
UNIVERSITAT POLITÈCNICA DE
CATALUNYA

MASTER THESIS

Visual Comparison of colon segmentation
data

Author:
Jan Maleš

Supervisor:
Pere-Pau Vázquez

A thesis submitted in fulfillment of the requirements
for the degree of Master in Innovation and Research in Informatics

in the

Facultat d’Informàtica de Barcelona
Department of Computer Science

11th October 2018

http://www.upc.edu/ca
http://www.upc.edu/ca
http://www.johnsmith.com
http://www.jamessmith.com
https://www.fib.upc.edu/en/
https://www.cs.upc.edu/

iii

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Abstract
Facultat d’Informàtica de Barcelona
Department of Computer Science

Master in Innovation and Research in Informatics

Visual Comparison of colon segmentation data

by Jan Maleš

In modern science, medical imaging has been a great resource in finding and test-
ing out new hypothesis. With larger data sets of T2 MRI scans of human abdomen,
we struggled in conducting fast and efficient studies. In this thesis, we introduce a
new visual tool for data exploratory analysis. It does not only simplify the visualiza-
tion of human’s large intestine but more importantly allows for finding meaningful
relationships inside our colon measurements data set.

Much is yet to be discovered about the different dieting methods and their effects
on the large intestine. This is mainly the result of lacking competent automation
tools that would speed up the process of colon extraction. Through a collaborative
approach with Universitari Vall d’Hebron and research group for Visualization, Vir-
tual Reality and Graphics Interaction, a data set of segmented colon information was
made available us.

VisPlot, the result of this thesis, lets its users study possible combinations of dis-
tinctive variables. Firstly, we provide an overview of the data through matrix-based
layout of small multiple representation. Secondly, linearity of variable combination
can be examined in larger scatter plots and thirdly, specific inspection of individual
patients is made possible via specialized inspector widget. The inspector not only
displays patient relative information, but also provides a 3D view of four segmented
colons and their surrounding mass.

We show that VisPlot is truly effective in discovering many conceivable relationships
between patients of identical and of different diets. Furthermore, we illustrate that
the vast majority of variables of the same colon express high linearity between each
other and lastly, we provide an economic GPU-based ray caster that was molded
around the WebGL 2.0 API.

HTTP://WWW.UPC.EDU/CA
https://www.fib.upc.edu/en/
https://www.cs.upc.edu/

v

Acknowledgements
I would like to thank my supervisor Pere-Pau Vázquez for his active guidance,
inspiring conversations and outermost support throughout the realization of this
work.

Additionally, I would like to express my sincere gratitude to all the professors that
overlooked my studies during my two-year stay at the faculty.

A special thanks to my girlfriend, family and friends that stood beside me during
the toughest times when I was away from home. You are the best of what a person
could have ever asked for.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Background 5
2.1 Scatter plots . 5
2.2 Small Multiples . 6
2.3 GPU Ray Casting . 7
2.4 Transfer Function . 8

3 Project Architecture 11
3.1 Client-Server Model . 12
3.2 Colon Measurements Data Set . 13

4 Application 15
4.1 Introduction . 16

4.1.1 Application Layout . 16
4.1.2 Developing for PC only . 17

4.2 Scatter Plots . 19
4.2.1 Plot Axes . 19
4.2.2 Plot Points . 22
4.2.3 Trend lines . 24
4.2.4 Transition Animations . 26

4.3 Small Multiples . 27
4.3.1 Matrix Legend and Abbreviations 30
4.3.2 Guided Automatic Variable Exploration-Space Reduction . . . 32
4.3.3 Transition Animations . 34

4.4 Controllers . 35
4.5 Inspector Widget . 37
4.6 GPU Ray Caster . 39

4.6.1 Visualizing Dicom Images . 40
4.6.2 The Current State of WebGL And Limitations 42
4.6.3 Visualizing Colon Segmentation 43
4.6.4 Simple Lighting Model . 47
4.6.5 User Interaction . 50

4.7 Transfer Function Widget . 53
4.7.1 Smart Header . 54
4.7.2 Histogram View . 55

viii

5 Evaluation 57
5.1 Performance . 57
5.2 Improvements and Future Work . 60

6 Conclusions 63

A Ray Casting Shaders 65

Bibliography 73

ix

List of Figures

2.1 3D scatter plot with colorful point glyphs [52]. 5
2.2 Pearson correlation coefficient for various types of scatter plots [30]. . 6
2.3 Small multiples representing the distribution of income in US house-

holds through choropleth maps [22]. 7
2.4 The back side of the unit cube on the left and the front side on the

right [24]. 8
2.5 Two different transfer functions, a) 1D histogram, b) 2D scatter plot. . 9

3.1 Diagram of VisPlot’s visual component hierarchy and logical module
dependency. 11

3.2 A selection of small multiples, showing 3 types of representations.
Along the diagonal text-based small multiples, on the upper triangle
line-based and on the bottom triangle point-based. 12

3.3 Organization of data set within the file system. Arrows show the ref-
erence dependencies of one VRMED file to other files, namely DICOM
images, selection or segmentation (.sel) file and the measurements
spreadsheet (.csv). Note that spreadsheet references multiple VRMED
files and not the other way around. 14

4.1 Home view of VisPlot. Showing 3 scatter plots from left to right, top
to bottom and small multiples organized in matrix-based layout in the
lower right hand corner of the screen. 15

4.2 Inspector widget over VisPlot home view. On top GPU ray caster, on
bottom table view of patient relevant data. GPU ray caster is being
overlay-ed by floating transfer function widget. 16

4.3 Two golden rectangles, one in red with sides a and b and another con-
taining the first, with sides a and a + b. Showing off the golden ratio
φ = a+b

b = a
b [29]. 17

4.4 Earlier version of home view on 2016 Android Smartphone Huawei
P9. PC design does not work on mobile in many ways, specifically
with plot points which are impractically small to be used for any
means of interaction. 18

4.5 Scatter plot visualizing the relationship between gas volume of the
left colon and the area of terminal ileum. Blue and red plot points
indicate 2 different diets that patients had at the time of their scanning.
In transparent colors, blue and red trend lines suggest the linearity of
two point sets. 19

4.6 Blank scatter plot with default axes’ label names and scale ticks equally
spaced out and linearly initialized to values from 0 to 1. 20

4.7 A set of common easing functions. Note that this is not the standard
naming convention inside D3.js library [46]. 21

x

4.8 4 scatter plots of different variable combinations. From left to right,
top to bottom; a) transverse max radius in dependence of transverse
perimeter, b) ileum area in dependence of left gas volume, c) right
perimeter independence of transverse longitude and d) ileum longit-
ude in dependence of ileum perimeter. 22

4.9 Plot point’s tooltip displaying x and y coordinates, values of left area
and left perimeter, respectively. 23

4.10 Ranking of visual variables by different data types. Greyed out vari-
ables are irrelevant for the corresponding data type [28]. 23

4.11 Two scatter plots. On the left, the final version with 2 additional trend
lines appears clean and minimalistic. In contrast, the old scatter plot
design on the right with 2 circular rings per data point seems blurry
and messy. 24

4.12 Translucent trend lines succeed in not suggesting any false relation-
ship between right max radius and ileum max radius, which show no
indication of dependence whatsoever. 25

4.13 Blue trend line poorly fits the data points due to one outliers in the
bottom right corner of the plot. 25

4.14 4 successive frames, namely 1, 2, 3 and 4, displaying transition anima-
tion of data populating one scatter plot. 26

4.15 4 frames, namely 1, 2, 3 and 4 of different stages of cursor-to-point
interaction: frame 1 - regular scatter plot, frame 2 - emerging tooltip,
frame 3 hovered circle and frame 4 pressed circle. 26

4.16 Stitched image of the entire small multiples matrix with 16 distinctive
variables. 27

4.17 Deprecated small multiple design. Plots encase a minuscule version
of plot points and trend lines. Two shades on top and bottom hold the
abbreviations of axes label names. 28

4.18 The opening of axis shades. On the left, plot with axes shades present.
On the right, shades disappeared due to mouse hovering. 29

4.19 Conclusive small multiples design. 29
4.20 Tooltip appearing on top of abbreviated text Tsv. It reads transverse

solid volume. 31
4.21 Tooltip appearing on top of trend line small multiple. It shows the

plot’s axes labels in two rows and tags them appropriately, x: left peri-
meter and y: transverse perimeter. 31

4.22 Stiched view of small multiples matrix, created using the sum utility
u2. 33

4.23 Most important small multiples sorted in descending order inside a
scrollable area. 34

4.24 Hovered trend line small multiple. The plot and its symmetric partner
are both highlighted. Trend lines are expanded from their original
size. 34

4.25 Contracted plot points, signaling that left mouse button has been pressed
on the block. 35

4.26 Selected scatter plot with dark blue selection indicator in the bottom
left corner, outside the plot. 36

4.27 Four frames of inspector widget coming into sight. The first frame is
VisPlot home view, second and third frames show intermediate stages
of transition effect, the fourth frame shows fully visible inspector wid-
get. 37

xi

4.28 Inspector widget components: a) header, c) GPU ray caster’s view-
port, d) patient overlook data table, e) footer and b) transfer function
window. 38

4.29 Segmented colon visualization with 3 groups of surrounding con-
tents, colored in transparent blue, transparent red and opaque white.

. 39
4.30 The difference between rendering in low resolution on the left and

high resolution on the right. Low resolution has the ray sampling rate
reduced by a factor of 40. 41

4.31 The difference between rendering in low resolution on the left and
high resolution on the right without quality correction. 42

4.32 The difference between rendering with linear filtering on the left and
nearest filtering on the right. 43

4.33 Salt-and-pepper noise, caused by floating pixel artifacts around the
border of segmented colons, shown in the left image. Similarly on
the right, unwanted black pixel particles between transverse and des-
cending colon gap. 44

4.34 Improper labeling of the four colons due to overlaying color of the
ascending colon. The right image exhibits additional noise in the side
view of the pelvic region. Even the gap between transverse and des-
cending colon is no longer visible. 45

4.35 Final visualization of colon segmentation with all the artifacts removed.
. 46

4.36 Comparison of ray casting algorithm without diffuse lighting on top
and with diffuse lighting on bottom. In both cases model is visible
from two different view points - frontal view and side view. 47

4.37 Four different visualizations of segmented colons: a) colons are visu-
alized by their raw label colors, b) Diffuse lighting is applied to the
primary colors, c) colons are drawn with ambient occlusion, d) b and
c are combined. 48

4.38 Common 3-dimensional pixel connectivity types: a) 6-connectivity, b)
18-connectivity, c) 26-connectivity [47]. 49

4.39 Comparison of two AO techniques with minor differences in the im-
plementation. Left image shows darkened corner areas and com-
pletely bright planar surfaces. Right image exhibits a slightly darker
overall appearance with additional silhouette highlights. 49

4.40 The downfall of naive mouse-to-model interaction. The mouse was
dragging the model on the left in a small CCW circular motion as
shown by the white arrow. The result on the right shows that the
model finished gradually rotating in the opposite direction by 90 de-
grees. 50

4.41 Dragging a point along the surface of the sphere uniquely defines the
three-dimensional angle of rotation and its vector of rotation (in blue). 51

4.42 Maximum spanning hemisphere over the viewport in its centre that
servers to unproject cursor’s screen coordinates. 52

4.43 Rolling by the same amount in opposite directions reverses the rota-
tional axis. 52

4.44 Transfer function widget. 53
4.45 Color picker for transfer function . 54
4.46 Linear scale versus logarithmic scale. Logarithmic scale on the bottom

clearly illustrates greater detail in the histogram visualization. 55

xii

4.47 Model visualization with its designated transfer function widget. . . . 56

5.1 Chromium profiler statistics on VisPlot website initialization, parti-
tioned into five segments. Segment 1, parsing and retrieval of HTML,
CSS, JS documents. Segment 2, first frame appearance, initialization
of Inspector widget and main scatter plots. Segment 3, enter anim-
ations of main scatter plots. Segment 4, initialization of matrix ele-
ments. Segment 5, enter animations of small multiples. 58

5.2 Chromium profiler showing that memory consumption during Vis-
Plot initialization stage ranged from 10.6MB to 23.7MB. 58

5.3 Frames rates during interaction times in different zooming levels. Seg-
mented colon with 120× 139 pixels bounding box, on the left - 56.1FPS.
The same segmented colon with 272× 340 pixels bounding box, on
the right - 20.6FPS. 59

5.4 GPU ray caster performs better when the 3D volume is populated
with non-transparent voxels, because of early ray termination. The
screen space bounding box of the model is 476× 458 pixels. 59

5.5 High correlation between ascending colon and terminal ileum. 60

xiii

List of Abbreviations

3D 3 Dimensional
CPU Central Processing Unit
GPU Graphipcs Processing Unit
VR Virtual Reality
MRI Magnetic Resonance Imaging
CT Computed Tomography
WebGL Web Graphics Library
OpenGL Open Graphics Library
GLSL OpenGL Shading Language
HTML5 HyperText Markup Language
HTTP Hypertext Transfer Protocol
CSS Cascading Style Sheets
SVG Scalable Vector Graphics
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
AO Ambient Occlusion
CW Clockwise
CCW Counter Clockwise
RGBA Red Green Blue Alpha
RAM Random-Access Memory
OS Operating System
FPS Frames Per Second

1

Chapter 1

Introduction

Scientific visualization shares many applications in medical field. Ranging from
haptic-assisted surgery planning such as [31], to treating patients with phobias with
augmented reality equipment [27], to performing everyday tasks such as display-
ing CT/MRI images. Visualization nowadays became the crucial part in carrying
out scientific research and it is clear that visual imagery plays an important role in
modern medicine.

Recently, in collaboration with research group for Visualization, Virtual Reality and
Graphics Interaction and Barcelona’s Hospital Universitari Vall d’Hebron, a new
semi-automatic bowel segmentation technique was developed for T2 MRI images.
The newly found method can speed up the process of segmenting four different
colons of human body, namely ascending, transverse, descending and pelvic colon.
Provided with other colon analysis tools by the research center, a database of meas-
urements was constructed. The responsible medical expert conducted all of these
experiments and supervised the segmentation processes. To the best of our know-
ledge no further research was performed on this particular data set, which is where
we come in.

The purpose of this thesis is to design a visual tool that aids doctors in proficient
exploring of measurement data set. In research, correlation is often used in decon-
structing and interpreting (linear) relationships between two or more distinct vari-
ables. We have decided to utilize 2D scatter plots to show various distributions of
selected variables in hope of finding meaningful relationships within the set. Our
hypothesis is that our tool would be successful in discovering many, emphasis on
linear, correlations efficiently within our straightforward and clean interface.

Our visualization tool provides an overview of 3 large scatter plots accompanied
with a small multiples representation in grid-fashion layout. This representation is
matrix-based and acts as a selection tool for different variable combinations. Whereas,
scatter plots are meant for a more detailed examination of matrix’s elements. Moreover,
by accessing any of scatter plot’s points a per-patient inspection can be conduc-
ted. The main advantage of this hierarchical approach is that the user is able to
study different levels of data abstraction. The layout follows Shneiderman’s visual
information-seeking mantra [11]. First, an overview is provided by the matrix rep-
resentation of smaller scatter plots. Secondly, filtering is performed in order to re-
duce the variable exploration space. Thirdly, a selection of particular matrix element
zooms in on cell contents by displaying them in one of 3 main large plots. Lastly,
details on demand are provided via the inspector widget where each patient can be
evaluated separately. Some terse information can also displayed on demand through
several tooltips which appear all around the application.

2 Chapter 1. Introduction

The outline of this document is as follows. Firstly, we present the necessary back-
ground that is crucial in understanding of this work. In section 2 we go over the im-
portance of scatter plots, how are these used to find various relationships between
quantitative variables and what are their limitations. Furthermore, we present the
mechanism behind a GPU ray casting algorithm, which has been well documented
in the literature by Marqués and Santos [24]. It is important to understand the
pipeline of volumetric visualization in order to talk about our modifications of the
main algorithm. Lastly, we talk about transfer functions, what they are and how
they serve an important role in 3D volume rendering.

Next, in section 3 we go over the project’s architecture. We provide a detailed dia-
gram that illustrates the visual component hierarchy of our application which we
named VisPlot. We present a dependency graph of graphical elements, logical mod-
ules and third-party software installations. Moreover, we document how to set up
the visual exploratory tool and talk about what our data set consists of.

