
Eur. Phys. J. C (2018) 78:712
https://doi.org/10.1140/epjc/s10052-018-6193-2

Regular Article - Theoretical Physics

Cosmological perturbations in a class of fully covariant modified
theories: application to models with the same background as
standard LQC

Jaume de Haro1,a, Llibert Aresté Saló1,2,b, Emilio Elizalde3,4,c

1 Departament de Matemàtiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
2 TUM Physik-Department, Technische Universität München, James-Franck-Str.1, 85748 Garching, Germany
3 Institute for Space Sciences, ICE/CSIC-IEEC, Campus UAB, Carrer de Can Magrans s/n, Bellaterra, 08193 Barcelona, Spain
4 International Laboratory for Theoretical Cosmology, TUSUR University, 634050 Tomsk, Russia

Received: 28 June 2018 / Accepted: 25 August 2018 / Published online: 4 September 2018
© The Author(s) 2018

Abstract Bouncing cosmologies are obtained by adding to
the Einstein–Hilbert action a term of the form

√− g f (χ),
with χ a scalar depending on the Hubble parameter only,
not on its derivatives, and which is here shown to arise from
the divergence of the unitary time-like eigenvector of the
stress tensor. At background level, the dynamical equations
for a given f -theory are calculated, showing that the sim-
plest bouncing cosmology resulting leads to exactly the same
equations as those for holonomy corrected Loop Quantum
Cosmology (LQC). When dealing with perturbations, the
equation for tensor ones is the same as in General Relativity
(GR); for scalar perturbations, when one uses the f -theory
which leads to the same background as the standard version
of holonomy corrected LQC, one obtains similar equations
(although a bit more elaborated) as those coming from LQC
in the so-called deformed algebra approach.

1 Introduction

One of the most simple bouncing backgrounds (see [1–3]
for recent reviews about bounces) is obtained from holon-
omy corrected Loop Quantum Cosmology (LQC), where
the corresponding Friedmann equation depicts an ellipse
on the plane (H, ρ) [4–9], being H the Hubble parame-
ter and ρ the energy density. As shown in several papers,
this simple background can be mimicked by modifying the
Einstein–Hilbert action through the introduction of a term of
the form

√−g f (χ) where g is the determinant of the met-
ric, f is a well-known function [10–13] and χ is a scalar,
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only depending on H but not on its derivatives. The prob-
lem with this method is to actually find a scalar that for syn-
chronous observers in the Friedmann–Lemaître–Robertsont–
Walker (FLRW) spacetime will only depend on the Hubble
parameter.

From our viewpoint the simplest scalar is the extrinsic
curvature [14], which appears in a natural way when using the
ADM formalism [15]. Disappointingly, this is not a covariant
theory because the extrinsic curvature is not a true scalar in
the sense that it depends on the slicing chosen and, thus, its
use is only justified if there exists a preferred foliation of the
spacetime. Following the spirit of Weyl’s principle (see [16]
for a historical review), one could choose a preferred slicing
as follows. The time-like eigenvector of the stress tensor,
which always exists for realistic matter (see pages 89–90 of
[17]), generates a preferred non-crossing family of world-
lines and one can construct, at any given time t , a family of
hypersurfaces orthogonal to these world-lines, obtaining in
this way the so-called co-moving slicing.

Another simple scalar could be obtained by working in
the Weitzenböck spacetime (the usual Levi-Civita connec-
tion is replaced by the Weitzenböck one) [18], where torsion
does not vanish. In this spacetime, the scalar torsion for syn-
chronous observers in the flat FLRW geometry is equal to
minus three times the Hubble parameter, thus satisfying the
required property. Unfortunately, as has been shown in [19],
this theory is not locally Lorentz invariant.

For this reason, people have kept looking for a really
covariant invariant, and have dealt with the Carminati–
McLenaghan invariants [20,21], with a general function of
the Ricci and Gauss–Bonnet scalars or with second deriva-
tives of the Riemann tensor [22]. The problem with these
purely gravitational invariants is that they are quite involved
and lead to very complicated equations for cosmological per-
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turbations. Moreover, in our approach – not using the princi-
ple of the limiting curvature hypothesis considered in [22] –
they can easily lead to Ostrogradski or gradient instabilities,
as well as to the appearance of ghost fields. All these prob-
lems led specialists to explore other ways, such as modified
mimetic gravity [13,23,24], so as to find out such scalar.

Following these arguments, guided by Weyl’s principle
and taking into account that for co-moving observers in flat
FLRW spacetime the divergence of a unitary time-like vector
is equal to − 3H , in the present paper we propose as our fully
covariant scalar the divergence of the unitary time-like eigen-
vector of the stress tensor, which, in the case of a universe
filled up with a scalar field φ minimally coupled to gravity,
is equal to uμ = φ,μ√

φ,νφ,ν
(throughout the work we will use

the notation: φ,μ ≡ ∂μφ = ∇μφ).
With this covariant scalar, we will show how to construct

f -theories leading to bouncing backgrounds and calculate
the perturbed equations for scalar and tensor perturbations
for a given f -theory. When dealing with perturbations and
working in the longitudinal gauge – where the Newtonian
potential, namely �, and the variation of the scalar field,
namely δφ, are the dynamical variables – the corresponding
dynamical system turns out to be a coupled one. This is an
essential difference with respect to theories such as General
Relativity (GR) or LQC in the deformed algebra approach,
where the dynamical equation for the potential � decouples
(δφ does not appear, see for instance [30,31]).

Once these equations are obtained, we study some char-
acteristics of the matter-ekpyrotic bounce scenario [34,35]
as the calculation of some spectral quantities and the reheat-
ing temperature via the gravitational particle production of
massless particles, in the contracting regime, during the phase
transition from matter domination to the ekpyrotic regime.

The manuscript is organized as follows: In Sect. 2 we
present our class of modified gravitational theories and obtain
the corresponding dynamical equations. We study them at the
background level and find which is the model that leads to
the simple bounce predicted by holonomy corrected LQC. A
Hamiltonian analysis of our theory is performed in Sect. 3,
which leads to the conclusion that the present theory, as in
the case of mimetic gravity, has one more degree of freedom
than GR. In Sect. 4, we study scalar and tensor perturbations.
For scalar perturbations, working in the longitudinal gauge,
we obtain the equations for the Newtonian potential and for
the perturbed part of the scalar field, showing that they are
coupled. Moreover, we derive the corresponding Mukhanov–
Sasaki equations for our theory. Then, dealing with tensor
perturbations, we show that, since the modification of our
theory is performed on the matter sector, the equations must
be the same as for GR. Section 5 is devoted to the comparison,
at the perturbative level, of our model which leads to the
same background as holonomy corrected LQC, with other

theories which also lead to the same background, as: LQC
in the deformed algebra approach [31–33], teleparallel LQC
[36,37], extrinsic curvature LQC [14] and mimetic LQC [12,
13,24]. In Sect. 6, we study the matter-ekpyrotic scenario
applied to the model that leads the same background as LQC.
We calculate the spectral index and its running and show that
they match the most recent observational data. Moreover, we
study the reheating process via gravitational massless particle
production. Finally, the last Section is devoted to conclusions.

