefore for every x ∈ V α , we have x + 

f 
= V α+1 ∪ V α+2 and x −

f 
= V α−1 ∪ V α . Without loss of generality suppose that α = 1

and x ∈ V . Let us see that both assertions of Definition 3.1 hold. 
1 
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Suppose u, v ∈ x + 
f 

= V 2 ∪ V 3 (for ε = − the proof is analogous) and v ∈ u + 
f 

. If u ∈ V 3 , then u + 
f 

= V 4 ∪ V 5 yielding that

v ∈ (V 4 ∪ V 5 ) ∩ (V 2 ∪ V 3 ) = ∅ , which is impossible. Hence, u ∈ V 2 and u + 
f 

= V 3 ∪ V 4 yielding that v ∈ (V 3 ∪ V 4 ) ∩ (V 2 ∪ V 3 ) = V 3 ,

implying that v −
f 

= V 2 ∪ V 3 . Hence, u + 
f 

∩ v −
f 

= V 3 ⊂ x + 
f 
, and assertion 1 of Definition 3.1 holds. 

Next, let u, v , w ∈ x + 
f 

and v ∈ u + 
f 

∩ w 

−
f 

. Reasoning as above we have u ∈ V 2 and u + 
f 

= V 3 ∪ V 4 . If w ∈ V 2 , then w 

−
f 

= V 1 ∪ V 2

yielding that u + 
f 

∩ w 

−
f 

= ∅ , which is impossible. Therefore, w ∈ V 3 and w 

−
f 

= V 2 ∪ V 3 implying that v ∈ u + 
f 

∩ w 

−
f 

= V 3 . We can

check that u −
f 

∩ w 

−
f 

= (V 1 ∪ V 2 ) ∩ (V 2 ∪ V 3 ) = V 2 ⊂ v −
f 

= V 2 ∪ V 3 ; and u + 
f 

∩ w 

+ 
f 

= (V 3 ∪ V 4 ) ∩ (V 4 ∪ V 5 ) = V 4 ⊂ v + 
f 

. Hence, asser-

tion 2 of Definition 3.1 holds. �

Let t ≥ 0 be an integer number and B = 

−→ 

C 4 n +2 t (1 , 3 , . . . , 2 n − 1) be a circulant bipartite digraph in which V (B ) = Z 4 n +2 t

and A (B ) = { i j : j = i + s with s = 1 , 3 , . . . , 2 n − 1 } . Observe that if t = 0 , then B is a bipartite tournament. 

Proposition 3.2. The circulant digraph 
−→ 

C 4 n +2 t (1 , 3 , . . . , 2 n − 1) is a good oriented bipartite digraph. 

Proof. Let B = 

−→ 

C 4 n +2 t (1 , 3 , . . . , 2 n − 1) . Let us consider the function f : V ( B ) → V ( B ) such that f (x ) = x + 1 modulo 4 n + 2 t .

For simplicity we denote x + 
f 

= x + and x −
f 

= x −. Moreover, since B is a vertex transitive digraph, we may assume that x = 0

for proving both assertions 1 and 2 of Definition 3.1 . We also assume that ε = − and the case ε = + can be done in a similar

way. 

Let u, v ∈ 0 − = N 

−(0) ∪ N 

−(1) = { 0 , 4 n + 2 t − 1 , . . . , 2 n + 2 t + 1 } . Since v ∈ u + , u � = 0 because 0 − ∩ 0 + = ∅ and v � = u .

Hence, u = 2 n + 2 t + j with 1 ≤ j ≤ 2 n − 1 and then 

u 

+ = N 

+ (u ) ∪ N 

+ (u + 1) = { j, j − 1 , . . . , 0 , 4 n + 2 t − 1 , . . . , 2 n + 2 t + j + 1 } . 
Since v ∈ u + ∩ 0 −, v = 2 n + 2 t + h with j + 1 ≤ h ≤ 2 n, it follows that 

v − = N 

−(v ) ∪ N 

−(v + 1) = { 2 n + 2 t + h, 2 n + 2 t + h − 1 , . . . , 2 n + 2 t, . . . , 2 t + h + 1 } . 
Let i ∈ u + ∩ v −, then 2 n + 2 t + j + 1 ≤ i ≤ 2 n + 2 t + h yielding that i ∈ 0 − and assertion 1 holds. 