The main chapter of this document provides a detailed overview of our entire work.
Chapter 4 is divided into 7 sections. The first three explain everything that is to
know about the first page of our VisPlot application, namely its home view. The
fourth section depicts some of the intricacies in D3.js event system that processes
user interaction. Lastly, the final three sections comprehensively elaborate on the
inspector widget’s architecture, which serves as patient inspection tool. The first
two sections are devoted to its two fundamental components - the overlook table and
the GPU ray caster. Finally, the last section talks about the window’s accompanying
transfer function widget.

If we concentrate on the VisPlot’s home view, the first section 4.1 provides a sharp
study of the application’s layout. We explain as to why we chose to develop our
application for PCs only. In the second section 4.2 we present what steps we took
that lead us to main scatter plots’ final design. Moreover, for the first time we intro-
duce transitional animations and their role in granting users feedback on performed
actions. Lastly, the section on small multiples 4.3 talks about how small multiple
representations of main scatter plots in a matrix based layout can be efficiently util-
ized to serve multiple functions. More specifically, the matrix is used as a selection
tool for variable combinatorial analysis and it provides a glimpse into the most sig-
nificant part of the variable exploration space. We also construct a custom algorithm
for automatic exploration space reduction using the Pearson correlation coefficient.

The other half of this chapter talks about the inspector widget. Section 4.5 debates
its general layout and explains the contents of the overlook table. The section on the
GPU ray caster 4.6 clarifies the visualization process of DICOM images, explains the
current state of modern WebGL standard 2.0 and its limitations, moreover it defines
colon segmentation illumination model and defines the mathematics behind user-
to-3D-model interaction process. Finally, in section 4.7 we report the structure of
transfer function widget and how it can affect the ray caster’s visualization.

Chapter 5 is intended to administer the evaluation of our visual exploratory analysis
tool. Throughout this document we did our best to argument our decisions as to
why we chose to implement and assemble certain components of the application
the way we did. Although we do not show any empirical assessment on VisPlot’s
appearance, in this chapter we fill in the missing criticism of the overall layout and
validate our design choices. We consider some of the major possible improvements
on the application’s portrayal and leave them for future work. We also document the
performance of our GPU ray caster, since it is the most resource-demanding part of

Chapter 1. Introduction 3

our VisPlot. We show results that were obtained from running a benchmark inside
web browsers and affirm application’s responsiveness.

The final chapter 6 is the conclusion of our work. There we expand the idea of the
specific implementation of VisPlot and provide some possible use cases where our
instrument could have been employed elsewhere. The limitless application of such
a graphical exploratory tool guides us forward to future research in effort to broaden
our understanding of visual exploratory data analysis.

5

Chapter 2

Background

This chapter covers the relative background of our research, presented in this docu-
ment. In each of the upcoming sections we provide a brief overview of the topic and
argument their use cases in our research.

2.1 Scatter plots

Scatter plots are N-dimensional diagrams, most commonly drawn in 2D, in Cartesian
coordinate system. Each axis represents a different variable, while chart points ex-
press combinations of variable measurements. The physical depiction of a plot point
can take on various shapes and sizes and be colored differently, depending on other
attributes [10]. That way, for example, more than 2 variables can be represented in a
2-dimensional plot. See an example of a 3D scatter plot in Figure 2.1, where a fourth
attribute is encoded in color hue.

FIGURE 2.1: 3D scatter plot with colorful point glyphs [52].

In our implementation of every scatter plots we chose to preserve the flat dimension-
ality. Mainly because we did not want to deal with the problem of occlusion. Glyphs

6 Chapter 2. Background

that are behind the frontal elements in 3D are hidden from the user’s view. This does
not only hide a vast majority of the chart’s representatives, but more importantly, it
makes it harder to perform certain operations on these objects. In particular, select-
ing them becomes more difficult if not at all impossible from certain angles. VisPlot,
on the other hand, demands easy selection of plot points, because it is a crucial part
of our user interaction model. Since each point from our data set essentially repres-
ents a patient, we use these plot points to access other patient relative information.

Scatter plots are useful in finding various relationships between data points and
while variables can correlate in many ways, we are generally interested in linear
relationships. In section 4.3.2 we describe in detail the process of reducing the com-
binatorial variable exploration space, but for now it suffices to say that in order to
automate this procedure, some metric of linear correlation has to be applied along
the way. See Figure 2.2.

FIGURE 2.2: Pearson correlation coefficient for various types of scat-
ter plots [30].

We settled upon the Pearson correlation coefficient. With a sample set of two differ-
ent variables we are able to compute how much do these variables linearly correlate.
The figure shows that tighter the scatter plot cluster is, the higher is its coefficient.
Moreover, notice that the sign of the coefficient communicates the cluster’s orienta-
tion, but not its inclination. Any non-linear correlation has the Pearson rank equal
to zero and a completely horizontal sample group does not hold any value, because
the coefficient is not properly defined.

2.2 Small Multiples

Small multiples is a series of small plots or other kind of objects that demonstrate
information in the same context, both visually and conceptually [8]. Individual ele-
ments are completely explanatory on their own, however as a group, they provide
some kind overview of the given problem. All of them are the same size and share
a similar appearance as they are usually representing the same underlying data. See
Figure 2.3 for an example of small multiples representation. We will cover these in
more detail in section 4.3.

2.3. GPU Ray Casting 7

FIGURE 2.3: Small multiples representing the distribution of income
in US households through choropleth maps [22].

2.3 GPU Ray Casting

In this section we briefly cover the GPU ray casting algorithm which renders our
data sets of MRI image slices. This ray casting technique was described by Krüger
et al. in [15] and we forward any interested readers to follow this literature. Here,
we only explain the ray caster’s fundamentals.

One of its most intricate parts is the calculation of ray directions and their corres-
ponding entry points. The idea is to bound the rendering volume by a simple con-
vex 3D object, like a unit cube for example, and cast the rays inside of it. Rays begin
to trace from the object’s frontal faces and exit out the opposite end. Ray directions
are uniquely defined by their entry and exit points. To compute the exit positions,
the ray caster first renders the back side of the unit cube in (perspective) projection
just like it would render it normally. The important part is though that the fragment
shader outputs fragment positions in cube’s local coordinates. Thus, the cube’s po-
sitions are sampled along its back faces and the rendered image is stored inside a
floating point texture.

The second render pass similarly samples positions of the cube’s frontal faces. There-
fore, for each fragment in the second pass we have their starting positions. By re-
trieving the fragment’s screen coordinates, we are also able to sample the face’s exit
points from previously rasterized texture in first render pass. The difference of the
two gives us ray directions. See Figure 2.4 for visualization of unit cube’s front and
back faces.

8 Chapter 2. Background

FIGURE 2.4: The back side of the unit cube on the left and the front
side on the right [24].

The fragment shader in the second pass continues to accumulate fragment’s color by
traversing the volume and accessing 3D texture of MRI intensities on each iteration
step. Ray casting stops when rays exit the bounding box. They can also early ter-
minate when their color accumulates to full opacity, because the rest of the volume
is not going to be visible in the final image anyway, [15].

Our ray caster primarily uses 2 illumination techniques to produce the final output,
as is described in sections 4.6.1 and 4.6.3. More specifically, we use a portion of
the well known Phong shading technique [9] for rendering both the volume and
segmented colon and a variant of StarCraft 2’s ambient occlusion method [21], to
add a final touch to the visualization of the large intestine.

2.4 Transfer Function

In the final section of this chapter we present transfer functions and how they play
a role in direct volume rendering. Visualization of volumetric information is prob-
lematic due to its three dimensional nature. The main question is which sections
should be visible in the ultimate 2D rendering and which should remain transpar-
ent. Hence, the creation of transfer functions.

Simply put, transfer functions enable us to classify numerical data into color ranges.
The classification is performed by the user, thus a real-time update of the volume
visualization has to take place. There does not exist a standardized approach in
providing such a classification, because the data domain can vary drastically. How-
ever, we can divide transfer functions into several categories, depending on their
parameter dimensionality, 1D, 2D and multidimensional accordingly. See Figure 2.5
for an example of a 1D transfer, that defines color lines over a histogram of scalar
values and a 2D scatter plot that combines the scalar value with the gradient’s mag-
nitude. Naturally, each type of transfer function demands for a different way of
defining color classes.

2.4. Transfer Function 9

FIGURE 2.5: Two different transfer functions, a) 1D histogram, b) 2D
scatter plot.

For the problem at hand it was enough to define a simple one-dimensional transfer
function where each bin in the histogram represents the cardinality of individual
intensities, present in the specified volume. The way we combine our transfer func-
tions into the GPU ray caster is by introducing a transfer function’s color palette.
Anytime the transfer function changes, a new palette is generated. The palette is
uploaded to the GPU in the form of a 1D floating point texture. More about this in
section 4.7.

This concludes our brief introduction on the necessary background required to fol-
low the rest of this document. We have intentionally left out some of the more tech-
nical parts in the previous sections, because we decided it would be best to illustrate
these concepts more in detail through specific parts of our work.

11

Chapter 3

Project Architecture

In this chapter we go over the architecture of our application. More thoroughly, we
present how VisPlot is structured with regards to its visual hierarchy, which other
third party libraries and software components were used in the project, all through
a dependency graph that intertwines the visual ordering and logical modules into
one complete unit. See Figure 3.1.

FIGURE 3.1: Diagram of VisPlot’s visual component hierarchy and
logical module dependency.

The diagram shows the most significant modules of our visual exploratory tool. Blue
blocks illustrate the visual hierarchy of VisPlot, whereas the red blocks expose its
logical constituents that are hidden from the user’s view. Note that Tooltips block
is disconnected from the rest of the graph. This was done mainly because tooltips
appear all over the home view through many of its comprising elements. Thereby,

12 Chapter 3. Project Architecture

it does not make sense to incorporate the block in the hierarchical scheme of things.
Orange modules, on the other hand, represent third-party software components that
were used in the project, namely glMatrix library for vector and matrix arithmetic
[37], WebGL 2.0 API for 3D graphics [49], Daikon for loading DICOM images [45],
D3.js for 2D visuals [34] and lastly jscolor for a color picker widget [43]. The latter is
the only third-party visual module that was used in our application as-is.

There is a lot of elements to cover from this depiction. However, rest assured that
in the following sections and in chapter 4 we describe every blue and red module
in great detail, since we have personally worked on all of them. On the other hand,
orange modules signify third-party software libraries. Therefore we only explain
how we integrated those in our project and used them accordingly.

3.1 Client-Server Model

D3.js is a JavaScript Library that allows for fast and easy development of interactive
visualization. With its general update pattern only 3 structure blocks - enter, exit and
remove are needed to control the flow of the visualization. Along the side of provid-
ing user-friendly selectors to HTML and CSS objects, D3.js is equipped with a tool
set for creating complex SVG components such as coordinate axes, paths and or-
thographic projections. It can create dynamic properties, defining simple transitions
and more [34].

Substantial amount of home view’s code depends on D3.js library. Its use is shown
in main scatter plots, more specifically their components, namely x and y axes, axes
labels, plot points and trend lines. It virtually defines the three types of small mul-
tiples - point based, line based and text only as seen in figure 3.2. With D3.js we take
care of the event system that makes sure user interaction runs smoothly. Lastly, it
defines animations which signal the user when they trigger a specific action.

FIGURE 3.2: A selection of small multiples, showing 3 types of rep-
resentations. Along the diagonal text-based small multiples, on the

upper triangle line-based and on the bottom triangle point-based.

JavaScript’s code can be executed in offline mode. However, in order to be able to
load resource files from a computer, the user has to manually select their files from
client’s GUI interface. The other option is querying for files to the hosting web server

3.2. Colon Measurements Data Set 13

[40]. In the latter case the client and the server can be installed on different machines.
Setting up server can be done in many different ways, but we do have a preferred
approach. Following MDN Web Docs we can see that it is easy to start up a simple
HTTP server in Python [42].

LISTING 3.1: Bash script for starting a local http server on port 8080
with Python 3.0

#!/bin/bash
python3 -m http.server 8080

3.2 Colon Measurements Data Set

Colon data set is fundamentally a structured folder system. Files that store patient-
relevant information are written in DICOM format. DICOM is the international
standard for storing medical imagery [33]. Each DICOM file in this particular data
set represents a 2D image slice of a human body that was obtained through some 3D
scanning process, including T2 MRI. Usually, 1 folder for the entire scan is devoted
for every image slice, although we came to realize this is not always the case. To
resolve the ambiguity, additional VRMED files were introduced to the folder struc-
ture. Each VRMED is an XML file that contains a list of locations of 2d image slices
from one scanning procedure, another path to a segmentation file of these slices, if
there is one and some other irrelevant information.

LISTING 3.2: Example of a VRMED file.

<!DOCTYPE VRMED >
<Info >
<Estudi Nom="" Id="0">
<Captacion files=" Dicom\PatientName \000000001 ,

Dicom\PatientName \000000002 ,
...,"

type ="0"/ >
<Palette file="plt\PatientName.plt"/>
<Selection file=" selection\PatientName.sel"/>

</Estudi >
</Info >

Program that allows doctors to segment the large intestine is also capable of pro-
ducing measurements along the computed voxelized colon. These measurements
are stored inside a calculations folder and their file path is stored inside the VRMED
file as well. Our application on the other hand requires a simpler one spreadsheet
for every subject where each patient is an entry - a row and the columns are the
measurements of a particular variable. Figure 3.3 outlines the important features of
data set organization within the file system and shows dependencies with respect to
VRMED files.

14 Chapter 3. Project Architecture

FIGURE 3.3: Organization of data set within the file system. Arrows
show the reference dependencies of one VRMED file to other files,
namely DICOM images, selection or segmentation (.sel) file and the
measurements spreadsheet (.csv). Note that spreadsheet references

multiple VRMED files and not the other way around.

The testing data set that is under examination in this work contains 41 recorded
quantitative variables for 21 patients. Some of these variables are the sums of other
columns in the spread sheet. To be more precise, for every colon and the terminal
ileum, 3 types of volume are recorded, namely the volume of solid fecal content,
gas volume and the total volume. For all three types an additional grand total of
the entire large intestine is calculated. Moreover, for other variables - maximum
and minimum colon radii, colon perimeter and colon area - four supplementary
variables of the right, transverse and left colon are stored in the spread sheet. All
these variables are expected to weakly correlate with many others in the data set,
due to their summarized nature. There is little to learn from strong connection of
per colon variables with the bowel’s total sums. High correlation would only point
out to colon’s high contribution to the whole intestine. If such information would be
considered useful, one can simply look up the maximum value within the 5 colon
calculations and then obtain the colon-to-bowel percentage using simple division.
Therefore, all summarized information was removed from the analysis, leaving 29
ample variables and their dependencies yet to be explored.

15

Chapter 4

Application

FIGURE 4.1: Home view of VisPlot. Showing 3 scatter plots from left
to right, top to bottom and small multiples organized in matrix-based

layout in the lower right hand corner of the screen.

This chapter details every aspect of our visualization tool for comparison of colon
segmentation data. In section 4.1 we discuss the idea behind VisPlot and the de-
cision process that lead us to its final design and discuss why we chose to develop
our application for personal computers only. Section 4.2 expands on the features
of three main scatter plots and records the evolution of the plot’s representation
through time. Similarly, section 4.3 describes our implementation of the small mul-
tiple concept that serves its purpose as a constructive selection tool for variable ex-
ploration. Moreover, we document how Pearson correlation coefficient can be used
as a utility function in automatic (greedy) exploration space reduction.

From mouse hovering to mouse dragging and other mouse clicking events, every
user’s action has a particular begin and end effect. Section 4.4 describes a set of
classes that are meant to clarify such connections between scatter plots and small
multiples. Moving forward, the inspector widget contains a lot of significant com-
ponents. Thus, we only briefly review what it consists of in section 4.5 and build up
on our understanding in later sections 4.6 and 4.7. The former describes GPU-based

16 Chapter 4. Application

ray caster, the proposed lighting model, user interaction and some other mathemat-
ical tricks used in our visualization pipeline. Lastly, in the final section of this chapter
we explain how we came up with the transfer function widget arrangement, what
other functionalities it has besides producing a transfer function palette and how it
integrates together with aforementioned GPU ray caster.

Figures 4.1 and 4.2 show application’s main view and the inspector widget together
with transfer function widget, respectively. Together they capture the essence of
VisPlot.

FIGURE 4.2: Inspector widget over VisPlot home view. On top GPU
ray caster, on bottom table view of patient relevant data. GPU ray

caster is being overlay-ed by floating transfer function widget.