The units used throughout the paper are h̄ = c = 1 =
Mpl = 1, where Mpl is the reduced Planck mass with the
convention that a temporal vector vμ satisfies vμvμ < 0 and
with the notation:

1. ϕ,μ ≡ ∂μϕ = ∇μϕ for a given scalar ϕ.
2. ḡ is the unperturbed part of g.
3. gχ means derivative of g with respect to χ and gφ deriva-

tive of g with respect to φ, for a given function g.

2 A class of modified gravitational theories

All models to be considered here come from a simple action,
which consists in adding a term of the form f (χ) to the
Einstein–Hilbert action. Here f is a given function which, in
order to recover GR, vanishes at low energy densities, while
χ is a fully covariant scalar built from the scalar field that
fills the whole universe and whose value in any co-moving
slicing of the flat FLRW spacetime is proportional to the
Hubble parameter. More precisely, we consider

S =
∫ √−g

(
1

2
R + f (χ) + Lmatt

)
d4x, (1)

R being the scalar curvature. We have assumed that the matter
sector of the universe is described by a scalar field φ with a
potential, V (φ) which is minimally coupled to gravity and
whose Lagrangian is given by

Lmatt =
(

−φ,μφ,μ

2
− V (φ)

)
, (2)

and χ ≡ −∇μuμ, being the vector uμ the time-like unitary
eigenvector of the stress tensor

T ν
μ = φ,μφ,ν −

(
1

2
φ,αφ,α + V (φ)

)
δν
μ, (3)

that is,

uμ = φ,μ√−φ,αφ,α

. (4)

The dynamical equations are obtained by performing the
variation of the action with respect to gμν , leading to

Gμν = Tμν + T̃μν, (5)
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where Gμν = Rμν − 1
2 gμν R is the well-known Einstein

tensor, while the tensor T̃μ,ν , coming from the term f (χ), is
given by

T̃μν ≡ ( f − χ fχ + uαχ,α fχχ

)
gμν

− fχχ (uνχ,μ + uμχ,ν + uαχ,αuμuν). (6)

On the other hand, the variation of the action with respect
to the scalar field φ leads to the following conservation equa-
tion,

− �φ+Vφ−∇μ

(
1√−φ,αφ,α

(
∂μ fχ +uμuα∂α fχ

))=0,

(7)

which differs from the usual one −�φ + Vφ = 0. However,
for the FLRW geometry it leads to the standard conservation
equation,

φ̈ + 3H φ̇ + Vφ = 0. (8)

2.1 The background

Considering backgrounds (i.e., solutions of (8)) satisfying
˙̄φ(t) > 0 all the time, the simplest way to obtain the
dynamical equations is as follows: We consider the flat met-
ric ds2 = −N 2(t)dt2 + a2(t)δi j dxi dx j , which leads to
χ = 3H

N , where N (t) is the lapse function. Hence, after
integration by parts, the action becomes

S = V
∫

a3 N

(
−3H2

N 2 + f̄

(
3H

N

)
+ Lmatt

)
dt, (9)

where V is the volume of the fixed elementary spatial cell,
where all spatial integrations are performed, and where the
matter Lagrangian simplifies to

Lmatt =
˙̄φ2

2N 2 − V (φ̄). (10)

Performing the variation with respect to N and taking at
the end N = 1, one obtains the modified Friedmann equation
for synchronous observers

ρ = 3H2 + f̄ − 3H f̄χ , (11)

which depicts a curve on the plane (H, ρ). Finally, taking its
temporal derivative and using the conservation equation (8)
in the form ρ̇ = −3H(P + ρ), one finds the Raychaudhuri
equation(

1 − 3

2
f̄χχ

)
Ḣ = −1

2
(ρ + P). (12)

Remark 2.1 A different way to obtain such equations is
to directly consider the metric for synchronous observers
ds2 = −dt2 + a2δi j dxi dx j and use the equations 0 − 0
and i − i , which also leads to the modified Friedmann and
Raychaudhuri equations.

Therefore, given a curve ρ = ḡ(3H) = ḡ(χ̄) on the plane
(H, ρ), so as to obtain the corresponding f̄ (χ̄) theory one
has to solve the first-order differential equation

χ̄ f̄χ − f̄ − 1

3
χ̄2 + g(χ̄) = 0, (13)

whose solution is

f̄ (χ̄) = +1

3
χ̄2 − χ̄

∫
g(χ̄)

χ̄2 dχ̄ . (14)

Note that, in order to obtain a bouncing background, a
necessary condition is to choose a curve on the plane (H, ρ)

cutting two or more times the axis H = 0. One of those
points has to be (0, 0) because at low energy densities a viable
bouncing background has to approach to GR, i.e., the chosen
curve has to approach to the parabola H2 = ρ

3 and the other
points cutting the axis H = 0 have the form (0, ρi ) with
ρi > 0.

The simplest example is the ellipse coming from the
holonomy corrected Friedmann equation in standard LQC
[38–40] (Note that here we are not dealing with the recent
model of LQC proposed by Dapor and Liegener in [41])

ρ = ḡ(χ̄) = ρc

2

⎛
⎝1 ±

√
1 − 4χ̄2

3ρc

⎞
⎠

⇐⇒ H2 = ρ

3

(
1 − ρ

ρc

)
, (15)

where the so-called critical density has the value ρc ∼
0.4ρpl = 0.4 × 64π2 ∼= 252 (see for instance [7]). From
this equation one can see that the Hubble parameter vanishes
at ρ = 0 and ρ = ρc, i.e., the points cutting the axis H = 0
are (0, 0) and (0, ρc), as one can see from Fig. 1.

Fig. 1 Ellipse depicted by the Friedmann equation in standard LQC,
and its dynamics for a non-phantom fluid with linear Equation of State
(EoS) P = wρ
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For this background, using Eq. (14), the corresponding
f -theory is given by

f̄ (χ̄) = 1

3
χ̄2 + ρc

2

(
1 −
√

1 − s2 − s arcsin s
)

, (16)

where s ≡ 2√
3ρc

χ̄ and the functions
√

1 − s2 and arcsin s

are bi-valued [21]. For the theory to be well defined, since
the ellipse has two branches – the upper part correspond-

ing to ρ = ρc
2

(
1 +
√

1 − 4χ̄2

3ρc

)
and the lower one ρ =

ρc
2

(
1 −
√

1 − 4χ̄2

3ρc

)
, we have to choose a convenient pre-

scription. For example, we can choose the sign of the square
root as positive (respectively negative) in the lower (respec-
tively upper) branch and arcsin s ≡ ∫ s

0
1√

1−s̄2 ds̄ in the lower

branch, whereas arcsin s ≡ ∫ s
0

1√
1−s̄2 ds̄ + π , in the upper

one, with the same criteria for the sign of the square root,
thus obtaining that the function f̄ is continuous in all the
ellipse.

