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Abstract

Deep Neural networks are mathematical algorithms inspired in the biological connection
of the human brain. This powerful technique currently provides the best solutions for image
recognition, natural language processing and other cognitive related tasks. Nevertheless,
DNNs are computationally expensive, very time exhausting and power demanding. To cope
with this problems different accelerators solutions have been proposed.

This master thesis focuses on a state-of-the-art DNN specifically build for image clas-
sification. We develop a new architecture design that will run on an experimental Intel
accelerator platform called HARP. HARP combines an Intel Xeon processor connected to
an FPGA. During this project we will also asses the possibilities and requirements of this
innovative low power solution.
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1
Introduction

1.1 Motivation

Deep Neural Networks (DNNs) are sophisticated mathematical models built to simulate
the activity of the human brain. This biologically-inspired programming pattern learns from
observational data. They have generated a lot of expectations and excitement thanks to its
amazing results on speech recognition, text processing and other cognitive related tasks [17].

DNNs have many layers of neurons and a large number of synaptic connections. There
are no real restrictions to determine how many layers can be added to the network, but
going beyond two layers was unfeasible. The limitation were overcome and Deep Learning
appeared thanks to advanced algorithms, the availability of huge data sets for training and
the use of accelerated computing platforms.

Each layer of a DNN is used for a different pattern recognition, meaning that each one
is in charge of a distinct set of features. The further you advance into the neural net, the
more complex the features your nodes can recognize [15]. Nonetheless, adding more layers
to the DNN architecture is rather easy but determining the patterns and features that will
be better for the network become extremely challenging.

On a quick and simplified overview, deep learning methods are a two-stage process.
This first stage consist of training the deep neural network. Its parameters are trained on
a labelled set of inputs and compared with its desired output. If the errors are low the
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CHAPTER 1. INTRODUCTION

network is already trained, otherwise more training must be performed until is reached the
acceptable accuracy. As DNNs are intelligent machines it is awfully critical that they must
be as accurate as possible. DNNs can be trained to recognize images, diseases or even to tell
which trousers you are more likely to buy next [11].

The second step of the DNN is called inference. The goal of inference step is very
different from the training phase. Inference in DNNs consist on classifying the input images
in categories (dogs, cars, people...), i.e. making prediction from unseen data, and recognize
new unknown inputs. Nevertheless both stages are absolutely interrelated: as the number of
images that the network has been trained increases, the classification of new inputs is better
predicted.

DNNs training phase has a substantial computational cost and it is very time exhausting.
Because of this, different solutions have been proposed in order to achieve better performance
rates. The two more common solutions have been to use accelerators such as Graphic
Processing Units (GPU) and Field Programmable Arrays (FPGA). These proposals are
widely adopted to improve the training and the inference phase of different DNNs models.

Graphics Processing Units (GPUs) improve memory bandwidth in its devices and have
adopted GPU-optimized CUDA-based libraries for deep learning. GPUs are inherently good
with matrix operations and parallel computations making deep learning accessible. Even
they are obtaining good performance rates that are not enough for modern DNNs.

FPGA solutions consist of using this programmable devices due its advantages of fast
development, high performance and low power algorithms [5]. FPGA platforms have better
performance over generic processors in computational throughput, however they still have
its limitations. FPGAs still have not achieved the desired performance due to their limited
external memory bandwidth and they are not capable of moving big amount of data be-
tween the compute units and the CPU. Furthermore, some designs normally do not take full
advantage of all FPGA resources and misuse the vast majority of them [21, 20, 16].

1.2 Objectives

In this Master thesis we develop an FPGA implementation of ResNet152 [8], a mod-
ern deep neural network that won the first place in the ImageNet [9] Large Scale Visual
Recognition Challenge (ILSVRC) 2015 with a error rate of 3.57%. In this contest, software
programs compete to precisely classify and detect objects with the highest accuracy and the
best performance.