4.1 Introduction

4.1.1 Application Layout

The leading idea in the making of VisPlot was to create an intuitive, user-friendly
yet eminently expressive visualization tool. The layout of the home page is divided
into 4 sections of equal size in a 2 by 2 grid as seen in Figure 4.1. The grid itself
takes on a shape of a golden rectangle, because all of its cells do too. The rectangle
is expanded from the center outwards to the limits of screen borders. The use of
golden ratio is done solely for aesthetic purposes. Many use of the golden ratio has
been found throughout the human history in architectural endeavours. For example,
the Parthenon’s façade is believed to be circumscribed by golden rectangles [12].
According to Boussora and Mazouz, the Great Mosque of Kairouan exhibits many
use of the magical number [16]. Furthermore, author Jason Elliot hypothesized that
Naqsh-e Jahan Square was highly influenced by the magical ratio [18], etc. Figure
4.3 illustrates the property of a golden rectangle and as it turns out the golden ratio
φ = a+b

b = a
b is a fixed irrational constant φ = 1+

√
5

2 = 1.61880339887... The ratio was
utilized for obtaining plots’ sizes. By multiplying the maximum height of a scatter
plot with φ we compute its width or do the opposite and get its height.

4.1. Introduction 17

FIGURE 4.3: Two golden rectangles, one in red with sides a and b and
another containing the first, with sides a and a + b. Showing off the

golden ratio φ = a+b
b = a

b [29].

Initially, we pondered upon the design of having one scatter plot in the center of the
screen. However, the problem was where and how to incorporate a selection tool
in the overall layout. In the end, we decided to shrink the scatter plot down and
make 3 copies of it. Smaller plots were comfortable in representing data without
introducing additional clutter. Having more than 1 view on the screen allowed for
comparative analysis as well as for deferred manipulation of the views. However,
we left one cell open for something that would grant us an overview of the data and
be possible to perform precise selections. Eventually, we settled on small multiples
representation of variable combinations. This allowed for intuitive visual explora-
tion of the variable space and provided a systematic overview of most important
correlations within the data set.

Inspector widget, on the other hand shows comprehensive patient-related statistics
and visualizes actual segmentation of the large intestine. Reason for introducing
this widget was to complete the Shneiderman’s Mantra [11]. Every plot point in-
side scatter plots essentially represent a particular patient through two of its chosen
measurements. Therefore, by knowing this connection we decided to create each
plot point a selectable object that brings up inspector widget on demand and fill it
up with needed information.

4.1.2 Developing for PC only

At first it was in our interest to create a modular layout that would work on PC,
mobile devices and possibly tablets. We soon came to realize that developing an
application for different end devices would require their own attention and separate
designing process. For example, let us compile a short list of problems that we had
encountered during our time of trying to port this application to mobile.

Starting off with hardware and software limitations. Developing for PCs usually
requires a different set of tools to those meant for mobile devices. We intentionally
closed that gap by choosing web development technologies, such as HTML5, CSS
and JavaScript. These three are supported in common web browsers, to name a few;
Google Chrome, Firefox, Safari, Opera, etc. and are available on all range of devices
[39]. The most puzzling part was making use of the newest version of WebGL -
version 2 which is currently, at the time of writing, not yet entirely standardized for
PC web browsers, let alone for mobile [36].

The next issue was introducing the same layout to mobile devices, because they
have much smaller screen size. Popular sizes stretch from 3.5 to 10.1-inch displays
and standardized laptop monitors go from 10.6-inch up to 30-inch [38]. This makes

18 Chapter 4. Application

targeting small multiples and plot points many times more difficult. We also took
into consideration that people tend to use mobile devices vertically by default [44].
However, at the very least it was possible to permanently lock the application to
always be used in horizontal manner. We tested the behaviour of VisPlot in one of
our earlier versions. Figure 4.4 shows our results.

FIGURE 4.4: Earlier version of home view on 2016 Android Smart-
phone Huawei P9. PC design does not work on mobile in many ways,
specifically with plot points which are impractically small to be used

for any means of interaction.

Even more, the whole layout would have to be reevaluated. . . Most likely only one
scatter plot would have been used if any at all, that would span the entire screen.
An additional menu for application settings and other information, that is now dis-
played in tooltips, would have to be integrated into the app. How else would the
user be able to access all the necessary information that they have at their disposal
in the PC version?

Finally, we consider the memory capabilities on mobile devices. Currently, VisPlot
expects the user to provide the necessary data set on their machine. This includes
both the patient measurements and all of their colon segmentations. Since the data
set is quite large, we would have to either remove its biggest component - colon
segmentation data and consequently remove the GPU ray caster. Without the seg-
mentation data there would be no more use for the ray caster. Another possible
way of resolving the issue would be to employ a web-based solution. Data set could
be stored onto separate server and the client would have to load required data on
demand by internet. Since we are dealing with immensely sensitive information,
we believe that a great deal of thought should be devoted to issues raising privacy
concerns, which is out of scope of this thesis.

In the next section 4.2 we present the main purposes our scatter plots share and how
we designed their most significant components, namely plot axes, plot points and
trend lines. We finalize the section by illustrating transition animations that play
an important role in grabbing the user’s attention and providing them feedback on
performed actions.

4.2. Scatter Plots 19

4.2 Scatter Plots

FIGURE 4.5: Scatter plot visualizing the relationship between gas
volume of the left colon and the area of terminal ileum. Blue and red
plot points indicate 2 different diets that patients had at the time of
their scanning. In transparent colors, blue and red trend lines suggest

the linearity of two point sets.

VisPlot’s scatter plots are for the most part intended for two things. First, finding
correlation within the plots themselves. Second, performing comparative analysis
between multiple views. Considering their primary goal, we specifically designed
them for finding linear relationships between x and y variables. There are other
types of correlation, however in this work we considered only linear, read more
about it in sections 2.1 and 5.2.

In some of the following subsections we explain the evolution of scatter plot’s com-
ponents. Concurrently, the textual description portrays many aspects of our imple-
mentation and grants insight into various compromises that made headway to the
final result, which is illustrated in Figure 4.5.

4.2.1 Plot Axes

Plot axes are a collection of SVG elements. Each axis displays a linear scale that
captures the interval of depicting variable, we call them properties. Both scales are
solely a combination of one long line that goes along one side of the plot and many
small ticks accompanying it. Ticks are visual pairs of numbers and (short) lines that
are arranged along the axis. The other axis component is the axis label, which is
positioned next to ticks, outside the plot and centered in the middle. Labels are
oriented so that they are aligned with plot’s boundaries. Figure 4.6 shows an empty
scatter plot which is defined only with these elements.

20 Chapter 4. Application

FIGURE 4.6: Blank scatter plot with default axes’ label names and
scale ticks equally spaced out and linearly initialized to values from

0 to 1.

When a spreadsheet is loaded, it enters D3.js’ event system and each axes is signaled
via D3.js enter control block. This sets off axis scale recalculation and new axis’ ticks
are generated in the process. Every time this happens, tick reconstruction gets anim-
ated and the speed at which animation runs depends on the type of easing function it
uses. Primarily, D3.js offers easeOutExpo function for axis tick reconstruction, which
starts out fast and then gradually reduces the animation speed towards the end,
giving it a natural feel of deceleration.

There is an infinite amount of easing functions that can possibly exist, however, only
some are generally used in practice. D3.js defines quite a handful of them [35]. Ef-
fects of easing functions can be graphed in regards of interpolation value with re-
spect to time, where both domain and codomain usually take on values in the range
from 0 to 1. Interpolation variables sometime deviate from these values, but then
tend to finish on either of the two extremes. An example of few easing functions can
be seen in Figure 4.7.

4.2. Scatter Plots 21

FIGURE 4.7: A set of common easing functions. Note that this is not
the standard naming convention inside D3.js library [46].

To maximize data-ink ratio [14], charts do not contain any other unnecessary ele-
ments, such as vertical tick lines, label containers, legends, a chart title, etc. Any
redundant shading effects were eluded from the start and we adhered to the 2D-flat
visualization of all graphical elements. We avoided needles chart junk and shown
only the most relevant visuals that could help the user better interpret data. Only
extension we provided to the basic setup are the expanding horizontal tick lines that
span from left to right side of the graph, see Figure 4.6. These lines are supposed
to provide some visual cues to plot points’ positions. They are only 1 pixel wide
and their opacity is reduced to roughly 73%, which was experimentally established.
Even lines themselves consist of many smaller dashes, to reduce line visibility in
effort to diminish noise in the background. Moreover, label text and tick numbers
were shrunken down to bare minimum of what we still considered it was pleasant
enough to read. Thus, shrinking chart graphics to its lowest form.

On a final note, plot axes, once populated with data, do not necessarily start at (0,0).
We take the bounding box of the point set and expand it up to chart’s size. If scatter
plot axes would exclusively stretch from the point of origin, certain point clusters
would have been poorly visible, because large portions of plots would be left empty.
Since we are only interested in possible correlations between two given variables,
we allowed ourselves to crop out the point of origin in order provide a better view
of the entered data points.

22 Chapter 4. Application

4.2.2 Plot Points

FIGURE 4.8: 4 scatter plots of different variable combinations. From
left to right, top to bottom; a) transverse max radius in dependence of
transverse perimeter, b) ileum area in dependence of left gas volume,
c) right perimeter independence of transverse longitude and d) ileum

longitude in dependence of ileum perimeter.

Plot points are the main conveyors of correspondent information of colon segment-
ation data set. Their responsibility is multifunctional. Concretely, as a whole their
distribution represents what kind of correlation exists, if any at all. Precisely for
this purpose, two different colors were used, namely red and blue, to distinguish
between two groups of patients with opposing diets. It is true that in many cases
both groups tend to either correlate, see Figure 4.8 a). However, as seen in Figure
4.8 b), red group clearly shows more interrelationship between left gas volume and
ileum area, whereas blue point group shows very little - blue points are greatly dis-
persed throughout the entire graph. Conversely, Figure 4.8 c) expresses a situation
where blue group associates more with linearity of variable dependence and the red
group does not. Indubitably, there are examples where neither of groups are show-
ing any indication of connectedness between two variables, see Figure 4.8 d). Hence,
the coloring of diet variable proved useful in data analysis. Moreover, points allow
for two-step detail-on-demand information retrieval.

First, hovering over them brings up a tooltip window that displays their coordin-
ates, see Figure 4.9. Numbers are shown up to the precision of 2 decimal places. The
smallest non-zero valued entry in the measurement spreadsheet is approximately
2.54 and the largest is 2467.10. Tooltip coordinates are only supposed to be inform-
ative. That is why we thought it would be helpful to be able to get the gist of the
measurement only by observing the length of its number, instead of truly reading
it. Excessive decimal digits could surely lead to erroneous interpretation of such
pattern. Therefore, from our personal perception, third decimal place seemed like a
reasonable place for truncation.

4.2. Scatter Plots 23

FIGURE 4.9: Plot point’s tooltip displaying x and y coordinates, val-
ues of left area and left perimeter, respectively.

Second, clicking these points opens up an inspector widget. Its table fills up with
patient-relevant information and the GPU ray caster loads the T2 MRI images and
patient’s selection file. As a result, plot points act also as accessing

FIGURE 4.10: Ranking of visual variables by different data types.
Greyed out variables are irrelevant for the corresponding data type

[28].

As they are exhibited in Figure 4.5, plot points are represented by large circles.
Circles are big enough to be easily clickable and yet acceptably small not to take up
too much room in the overall plot. We did not encode other information in circles
themselves, other than applying color by their diet records. Certainly, it would be
possible to encode two diets with other visual variables, such as texture, density,
color saturation, shape, etc. We ended up using color hues, because they are ranked
as the second most relevant visual variable for nominal data type in a refined study
made by Jock Mackinlay [7], see Figure 4.10. Moreover, using color hues made the

24 Chapter 4. Application

link between data points and trend lines intrinsically intuitive. It is easy to group
lines and points by color, or anything for that matter, if we are dealing with 10 dif-
ferent colors or less [26].

We did, on the other hand, try to encode quantitative data to circle’s radius. We
presumed by attributing certain variables to the radii that we could in return remove
those variables from small multiples matrix. The end result, as seen in Figure 4.11,
was a bit underwhelming. Patterns between x, y axes and the radius dimension were
not emerging an awful lot and any correlation between x and y properties became
harder to recognize, because scatter plots had turned out notably messy.

FIGURE 4.11: Two scatter plots. On the left, the final version with 2
additional trend lines appears clean and minimalistic. In contrast, the
old scatter plot design on the right with 2 circular rings per data point

seems blurry and messy.

In Figure 4.11 we defined two circles per data point. The idea behind them was that
each point would symbolically represents a cross-section of the large intestine. The
inner circle would have its radius proportional to the overall minimum radius of the
four colons and the outer would have the maximum. With this, plot points were
able to express quadruple relationships - between 2 radii and 2 axes. In effort of
distinguishing between two overlaying circles, we reduced the opacity of the outer
one. Thereby, both circles continued sharing the same color and we were able to im-
prove visibility between multiple data points that happened to overlap each other.
Nevertheless, this design did not work, as we have pointed out thus far. Even more,
visualizing direct correlation between minimum and maximum radii was made im-
possible, because we completely removed the two variables from small multiples.
We could have reintroduced them back to the matrix, but that would defeat the ori-
ginal purpose of radius dimensionality.

4.2.3 Trend lines

Trend lines can be considered an aiding agent to correct interpretation of scatter plot
point distribution. Not to interfere with the plot points themselves, trend lines are
only barely visible from the view. Their purpose is only to suggest and not absolutely
define point group’s predominant trend. In the worst case, where there is not any
correlation present between two selected variables, evident trend lines might force
the user to falsely characterize non-existent variable dependence. See Figure 4.12.

4.2. Scatter Plots 25

FIGURE 4.12: Translucent trend lines succeed in not suggesting any
false relationship between right max radius and ileum max radius,

which show no indication of dependence whatsoever.

There are exactly 2 trend lines in each plot as they both ascribe to either of the 2 pa-
tient groups - red ascribes to the red group and blue ascribes to the blue group. Lines
are calculated using the least squares approach, where their accumulative squared
distance to each point in the set is minimized [3]. In certain scenarios least squares
generate undesired outcomes, see Figure 4.13. It is true that this method is highly
vulnerable to outliers. More robust regression methods have been developed that
deal with this kind of problems, for example RANSAC [2], M-estimators [13] and
others. However, since our trend lines provide only mere suggestions, we do not
worry particularly about their accuracy and due to ease of implementation we kept
the basic regression line calculation as is.

FIGURE 4.13: Blue trend line poorly fits the data points due to one
outliers in the bottom right corner of the plot.

26 Chapter 4. Application

4.2.4 Transition Animations

Here we quickly review transitions which were omitted to some extent from previ-
ous subsections. We try our best in illustrating animations with visual imagery, even
though it is impossible to perfectly capture their behaviour through static represent-
ations.

FIGURE 4.14: 4 successive frames, namely 1, 2, 3 and 4, displaying
transition animation of data populating one scatter plot.

First, Figure 4.14 highlights four successive frames of scatter plot initial populating
animation. When data is entered for the first time via D3.js library, selected plot
fills up with data points’ circles and trend lines. Circles start off in the center of the
plot and then spread out to their final destinations. Both data circles and trend lines
have their opacity initially set to 0 per cent. Afterwards, upon finishing the enter
transition, opacities are intensified up to full 100 per cent.

FIGURE 4.15: 4 frames, namely 1, 2, 3 and 4 of different stages of
cursor-to-point interaction: frame 1 - regular scatter plot, frame 2 -
emerging tooltip, frame 3 hovered circle and frame 4 pressed circle.

4.3. Small Multiples 27

Figure 4.15 exhibits 4 states of cursor-to-point interaction. In frame 1, a regular scat-
ter plot is shown. Frame 2 is a snapshot taken of an emerging tooltip that appears
when the screen cursor touches the second most distant circle in top right. Note
that mouse cursor is not shown in any of the four frames. The third frame displays
the maximized circle after it is done expanding from the mouse hovering event.
Lastly, in the fourth frame this circle is minimized, because it was pressed on with
left mouse button. Naturally, to scale these circles, their radii gets multiplied with
fixed scaling factors. As a matter of fact, we use two constants - one to scale the
circles up and another to scale them down, 1.5 and 0.75 respectively. If mouse cursor
leaves circle’s area at any time, the circle is scaled back to its original size.