Note also that, a simple calculation shows that, for this
particular f -theory, the modified Friedmann and Raychaud-
huri equations read

H2 = ρ

3

(
1 − ρ

ρc

)
and Ḣ = −ρ + P

2

(
1 − 2ρ

ρc

)
,

(17)

and coincide with the ones obtained in holonomy corrected
LQC [42,43].

A final remark is in order. Since in our case the mat-
ter sector is depicted by a non-phantom scalar field φ̄ (see
Eq. (10)), we will have infinitely many backgrounds because
the conservation equation ¨̄φ + 3H ˙̄φ + Vφ(φ̄) = 0 is a sec-
ond order differential equation. Effectively, for any initial
condition φ̄(0) = α0 and ˙̄φ(0) = α1, one has a different
background. Therefore, if we choose a curve ρ = g(χ̄) in
the plane (H, ρ) containing a point of the form (0, ρ̃) with

ρ̃ > 0 and initial conditions satisfying
α2

1
2 + V (α0) = ρ̃, its

corresponding solution will lead to a bouncing background
provided that Vφ(α0) �= 0.

As an example one can consider the matter bounce sce-
nario in LQC, which is given by the potential V (φ) =
2ρc

e−√
3φ

(1+e−√
3φ)2

[50]. In this case, the conservation equation

has the following analytic solution

φ̄ = 2√
3

ln

(√
3

4
ρct +

√
3

4
ρct2 + 1

)
, (18)

leading to the following background

a(t) =
(

3

4
ρct2 + 1

)1/3

, H =
1
2ρct

3
4ρct2 + 1

,

ρ = ρc
3
4ρct2 + 1

, (19)

which is the same nonsingular bouncing background obtained
solving the equation (17) when one considers a pressureless
fluid and whose dynamics is depicted in Fig. 1. All the other
solutions, which lead to different backgrounds, are obtained
choosing different initial conditions (see Figure 3 of [14],
where it is showed that nearly all solutions lead to nonsingu-
lar bouncing backgrounds).

Moreover, since we are dealing with theories beyond GR,
in order to have a bouncing background it is not needed
to violate the null energy condition ρ + P ≥ 0 near the
bounce using quintom or Lee–Wick matter (see [44] and ref-
erences therein) because the bounce occurs when the value
of the energy density is strictly positive. For example, look-
ing at (19) one can see that at the bouncing time t = 0 the
energy density is given by ρc and the pressure, which could
be obtained from the Raychaudhuri equation (17), is zero.
So, the null energy condition is fulfilled at the bounce.

3 Hamiltonian analysis

In this section we perform a Hamiltonian analysis in order
to find the degrees of freedom of our model. To this end, we
will use the ADM formalism [15], where the line element
acquires the form

ds2 = gμνdxμdxν = −N 2dt2

+γi j (dxi + N i dt)(dx j + N j dt), (20)

the matter Lagrangian becomes

Lmatt =
(

φ̇2

2N 2 − N i

N 2 φ̇φ,i

−1

2

(
γ i j − N i N j

N 2

)
φ,iφ, j − V (φ)

)
, (21)

and the action is given by

S =
∫ ∞

−∞

{∫
t

N
√

γ

(
1

2
(R + I)

+ f (−∇μuμ) + Lmatt

)
d3x

}
dt, (22)

where R is the intrinsic curvature, i.e. the scalar curvature
of t , and I = Ki j K i j − (K i

i )
2 is the extrinsic curvature

scalar, being

Ki j = 1

2N

(
Di N j + D j Ni − γ̇i j

)
(23)

the extrinsic curvature tensor, with D the induced Levi-Civita
connection in the slicing t .
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Introducing a Lagrangian multiplier field, namely β, the
action becomes

S =
∫ ∞

−∞

{∫
t

N
√

γ

(
1

2
(R + I) + f (χ)

+β(χ + ∇μuμ) + Lmatt

)
d3x

}
dt

=
∫ ∞

−∞

{∫
t

N
√

γ

(
1

2
(R + I) + f (χ)

+βχ − β,μuμ + Lmatt

)
d3x

}
dt, (24)

with the canonical momenta being

Pi j = 1

2
√

γ (K i j − K l
l γ

i j ), Pβ =
√

γ

N
(u0 − N i ui ),

Pφ =
√

γ

N
(φ̇ − φ,i N i ) − N

√
γ√−φ,νφ,ν

(β,0 + u0uμβ,μ),

(25)

and the constraints

Pχ ≈ 0, PN ≈ 0, PNi ≈ 0. (26)

Note that, from the equation Pβ =
√

γ

N (u0 − N i ui ), we
obtain φ̇ as a function of Pβ . In fact, taking the square of this

expression one gets −φ,νφ
,ν = γ γ i j φ,i φ, j

P2
β −γ

and, thus,

φ̇ =
N
√

γ i jφ,iφ, j Pβ√
P2

β − γ
+ N iφ,i . (27)

And, from Pφ =
√

γ

N (φ̇−φ,i N i )− N
√

γ√−φ,νφ,ν
(β,0+u0uμβ,μ),

we readily obtain β̇ as a function of Pβ and Pφ .
What is important is that, after the Legendre transforma-

tion, one can get the Lagrangian as follows,

H =
∫

t

(NH + N iHi + Hmatt

+αN PN + αNi PNi + αχ Pχ )d3x, (28)

where Hmatt is the matter part of the Hamiltonian; αN , αNi

and αχ are Lagrange multipliers, and the functions H and
Hi lead to the hamiltonian and diffeomorphism constraints,
which come from imposing stability under time evolution of
the constraints PN ≈ 0 and PNi ≈ 0, i.e., ṖN = {PN , H} =
H ≈ 0 and ṖNi = {PNi , H} = Hi ≈ 0.

Now we examine the stability of the constraint Pχ .
Looking for the only term in the Hamiltonian where χ

appears and for the term where it appears in the action
(24), i.e. −N

√
γ ( f (χ) + βχ), one has Ṗχ = {Pχ , H} =

−N
√

γ ( f ′(χ) + β), which leads to the constraint Cχ ≡
f ′(χ) + β ≈ 0. Finally, since Ċχ = {Cχ , H} =
N

√
γ f ′′(χ)αχ , the stability of Cχ is ensured by fixing the

Lagrange multiplier αχ as αχ = 0.