Resnet152 is a very deep network, having 152 layers. This characteristic makes ResNet
a high computation cost network, very time consuming and extremely power demanding.
When developing this project we have taken into account the article ”Deep Learning Accel-
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1.3. STRUCTURE

erator on Arria 10” [4] since now it is the most excellent accelerator in an FPGA to the best
of our knowledge. In this article they work with a much less deeper DNN of just 8 layers.
Even some of their optimization techniques may be applied to Resnet152, not all of them
will be suitable, since our working network uses larger data sets. This big inputs will have
high memory and logic requirements.

There are some previous proposals to implement DNNs on FPGAs/GPUs accelerators
for better performance. Nevertheless, this Master Thesis proposes a solution using an Intel
experimental platform named HARP [2]. This platform consist of a combination of an Intel
Xeon and an Arria 10 FPGA, with a coherent low-latency interconnections between them.
This makes the communication between CPU and the FPGA more lightweight and enhance
a new paradigm for workload balance between both devices.

There are three main objectives in this project. The first of all consists of understanding
the behaviour of Resnet152 and find out which parts of the neural network are more suitable
to develop in the HAR platform. Once this objective is fulfilled, we optimize the perfor-
mance of the ResNet implementation, improving the power consumption in comparison to a
multiprocessor architecture, and analyze the behaviour of the new hybrid platform.

The third objective is to understand and test the performance of the new experimental
platform, i.e. HARP. The goal is to study its strengths and evaluate its drawbacks in com-
parison with other traditional accelerators. This master thesis not only focuses on achieving
better performance for ResNet152, but also analyzing how this specific platform behaves
when working with very deep neural networks.

1.3 Structure

This Master Thesis is divided in five more chapters. The following section explains
the basic fundamentals to understand deep neural networks. It provides an overview of
convolutional neural networks and emphasizes what is different on Residual networks since
it is the type of network we are working on. Afterwards, the main characteristics on HARP
platform and its possibilities are described. Later on, we take a look on how this platform
has been programmed and the programming model followed. Next, we will present the
developed code and its optimization. Finally, the results are analyzed and a final chapter of
future work and conclusions wraps up this work.
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2
Background

This chapter presents the basics fundamentals and key concepts required to understand
the project done. It does not pretend to demonstrate mathematically how a neural networks
operates or which specific training algorithm exists, however it provides a solid theoretical
base.

2.1 Artificial Neural Networks

In Artificial Neural Networks (ANN) the basic unit of computation are the neurons, also
called unit or node. They are brain-inspired nodes designed to replicate the way people
learn. This models are programmed to perform tasks without any specific rule. This means
they learn to recognize images by looking in other images previously labelled. It can mimic
a human baby behaviour, when its born it can not recognize a cat, even though when he
learns and see a lot of cats, he learns to categorize it as an animal.

Lots of connected neurons build an ANN. Each node connection spreads information from
one neuron to the other. Neurons can receive input from external source or other neuron,
these connections are called edges. Units and connections have an associated weight that
indicates how important the input is; this weights are adapted during the learning process.
Neurons gather this information and calculate a linear function to the sum of its inputs and,
next, they output its result to the next neuron [17]. Neurons are aggregated and assembled
into layers, different layers can perform different operations and interact between them.

17



CHAPTER 2. BACKGROUND

In Figure 2.1 the node takes input X1 and X2 with its associated weights (w1, w2) plus
a b variable. This variable is called Bias and its needed to provide a trainable constant value
to the network. The purpose of function f is to provide non-linearity to the output. This
kind of functions are called activation functions. Its commitment is to provide non-linearity
to the data sets, since in real world data representation is not linear.

Figure 2.1: Single Neuron of an ANN Source:[17]

2.2 Convolutional Neural Networks

In this project we will be focusing on a particular case of ANN. Convolutional Neural
Networks (ConvNets or CNNs) are a category of deep neural networks (DNNs) used in image
processing and recognition. The term deep in DNN refers to the number of layers that a
network has. It is considered to be a deep network if it has more than two layers. As much
layers as we aggregate, the complexity of the network increases. On the other side, more
layers implies better image classification.