Expanding and contracting effects were implemented to give users some feedback
on hovering and clicking operations. Animation times for these transitions are ex-
clusively 100 ms long, because we have observed that longer delays were too dis-
comforting to use. On the other hand, where responsiveness was not of utmost
importance, we made use of lengthier transitions. For example, when data points
are entered or when x and y properties are changed, the update duration lasts for
extensive 750 milliseconds. In fact, when properties modify, another update trans-
ition begins. Both trend lines and data points shift around to their new destinations
in the scatter plot and axes labels change accordingly.

4.3 Small Multiples

FIGURE 4.16: Stitched image of the entire small multiples matrix with
16 distinctive variables.

28 Chapter 4. Application

Our small multiples matrix serves two purposes:

• Overview

• Selection tool

First, the matrix acts as an overview of the combinatorial variable space. Figure
4.16 clearly illustrates the appearance of multiple clusters in the data set. Inter-colon
measurements tend to greatly correlate between each other, while colon-to-colon
combinations do not do so well. This can be seen by examining background in-
tensities of small multiples. Dark areas visually characterize high levels of linear
correlation and lighter ones indicate the lower ranks.

Second, we employ the matrix as a selection tool. Clicking on its elements populates
selected scatter plot with cell’s information. One can also drag these elements dir-
ectly on to the main plots, but more about scatter plot and small multiples interaction
in section 4.4.

Notice that the junction of point-based and line-based small multiples is essentially
a much smaller representation of the main scatter plot. The separation of the two
was done in order to simplify the design of these miniature widgets. We wanted
to shrink the graphics as much as possible to fit more data on the screen at once.
However, when we were minimizing these plots, design cramped up and we ended
up deciding it is best to disconnect trend lines from points. We could have popu-
lated the matrix with trend lines only or the other way around, but that way the
matrix would contain duplicates. In the end, we made use of the matrix’s sym-
metry and decided to display both plot types in opposing cell positions. Thus, we
replaced repetitive visuals with two different portrayals of the same measurements.
To make the connection between line-based and point-based small multiples even
more apparent, we swapped the axes order in the bottom triangle of the matrix, so
that two types of plots were oriented in the same manner. In other words, plots are
not mirrored by the diagonal as one might expect.

FIGURE 4.17: Deprecated small multiple design. Plots encase a
minuscule version of plot points and trend lines. Two shades on top

and bottom hold the abbreviations of axes label names.

In one of our earlier designs, however, small multiples were bigger and contained
the complete scatter plot representation. See Figure 4.17. Points and lines were both

4.3. Small Multiples 29

plotted to the same SVG element and axes labels were abbreviated inside the top
and bottom opaque rectangles, for every plot independently. Moreover, small mul-
tiples were truly only completely visible once the user moused over them and the
axes shades opened up. See Figure 4.18. The substantial size of these plots posed a
problem. After many refinements we achieved the final outcome, rendered in Figure
4.19.

FIGURE 4.18: The opening of axis shades. On the left, plot with axes
shades present. On the right, shades disappeared due to mouse hov-

ering.

The final design unfortunately does not make it possible to view the entire matrix.
Due to the shape of main grid cells, a square like object such as symmetric matrix,
cannot be tightly fitted inside them without distorting object’s proportions. With
regards for compensating this misfortune, we put the matrix inside a scrollable area.
Matrix is expanded up to widget’s inner width and the overflowing elements are
accessible by vertically scrolling to their destination. At most, two views are needed
to completely inspect the entire area. The result is not ideal, but in our personal
experience the current design is completely functional and ergonomic.

FIGURE 4.19: Conclusive small multiples design.

Every element of the matrix is a square, that is 40 pixels wide. We fill as much
of them in the layout as possible and because monitor sizes differ, the maximum
number of elements must be calculated dynamically, N = bwidth

40 c. N determines the
number of columns and rows the matrix has, while the remainder, r = width− N ∗
40 is used to calculate the amount of empty space between each column. Since r is
generally small with respect to area’s width, the excess space between columns is
barely noticeable.

30 Chapter 4. Application

4.3.1 Matrix Legend and Abbreviations

Up to this point we have only mentioned text-based small multiples. Figure 4.19
shows that small multiples matrix does not contain any column and row labeling.
As one might have expected, that is precisely what diagonal elements were created
for. Original design dictates that these cells should display combinations of colon
variables with themselves. However, it is common to substitute elements along the
diagonal with something more practical [25]. We took the opportunity as well and
inscribed a legend inside the diagonal matrix positions.

Since matrix plots are small and we intended on keeping them that way, we replaced
the actual variable names with abbreviations. Abbreviations are following a simple
set of rules. The 29 bountiful variable names consist of 14 different words. Thereby,
each word was capable of being assigned a unique character taken from the 7-bit AS-
CII table. Colon names were replaced with 5 capital letters, namely R, T, L, P, I, for
right, transverse, left, pelvic colons and terminal ileum, respectively. These characters
are always in the first place of the abbreviation to let the user know to which colon
is the measurement ascribed to. Other key words were replaced with lower-cased
symbols that match their first letter. There was one exception to the rule, however.
The min and max radii share the same first character. It order to remove the confu-
sion, we capitalized M for the word max. Semantically speaking, capitalized letters
are universally larger than their lower cased counterparts, whereas max values are
also always bigger or at least equal to their corresponding minimums. Take a look at
the character legend,

• L - Left

• T - Transverse

• R - Right

• P - Pelvic

• I - Ileum terminal

• r - radius

• m - min

• M - Max

• s - solid

• g - gas

• v - volume

• a - area

• p - perimeter

• l - longitude

Complete abbreviations never exceed their maximum length of 3 characters. Even
though we claim that the legend itself is permissively easy enough to remember,
we alleviated its readability using two different kinds of tooltip menus. First, seen
in Figure 4.20, opens up when the user hovers over a text-based small multiple.
Abbreviation is decoded on the fly and tooltip displays the actual variable name.

4.3. Small Multiples 31

This one serves as a reminder, to help the users look up any abbreviations the they
might be unfamiliar with.

FIGURE 4.20: Tooltip appearing on top of abbreviated text Tsv. It
reads transverse solid volume.

Second tooltip, shown in Figure 4.21, pops up when the user mouses over any of
the non-diagonal matrix elements. This eliminates the issue of having to manually
find and decode two defining legend cells. Notice that tooltip’s design is consistent
throughout the application.

FIGURE 4.21: Tooltip appearing on top of trend line small multiple. It
shows the plot’s axes labels in two rows and tags them appropriately,

x: left perimeter and y: transverse perimeter.

Axes order of scatter plots is predetermined by variables’ positions. Variables higher
in the matrix arrangement, with respect to other variables, are always chosen as the
y axis, while others are picked as the x axis. This is just a convention. What is more,
is that the entire matrix is sorted alphabetically along the diagonal using legend’s
abbreviations. This does not only make the matrix diagonal more readable, but also
grants the grouping of variables from the same colon region. Thankfully, we defined
such abbreviation process that it always puts on the first character position a unique

32 Chapter 4. Application

letter that embodies particular colon. Ergo, colon variables get grouped together in
alphabetical sorting.

4.3.2 Guided Automatic Variable Exploration-Space Reduction

From figures in preceding subsections, the reader might have noticed that not all
29 variables are displayed in the final matrix. In fact, as we have pointed out in
subsection 4.3.1, the number of variables is calculated on the fly. Here we present
a guided automatic variable exploration-space reduction technique. Emphasis on
guided, since it guides the user towards discovering meaningful relationships, by
providing promising variable candidates.

Pearson correlation coefficient, like many other constituents of our application, serves
multiple purposes. As we have incited in the beginning, this coefficient is used to
automatically reduce the size of small multiples matrix. For every possible combin-
ation that exists, we calculate the Pearson correlation coefficient,

r = rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(4.1)

where n is the sample size, xi, yi are sample values belonging to two sample datasets
and x̄, ȳ are the samples’ means [51]. There are exactly 841 possible variable com-
binations and our 16 by 16 matrix only shows 120 of them. The calculation takes
the diagonal elements out of the equation and symmetrical pairs are only counted
once. That means, approximately 14.26% of conceivable plots are generated inside
the scrollable area. Therefore, it is important that we showcase only the most relev-
ant information within the limited space that we have.

Figure 2.2 illustrates the essence of the recognized coefficient. Its magnitude tells
us how much x and y linearly correlate between each other and its sign tells the
cluster’s orientation. Notice though, that this coefficient does not say anything about
the slope of these data points, which is ideal for our case. Colon variables can vary in
sampled values. For example, transverse areas range from 195 to 2303 units, whereas
transverse min radii go from 4 to 15 units. A combination of these two sets would
surely produce a steep point cluster if they happen to correlate and we would not
want this to effect our end result.

We define a Pearson correlation matrix An×n, where each element aij is the value of
Pearson correlation coefficient between i and j colon variables. Over A we define
greedy algorithm that produces matrix Bm×m, where m ≤ n. We say that B contains
the m-most significant variables of A.

On every iteration of the greedy algorithm, we remove the least significant variable
from A until only m columns and rows remain. The surviving entries in A are con-
sidered to be the most significant variables. Let us define a utility function ui that
calculates the importance of i-th variable,

u1
i = max(ai0, ai1, ai2, ..., aim) (4.2)

Pearson correlation coefficient is symmetric, therefore only one traversal along the i-
th row or i-th column is necessary to evaluate ui. We modify the original definition of
aij, because the calculated coefficient can produce negative values depending on the
orientation of the point cluster, aij = |aij|. Moreover, since every diagonal element
perfectly correlates, yet they are the least important in our study, we set them all to
zero, aii = 0.

4.3. Small Multiples 33

We acknowledge that the final matrix might consist of some elements with low cor-
relation, as seen in Figure 4.16. That is why we have tried using other utility func-
tions. One example, where the low correlations tend to get filtered out nicely is when
using the total sum of row elements in matrix B,

u2
i =

m

∑
j=1

aij (4.3)

See Figure 4.22. Let us justify why we ultimately chose the prior utility u1. Firstly
u1, unlike u2, guarantees that the most correlated variable combinations remain in
the final matrix, because on each iteration u1 keeps all variables with most import-
ant combinations. Secondly, correlations with u1 metric are much more apparent
due to the contrast created by adjacent cells. Lastly, the max utility clearly leads to
unmistakably visible inter-colon relations.

FIGURE 4.22: Stiched view of small multiples matrix, created using
the sum utility u2.

For the last time, we tried redesigning small multiples layout. Instead of having the
matrix representation, we only kept plots with highest values of Pearson correlation.
The result, as expected, contained only black and dark gray cells as is illustrated in
Figure 4.23. This happens to be exactly what we asked for, however, we have rein-
troduced one of the initial problems we had with earlier designs. Small multiples in
such arrangement were not expressing any global information about the measure-
ments themselves. Moreover, the small plots are completely disorganized and make
many of already considered user interactions, lightly speaking, troublesome.

34 Chapter 4. Application

FIGURE 4.23: Most important small multiples sorted in descending
order inside a scrollable area.

The second use for Pearson correlation, as shown many times throughout this work,
is colorization of small multiples. To our luck, this correlations takes on values in
the range of [-1, 1]. Since we ignore the sign of the coefficient in greedy algorithm,
we can set this range to [0, 1] and use it as an interpolation value between white
and black color. The main disadvantage of progressively changing the background
color is that its intensity can match up with foreground’s brightness. In our case this
happens when dark gray matches up with the intensity values of red and blue SVG
elements, making them hardly perceivable. Our main objective was to make the
most correlated elements stand out and we believe that we have reached our goal.

4.3.3 Transition Animations

FIGURE 4.24: Hovered trend line small multiple. The plot and its
symmetric partner are both highlighted. Trend lines are expanded

from their original size.

Finally, we provide some insight into transition animations that enrich user’s exper-
ience. Every time the mouse hovers over a small multiple, its background gets set

4.4. Controllers 35

to white color and gray border appears around the widget. The same is done for
its symmetric partner in order to give user the full picture of main scatter plot. See
Figure 4.24. Tooltip, however, only appears at one spot - on top of the hovered plot.

Trend lines in selected plots are somewhat larger than the rest. When the mouse
hovers over any of them, the lines expand, communicating to the user that plots
are interactive. Similarly, plot points are enlarged by a small factor. Both of them
are clickable and draggable. When the user clicks on line plots, a bouncy animation
displays the change of lines’ width. From subsection 4.2.1, where we mentioned
different easing functions, this animation in particular, uses to what is mostly related
to D3.js’ version of easeOutElastic. Likewise, when the plot points are pressed on with
mouse cursor, they contract towards the center up to a certain point. After the points
are released, they explode outwards, ricocheting off the border walls and returning
back to their original positions. See Figure 4.25.

FIGURE 4.25: Contracted plot points, signaling that left mouse button
has been pressed on the block.

Finally, Figure 4.20 also illustrates that diagonal matrix cells bold the text inside,
when hovered. This was done in order to further clarify with which elements is the
user currently interacting with, since the other two types of small multiples offer
visuals exactly for this purpose. The text-based small multiples, on the other hand,
are not clickable, like the others are. We had not found any particular use for them
to be otherwise.

4.4 Controllers

This short section is indented to clarify and perhaps recap some of the interaction
between scatter plots, small multiples matrix and inspector widget. We start off by
continuing with the former two.

We implemented two approaches of populating main scatter plots by interacting
with small multiples matrix. Firstly, as we have already mentioned, the cells are
clickable. When the mouse is both pressed and released on the same matrix element,
one of the main plots inhabits 2 axes defined by the cell. Which main plot happens to
be selected is identified by the bolded text inside axes’ labels. To select a scatter plot,
the user has to simply press on anything that makes up the plot, except the points

36 Chapter 4. Application

themselves. In relation to many other things, this too, was the case of thorough
consideration. In the end, bolding axes labels was the most prominent solution that
we have tried. However, we did explore some other options as well. For example,
take a look at Figure 4.26.

FIGURE 4.26: Selected scatter plot with dark blue selection indicator
in the bottom left corner, outside the plot.

What you see is what we called a selection indicator at the time. This indicator was a
small dark blue L-shaped figure that appeared in the bottom left corner of selected
scatter plot. The idea was that it resembled a part of framing, like the ones that
decorate physical paintings. The entire frame was visually too distracting, so we
only imitated a small portion of it. Therefore, the chosen plot was framed, while
the other two were not. It had 2 animation steps. One for entering and another for
leaving. Entering transition would show how the corner appears from plot’s point
of origin and gradually intensifies its opacity. The leaving transition would do the
reverse of that. After several try outs, we came to a realization that this design was
not that intuitive, therefore we abandoned it.

Secondly, the user is able to perform drag’n drop actions, to set main scatter plots.
When the user presses a cell, their first transition stops. For point plots this means
that they contract to the center and wait for the user to finish performing mouse
actions. If mouse releases on top of any main plots, their axes reset and the plots
populate. Otherwise, the action is ignored and in both cases the second transition
sets off, restoring the small multiple to its original pose. Additionally, while drag-
ging, mouse cursor changes from the arrow symbol to a gripping hand icon.

Considering implementation details, we handled the synchronization between scat-
ter plots and small multiples with callbacks. Callbacks are essentially functions that
respond to events. More specifically, we created a controller class that takes in all
scatter plots and matrix elements and connects every main plot with every cell. The
number of actual connections is large, however D3.js’ event system handles them
effortlessly. With 16 variables, the number amounts to a total of 720 links.

Another type of controller is used to communicate plot points in main scatter plots
with the inspector widget. In effect, when plots are entered for the first time, we
assign them two events, like we do for matrix cells. Mouse has to be both pressed

4.5. Inspector Widget 37

and released on the point to fire off its callback. Not to be mistaken with on click
events. We separate left mouse button press and release actions, because we control
two separate transitions. If mouse cursor is taken away from the point’s circular
area, its state resets and plot point returns to its original size. The goal of this is to
be able to cancel the clicking action, if the user chooses to do so. Alternatively, in-
spector widget drops down from the top of the screen and receives all the necessary
data to fill in its view from the clicked scatter point. We borrowed the drop down
design from w3schools [48]. Figure 4.27 illustrates the animation of inspector widget
coming into sight.

FIGURE 4.27: Four frames of inspector widget coming into sight. The
first frame is VisPlot home view, second and third frames show in-
termediate stages of transition effect, the fourth frame shows fully

visible inspector widget.

4.5 Inspector Widget

We architectured our home view so that it provides an overview of the colon meas-
urement data set and a rigorous examination of colon’s variable-to-variable correla-
tions. However, there was still a missing component to a complete graphical explor-
ation tool. We wanted to completely support a comprehensive analysis of arbitrary
test subjects with the information that was made available to us.