Summing up, we have obtained the constraints H ∼= 0,
Hi ∼= 0, Pχ

∼= 0 and Cχ
∼= 0, and the canonical pairs

(qi j , Pi j ), (φ, Pφ), (χ, Pχ ) and (β, Pβ). Then, from the con-
straints Pχ

∼= 0 and Cχ
∼= 0 one may remove two variables,

for example Pχ
∼= 0 and β ≈ − f ′(χ), thus obtaining, as

in mimetic gravity [12], one more degree of freedom than in
the case of GR. However, as we will show in next Section,
when dealing with perturbations in longitudinal gauge, the
degrees of freedom are the Newtonian potential � and the
perturbation of the scalar field δφ for scalar perturbations and
two degrees for the tensor ones, exactly the same as in GR.
This is the same as what happens in mimetic gravity [45],
where the degrees of freedom are the perturbed part of the
mimetic field and δφ.

4 Perturbations

In this section we will calculate, for a given f -theory, the
scalar and tensor perturbations using for scalar perturbations
the longitudinal gauge (see for a review of the used setup
[28,29]).

4.1 Scalar perturbations

In Newtonian gauge the the line element is given by [30]

ds2 = −(1 + 2�)dt2 + (1 − 2�)a2δi j dxi dx j . (29)

where the potentials � and � coincide with the gauge invari-
ant ones.

A simple calculation leads to δu0 = � and δuk = ∂kδφ˙̄φ ,

where δφ, in this gauge, coincides with the δφgi (the gauge
invariant perturbation of the scalar field). Then, at linear
order, we have

χ = 3H − 3(�̇ + H�) − 1

a2 ˙̄φ
�δφ. (30)

To obtain the dynamical equations for perturbations, note
first of all that the perturbed i − j equation of (5) for i �= j
leads to the identity � = �. Thus, perturbing the i − 0, i − i
and 0 − 0 equations of (5) one gets, respectively,

�̇ + H� = 1

2
˙̄φδφ − f̄χχ

2
δχ, (31)

2
(
�̈ + 4H�̇ + (3H2 + 2Ḣ)�

)

= − ˙̄φ(� ˙̄φ − δφ̇) − V̄φδφ + δ( f − χ fχ + uαχ,α fχχ ),

(32)

2

(
3H2� + 3H�̇ − 1

a2 ��

)

= ˙̄φ(� ˙̄φ − δφ̇) − V̄φδφ

+δ( f − χ fχ − uαχ,α fχχ ) + � ˙̄fχ − ∂t ( f̄χχδχ).

(33)
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Adding equations 0 − 0 and i − i and using i − 0, one gets

�̈ − 1

a2 �� + H�̇ + 2Ḣ�

= ¨̄φδφ + 1

2
� ˙̄fχ − 1

2
∂t ( f̄χχδχ), (34)

where we have introduced the notation � ≡ 1
1− 3

2 f̄χχ
.

We may write equation i − 0 as:

¨̄φδφ = 2 ¨̄φ
˙̄φ

�̇ + H�

�
−

¨̄φ
˙̄φ

f̄χχ

�δφ

a2 ˙̄φ
, (35)

which leads to the following equation for the potential �,

�̈ − �

a2 �� +
(

H − 2
¨̄φ
˙̄φ

− �̇

�

)
�̇

+
(

2

(
Ḣ − H

¨̄φ
˙̄φ

)
− H

�̇

�

)
�

= � ˙̄φ2

2
∂t

(
f̄χχ�δφ

a2 ˙̄φ3

)
, (36)

which, for the case of the choice of f given in (16), differs
from the corresponding equation of LQC in the deformed
algebra approach [31,32] only in the right hand side term,
which in the last approach vanishes.

On the other hand, the equation for δφ is obtained from
the linearization of the conservation equation (7)

δφ̈ + 3Hδφ̇ − 1

a2 �δφ + Vφφδφ − 4 ˙̄φ�̇

+2Vφ� = � ˙̄φ
a2 �

(
f̄χχ�δφ

a2 ˙̄φ3

)
. (37)

From these equations, we will calculate the Mukhanov–
Sasaki (M–S) equation for scalar perturbations in our
approach. First of all, note that equation i − 0 can be written
as

d

dt

(
a�

H

)
= a� ˙̄φ2

2H2

[
Hδφ

˙̄φ
+ � + H

a2 ˙̄φ3 f̄χχ�δφ

]
. (38)

On the other hand, equation 0 − 0 takes the form

2

(
3H2� + 3H�̇ − 1

a2 ��

)

= ˙̄φ(� ˙̄φ − δφ̇) − V̄φδφ − 3H f̄χχδχ, (39)

and, after a somewhat cumbersome calculation, one can see
that it is equivalent to the following one,

1

a2 �� =
˙̄φ2

2H

d

dt

[
Hδφ

˙̄φ
+ � + H

a2 ˙̄φ3 f̄χχ�δφ

]

−
˙̄φ2

2

d

dt

(
f̄χχ�δφ

a2 ˙̄φ3

)
. (40)

Introducing gauge-invariant variables (recall we are work-
ing in the Newtonian gauge) and using the conformal time

v = a

(
δφ + φ̄′

H� + 1

(φ̄′)2 f̄χχ�δφ

)
, z = a

φ̄′

H ,

u = 2a�

φ̄′√�
, and θ = 1

z
√

�
, (41)

whereR ≡ v
z = �− H

Ḣ
(�̇+H�) is the curvature fluctuation

in co-moving coordinates, one obtains the following M–S
equations

√
��u = z

(
v

z

)′
− φ̄′

(
a f̄χχ�δφ

(φ̄′)3

)′
, θ
(u

θ

)′ = √
�v,

(42)

which, after inserting the second into the first one, lead to the
equation for the potential (36) in the simple form

u′′ − ��u − θ ′′

θ
u = φ̄′√�

(
a f̄χχ�δφ

(φ̄′)3

)′
, (43)

while the equation for the variable v, after taking the Lapla-
cian from the second equation and using the first one,
becomes

v′′ − ��v − z′′

z
v = 1

z

(
zφ̄′
(

a f̄χχ�δφ

(φ̄′)3

)′)′
. (44)

Note that in our approach, the right hand side of Eq. (44)
does not vanish, meaning that the variable v, which encodes
the scalar perturbations (it depends on � and δφ), is not
independent and one needs another equation in order to cal-
culate the evolution of the scalar perturbations. Fortunately
in the matter (or matter-ekpyrotic) scenario, in the contract-
ing phase, the pivot scale leaves the Hubble radius at rather
low energy densities, as compared to the Planck one, so the
corrections due to f can be safely disregarded and, thus, v

satisfies approximately the usual equationv′′−�v− z′′
z v = 0.