Let u, v , w ∈ 0 − = { 0 , 4 n + 2 t − 1 , . . . , 2 n + 2 t + 1 } , then w = 2 n + 2 t + r with 0 ≤ r ≤ 2 n , and u as before. Since v ∈
u + ∩ w 

−, it follows that v = 2 n + 2 t + h ∈ w 

−, yielding that w = 2 n + 2 t + r with h < r ≤ 2 n ( h < r because w � = v ). There-

fore we have 1 ≤ j < h < r ≤ 2 n . Thus, if x ∈ u − ∩ w 

−, then x ∈ { 2 n + 2 t + j, 2 n + 2 t + j − 1 , . . . , r + 2 t + 1 } ⊂ v − giving u − ∩
w 

− ⊂ v −. If x ∈ u + ∩ w 

+ , then x ∈ { 2 n + 2 t + r + 1 , . . . , 0 , . . . , 2 t + j + 1 } ⊂ v + , implying u + ∩ w 

+ ∈ v + . Thus assertion 2 of

Definition 3.1 also holds. �

The following result is a direct consequence for paths of length two from Definition 3.1 . 

Corollary 3.1. Let D be a f-good oriented bipartite digraph and D [ i ε
f 
] with ε ∈ {−, + } the induced subdigraph in D by the set i ε

f 
.

Then 

1. If (u, v , w ) is a path in D [ i ε
f 
] , then u −

f 
∩ w 

−
f 

⊂ v −
f 

and u + 
f 

∩ w 

+ 
f 

⊂ v + 
f 

. 

2. If D is a bipartite tournament and (u, v , w ) is a path in D [ i ε
f 
] , then w ∈ u + 

f 
. 

Proof. 1. If (u, v , w ) is a path, then v ∈ N 

+ (u ) ∩ N 

−(w ) , and therefore v ∈ u + 
f 

∩ w 

−
f 

. Since u, v , w ∈ i ε
f 

it follows the result by

assertion 2 of Definition 3.1 . 

2. If (u, v , w ) is a path in D [ i ε
f 
] , then by the above point we have u −

f 
∩ w 

−
f 

⊂ v −
f 

. If w ∈ u −
f 

then w ∈ u −
f 

∩ w 

−
f 

⊂ v −
f 
, which

is a contradiction because w ∈ N 

+ (v ) ⊂ v + 
f 

and v −
f 

∩ v + 
f 

= ∅ . Hence, w ∈ u + 
f 

. �

3.1. k -restricted arc connectivity of good bipartite tournaments 

In this subsection we bound the λ′ 
k 
-connectivity of good bipartite tournaments. 

Lemma 3.1. Let T be a f-good bipartite tournament. Let i ∈ V ( T ) and ( a , b , c , d ) be a C 4 in T − i and suppose that b, d ∈ N 

−(i ) .

Then |{ a, c} ∩ i −
f 
| = 1 . 

Proof. For simplicity we denote x + 
f 

= x + and x −
f 

= x − for all x ∈ V ( T ). Suppose d ∈ b + . Since b, d ∈ N 

−(i ) ⊂ i −, by item 1 of

Definition 3.1 , it follows that b + ∩ d − ⊂ i −, implying that c ∈ i −. Conversely, if c ∈ i −, then ( b , c , d ) is a path in T [ i −] yielding

that d ∈ b + by item 2 of Corollary 3.1 . 

If d ∈ b − then ( d , a , b ) is a path in T [ b −] yielding that b ∈ d + by item 2 of Corollary 3.1 . We have d + ∩ b − ⊂ i − by item 1

of Definition 3.1 , yielding that a ∈ i −. And reciprocally, suppose a ∈ i −. Since b, d ∈ N 

−(i ) it follows that ( a , b , i ) is a path in

T [ i −] and by item 2 of Corollary 3.1 , we have a − ∩ i − ⊂ b − yielding that d ∈ b −. 

Since T is a tournament it follows that either d ∈ b + or d ∈ b − it follows that either c ∈ i − or a ∈ i − and the lemma

holds. �

Lemma 3.2. Let T be a f-good bipartite tournament. Then, for every pair C 1 , C 2 of disjoint 4-cycles, 

| (C 1 , C 2 ) | ≥ 2 . 
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Proof. Let C 1 = (a, b, c, d, a ) and C 2 = (y, z, w, x, y ) . Let T = (X, Y ) and suppose that a, c, w, y ∈ X and b , d , x , z ∈ Y . Let us

suppose that |( C 1 , C 2 )| ≤ 1. Without loss of generality, we may assume that { xa, za, xc, zc, yd, wd} ⊆ (C 2 , C 1 ) . 