More concretely, we had all these patient measurements, which already played a role
in the home view. However, rather than expressing individual subject’s character-
istics, they acted as a group of points that were shown in multiple different kinds of
plots. Moreover, up to now we have mentioned medical DICOM files and selection
files that serve as the storage for large intestine segmentations, but we have not truly
explained how the two together produce an interactive visualization tool.

38 Chapter 4. Application

FIGURE 4.28: Inspector widget components: a) header, c) GPU ray
caster’s viewport, d) patient overlook data table, e) footer and b) trans-

fer function window.

Inspector widget is the result of considerable iterative developments to suffice our
needs for on-demand evaluation of patient measurements. It consists of two large
sections - GPU ray caster and the patient overlook data table, see Figure 4.28. The
widget is accompanied by floating window for defining a transfer function. In short,
the GPU ray caster is a tool for dynamic visualization of both DICOM files and their
corresponding selection file. Key component of the ray caster is the colon segment-
ation, while patient’s scanned upper body represents its surrounding context. In-
spector’s header shows the widget’s name, while footer displays the patient’s data
set ID and the time and date at which the scanning took place.

When the user clicks on header’s exit symbol or presses somewhere in the shaded
area around the Inspector widget, the widget and transfer function window close.
Note that transfer function window has its own close button, so that it can be re-
moved from the view if user wishes to see the Inspector only. Moreover, exactly
for this purpose, transfer function window is a floating object. That means that it
can be repositioned around the web page without affecting its other components.
Inspector on the other hand, is maximized to screen’s maximum allowed size, with
some additional margin around it, for aesthetic purposes.

Since GPU ray caster and transfer function widget both have some finesse in their
implementations, we created separate sections, one for each of them. In the first
upcoming section, we explain the workings of GPU ray caster. Firstly, how the user
is able to interact with the rendering window. Secondly, how the contents of DICOM
files are visualized using shaders. Thirdly, we explain how we solved the merging
of scanned intensities with labeled segmentation volume. In the final section we
make clear how transfer function widget came to be and what are the main pieces
that make it up. Secondly, we provide some behind the scenes insight on how and
why we customized the binning process. Lastly, we grant the formulation on color
processing of the transfer function.

4.6. GPU Ray Caster 39

4.6 GPU Ray Caster

Our GPU ray caster serves to visualize 4 segmented colons and their surroundings.
We favoured two main reasons why this 3D visualization is useful for exploratory
data analysis. First, consider representatives of a linearly correlative point group.
Since these points are dispersed along a line, in such a relationship, it would be in-
teresting to compare how two representative patients from opposing line ends might
differ. Perhaps their colon morphology vary only in the shape of transverse colon or
perhaps the ascending region of one patient fluctuates in thickness along the colon,
etc. Cross examination might aid in explaining why certain parameters correlate and
why others do not. Second, in the vast majority of variable combinations, there are
points that do not ascribe to the general trend. Inspecting outliers could be interest-
ing to understand what makes particular individuals stand out.

FIGURE 4.29: Segmented colon visualization with 3 groups of sur-
rounding contents, colored in transparent blue, transparent red and

opaque white.

As we have mentioned, there are 4 colons, namely ascending or right, transverse,
descending or left and pelvic. To distinguish between them, each one is assigned a
different color. In that order, we dyed colons in dark blue, cyan, magenta and dark
green. This coloring scheme is the same as the one that doctors are accustomed to
from colon semi segmentation tool. It made sense to use the same labeling pattern.

40 Chapter 4. Application

See Figure 4.29 for an example of colon segmentation visualization. Figure also ex-
hibits 3 different surrounding translucent content types.

4.6.1 Visualizing Dicom Images

We start off by explaining how we render DICOM images in our 3D volume ren-
derer. As talked about in section 3.2, DICOM images in patient folders are a set of
parallel slices taken from one scanning procedure. Each patient has their scans lis-
ted in a VRMED file. However, the order of these images is not guaranteed to be
sorted. Luckily, DICOM files contain many tags that describe their contents. Any
proper DICOM reader follows a verbose specification of the binary format. For this
purpose we used another JavaScript library - Daikon [45]. Daikon is able to, among
other things, parse DICOM headers and read image data. Thus, we are able to load
the entire patient’s scanning set, sort these images with a slice location tag and stitch
them together in a 3D array format.

When reading DICOM images, Daikon library automatically captures slice’s width
and height in the number of pixels and the slice cardinality. However, to completely
reconstruct the physical volume of the scanning set’s bounding box, we required
more information. More specifically, we used 2 additional DICOM tags to determine
the size of each volumetric pixel, or voxel for short. We retrieved the pixel spacing
px, py and slice thickness s and with that calculate volume’s boundary,

bx = px× width
by = py× height
bz = s× |slices|

(4.4)

where bx, by and bz are bounding box’s sides. This calculation assumes that slices
are equally spaced out between each other. DICOM images could theoretically take
on different slice separation distances. However, we ran a check throughout our
testing data base and confirmed that within each image set, slices were in fact equally
positioned apart from one another. The bounding box is used to rescale the unit cube
with which we control the front to back ray casting. Therefore, by visually stretching
this cube we are able to match the cube’s proportions to the 3D scan’s shape. Simply,
stretch the unit cube via x, y and z axes by their corresponding stretch factors,

qx = bx
max(bx ,by,bz)

qy =
by

max(bx ,by,bz)

qz =
bz

max(bx ,by,bz)

(4.5)

Notice that the maximum of qx, qy and qz is exactly 1, given that bounding box di-
mensions are well defined. Consequently, the new drawing box has one unit side
and other two take on values in the range [0, 1]. In essence, this enabled us to nor-
malize 3D volumes so that scanning models would not vastly differ in the final ren-
dering, while still preserving the model’s original shape.

Images are loaded asynchronously. After one finishes, its contents are saved to a
32-bit floating point array and the next slice in VRMED file list begins to load. After
every image gets stored into the working memory, arrays are sorted by their slice
location value, then get concatenated into one buffer. Each value inside the buffer
represents an intensity value, normalized by their maximum. Texture coordinates
take on values from 0 to 1 and these intensities are used to access precomputed

4.6. GPU Ray Caster 41

transfer function palette. Therefore, it only makes sense to convert intensities to UV
coordinates prior to uploading them to the GPU, in order to reduce the computation
overhead on each render step.

FIGURE 4.30: The difference between rendering in low resolution on
the left and high resolution on the right. Low resolution has the ray

sampling rate reduced by a factor of 40.

The visualization of scanned volume depends on the transfer function. With transfer
function widget the user is able to define how the volume intensities colorize. More
about it in section 4.7. Nonetheless, it is worth mentioning that the way the volume
is rendered can be customized. Transfer function is not the only thing that defines
the rendering quality of the final image. One can imagine that on low-end graphics
cards, ray casting, even with a simple lighting model, can be quite resource demand-
ing. There are several approaches to reduce the rendering quality of the final image
[17]. However, the most impactful way and easiest to implement is to reduce the
ray’s sampling rate. See Figure 4.30. Our low resolution setting is set to 40 times
smaller sampling rate than of the high resolution. Anytime the user interacts with
the model, a low resolution image is rendered in order to achieve interactive frame
rates. When the user is finished, we render the image in high res.

From our stand point we saw two major problems with the reduction of ray sampling
rates. Firstly, lets talk about image noise. When rays are sampling at lower rates,
they can skip certain voxels or larger areas entirely. This can be the cause of many
artifacts. For example, high frequency spatial features tend to get lost. Take a look
at Figure 4.30. A thin red translucent band across the stomach, which is entirely vis-
ible in the high resolution image, is only partially visible in low res version. Some
features are still preserved however, for instance a part of the rib cage is still perceiv-
able and the outline of red area is fairly recognizable in both renderings. Secondly,
the sampling rate inherently affects the intensity of the output image. To elabor-
ate, whenever rays sample the volume, they accumulate the color’s opacity as well.
If or when the opacity reaches 100%, ray casting terminates early, since there is no
point in continuing to traverse the volume. Therefore, two renderings with different
sampling rates can give misleadingly dissimilar results. This can deeply irritate the

42 Chapter 4. Application

user when they are rotating the model around the screen or when they are interact-
ively changing the transfer function. See Figure 4.31

FIGURE 4.31: The difference between rendering in low resolution on
the left and high resolution on the right without quality correction.

We were able to naturally mitigate this behaviour by multiplying the sampled opa-
city with a quality ratio. We defined the quality ratio as the current step size divided
by the step size of highest quality render, which in our case amounts to 40. We then
multiply this ratio with the opacity that is retrieved on each iteration of the ray cast-
ing algorithm. Therefore, the low resolution variant will make each sample more
opaque, whereas the high quality ray casting will accumulate color normally, since
the ratio will be equal to 1.

4.6.2 The Current State of WebGL And Limitations

The support for linear filtering is limited on WebGL 2.0, even more so for floating
point textures [41]. Moreover, we have not found any source specifically discuss-
ing the support of linear filtering for 3D floating point textures. Notice that, how-
ever, our renders as seen in previous figures, illustrate smooth transitions within the
volumes. To our luck, as we have figured out, by trial and error, that Chromium web
browser of version 69 and older supports linear filtering for these kinds of textures.

4.6. GPU Ray Caster 43

FIGURE 4.32: The difference between rendering with linear filtering
on the left and nearest filtering on the right.

We have tried running the same piece of WebGL code in Firefox 52.9 on GNU/Linux
operating system, but it does not allow for such texture parameter combinations. It
does approve of nearest filtering method however. That is why, when the applic-
ation starts, we check for support of linear filtering in the working browser and
decide what kind of filtering technique is the WebGL environment going to operate
on. Look to Figure 4.32 for comparison between rendering with linear filtering and
nearest filtering. The image on the left is clearly more appealing due to smoother
transitions between neighboring voxels. The image on the right, however, appears
more blocky because of the sharp changes that occur between adjacent intensities.

We gave our own version of trilinear interpolation a shot, but as it turned out our
shader-based solution was terribly slow. We were aware of the existence of compute
shaders in OpenGL. They are commonly used to speed up a variety of CPU based
algorithms through the power of parallel computing. In our case we wanted to write
the missing kernels to speed up our algorithm. Unfortunately, compute shaders are
not yet in the WebGL standard. However, they have been announced to be under
development for the WebGL standard 2.0 [32]. In the end we resorted back to nearest
filtering for browsers that do not support linear for 3D floating point textures. It is
best to wait for the official support of trilinear filtering or WebGL’s compute shaders,
whichever might come first.

In the next subsection we continue to explain how we visualize the four colons.
Colon segmentations are stored in separate files with their own encoding scheme.
Therefore, it was up to us to join the two modalities together into one whole visual-
ization.

4.6.3 Visualizing Colon Segmentation

Visualization of colon segmentation is not much different than from visualizing
DICOM images. The main discrepancy between the two is that volume intensities
are continuous and it makes sense to mix these values. In fact, due to linear inter-
polation of 3D textures we are able to obtain smooth images of the rendered volume.

Colon segmentation, on the other hand, consists of nominal values. For the sake of
argument, lets say that labels belong to an integer sequence of values from 1 to 4,

44 Chapter 4. Application

assigning each segmented voxel to one of the four colons. Any sampled point that
happens to miss precise voxel positions would retrieve a decimal value due to linear
filtering of neighboring cells. What would 1.78 or 3.29 represent?

Moreover, lets say that we do happen to get precise integer values. In that case, is
the value 2 actually a label of the second colon or is this just a result of interpolating
an empty voxel that sits exactly in the middle of the first and third labeled voxels?

The problem can be solved quite easily if only we use an additional 3D texture. One
texture could store normalized DICOM intensities and use linear filtering, while
the other one would contain segmented colon labels with nearest texture filtering.
This however, would double the GPU memory footprint. Moreover, in that case ray
traversal would have to include additional texture accesses on every iteration step,
only to check whether the ray hit a colon. The application would not only consume
more memory, it would also make ray casting algorithm run slower.

The other obvious option is to return to the original idea of merging two modalities
in a single texture. On one hand, the problem becomes even more apparent, because
then we would have to deal with label-to-intensity interpolation artifacts. On the
other hand, we would keep the speed of the original ray caster and the memory
footprint would stay the same.

Ultimately, we chose to merge the two modalities in a single 3D texture, because any
other implementation had some kind of performance issues. Now, when selection
is read, the scanned intensities are overwritten by colon segmentation labels where
they exist. Colons are always rendered at full opacity, therefore any underlying in-
tensities would not have been seen anyway.

FIGURE 4.33: Salt-and-pepper noise, caused by floating pixel artifacts
around the border of segmented colons, shown in the left image. Sim-
ilarly on the right, unwanted black pixel particles between transverse

and descending colon gap.

Since we joined labeled colons with actual intensities, we introduced some of the
aforementioned problems to the shading process. We are trying to visualize segmen-
ted colons by avoiding these issues and as many of the figures so far have illustrated,
our final rendering algorithm deals with two modalities without any problems. The
final solution has everything to do with properly defining these segmentation labels
and correctly interpreting them during runtime. So, lets take this step by step.

4.6. GPU Ray Caster 45

Firstly, when ray caster accesses the 3D texture it has to check if the sampled value
belongs to any of the four colons or whether the value is a part of volume’s intensit-
ies. We could have stored labeled voxels in the positive range of floating point num-
bers, for example 2, 3, 4 and 5 for each of the four types. . . Remember that intensities
already take on values from 0 to 1. However, it would be much simpler and perhaps
more efficient to only check the value’s sign. Thereby, we allocated these labels in
the negative range. Initially we set them to -1, -2, -3 and -4, for ascending, transverse,
descending and pelvic colons respectively. In the shader we then checked if sampled
intensities exactly matched colon labels. If so, we return their decisive color, other-
wise we return a completely transparent, zero-valued vector. The result of our first
attempt is visible in figure 4.33.

The first implementation brought in impulse noise or also named salt-and-pepper
noise. This type of disturbance in the image describes sparsely distributed pixels
with extremely high (and low) intensities that should not be present in the final
rendering [23]. This happens due to the fact that we are requiring these sampled
values to exactly match the colon labels. Therefore, instinctively one would wish to
soften or completely remove such noise by relaxing label constrains. Which brings
us to our second attempt. See Figure 4.34.

FIGURE 4.34: Improper labeling of the four colons due to overlay-
ing color of the ascending colon. The right image exhibits additional
noise in the side view of the pelvic region. Even the gap between

transverse and descending colon is no longer visible.

Instead of requiring the samples to entirely match segmentation labels, we defined
bands of numbers that were allowed to represent each colon. More concretely, we
added a tolerance of 0.2 to each label, thus for instance changing label -3 to a range
of [-3.1, -2.9]. This approach completely removed the salt-and-pepper noise around
colon borders. However, this time the entire large intestine got covered with the
color of ascending colon. Let us clarify what is going on.

When rays are traversing the volume, they happen to hit a range of transient values,
values that are the result of mixing volume’s intensities and colon labels. The largest
allowable label value happens to be -0.9 which stands for the ascending colon. Since
each label is negative and since in high resolution mode rays make very short steps,
the rays are very likely to first hit the samples in the [-1.1, -0.9] range before hitting
the actual colon. Thus, the entire segmentation gets covered in the color of ascending
colon and segmentation itself becomes more thicker, which also explains why the
gap in the right image closed off.

46 Chapter 4. Application

FIGURE 4.35: Final visualization of colon segmentation with all the
artifacts removed.

Finally, we expand on the banding method to produce artifact-free, clean visualiza-
tion of colon segmentation. See Figure 4.35 for the final result. The problem with the
previous technique was that rays, which were going in the direction of any of the
four colons, were prone to sampling the values from higher tolerance bands before
hitting actual colons. The idea behind our final solution was to reduce this possibil-
ity of erroneous sampling.

We came to a conclusion that each gap between consecutive bands should be or-
ders of magnitude larger than the previous one. How big depends on the actual
sampling rate. Conveniently, our 3D volumetric texture consists of 32-bit floating
point numbers. Thereby, we were able to afford storing very large or very small
numbers as colon labels. The largest single-precision floating point value is approx-
imately 3.402823× 1038 by the IEEE 754-2008 standard [50]. Instead of taking −1,
−2, −3 and −4, we initialized colon labels with −1, −106, −1012 and −1018 respect-
ively. Their bands are calculated with this simple formulae l ± 0.1l, where l is the
colon’s label value. Now each rendering of colon segmentation holds a noise-free
visual result.