This finally means that the calculation of the spectral quan-
tities, such as the spectral index, its running, and the ratio of
tensor to scalar perturbations, can safely be done using GR
in the contracting phase, as we will show in next section.

On the other hand, to calculate the evolution of the scalar
perturbations through time, we need two equations, since the
equations for � and δφ are coupled. In this case, solving the
system of Eqs. (36) and (37), we will obtain such evolution.
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The best suited variables for that are u and δσ ≡ aδφ, with
the corresponding dynamical equations being
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u′′ − ��u − θ ′′
θ

u = φ̄′√�

(
f̄χχ�δσ

(φ̄′)3

)′
,

δσ ′′ − �δσ + a2Vφφδσ − 2φ̄′a
(
Hu
a2θ

)′

+ aHVφu
θ

= �φ̄′�
(

f̄χχ�δσ

(φ̄′)3

)
.

(45)

We now have to look for the initial conditions for a matter or
matter-ekpyrotic bouncing scenario [34,35,49]. Using that at
very early times we are in the framework of GR, in Fourier

space, we will have vk → e−ikτ√
2k

when τ → −∞. At very

early times, equation �u = z
(

v
z

)′
holds and, since we are

in a matter domination epoch, we have uk → i e−ikτ

k
√

2k
. Finally,

from the relation

v = δσ + (φ̄′)2

2H u ∼= δσ + 3

2
Hu ∼= δσ, (46)

one obtains the well-known result δσk → e−ikτ√
2k

when τ →
−∞. Thus, the asymptotic conditions at very early times are

uk = i e−ikτ

k
√

2k
and δσk = e−ikτ√

2k
.

A final remark is in order. In a bouncing scenario, as for
instance the matter-ekpyrotic one, at early times GR holds,
meaning that f̄χχ could be disregarded and thus obtaining
for the variable v, in Fourier space, the classical equation
v′′

k + (k2 − a′′
a )vk = 0. Then, when the pivot scale leaves

the Hubble radius, i.e. in the long wavelength approximation
(k2 � a2 H2), one can safely disregard the Laplacian terms
which appear on the right hand side of Eq. (44) (see the end
of section 4 in [50]). And maybe the same happens with the
right hand side of our Eq. (44) because it contains a Laplacian.
If so, Eq. (44), in the long wavelength approximation, will
become, as usual, v′′

k − z′′
z vk = 0 and, for the f -theory given

by (16), we will recover the results obtained in LQC using the
deformed algebra approach [34,35,49]. Anyway, this has to
be properly checked by solving numerically the system of
Eq. (45).

However, we want to stress that the system (45) can in
fact be solved iteratively, taking the right hand side term as a
perturbation (when the pivot scale is well inside the Hubble
radius, which happens at very early times, the right hand side
term can be dismissed, since GR holds, and after the pivot
scale leaves the Hubble radius, i.e. in the long wavelength
approximation, the Laplacian terms can be dismissed too).
In fact, at very early times, disregarding the right hand term,
since the universe is matter-dominated, the equation for u is,
in Fourier space,

u′′
k + k2uk − 6

τ 2 uk = 0. (47)

Its solution satisfying the asymptotic condition uk = i e−ikτ

k
√

2k
reads

u(0)
k = 1

k

√−πτ

4
H (1)

5
2

(−kτ)= ie−ikτ

k
√

2k

(
1 − 3

k2τ 2 − 3i

kτ

)
,

(48)

where H (1)
5
2

is a Hankel’s function, and the super-index (0)

means zero order approximation. On the other hand, when
the pivot scale has left the Hubble radius, i.e. when k2τ 2 � 1,
one has

u′′
k − θ ′′

θ
uk = 0. (49)

Note that, in the case of the matter bounce scenario, given

by the potential V = 2ρc
e−√

3φ

(1+e−√
3φ)2

, and choosing the solu-

tion (18) which leads to the background (19) mimicking the
same background as a pressureless fluid, one can see that
the function θ ′′

θ
, which is symmetric with respect to the con-

tracting and expanding phase, satisfies that in the contract-
ing regime is increasing from ρ = 0, where it vanishes, to
ρ = ρc

2 , and decreasing from ρ = ρc
2 to the bounce, which

occurs at ρ = ρc, and where one has
∣∣∣ θ ′′

θ

∣∣∣ = 5
4ρc ∼= 315,

which, as we will see in Sect. 6, is bigger than the pivot scale
k∗ ∼ 5×10−33aE � ρc. Then, the pivot scale, which occurs
at a very early time, namely t = −tH , reenters to the Hubble
radius at time t = tH , so in this case the Eq. (49) holds from
−tH to tH and the Eq. (47) holds at very early and late times.

The solution of (49) is, then,

u(0)
k = C1(k)θ + C2(k)θ

∫ τ

τI

1

θ2 d τ̄ �⇒ �
(0)
k = H

2aθ
u(0)

k

= C1(k)
H

2a2 +C2(k)

(
1− H

HI

(aI

a

)2−H ∫ τ

τI
a2d τ̄

a2

)
,

(50)

where the sub-index I refers to an early time where GR holds,
and the coefficients C1(k) and C2(k) are obtained by match-
ing both expressions of uk in (48) and (50) when k2τ 2 � 1.

Once this solution has been obtained, we consider the i −0
equation, which can be written as follows,

1

�
(�′

k + H�k) = φ̄′

2a

(
1 − k2

(φ̄′)2
f̄χχ

)
δσk . (51)

Inserting �
(0)
k on it, one gets δσ

(0)
k . Then, to find the new

iteration of u(1)
k , one has to solve the equation

u′′
k + k2uk − θ ′′

θ
uk = −k2φ̄′√�

(
f̄χχδσ

(0)
k

(φ̄′)3

)′
, (52)

using the well-known method of variation of constants for
second-order differential equations (see for example Chapts.
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13–17 of [51]). When one has u(1)
k one calculates �

(1)
k and,

inserting the result in (51), one gets δσ
(1)
k . And, thus, the new

iterations are iteratively obtained and a fully fledged method
is constructed.