For simplicity we denote x + 
f 

= x + and x −
f 

= x − for all x ∈ V ( T ). Then x, z, d ∈ N 

−(a ) ⊂ a −. By Lemma 3.1 , we have |{ y, w } ∩
a −| = 1 . Without loss of generality assume that y ∈ a − and w ∈ a + . Let us show that d ∈ z −. Suppose d ∈ z + , since z, d ∈ a −,

by item 1 of Definition 3.1 , it follows that z + ∩ d − ⊂ a −, implying that w ∈ a − because w ∈ z + ∩ d − and wd ∈ A (T ) . Since

this is a contradiction with our assumption w ∈ a + , we have d ∈ z −. Moreover ( x , y , d ) is a path in D [ a −] because yd ∈ A ( T ).

By item 2 of Corollary 3.1 , we get d ∈ x + . Hence, x, z, d ∈ a − and d ∈ x + ∩ z −. By item 2 of Definition 3.1 , it follows that

x + ∩ z + ⊂ d + , yielding that c ∈ d + since xc , zc ∈ A ( T ). This is a contradiction because c ∈ d −. Hence, |( C 1 , C 2 )| ≥ 2. �

Note that D k ( �) is not a good bipartite tournament for k = 2 . In this case it is possible to find two disjoint C 4 such

that there is only one arc from one to another and by the above Lemma 3.2 we get that D 2 ( �) is not a good bipartite

tournament. 

As a consequence of the above results we obtain the following theorem. 

Theorem 3.1. Let k ≥ 2 be an integer. Let T be a λ′ 
k 
-connected good bipartite tournament with N vertices. Then 

k (k − 1) ≤ λ′ 
k (T ) ≤ k (N − 2 k − 2) . 

Proof. Since T is λ′ 
k 
-connected, it has at least k -vertex disjoint C 4 by Proposition 1.1 . Hence, the lower bound on λk ( T )

follows by Lemma 3.2 . To obtain the upper bound observe that the number of arcs from a cycle C to T − V (C) plus the

number of arcs from T − V (C) to C is at most 2(N − 4) . Then one of the two arc sets has cardinality at most N − 4 . Let

C 1 , . . . , C k be k vertex disjoint cycles contained in T . Thus, the maximum number of arcs that we need to remove from T to

disconnect these k cycles is 

(N − 4) + (N − 8) + · · · + (N − 4 k ) = kN − 2 k (k + 1) = k (N − 2 k − 2) , 

and the result follows. �

Corollary 3.2. Let k ≥ 2 be an integer. Let T be a good bipartite tournament with N vertices and δ(T ) ≥ 1 . 5 k − 1 . Then 

k (k − 1) ≤ λ′ 
k (T ) ≤ k (N − 2 k − 2) . 

Proof. Since δ(T ) ≥ 1 . 5 k − 1 , it follows that T is λ′ 
k 
-connected by Corollary 1.1 . The result is a direct consequence of

Theorem 3.1 . �

For circulant bipartite tournaments 
−→ 

C 4 n (1 , 3 , . . . , 2 n − 1) we have the following known result. 

Theorem 3.2. [16] If n ≥ 2, then for every i ∈ V ( 
−→ 

C 4 n (1 , 3 , . . . , 2 n − 1)) , 
−→ 

C 4 n (1 , 3 , . . . , 2 n − 1) − { i, i + 1 , i + 2 n, i + 2 n + 1 } ∼=−→ 

C 4(n −1) (1 , 3 , . . . , 2(n − 1) − 1) . 

From the above theorem it follows that 
−→ 

C 4 n (1 , 3 , . . . , 2 n − 1) has n disjoint 4-cycles. Therefore, by Theorem 3.2 and

Proposition 3.2 we can write the following result. 

Corollary 3.3. Let k , n be integers such that 2 ≤ k ≤ n. Let T = 

−→ 

C 4 n (1 , 3 , . . . , 2 n − 1) be a circulant bipartite tournament. Then T

is λ′ 
k 
-connected and 

k (k − 1) ≤ λ′ 
k (T ) ≤ 2(2 n − k )(k − 1) . 

Analogously, we can write the following result for 4-cycles. 

Corollary 3.4. Let T be a complete 4-cycle with N vertices and | V α | ≥ k for each α = 1 , 2 , 3 , 4 . Then T is λ′ 
k 

connected and 

k (k − 1) ≤ λ′ 
k (T ) ≤ k (N − 2 k − 2) . 
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