Consider a ray tracing along its direction, if it happens to approach a voxel belonging
to the pelvic colon, it is very unlikely to produce intensity values in the ranges [-1.1,
-0.9], [−106 ± 105] or even [−1012 ± 1011] for that matter. Linear filtering is going
to construct values from 1 to −1018, negligibly depending on what the actual value
of preceding voxel is. To elaborate, interpolation values of −106 and higher, would
have made up only 0.0001% of the total space between two of such neighboring
voxels. With step sizes of roughly 0.0004 units long, the ray is most likely to miss
this initial barrier and sample a much higher number, which in return can belong to
the appropriate colon. This example is analogous to other cases where bands interact
with each other and the surrounding mass.

These new bands were experimentally obtained. Notice that they are perfectly roun-
ded in their base 10 number representation. We acknowledge that they could have
been compressed further more. Fortunately, we did not have to worry about that,
because we had only 4 different labels to display. Even with such huge gaps between
them, we still had 1020 orders of magnitude to spare. Following our simple gap pat-
tern, we would be able to fit in three more distinct labels in the negative end of
single-precision floating point numbers and possibly additional 7 of them in the un-
used positive end. In either case we consider this to be the central downside of our
approach, that it limits the number of possible classes that can be displayed.

4.6. GPU Ray Caster 47

4.6.4 Simple Lighting Model

To finish off discussing the 3D volume visualization we present our simple lighting
model. The model is a combination of already well established concepts from the
computer graphics world. Specifically, our ray caster consists of two factors that
deliver some additional visual cues to the overall image. First, a single static light
source is defined that illuminates both the scanned volume and the colon segment-
ation. Second, ambient occlusion is computed for colon segmentation in order to
better visualize the colon’s contours and provide richer depth cues.

FIGURE 4.36: Comparison of ray casting algorithm without diffuse
lighting on top and with diffuse lighting on bottom. In both cases
model is visible from two different view points - frontal view and

side view.

As Figure 4.36 demonstrates, the use of just a single light source can dramatically
improve the visualization of the 3D volume. The camera is always oriented in the
same manner and positioned at a fixed point. The model is the one that gets rotated
around. That way, the computation process of diffuse lighting becomes trivial. We
did not entirely implement the Phong shading process [9]. We avoided using the

48 Chapter 4. Application

specular highlight, because it could have interfered with the user’s recognition of
model features in the centre.

Diffuse calculation requires surface’s normal to decide its contributing factor. The
data itself does not provide any normal information, that is why we have to calculate
the normals on the fly. A standard technique in volume rendering is to use the
gradient of its intensities to approximate the surface normals [19], which is what we
ended up doing.

FIGURE 4.37: Four different visualizations of segmented colons: a)
colons are visualized by their raw label colors, b) Diffuse lighting is
applied to the primary colors, c) colons are drawn with ambient oc-

clusion, d) b and c are combined.

Figure 4.37 exhibits the three contributors to the final visualization, namely primary
colon colors, the diffuse lighting and ambient occlusion. The junction of these effects
clearly provides the best visualization.

In essence, ambient occlusion tells us how much of the light is being occluded around
a certain point. Calculating ambient occlusion is generally considered to be an ex-
pensive operation. That is why we apply it only once when the ray hits a colon and
then terminates. There are several approaches to approximate ambient occlusion,
however, we winded up using our own variant of the Starcraft 2’s AO technique
[21].

4.6. GPU Ray Caster 49

FIGURE 4.38: Common 3-dimensional pixel connectivity types: a) 6-
connectivity, b) 18-connectivity, c) 26-connectivity [47].

The main difference is how we define the sampling hemisphere. What we do is,
we uniformly sample the voxel’s 18-connected neighborhood. This includes the
6 face voxels and 12 edge voxels. See Figure 4.38 for different pixel connectivity
types. However, we only consider the sample directions that give non-negative dot
products with the voxel’s normal. That way we roughly approximate the sampling
along the surface of a hemisphere. Moreover, even sample directions that are per-
pendicular to the normal are taken into the equation. We tried using directions that
only gave strictly positive dot products, which happen to work out more correctly,
as seen in Figure 4.39. However, we realized that the former method happens to
highlight silhouettes along the colons which also gives some additional cues about
the intestine’s morphology. Subsequently, we resorted back to the first technique
and kept it in our final algorithm, because it was more appealing to the user.

FIGURE 4.39: Comparison of two AO techniques with minor differ-
ences in the implementation. Left image shows darkened corner areas
and completely bright planar surfaces. Right image exhibits a slightly

darker overall appearance with additional silhouette highlights.

All of the GLSL shader code is available in the Appendix A.

In the final subsection of the GPU ray caster we will cover how we fostered up user-
to-model communication. Up to now we have given only slight indication of what
is the user allowed to do with the rendered model. However, we have not really
discussed the course of action one must take to move the model around and how
does our interface precisely behave.

50 Chapter 4. Application

4.6.5 User Interaction

The problem we are facing here is that models are three dimensional, but their ren-
dering is drawn on a flat surface. So far, all of the interaction in the home view
has been made possible with a mouse. To maintain the ergonomic keyboard-free
management of our application we built the model interaction process around this
idea. Thus, all of the operations done on the GPU ray caster’s rendering widget are
possible only with a mouse.

We defined two different methods of changing the object’s view. Firstly, the main in-
teraction is performed by rotating the model. When the left mouse button is pressed,
while cursor is hovering the viewport, the object becomes active. This means that
user is able to drag the cursor around the screen and rotate the model with it until
they release the left mouse button. Secondly, the object can be zoomed in by scrolling
the mouse wheel or in case if they are using a touch pad, the same can be achieved
with 2-finger panning motion. We have not found a particular use case where mov-
ing the object would be especially beneficial, that is why we did not provide the
means necessary to do so.

There are several ways to implement model rotation through mouse movement. The
simplest solution, yet somewhat troublesome for the end user, is to utilize only the
change in x and y screen coordinates. Normally, one would transform 4x and 4y
into yaw and pitch rotations with some minor factor correction to modify the speed
of movement. This technique, however makes it impossible to perform rolling mo-
tion of the model around the viewing direction. Moreover, in our experience it is
extremely difficult to make small adjustments in the present view, due to small scale
erroneous rotations. The specified errors can be exemplified with continuous circu-
lar CW or CCW motions of the mouse cursor. See Figure 4.40.

FIGURE 4.40: The downfall of naive mouse-to-model interaction. The
mouse was dragging the model on the left in a small CCW circular
motion as shown by the white arrow. The result on the right shows
that the model finished gradually rotating in the opposite direction

by 90 degrees.

Furthermore, this method suffers from limited angular rotation in at least one dir-
ection. If the implementation is expressed in Euler angles, then commonly the yaw
rotations are unrestricted, whilst the pitch is locked to only rotate in the [-90, 90] de-
gree angle range, which makes it troublesome to work both on top and bottom parts
of the model. This is commonly referred to as the gimbal lock problem [1], which is

4.6. GPU Ray Caster 51

usually solved with quaternions [6]. We will describe an interaction method that fol-
lows the same principle as originally described in [5], but solves the problem without
the use of quaternions.

FIGURE 4.41: Dragging a point along the surface of the sphere
uniquely defines the three-dimensional angle of rotation and its vec-

tor of rotation (in blue).

Consider a point tracing a geodesic on the surface of a sphere. The generated path
inherently contains the information about its axis of rotation and its spanning angles.
See Figure 4.41. Lets define a starting and an ending vector, namely red and green that
go from the center of unit sphere to its surface. The cross product of these vectors
produces another vector that is orthogonal to them. In other words, if the starting
and ending points do not coincide, the cross product of their directional vectors is
yet another vector that is perpendicular to both of them. Such three noncollinear
vectors define a basis in three dimensions. Using the gram-Schmidt process it is
possible to correct any regular basis into an orthonormal one, where all of its vectors
are pairwise perpendicular to each other and are 1 unit long. With three basis vectors
we can create a change-of-basis matrix that be used to orient 3D objects around their
point of origin [20].

52 Chapter 4. Application

FIGURE 4.42: Maximum spanning hemisphere over the viewport in
its centre that servers to unproject cursor’s screen coordinates.

We define a maximum spanning hemisphere over the viewport, in the centre. See
Figure 4.42. When the user drags over the viewport, both the cursor’s screen co-
ordinates and the change in x and y are recorded. With these we reconstruct the red
and green vectors by unprojecting current and previous screen coordinates to the
hemisphere using the following formula,

hx = sx

hy = sy

hz =
√

1− ‖s‖2

(4.6)

where sx and sy are 2D screen space coordinates of the vector with the origin in the
centre and h is the 3D vector with length 1. Notice that h’s x and y coordinates
are equal to the screen coordinates and the only difference is in the additional z
coordinate. If the mouse is dragging outside the hemisphere’s bounds, we snap the
screen coordinates to the circle defined by the intersection between the hemisphere
and the viewport. Therefore, dragging near the center of the view rotates the model
in that direction. However, dragging the cursor outside the defined region tilts the
model around the viewing direction.

FIGURE 4.43: Rolling by the same amount in opposite directions re-
verses the rotational axis.

4.7. Transfer Function Widget 53

Take a look at Figure 4.43. Due to the nature of the cross product, rotating in two op-
posing directions changes the sign of the revolving vector. Consequently, dragging
along the same curve in contrasting manners realizes the turning of model in two
different ways.

When the model rotates, what actually changes is its current basis vectors that define
its orientation. Naturally, we would want to start rotating from the model’s previ-
ous orientation state and that is how we do it. Another nifty feature of this rotator
is its stability. Moving the object around the screen and then returning to the start-
ing point while holding on the left mouse button at all times, restores the original
model’s orientation with great precision. Moreover, dragging the model from one
side of the hemisphere to the other rotates it precisely 180 degrees.

In the final section of this chapter we explain the structure of our transfer function
widget. This section will conclude the presentation of our visual exploratory tool
and hopefully explain all of its most important aspects.

4.7 Transfer Function Widget

FIGURE 4.44: Transfer function widget.

Transfer function widget provides a graphical user interface for dynamic alteration
of the transfer function palette. The window is divided into two cells, the smart
header and the region-labeling histogram. We call the header smart, because of its
multiple functionalities. The histogram, on the other hand, is used mainly for defin-
ing color palette which used as a lookup table in shader program.

We wanted to be minimalistic in the widget’s design. Firstly, the window does not
have a border, only the histogram has a slight padding for its contents so that the
white area does not join with the window’s surroundings. There are essentially 3
primary colors in the window’s layout that interchange their roles as background
and foreground. More thoroughly, the histogram’s background has a dark grey ap-
pearance and its bin area is white, while the header has the same grey foreground
color for text; the icon color and the × symbol and a light grey color for the back-
ground. Finally, the entire tool box consists of only 2 buttons. We even put those
inside the header to avoid any possible interference with the interactive histogram.

54 Chapter 4. Application

4.7.1 Smart Header

Firstly, on the left hand side of the header resides the widget’s name and to the
farthest right, the window’s closing button occupies widget’s second corner. Moreover,
there are 2 square buttons beside the title name. Each one serving a different pur-
pose.
The first button to the left opens up a color picker. See Figure 4.45. We chose a
premade JavaScript’s color picker - jscolor, authored by Jan Odvarko [43]. It has a
simple, yet elegant design, moreover it is easy to use and it smoothly integrates in
any JavaScript project. Pressing the color picker opens up a small window. Chan-
ging its marker’s location inside the colorful area sets the button’s private value to
the chosen color. This value can be accessed in JavaScript code with D3.js HTML
selectors.

FIGURE 4.45: Color picker for transfer function .

The second button toggles the histogram’s scale from linear to logarithmic and vice
versa. Normally, as seen in both Figures 4.44 and 4.45 the scale is set to logarithmic,
as indicated by the button’s icon. The logarithmic scale allows to spot more details
in the histogram. See Figure 4.46. Usually, we recommend using the log scale, but
just in case the user wants to see the truthful intensity distribution, they are able to
toggle the scale back to linear. By default, every time the model is loaded, the scale
resets to the ground truth representation.

Notice that transfer function widget is not in golden ratio proportions, like some
elements are in the home view. In fact, its width is precisely twice the length of its
height. The actual count of distinct intensities in DICOM images is quite numerous.
There are roughly 1000 intensities in individual 3D scans, on average. That is why
the window’s height has to be long enough, to be able to represent all of them in
high quality. The height, on the other hand, is not that important. It only has to be
sufficiently tall to provide enjoyable user interaction. In our opinion this happens
to be half the size of the histogram’s width. Using the golden ratio for widget’s
height made the widget excessively big, because it covered a considerable part of
the screen. If during the interaction time, the transfer function display continues to

4.7. Transfer Function Widget 55

hinder the experience of inspector widget, it can either be moved away by dragging
on the header’s light gray area or by closing the window.

FIGURE 4.46: Linear scale versus logarithmic scale. Logarithmic scale
on the bottom clearly illustrates greater detail in the histogram visu-

alization.

4.7.2 Histogram View

The white histogram as mentioned previously visualizes the distribution of intens-
ities within the volume. Moreover, on top of the histogram one can draw selection
rectangles. These define both the color and opacity for the specified band of intens-
ities. See Figure 4.47.

A selection rectangle is created by clicking somewhere in the histogram view. Thus,
creating one pixel wide rectangle, that stretches from the bottom of the view up to
the mouse cursor. User then expands the rectangle by continuing to drag the cursor
around the view. One of top rectangle corners follows the cursor and another one
stays where left mouse button was pressed down. When user releases the button,
the rectangle remains in place and selection of intensities is finished. The opacity
of selected intensities is defined by the height of the rectangle. This is apparent to
the user, because the opacity of the rectangle’s fill color also changes accordingly.
Moreover, the rectangle takes on the color that is defined in the color picker. Its
color can be changed, by choosing another one with the picker and then clicking on
the rectangle with the left mouse button. If opacity of the rectangle is wrong or its
boundaries are not properly set, the user has to destroy that rectangle and redraw it.
Rectangles can be destroyed by right clicking on their defined area.

56 Chapter 4. Application

FIGURE 4.47: Model visualization with its designated transfer func-
tion widget.

From these selection rectangles we define a transfer function palette that can be up-
loaded to the GPU and used in the ray casting algorithm. Palette is a one dimen-
sional texture of fixed 2048 RGBA values. This is twice the size of the estimated
number of intensities, which seemed to suffice our needs. Textures with lower res-
olutions failed to always save the presence of really thin rectangles.

Selection rectangles can both be transparent and overdrawn on top of each other.
That is why we needed some process of color accumulation that takes the two re-
quirements into account. We converted the rectangle’s view coordinates to a range
of [0, 2047]. The new texture palette is zero initialized, then we sample over histo-
gram’s rectangles in iterative fashion and accumulate color in the transfer function
palette array, following the alpha composing equation [4],{

Cn+1 = Cn + Cr(1− αn)

αn+1 = αn + αr(1− αn)
(4.7)

where each color ci is premultiplied by their alpha values αi, Ci = αici. Cr is the
rectangle’s color, Cn is the current color in palette array and Cn+1 is palette’s new
color. Similarly, αn is the current opacity value and αn+1 is the new opacity.

57

Chapter 5

Evaluation

In the first part of this chapter we will examine how VisPlot performs on HP laptop
ProBook 470 G5 with GNU/Debian buster/sid OS. More concretely, we will exam-
ine the performance of our GPU ray caster and the initialization stage, since these are
the most resource demanding parts of our application. Let us provide some inform-
ation about the machine that we used. This computer has Intel’s 64-bit quad-core
i7-8550U processor, operating at 1.8 GHz with 8MB of cache. Furthermore, it has
NVIDIA’s graphics card GeForce 930MX with 2GB of memory. The computer has
another 16GB of working memory. We have tested our application in two different
browsers, particularly on 64-bit version of Chromium 69.0.3497.92 and 64-bit Firefox
ESR 52.9.0.

In the second part we argument how the overall design helpfully serves the end user
in finding correlations within the colon measurement data set. In particular, how the
small multiples matrix exposes various patterns in variable space and how the use
of three scatter plots interplays nicely in the exploratory mindset. We also comment
on some of the flaws that we caught in the visual analysis tool and give some ideas
on how we could improve on them in future work.

5.1 Performance

We start off by granting a performance review on the home view’s initialization
stage. When the website opens up, it generates not only the three plots, but every
small multiple in the bottom right cell. Even more, it sets up the entire inspector
widget and its GPU ray caster behind the scenes. This is not clearly visible, because
the inspector widget is completely transparent when the page first opens up. How-
ever, this window is constructed nonetheless. Note that VisPlot consists of only one
website that is loaded at the start up.