Alternatively, one could also deal directly with Eq. (44),
considering the right hand side as a perturbation. In Fourier
space, at very early times this equation becomes

v′′
k + k2vk − 2

τ 2 vk = 0, (53)

whose solution satisfying the corresponding asymptotic is

v
(0)
k = e−ikτ

√
2k

(
1 − i

kτ

)
. (54)

When the pivot scale leaves the Hubble radius one can use
the long wavelength approximation (for the matter bounce
scenario using the background (19) the function z′′

z is sym-
metric with respect to the expanding and contracting phase,
being an increasing function in the whole contracting period.
Thus, if the pivot scale leaves the Hubble radius at t = −tH

it reenters at t = tH )

v′′
k − z′′

z
vk = 0, (55)

whose solution is [37]

v
(0)
k = B1(k)z + B2(k)z

∫ τ

−∞
1

z2 d τ̄ . (56)

At early times, if one deals with the matter bounce scenario
with the background (19), this expression is equal to v

(0)
k =

− B1(k)

4
√

3
ρcτ

2 + 4B2(k)√
3ρc

1
τ

, which one has to match with (54) so

as to obtain

B1(k) =
√

8

3

k3/2

ρc
and B2(k) = −i

√
3

8

ρc

2k3/2 . (57)

When one has the expression of v
(0)
k one can use its defini-

tion to write �
(0)
k as a function of δσ

(0)
k . Then, inserting this

expression into Eq. i − 0, one obtains a solvable first-order
differential equation in δσ

(0)
k . To obtain the next iteration one

has to solve, using the method of variation of constants for
second order differential equations, the equation

v′′
k +
(

k2 − z′′

z

)
vk = −k2

z

(
zφ̄′
(

f̄χχδσ
(0)
k

(φ̄′)3

)′)′
. (58)

Once v
(1)
k has been obtained, one has to use the definition of

v and Eq. i − 0 to find δσ
(1)
k , and so continue successively

to obtain the next iteration.
For example, we take the background (19). Since from the

Eq. (51) one can see that the function δσ
(0)
k (t) has two simple

poles, one in the expanding and the other in the contracting

phase, namely t+ > 0 and t− = −t+, to regularize the inte-
gral one has to add an imaginary part to the poles obtaining
t+ + iε and t− − iε, then after an integration by parts one
will have

v
(1)
k = B1(k)z + B2(k)z

∫ τ

−∞
1

z2 d τ̄

− k2z
∫ τ

−∞
φ̄′

z

(
f̄χχδσ

(0)
k

(φ̄′)3

)′
d τ̄

∼= B2(k)z
∫ ∞

−∞
1

z2 d τ̄ , (59)

due, as we will show at the end of Sect. 6, to the small value
of the pivot scale. One can also see it taking into account that

B1(k) ∼ k3/2

ρc
, B2(k)

∫ ∞

−∞
1

z2 d τ̄ ∼
√

ρc

k3/2 ,

k2
∫ τ

−∞
φ̄′

z

(
f̄χχδσ

(0)
k

(φ̄′)3

)′
d τ̄ ∼ k7/2

ρ2
c

. (60)

Then, since the pivot scale k∗ leaves the Hubble radius
at time −t∗, when holonomy corrections could be disre-
garded, that is, when −t∗ � 1√

ρc
, which is equivalent to

k∗ = a(t∗)H(t∗) � √
ρc, one can see that the dominant

term in (59) is B2(k)z
∫∞
−∞

1
z2 d τ̄ .

Therefore, we have obtained approximately the same
value as in the first iteration, which coincides with the result
of LQC [37,49], meaning that in this iteration one will have

P ≡ k3

2π2

∣∣∣∣vk

z

∣∣∣∣
2 ∼= ρc

576
. (61)

4.2 Tensor perturbations

The metric for tensor perturbations is [30]

ds2 = −dt2 + a2(δi j − hi j )dxi dx j , (62)

where hi j is a symmetric, traceless and transverse tensor
(hi

i = ∂i hi j = 0).
Since the field φ does not affect the tensor perturbations,

it is clear that in this theory this equation will coincide with
the corresponding one in GR, that is, [30]

ḧ j
i + 3Hḣ j

i − 1

a2 �h j
i = 0. (63)

Denoting h j
i by h and introducing the variable vT = ah, in

Fourier space this equation becomes

v′′
T,k +

(
k2 − a′′

a

)
vT,k = 0. (64)
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5 Comparison with other models

We will now compare our approach with a number of other
different models, all of them sharing as a background the
same as for holonomy corrected LQC. These models are:
LQC in the deformed algebra approach, the teleparallel
LQC approach, the intrinsic curvature LQC approach and the
mimetic LQC approach. First, we shall review the dynamical
equations for each of these theories:

1. LQC in the deformed algebra approach [31,32].
In this case the equation for the potential � decouples. It
is given by

�̈ − �

a2 �� +
(

H − 2
¨̄φ
˙̄φ

− �̇

�

)
�̇

+
(

2

(
Ḣ − H

¨̄φ
˙̄φ

)
− H

�̇

�

)
� = 0. (65)

The variable M–S variable v adquires the usual form v =
a(δφ + φ̄′

H�) and the M–S equations decouple in the
simple form

u′′ − ��u − θ ′′

θ
u = 0, v′′ − ��v − z′′

z
v = 0. (66)

In particular the equation v′′ − ��v − z′′
z v = 0 can be

solved when the pivot scale is well inside and outside of
the Hubble radius, obtaining the whole evolution of the
variable v, which encodes all the information about scalar
perturbations and, thus, the knowledge of the power spec-
trum for the curvature fluctuation in co-moving coordi-
nates.
On the other hand, for tensor perturbation the correspond-
ing M–S equation is [33]

h′′ − ��h − z′′
T

zT
h = 0, (67)

where zT ≡ a√
�

.
2. Teleparallel LQC [36,37].

In teleparallel LQC the equation for the Newtonian poten-
tial also decouples

�̈ − c2
s

a2 �� +
(

H − 2
¨̄φ
˙̄φ

− �̇

�

)
�̇

+
(

2

(
Ḣ − H

¨̄φ
˙̄φ

)
− H

�̇

�

)
� = 0, (68)

where the square of the velocity of sound is c2
s =

�
√

ρc
12H2 arcsin

(√
12H2

ρc

)
, which, contrary to what

occurs in LQC in the deformed algebra approach, is
always positive, meaning that in this approach there are
no gradient instabilities. In the same way, the M–S also
decouple and the only difference with the ones of LQC
in the deformed algebra approach is that the velocity of
sound is the same that appears in (68). As in LQC in the
deformed algebra approach, the equation for the variable
v decouples, which allows us to know the power spectrum
of the curvature fluctuations in co-moving coordinates.
For tensor perturbations the velocity of sound is equal to
1, and the M–S equation is given by

h′′ − �h − z′′
T

zT
h = 0, (69)

where zT ≡ a

√√
ρc

12H2 arcsin
(√

12H2

ρc

)
.

3. Intrinsic curvature LQC [14].
In this approach the equations for scalar perturbations are
the same as in LQC in the deformed algebra approach.
However, for tensor perturbations, the corresponding M–
S equation is

h′′ − c2
T �h − z′′

T

zT
h = 0, (70)

where zT is the same as in teleparallel LQC, and in this
case the square of the velocity of sound is given by c2

T =√
12H2

ρc

arcsin

(√
12H2

ρc

) .

4. Mimetic LQC [45].
This is also a fully covariant approach where, at the per-
turbative level, the dynamical variables are the perturbed
mimetic field, namely δϕ, and the perturbed scalar field
δφ. In the Newtonian gauge, the potential is related with
the mimetic field, as follows � = δϕ̇, and the dynamical
equation, as in our approach, becomes coupled [45]

⎧⎪⎪⎨
⎪⎪⎩

δϕ̈ + Hδϕ̇ − c2
s

a2 �δϕ = �
2

˙̄φδφ

δφ̈ + 3Hδφ̇ − 1
a2 �δφ + (Vφφ − 2 ˙̄φ2

�)δφ

= 4 ˙̄φc2
s

a2 �δϕ − 2(2H ˙̄φ + Vφ)δϕ̇,

(71)

where the square of the velocity of sound is given, as in
[46], by

c2
s = �

2
f̄χχ =

1
2 f̄χχ

1 − 3
2 f̄χχ

, (72)

123



712 Page 10 of 14 Eur. Phys. J. C (2018) 78 :712

which exhibits the well-known gradient instability of the
mimetic gravity case [46,47] (see also [48] for the study
of perturbations in specific mimetic matter models).
Dealing with tensor perturbations, since the mimetic field
does not alter the gravitational sector, as in our approach,
the equations for tensor perturbations are the same as in
GR.

Consequently, we can see that for non-fully covariant theo-
ries, such as LQC in the deformed algebra approach, telepar-
allel LQC, or intrinsic curvature LQC, the equations for scalar
perturbations decouple, which actually simplifies the theory
a lot, allowing us to calculate the corresponding power spec-
trum. On the contrary, for the fully covariant theories, i.e. our
approach and mimetic LQC, the equations of scalar perturba-
tions do not decople, which makes their analytic study more
difficult and only a numerical analysis seems to be viable
in order to understand their evolution. However, the clear
advantage of the covariant theories is that the equation for
tensor perturbations is the simplest one because it coincides
with the one for tensor perturbations in GR.

6 Reheating and the calculation of the spectral
parameters in the bouncing matter-ekpyrotic scenario

In this section we consider the background given by holon-
omy corrected LQC. In other words, we consider the function
f given by (16), which means that the universe bounces when
its energy density is ρc. We will show how to calculate the
reheating temperature of the universe via gravitational par-
ticle production due to a phase transition from the matter
domination to an ekpyrotic era, and how the theoretical val-
ues of the spectral index and its running match well with the
corresponding observational data.

As we will immediately show, in a viable bouncing sce-
nario the pivot scale leaves the Hubble radius in the contract-
ing phase, when GR does hold. Correspondingly, the spectral
index and its running are given, respectively, by [52,53]

ns = 1 + 12w∗, αs = 12w′∗H∗
H′∗

, (73)

where w is the effective Equation of State (EoS) parameter
and the “star” means that the quantities are evaluated when
the pivot scale leaves the Hubble radius.

First of all, note that in order to match the theoretical
value of the spectral index with the observational data, w∗
has to be negative and close to zero. Now, assuming that, at
very early times, we have a quasi-matter domination epoch
(φ̇2 ∼= 2V → φ̈ ∼= Vφ), the background equations become
{
H2 = 2

3 a2V

3Hφ′ + 2a2Vφ = 0.
(74)

In this case

w ≡ P

ρ
= −2

3

(
1

2
+ H′

H2

)
∼= 1

3

(
Vφ

V

)2

− 1 (75)

and, thus,

ns = 4

(
Vφ∗
V∗

)2

− 11, αs = 48

(
Vφ∗
V∗

)
φ∗

. (76)

Note that for a potential corresponding exactly to matter dom-
ination, i.e. for V = λe

√
3φ , one obtains an exactly flat spec-

trum (ns = 1 and αs = 0).
We consider here a phase transition, in the contracting

phase, from matter domination to an ekpyrotic regime. To
this end, we choose a model with potential given by

V (φ) =

⎧⎪⎨
⎪⎩

λe
√

3φ
(

1 − 2eφ/k

2−eφ/k

)
for φ < 0

λ̄ e3φ

(1+ λ̄
2ρc

e3φ)2
for φ ≥ 0,

(77)

where k is a positive parameter and λ and λ̄ satisfy

− λ = λ̄

(1 + λ̄
2ρc

)2
�⇒ λ̄ ∼= −λ, (78)

since, at the end of the phase transition, we assume |λ̄| �
ρc ∼= 252. This models depicts for φ → −∞ a matter dom-
inated universe, and for φ ≥ 0 an ekpyrotic universe with
EoS parameter w = 2 [54].

Then, for φ negative satisfying eφ/k � 1, one has

ns ∼= 1 − 8
√

3

k
eφ∗/k, αs = −48

k2 eφ∗/k . (79)

Using now the BICEP2/Keck Array and Planck observational
data at 1σ C.L., one has ns = 0.968 ± 0.006 and αs =
−0.003 ± 0.007 [55]. Then, choosing for instance k = 10,
one can see that for −42.38 ≤ φ∗ ≤ −24.49 the theoretical
values of the spectral index and its running belong to the
1-dimensional marginalized 2σ C.L.

6.1 Reheating

Here we will consider a reheating process due to the gravi-
tational particle production of massless particles minimally
coupled with gravity during a phase transition from a mat-
ter dominated regime to an ekpyrotic one in the contracting
phase. Recall that in our model (77) we have an ekpyrotic
phase with EoS parameter w = 2. Let HE be the value of the
Hubble parameter at the beginning of this phase. Then, from
the relations V = 3H2 + Ḣ and Ḣ = − 9

2 H2, we obtain
λ = 3

2 H2
E . On the other hand, in holonomy corrected LQC a

viable value of HE is approximately −10−3 [34,35], which
justifies our choice |λ̄| � ρc.
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The energy density of the produced particles during this
phase transition is given by [56]

ρr (a) = RH4
E

(aE

a

)4
, (80)

where aE is the value of the scale factor at the beginning of
the ekpyrotic phase and R ∼ 10−2 Ns , being Ns the number
of different scalar fields.

Remark 6.1 Equation (80) was obtained considering a phase
transition, in the expanding phase, from the de Sitter phase to
another one with constant EoS parameter w > 1/3 [57,58].
In the case we consider a phase transition in the contracting
phase from the matter domination phase to another one with
constant EoS parameter w > 1, this formula is also valid
due to the duality, pointed out in [59], between the de Sitter
regime in the expanding phase and the matter domination in
the contracting one.