Initial parsing and retrieval of the HTML, CSS and JavaScript code takes around
900ms. A large portion of the time, more than half in fact, is consumed only by
files loading from the local server. Approximately 100ms is taken to create the in-
spector widget, including the compilation of GLSL kernels. The rest is mostly used
up by evaluating and compiling JavaScript code. For example, Daikon.js library on
average takes up immense 155 milliseconds. Other third party libraries, like D3.js,
glMatrix and jscolor, however, take commonly less than 15ms each.

In the second phase, three main plots and the small multiple matrix should load.
However, the entering animations for both main plots and the matrix began to lag
if they were loaded simultaneously. This was mostly due to the vast amount of
entering transitions that required a redraw on every single animation frame. In order
to keep these transitions smooth, we only load main plots and display the right

58 Chapter 5. Evaluation

grid cell empty. Without the scatter plots’ initialization step, their animations take
approximately 600ms. Afterwards we spawn the matrix’s elements.

In the third phase, we construct small multiples matrix. Firstly, the Pearson greedy
algorithm for matrix dimensionality reduction is executed in order to cut down the
number of plots that are going to be generated. This takes merely 50ms. Together
with other initializing steps, mainly SVG component creation, the set up stage takes
around 200ms. Thereafter, the main grid cell gets populated by matrix elements and
all of their entering animations play out to the end. This too, takes approximately
600ms.

Conclusively, the setup of VisPlot takes around 2.3 seconds, give or take a couple
of hundred milliseconds. The variation mostly depends on the responsiveness of
server that hosts the website. See Figure 5.1 for Chromium’s profiler statistics that
were generated once the VisPlot page was reloaded. Note that the recording does
not start at time 0, when the web page actually refreshed, because the recording
was started manually. Each of the five illustrated segments visualize, among other
things, the duration of aforementioned task groups.

FIGURE 5.1: Chromium profiler statistics on VisPlot website initializ-
ation, partitioned into five segments. Segment 1, parsing and retrieval
of HTML, CSS, JS documents. Segment 2, first frame appearance, ini-
tialization of Inspector widget and main scatter plots. Segment 3,
enter animations of main scatter plots. Segment 4, initialization of

matrix elements. Segment 5, enter animations of small multiples.

Maximizing the most bottom area graph shows the memory consumption during
these first seconds of opening up VisPlot. Figure 5.2 illustrates the maximized chart.
Memory footprint of our application during initialization time is relatively low. A
maximum of 23.7MB of working memory should be easily affordable on any modern
device.

FIGURE 5.2: Chromium profiler showing that memory consumption
during VisPlot initialization stage ranged from 10.6MB to 23.7MB.

Moving forward to GPU ray caster. . . The largest tested scanned volumes were 256×
256 × 50 pixels in size. We will consider these as our case study in the following
pages. The performance of ray casting algorithm is inadvertently affected by the
screen area of the final rendering. Figure 5.3 exhibits a drop in performance once the
volume is zoomed in. The volume covers a bigger part of the screen, therefore more
fragments are generated by the WebGL pipeline, which in affect hurts the widget’s

5.1. Performance 59

performance. We are aware that twenty frame rates are not ideal, however, even in
the maximized view, we have managed to keep an interactive experience. Note that
even though the width of the viewport in these two images is not entirely expanded,
its height is still the highest it can be for our 17 inch display. In other words, we are
showing these renderings in full resolution.

FIGURE 5.3: Frames rates during interaction times in different zoom-
ing levels. Segmented colon with 120× 139 pixels bounding box, on
the left - 56.1FPS. The same segmented colon with 272× 340 pixels

bounding box, on the right - 20.6FPS.

The contents of the 3D volume also affect the performance of the ray caster. Consider
Figure 5.4. The GPU ray caster runs even faster once the volume is less transparent.
This is the result of early ray termination. Fragments can accumulate the color’s opa-
city up to a 100% before exiting volume’s bounding box on the other side. Thereby
terminating volume traversal early. If the volume is completely engulfed in opaque
material, the ray caster becomes nearly instantaneously responsive.

FIGURE 5.4: GPU ray caster performs better when the 3D volume is
populated with non-transparent voxels, because of early ray termina-
tion. The screen space bounding box of the model is 476× 458 pixels.

60 Chapter 5. Evaluation

5.2 Improvements and Future Work

In section 4.3, we explain the thinking process that led us to our final layout of small
multiple representation. We exposed that matrix based layout suited us best, be-
cause it was intuitive to use and through background intensities we were able to
provide a clear view of clusters that appear from combinations of variables taken
from the same colon. Moreover, it seems that the left colon and terminal ileum seem-
ingly correlate more than other colons between each other. See Figure 5.5. All of the
four left colon variables show a strong linear relationships with terminal ileum’s
area.

FIGURE 5.5: High correlation between ascending colon and terminal
ileum.

This connection is particularly unusual, because it takes two different colons into ac-
count. There are two possible explanations for this kind behaviour, as we see them.
Option number one, an actual underlying correlation exists between left colon and
terminal ileum, which is the less likely outcome in our opinion. Option number two
is that our testing data set contains unduly amount of entries in the measurement
table. Recall that even though there are 29 different variables, we only considered
measurements of 21 patients. We had more variables than the number of test sub-
jects. Unfortunately, we were not able to obtain a larger database in order to properly
evaluate these and other kind of correlations. In fact, we are sincerely pleased with
the results that we were able to obtain in spite of small data set with our visualization
tool.

Another aspect of VisPlot that pestered us since its creation is that the matrix in the
home view is not fully visible. We did explore some other options to replace the
home view’s grid based layout, like explained in section 4.3, but nothing in particu-
lar completely improved on its design.

We continue to trust that matrix layout is the most appropriate tool for this job. None
of the other visual arrangements considered, do not contain that many properties as
does the matrix layout. However, there is still some place for improvement. For
example, we have mentioned the problem of poor visibility when the background
intensity matches the foreground’s. A possible solution we have considered would
be to have a superior shading process for either points and trend lines in the small
plots or for the background.

5.2. Improvements and Future Work 61

Moreover, we have thought of providing means for altering the utility function dy-
namically or implementing a possibility of custom arrangement of colon variables.
That way more variable combinations could have been explored. Most of what we
came up with, would have to include additional elements that would disturb the
symmetry of VisPlot layout. Like in the case of mobile devices, big adjustments
would take time to properly integrate in the application. In either case, our cur-
rent max utility function seems to do the job satisfyingly well. The most important
correlations are always illustrated in the matrix, it provides a grouping of variable
combinations per colon basis and it acts as an intuitive selection tool with an embed-
ded, easy-to-interpret legend.

The objective in using several different scatter plots is to have a way for compar-
ing different variable combinations between each other. At the very least, 2 scatter
plots are required for such comparative analysis. However, through experience, we
have found out that it is better to have more charts on the screen at the same time. 3
happen to fit in nicely in our grid based layout. Introducing more charts, however,
reduced the sizes of these plots too much, even for the 17 inch display. In our work-
flow we tend to use one graph for fast examination of matrix elements, another one,
that is truly interesting, is for the most part left untouched and the third plot plays
an intermediary role between the two. Normally, we want to postpone the inspec-
tion of some interesting plots that we discovered while quickly exploring the small
multiples matrix.

Moving onto the GPU ray caster. We believe that the visibility of the surrounding
colon could have been improved with a more sophisticated transfer function. Ours
deals directly with the volume’s raw intensities. Transfer function could work, on
the other hand, with other kind of precomputed volumetric information, like the
value of a 3D image operator. Moreover, it does not even need to be one dimen-
sional. One option would be to encode the power of the gradient and its angles
in each axis. Considering the success of 3D transfer functions, this is most likely the
direction we would take. The trade off of a more complex transfer function would be
the performance penalty of the GPU ray caster. Nontrivial information would have
to be computed from the volume and then properly binned in multidimensional ob-
jects that would define color regions, like our selection rectangles do for our 1D case.
However, our study is particularly oriented around the segmentation of large intest-
ine and its measurements. The scanned volume that surrounds it, is utilized only
to provide a context for segmented colons. Therefore, a reduction in quality of the
scanned volume made sense when we wanted to improve the speed of the 3D ray
caster.

Notice that currently a lot of viewport is let unused, because of its elongated shape.
Splitting this viewport into two would not affect the size of the visualization. We
have considered it would be useful to have a comparative analysis of two 3D views
in side-by-side panels. However, visualizing two separate patients as-is might not be
enough. Most certainly we would like the computer to automatically reveal import-
ant differences and similarities between these two views. Further research would
surely lead to development or modification of 3D algorithms for comparative ana-
lysis of colon measurement data.

Lastly, we would like to support trilinear interpolation inside of other web browsers.
As of now, due to current limitations of WebGL 2.0 standard, as described in section
4.6.2, we are only able to apply linear filtering on 3D floating-point textures inside
Chromium 69.x.

63

Chapter 6

Conclusions

In this work we presented our visual exploratory analysis tool for colon segmenta-
tion data set. The colossal amount of variable combinations has introduced a pre-
dicament in proficient analysis of this data. Our main objective was to create an
application that would not only summarize the given information, but also allow
for dynamic examination of various variable combinations and grant detailed, on-
demand inspection of individual patient’s measurements.

Firstly, a matrix structure of small multiples serves as an overview of the variable ex-
ploration space and gives hints on the data clusters that lie within. We used Pearson
correlation coefficient to automatically reduce the matrix size and highlight correlat-
ive pairs of distinctive variables. The matrix also plays a role in the selection of the
main charts’ axial properties. Together with these scatter plots we allow the user to
find linear correlations within the data set effortlessly.

The other half of our work is the VisPlot’s inspector widget. Its primary role is visu-
alizing the segmented large intestine and showing patient measurements directly
inside an overlook table. Direct volume rendering is realized with a GPU-based ray
caster, which is accompanied by a custom transfer function widget that allows for
color classification of the volume’s intensities.

In our opinion, we made an intuitive and clean user interface. Application is ad-
ministered only by the mouse, which requires zero access to the keyboard. Some
user actions can be replicated with different motions, like in the case of expanding
smaller plots to the larger ones. However more importantly, interactable elements
signalize their interactivity with an abundance of eye-catching transitions. Overall,
we believe in our work and trust that VisPlot achieved its original goals.

Some of the possible advancements of this thesis have already been discussed in the
previous chapter, however we would also like to try out VisPlot on different type
of (medical) data sets, to see how well it performs. The project is highly extensible,
since it essentially operates on raw data, other than the specific implementation of
colon visualization. It would also be interesting to search for other kinds of correla-
tion. Perhaps we could apply clustering algorithms or look for non-linear relation-
ships in the data.

Other than that, we are interested in improving the GPU ray caster. Firstly, we would
like to implement a more sophisticated illumination model that would perform well,
even on low-end devices. It is in our intention to port this application to mobile.
Secondly, it might be helpful to have a set of additional tools in the 3D view to
expand on its visualization. We could start off by adding some clipping mechanisms
to cut the volume open and adding a support for moving the camera inside the
box’s volume. We want to spend some time designing a more sophisticated transfer
function that we could adapt to different types of data sets more easily. Lastly, we
would like to support trilinear interpolation on other web browsers as well.

65

Appendix A

Ray Casting Shaders

SHADER A.1: First pass vertex shader

#version 300 es
in vec3 aVertexPosition;

uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
uniform vec3 uScaleVector;

out highp vec3 fragmentPos;

void main() {
gl_Position = uProjectionMatrix * uModelViewMatrix * vec4(←↩

uScaleVector * aVertexPosition , 1);
fragmentPos = aVertexPosition;

}

SHADER A.2: First pass fragment shader

#version 300 es
precision mediump float;

in highp vec3 fragmentPos;

out vec4 FragColor;

// <https ://www.shadertoy.com/view/4dS3Wd >
// By Morgan McGuire @morgan3d , http :// graphicscodex.com
float hash(float n) {

return fract(sin(n) * 1e4);
}

float hash(vec2 p) {
return fract(1e4 * sin (17.0 * p.x + p.y * 0.1) * (0.1 + abs(sin(p←↩

.y * 13.0 + p.x))));
}

float noise(vec2 x) {
vec2 i = floor(x);
vec2 f = fract(x);

// Four corners in 2D of a tile
float a = hash(i);
float b = hash(i + vec2 (1.0, 0.0));
float c = hash(i + vec2 (0.0, 1.0));
float d = hash(i + vec2 (1.0, 1.0));

66 Appendix A. Ray Casting Shaders

vec2 u = f * f * (3.0 - 2.0 * f);
return mix(a, b, u.x) + (c - a) * u.y * (1.0 - u.x) + (d - b) * u←↩

.x * u.y;
}

void main() {
FragColor = vec4(fragmentPos , noise(gl_FragCoord.xy));

}

SHADER A.3: Second pass vertex shader

#version 300 es

precision mediump float;

in vec3 aVertexPosition;

uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
uniform vec3 uScaleVector;

out mediump vec3 fragmentPos;
out mediump vec4 viewSpaceFragPos;

void main() {
viewSpaceFragPos = uModelViewMatrix * vec4(uScaleVector * ←↩

aVertexPosition , 1.0);
gl_Position = uProjectionMatrix * viewSpaceFragPos;

fragmentPos = vec3(aVertexPosition);
}

SHADER A.4: Second pass fragment shader

#version 300 es

// precision
precision mediump float;
precision mediump usampler3D;
precision mediump sampler3D;

// attributes
in mediump vec3 fragmentPos;
in mediump vec4 viewSpaceFragPos;

out vec4 FragColor;

// uniforms
uniform sampler2D back_face_texture;
uniform sampler3D volume_texture;
uniform sampler2D transfer_function;

uniform mat4 uProjectionMatrix;
uniform mat4 uModelViewMatrix;

uniform float quality_ratio; // step_size / step size high quality
uniform float step_size;
uniform int max_steps;

Appendix A. Ray Casting Shaders 67

uniform vec3 background_color;
uniform vec3 sample_offset;

const vec4 colon_colors [4] = vec4 [](vec4 (0.0, 0.0, 0.75, 1.0), vec4←↩
(0.0, 1.0, 1.0, 1.0),

vec4 (1.0, 0.0, 1.0, 1.0), vec4←↩
(0.0, 0.5, 0.0, 1.0));

// functions
vec2 getTexturePos () {

vec4 clip_pos = uProjectionMatrix * viewSpaceFragPos;
vec4 ndc_pos = clip_pos / clip_pos.w;
vec2 texture_pos = (ndc_pos.xy + 1.0) / 2.0;

return texture_pos;
}

vec4 intensityToColor(float intensity) {
return texture(transfer_function , vec2(intensity , 0));

}

float getRawIntensity(vec3 pos) {
return texture(volume_texture , pos).x;

}

float getIntensity(vec3 pos) {
return getRawIntensity(pos);

}

vec3 getNormal(vec3 pos) {
// calculate the normal based on local gradient of intensities

// because clamp to border is not supported on 3D textures
// X
vec3 left = pos - vec3(sample_offset.x, 0.0, 0.0);
float left_t = 0.0;
if (left.x >= 0.0) {

left_t = getIntensity(left);
if (left_t < 0.0)

left_t = 2.0;
}

vec3 right = pos + vec3(sample_offset.x, 0.0, 0.0);
float right_t = 0.0;
if (right.x <= 1.0) {

right_t = getIntensity(right);
if (right_t < 0.0)

right_t = 2.0;
}

// Y
vec3 bottom = pos - vec3 (0.0, sample_offset.y, 0.0);
float bottom_t = 0.0;
if (bottom.y >= 0.0) {

bottom_t = getIntensity(bottom);
if (bottom_t < 0.0)

bottom_t = 2.0;
}

vec3 top = pos + vec3 (0.0, sample_offset.y, 0.0);
float top_t = 0.0;
if (top.y <= 1.0) {

top_t = getIntensity(top);

68 Appendix A. Ray Casting Shaders

if (top_t < 0.0)
top_t = 2.0;

}

// Z
vec3 back = pos - vec3 (0.0, 0.0, sample_offset.z);
float back_t = 0.0;
if (back.z >= 0.0) {

back_t = getIntensity(back);
if (back_t < 0.0)

back_t = 2.0;
}

vec3 front = pos + vec3 (0.0, 0.0, sample_offset.z);
float front_t = 0.0;
if (front.z <= 1.0) {

front_t = getIntensity(front);
if (front_t < 0.0)

front_t = 2.0;
}

vec3 n = vec3(left_t - right_t , bottom_t - top_t , back_t - ←↩
front_t);

if (n == vec3 (0.0))
return vec3 (0.0);

return normalize(n);
}

vec4 getSegmentedColor(float intensity) {
if (intensity >= 0.0)

return intensityToColor(intensity);
else if (intensity > -1.10 && intensity < -0.90) //

return colon_colors [0];
else if (intensity > -1100000.0 && intensity < -900000.0)

return colon_colors [1];
else if (intensity > -1100000000000.0 && intensity < ←↩

-900000000000.0)
return colon_colors [2];

else if (intensity > -1100000000000000000.0 && intensity < ←↩
-900000000000000000.0)
return colon_colors [3];

else
return intensityToColor (0.f); // values near zero are ←↩

generally transparent
}

float getSegmentedOpacity(vec3 pos) {
return getSegmentedColor(getIntensity(pos)).a;