On the other hand, as has been showed numerically in
[34,35] (see the figures 11, 13 and 15 of [35]), in the matter-
ekpyrotic bounce scenario, after the bounce the universe
enters in a kination regime, i.e., the effective EoS parameter is
equal to 1. Then, to clarify ideas we consider the background
equations corresponding to LQC (17) and we consider a fluid
with the following EoS,

P(ρ) =
{

0 for 0 ≤ ρ ≤ ρE ≡ 3H2
E

2ρ for ρE < ρ ≤ ρc,
(81)

in the contracting phase, and P(ρ) = ρ in the expanding
one.

Since for the EoS P = wρ in LQC the Hubble parameter

evolves as H(t) =
(1+w)

2 ρc(t−t̄)
3
4 (1+w)2(t−t̄)2+1

[35], for our EoS (81)

we will have

H(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 ρc(t−t̄)

3
4 (t−t̄)2+1

for t ≤ tE

3
2 ρct

27
4 t2+1

for tE ≤ t ≤ 0

ρct
3t2+1

for t ≥ 0,

(82)

where tE is the phase transition time and, thus, it has to satisfy
3
2 ρctE

27
4 t2

E +1
= HE , and t̄ has to be chosen imposing continuity at

t = tE , that is, it has to satisfy
1
2 ρc(tE −t̄)

3
4 (tE −t̄)2+1

= HE .

Remark 6.2 Since in LQC when considering a fluid with EoS
P = wρ the reconstruction method (see Section 3 of [35] for
a detailed discussion) leads to the potential

V (φ) = 2ρc(1 − w)
e
√

3(1+w)φ

(1 + e
√

3(1+w)φ)2
, (83)

then the conservation equation with the following potential

V (φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ρc
e
√

3φ

(1+e
√

3φ)2
for φ ≤ φE

−2ρc
e3φ

(1+e3φ)2 for φE < φ ≤ φB

0 for φ > φB,

(84)

where φE and φB satisfy respectively 2V (φE ) = ρE and
−2V (φB) = ρc, has a solution which leads to the background
(82).

Now, since for a fluid with the linear EoS P = wρ the
conservation equation d(ρa3) = −Pd(a3) leads to

dρ

ρ
= −3(1 + w)

da

a
�⇒ ρ = ρi

(ai

a

)3(1+w)

, (85)

during the ekpyrotic phase the energy density of the back-
ground evolves as ρb(a) = 3H2

E

( aE
a

)9, and, after the
bounce, since the universe enters in a kination phase, the
background evolves as ρb(a) = ρc

( ac
a

)6, where ac =(
3H2

E
ρc

) 1
9

aE , which means that after the bounce one has

ρb(a) = ρc

(
3H2

E
ρc

) 2
3 ( aE

a

)6. Then, the universe will become

reheated when both energy densities are of the same order,
i.e. ρr (areh) ∼ ρb(areh). Since in the contracting phase the
energy density of the background increases faster than the
one of the produced particles, the reheating will occur in the

expanding phase, when
(

aE
areh

)2 ∼ R H4
E

ρc

(
3H2

E
ρc

) 2
3

, and it will be

Treh ∼ (ρb(areh))1/4 = R3/4 |HE |3
√

ρc

(
3H2

E
ρc

) 1
3

. (86)

Then, for Ns ∼ 1 (GUT theories), ρc ∼= 252 and HE ∼
−10−3 one obtains Treh ∼ 8 × 10−10. Finally, since Mpl ∼=
2.4×1018 GeV, in natural units one has Treh ∼ 2×109 GeV.

Remark 6.3 It is possible to obtain a lower reheating temper-
ature by increasing the EoS parameter in the ekpyrotic phase.
For example, if in the ekpyrotic phase one takes w = 5, then
the reheating temperature is reduced by one order.

Once we have calculated the reheating temperature we can
show that the pivot scale, in the contracting phase, leaves the
Hubble scale when GR holds. The pivot scale is related with
its physical value by k∗ = a0kphys(t0), where the sub-index
0 means present time, and we choose, as usual, kphys(t0) ∼
102 H0 ∼ 10−59.

On the other hand, as we have showed at the reheating
time, i.e., when both energy densities are of the same order,
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one has areh ∼

√√√√ρc

(
3H2

E
ρc

) 2
3

R H4
E

aE ∼ 5 × 104aE . Now, from

the conservation of the entropy we have the adiabatic relation
a0 ∼ Treh

T0
areh [60] and using that the current and reheating

temperature are respectively T0 ∼ 8 × 10−32 and Treh ∼
8 × 10−10, one gets a0 ∼ 5 × 1026aE . As a consequence,
k∗ ∼ 5 × 10−33aE , which means, since |HE | ∼ 10−3, that
k∗ � |HE |aE . In other words, the pivot scale leaves in the
contracting phase the Hubble radius well after the phase tran-
sition, more precisely when H∗ ∼ 5×10−33 aE

a∗ ≤ 5×10−33

(in the contracting phase aE < a∗) and, thus, since ρc ∼= 252,
one can safely disregard the effects of the f theory when the
pivot scale leaves the Hubble radius.

7 Conclusions

We have constructed a class of modified gravitational theo-
ries based on the addition to the Einstein–Hilbert action of a
function f , which depends on the divergence of the unitary
time-like eigenvector of the stress tensor. We have obtained
in this way a fully covariant theory, which, as in the case of
mimetic gravity, has one more degree of freedom than GR.
The main advantage, at the background level, of our class of
models is that, for the FLRW geometry, this divergence is
minus three times the Hubble parameter, which allows, by
choosing the function f appropriately, to obtain very sim-
ple bouncing backgrounds, as the one resulting in holonomy
corrected LQC.

At the level of cosmological perturbations, working in
the Newtonian gauge, the equations for scalar perturbations
exhibit some of the same interesting features as those appear-
ing in LQC in the so-called deformed algebra approach.
However, they are not exactly the same, owing to the fact
that our theory is fully covariant, in contrast with LQC
in the deformed algebra approach [61–63]. In fact, con-
trary to what happens with LQC and other non-covariant
approaches such as teleparallelism or modified theories using
the extrinsic curvature, in our fully covariant approach the
equations do not decouple, which is an added difficulty and
translates into the fact that, in practice, the equations can-
not be solved analytically but only by standard numerical
methods.

A very positive feature is, however, that for tensor pertur-
bations our model leads to the same equations as GR because
the modification of the action does not affect the gravity sec-
tor.

Finally, we have studied the matter-ekpyrotic bouncing
scenario for the LQC background, when reheating is a con-
sequence of the production of massless particles minimally
coupled with gravity, during the phase transition from mat-
ter domination to the ekpyrotic regime in the contracting

phase. We have obtained a viable reheating temperature of
the order of 109 GeV and have shown that the observable
modes leave the Hubble radius in the contracting phase,
when the holonomy correction can be disregarded. This per-
mits a very simple calculation of the theoretical values of
the spectral index and of its running, both of which, as it
turns out, perfectly match the current observational data at the
2σ C.L.
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