}

float getAmbientOcclusion(vec3 pos , vec3 normal) {
float x = 0.0;
// 6-neighborhood
vec3 dir = vec3(sample_offset.x, 0.0, 0.0);
float a = 0.0;
if (dot(dir , normal) >= 0.0) {

a = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(-sample_offset.x, 0.0, 0.0);
float b = 0.0;

Appendix A. Ray Casting Shaders 69

if (dot(dir , normal) >= 0.0) {
b = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3 (0.0, sample_offset.y, 0.0);
float c = 0.0;
if (dot(dir , normal) >= 0.0) {

c = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3 (0.0, -sample_offset.y, 0.0);
float d = 0.0;
if (dot(dir , normal) >= 0.0) {

d = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3 (0.0, 0.0, sample_offset.z);
float e = 0.0;
if (dot(dir , normal) >= 0.0) {

e = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3 (0.0, 0.0, -sample_offset.z);
float f = 0.0;
if (dot(dir , normal) >= 0.0) {

f = getSegmentedOpacity(pos + dir);
++x;

}

// 8 - neighborhood
dir = vec3(sample_offset.x, sample_offset.y, sample_offset.z);
float g = 0.0;
if (dot(dir , normal) >= 0.0) {

g = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(sample_offset.x, sample_offset.y, -sample_offset.z);
float h = 0.0;
if (dot(dir , normal) >= 0.0) {

h = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(sample_offset.x, -sample_offset.y, sample_offset.z);
float i = 0.0;
if (dot(dir , normal) >= 0.0) {

i = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(sample_offset.x, -sample_offset.y, -sample_offset.z);
float j = 0.0;
if (dot(dir , normal) >= 0.0) {

j = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(-sample_offset.x, sample_offset.y, sample_offset.z);

70 Appendix A. Ray Casting Shaders

float k = 0.0;
if (dot(dir , normal) >= 0.0) {

k = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(-sample_offset.x, sample_offset.y, -sample_offset.z);
float l = 0.0;
if (dot(dir , normal) >= 0.0) {

l = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(-sample_offset.x, -sample_offset.y, sample_offset.z);
float m = 0.0;
if (dot(dir , normal) >= 0.0) {

m = getSegmentedOpacity(pos + dir);
++x;

}

dir = vec3(-sample_offset.x, -sample_offset.y, -sample_offset.z);
float n = 0.0;
if (dot(dir , normal) >= 0.0) {

n = getSegmentedOpacity(pos + dir);
++x;

}

return 1.0 - ((a + b + c + d + e + f + g + h + i + j + k + l + m ←↩
+ n) / x);

}

void main() {
// get basic ray info
vec4 back_frag = texture(back_face_texture , getTexturePos ());
vec3 ray_dir = back_frag.xyz - fragmentPos;
float ray_length = length(ray_dir);

if (ray_length < step_size) {
FragColor = vec4(background_color , 1);
return;

}

float ray_length_sq = ray_length * ray_length;

vec3 light_dir = normalize(transpose(mat3(uModelViewMatrix)) * ←↩
vec3 (0.0, 0.0, 1.0));

// get ray incremental direction
vec3 unit_ray = ray_dir / ray_length;
vec3 ray_increment = step_size * unit_ray;

// initialize with ray starting point
// add noisy start position
float noise = 2.0 * back_frag.w;
vec3 starting_point = fragmentPos + noise * ray_increment;
vec3 current_point = starting_point;

// accumulated color
vec4 total_color = vec4(0, 0, 0, 0);
for (int i = 0; i < max_steps; ++i) {

// read intensity from volume texture and apply color palette
float intensity = getIntensity(current_point);
vec4 point_color = getSegmentedColor(intensity);

Appendix A. Ray Casting Shaders 71

// simple color correction:
// multiply the opacity with quality_ratio to appear more ←↩

bright in low rest rendering
float point_opacity = clamp(point_color.a * quality_ratio , ←↩

0.0, 1.0);
float contribution = (1.0 - total_color.a) * point_opacity;

// apply basic shading
// add sampled point 's color to the total_color
total_color.a += contribution;
vec3 normal = getNormal(current_point);
float brightness = clamp(dot(light_dir , normal), 0.5, 1.0);
vec3 final_color = brightness * contribution * point_color.←↩

xyz;

if (total_color.a >= 1.0) {
total_color.rgb +=

final_color * (intensity < 0.0 ? getAmbientOcclusion(←↩
current_point , normal) : 1.0);

// stop ray progression since the color is fully opaque
break;

}
total_color.rgb += final_color;

// march the ray
current_point += ray_increment;

vec3 ray_path = current_point - fragmentPos;
float distance_travelled_sq = dot(ray_path , ray_path);
// out of bounds
if (distance_travelled_sq > ray_length_sq)

break;
}

// when ray hits the background its color contribution should be ←↩
added

// by how much of the opacity is left
total_color.xyz += background_color * (1.0 - total_color.a);

// write the result
FragColor = vec4(total_color.xyz , 1);

}

73

Bibliography

[1] David Hoag. ‘Apollo Guidance and Navigation Considerations of Apollo IMU
Gimbal Lock’. In: (Apr. 1963).

[2] Martin A. Fischler & Robert C. Bolles. ‘Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Carto-
graphy’. In: 24.6 (June 1981), pp. 381–395.

[3] Stephen M. Stigler. ‘Gauss and the Invention of Least Squares’. In: The Annals
of Statistics 9.3 (1981), pp. 465–474.

[4] Thomas; Tom Duff Porter. ‘Compositing Digital Images’. In: Computer Graphics
18.3 (1984), pp. 253–259.

[5] Ken Shoemake. ‘Animating rotation with quaternion curves’. In: SIGGRAPH.
1985.

[6] Ken Shoemake. ‘Quaternions’. In: (1985).

[7] Jock D. Mackinlay. ‘Automating the Design of Graphical Presentations of Re-
lational Information’. In: 5 (1986), pp. 110–141.

[8] Edward R. Tufte. Envisioning Information. Graphics Pr, May 1990, p. 67.

[9] Alan Watt and M. Watt. Animation and Rendering Techniques. Addison-Wesley
Professional, Nov. 1992, pp. 21–26.

[10] Stephen B. Jarrell. Basic Statistics. William C Brown Communications, Nov.
1994, p. 492.

[11] Ben Shneiderman. ‘The Eyes Have It: A Task by Data Type Taxonomy for In-
formation Visualizations’. In: VL. 1996.

[12] Van Mersbergen and Audrey M. ‘Rhetorical Prototypes in Architecture: Meas-
uring the Acropolis with a Philosophical Polemic’. In: 46.2 (1998), pp. 194–213.

[13] Fumio Hayashi. Econometrics. Extremum Estimators. Princeton University Press,
2000.

[14] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,
May 2001.

[15] Jens H. Krüger and Rüdiger Westermann. ‘Acceleration techniques for GPU-
based volume rendering’. In: IEEE Visualization, 2003. VIS 2003. (2003), pp. 287–
292.

[16] Kenza Boussora and Said Mazouz. ‘The Use of the Golden Section in the Great
Mosque of Kairouan’. In: 6.1 (2004), pp. 194–213.

[17] Klaus E. et al. Real-Time Volume Graphics. A K Peters, Ltd, 2006.

[18] Jason Elliot. Mirrors of the Unseen: Journeys in Iran. Macmillan, 2006, pp. 277,
284.

[19] Carlos Eduardo Vaisman. ‘Finding Surface Normals From Voxels’. In: 2007.

74 BIBLIOGRAPHY

[20] Ward Cheney and David R. Kincaid. Linear Algebra: Theory and Applications.
Jones & Bartlett Learning, May 2008.

[21] N. Tatarchuk. ‘Starcraft 2 Effects & Techniques. Screen-Space Ambient Oc-
clusion’. In: Advances in Real-Time Rendering in 3D Graphics and Games Course
(2008), pp. 145–152.

[22] Andrew Gelman. Statistical Modeling, Causal Inference, and Social Science. 2009.
URL: https://andrewgelman.com/wp-content/uploads/2009/11/healthcare2004-
StateAgeIncome.png (visited on 01/10/2018).

[23] et al Jayaraman. Digital Image Processing. Tata McGraw Hill Education, 2009,
p. 272.

[24] Ricardo Marqués and Luís Paulo Santos. ‘GPU Ray Casting’. In: 2009.

[25] Dressaire C. et al. ‘Linear Covariance Models to Examine the Determinants of
Protein Levels in Lactococcus Lactis.’ In: Mol Biosyst 6.7 (2010), pp. 1255–64.

[26] Jacques Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Esri Press, Nov.
2010.

[27] Cristina Botella et al. ‘Treating cockroach phobia with augmented reality’. In:
Behavior therapy 41 3 (2010), pp. 401–13.

[28] Ingo Kelter. ‘Automatic Generation of Game Component Visualization’. June
2010.

[29] Wikimedia Commons. Golden Rectangle. June 2011. URL: https://en.wikipedia.
org/wiki/Golden_ratio#/media/File:SimilarGoldenRectangles.svg (vis-
ited on 01/10/2018).

[30] Wikimedia Commons. Pearson Correlation Coefficient. May 2011. URL: https://
en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:
Correlation_examples2.svg (visited on 01/10/2018).

[31] A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal
anatomy in complex trauma cases. 2013.

[32] Zhenyao Mo. WebGL 2.0 Arrives. Feb. 2017. URL: https://www.khronos.org/
blog/webgl-2.0-arrives (visited on 01/10/2018).

[33] National Electrical Manufacturers Associatio. DICOM Standard. 2018. URL: https:
//www.dicomstandard.org/ (visited on 01/10/2018).

[34] Mike Bostock. Data-Driven Documents. 2018. URL: https://d3js.org/ (visited
on 01/10/2018).

[35] Mike Bostock. Easing Functions For Smooth Animation. 2018. URL: https://
github.com/d3/d3-ease (visited on 01/10/2018).

[36] Alexis Deveria. Can I Use WebGL 2.0. 2018. URL: https : / / caniuse . com /
#search=webgl2 (visited on 01/10/2018).

[37] glMatrix. Javascript Matrix and Vector library for High Performance WebGL apps.
2018. URL: http://glmatrix.net/ (visited on 01/10/2018).

[38] Google. Device Metrics. 2018. URL: https://material.io/tools/devices/
(visited on 01/10/2018).

[39] Niels Leenheer. HTML5 Browser Support. 2018. URL: https://html5test.com/
results/desktop.html (visited on 01/10/2018).

[40] Mozilla. Cross-Origin Resource Sharing (CORS). 2018. URL: https://developer.
mozilla.org/en-US/docs/Web/HTTP/CORS (visited on 01/10/2018).

https://andrewgelman.com/wp-content/uploads/2009/11/healthcare2004-StateAgeIncome.png
https://andrewgelman.com/wp-content/uploads/2009/11/healthcare2004-StateAgeIncome.png
https://en.wikipedia.org/wiki/Golden_ratio#/media/File:SimilarGoldenRectangles.svg
https://en.wikipedia.org/wiki/Golden_ratio#/media/File:SimilarGoldenRectangles.svg
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient#/media/File:Correlation_examples2.svg
https://www.khronos.org/blog/webgl-2.0-arrives
https://www.khronos.org/blog/webgl-2.0-arrives
https://www.dicomstandard.org/
https://www.dicomstandard.org/
https://d3js.org/
https://github.com/d3/d3-ease
https://github.com/d3/d3-ease
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
http://glmatrix.net/
https://material.io/tools/devices/
https://html5test.com/results/desktop.html
https://html5test.com/results/desktop.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

BIBLIOGRAPHY 75

[41] Mozilla. Limitation: Linear filteringSection. 2018. URL: https : / / developer .
mozilla.org/en-US/docs/Web/API/OES_texture_float (visited on 01/10/2018).

[42] Mozilla. Running a simple local HTTP server. 2018. URL: https://developer.
mozilla.org/en- US/docs/Learn/Common_questions/set_up_a_local_
testing_server (visited on 01/10/2018).

[43] Jan Odvárko. jscolor - JavaScript Color Picker (Palette) With Touch Support. 2018.
URL: http://jscolor.com/ (visited on 01/10/2018).

[44] David Pogue. Video Disorientation. Mar. 2018. URL: https://www.scientificamerican.
com/article/video-looks-most-natural-horizontally-but-we-hold-
our-phones-vertically/ (visited on 01/10/2018).

[45] user rii-mango. Daikon. 2018. URL: https://github.com/rii-mango/Daikon
(visited on 01/10/2018).

[46] Andrey Sitnik. Easing Functions Cheat Sheet. 2018. URL: https://easings.net/
(visited on 01/10/2018).

[47] Robin Strand. Digital geometry. 2018. URL: https://www.it.uu.se/edu/
course/homepage/bild2/ht11/Lectures/bildan2_11_robin_F2.pdf.

[48] w3schools. How To Create a Modal Box. 2018. URL: https://www.w3schools.
com/howto/howto_css_modals.asp (visited on 01/10/2018).

[49] WebGL 2.0 Specification. 2018. URL: https://www.khronos.org/registry/
webgl/specs/latest/2.0/ (visited on 01/10/2018).

[50] Wikipedia. Single-precision floating-point format. Sept. 2018. URL: https://en.
wikipedia.org/wiki/Single-precision_floating-point_format (visited
on 01/10/2018).

[51] Charles Zaiontz. Basic Concepts of Correlation. 2018. URL: http://www.real-
statistics.com/correlation/basic-concepts-correlation/ (visited on
01/10/2018).

[52] Visit Customers. 3D Scatter Plot Visualization. URL: https://wci.llnl.gov/
simulation/computer-codes/visit/gallery (visited on 01/10/2018).

https://developer.mozilla.org/en-US/docs/Web/API/OES_texture_float
https://developer.mozilla.org/en-US/docs/Web/API/OES_texture_float
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/set_up_a_local_testing_server
http://jscolor.com/
https://www.scientificamerican.com/article/video-looks-most-natural-horizontally-but-we-hold-our-phones-vertically/
https://www.scientificamerican.com/article/video-looks-most-natural-horizontally-but-we-hold-our-phones-vertically/
https://www.scientificamerican.com/article/video-looks-most-natural-horizontally-but-we-hold-our-phones-vertically/
https://github.com/rii-mango/Daikon
https://easings.net/
https://www.it.uu.se/edu/course/homepage/bild2/ht11/Lectures/bildan2_11_robin_F2.pdf
https://www.it.uu.se/edu/course/homepage/bild2/ht11/Lectures/bildan2_11_robin_F2.pdf
https://www.w3schools.com/howto/howto_css_modals.asp
https://www.w3schools.com/howto/howto_css_modals.asp
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://www.khronos.org/registry/webgl/specs/latest/2.0/
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
http://www.real-statistics.com/correlation/basic-concepts-correlation/
http://www.real-statistics.com/correlation/basic-concepts-correlation/
https://wci.llnl.gov/simulation/computer-codes/visit/gallery
https://wci.llnl.gov/simulation/computer-codes/visit/gallery

	Abstract
	Acknowledgements
	Introduction
	Background
	Scatter plots
	Small Multiples
	GPU Ray Casting
	Transfer Function

	Project Architecture
	Client-Server Model
	Colon Measurements Data Set

	Application
	Introduction
	Application Layout
	 Developing for PC only

	Scatter Plots
	Plot Axes
	Plot Points
	Trend lines
	Transition Animations

	Small Multiples
	Matrix Legend and Abbreviations
	Guided Automatic Variable Exploration-Space Reduction
	Transition Animations

	Controllers
	Inspector Widget
	GPU Ray Caster
	Visualizing Dicom Images
	The Current State of WebGL And Limitations
	Visualizing Colon Segmentation
	Simple Lighting Model
	User Interaction

	Transfer Function Widget
	Smart Header
	Histogram View

	Evaluation
	Performance
	Improvements and Future Work

	Conclusions
	Ray Casting Shaders
	Bibliography