CNNs are DNNs specific to treat and process images. Input images are transformed to
tensors, understanding tensors as matrices of numbers with additional dimensions. There-
fore, every image can be represented as a matrix of pixel values. To clarify the concept with
an example: a normal picture of a camera has three channels (RGB), each channel will be a
2D matrix stacked over the other with values from 0 to 255. To operate with the described
image we will need to transform it to a 3D matrix.

These matrices, as explained, need filters to detect certain features in the pictures. These
filters are also a matrix of values trained for a specific task, e.g. edge detection. The filters
move towards the entire input matrix doing a convolution operation to detect if the feature
is present or not. Convolution operation consist on element-wise product and sum between
these two matrices. If the feature is detected, the convolution ends with a real number with
a high value, otherwise the value is lower meaning the feature is not found. The filter must
have the same channels as the input image, so the element-wise operation can take place.
We can observe a convolution operation in Figure 2.2. The input being a 5x5 matrix with a
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2.2. CONVOLUTIONAL NEURAL NETWORKS

3x3 filter. Figure 2.2 only shows the dot product operation on a single channel of the tensor.
This operation needs also to be performed to the remaining channels to obtains a full feature
map.

Figure 2.2: Convolution Operation example. Source:[17]

As it can be intuitively deduced, different weight values for the same input map affects
directly to the output (features maps) obtained. In practice, the value of the filters is learned
during the training phase of the neural network. The more filters the CNN has, the more
features it can detect. Therefore, the more filters it has the better it can recognize new
images. In Figure 2.3 we can see how distinct filter values affect to the convoluted image.

Figure 2.3: Filters example. Source:[17]
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CHAPTER 2. BACKGROUND

The convoluted feature is controlled by three parameters:

• Depth: The number of filters to use in the convolution operation. Each filter will
output a different output feature map. The number of filters may vary, but it must
always have the same channels as the input feature map to be able to perform the
convolution.

• Stride: Is the number of positions that the filter will move on after each convolution
operation. For example, when the filter has a stride of two it means that we slide two
positions over the input map every time we compute a dot product. If we would have
a stride of value two in Figure 2.2, the filter matrix would slide two positions to the
right fitting over the two last columns and the three first rows. Having a small stride
will produce bigger feature maps.

• Padding: In some matrix multiply paradigms padding is employed to simplify the
computation on the border pixels.

Non Linearity

Other important operation in the CNN is the execution of the activation function. As
explained before, DNNs need to introduce non-linearity to mimic real world data. To do so,
activation functions are typically performed such as [12]:

• Rectified Linear Unit (ReLU): It is a pixel wise operation that converts all negative
values of the feature maps into 0 value and leaves the positive values unmodified:
Output = Max(0, input)

• Sigmoid: It takes the real value of the feature maps and shrink it to the a range between
0 and 1: output = 1/(1 + exp(−x))

• Tanh: It is similar to sigmoid activation function but it generates a featured map in
the ranges between -1 and 1, corresponding to the hyperbolic tangent function.

Pooling

One of the problems with CNNs is the cost of time and computing power to achieve
output features maps for big inputs. For that reason a pooling (also called subsampling
or downsampling) step is performed to reduce the dimensionality to each feature map. It
must be taken into account that even this pooling step is performed, it still needs to retain
the most important information of the feature maps. Pooling also reduces the number of
parameters and makes the network invariant to small distortions; a smaller output layer
would not change the output of the overall pooling stages. Typical pooling steps are:
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2.2. CONVOLUTIONAL NEURAL NETWORKS

• MaxPool: Finding the the maximum of the spatial neighbourhood and creating the
new matrix with the maximums found.

• MinPool: Finding the the minimum of the spatial neighbourhood and creating the new
cluster with them.

• AvgPool: Computing the average of the spatial neighbourhood and creating the new
cluster with the results obtained.

• SoftMax: It finds the softmax function of the neighbourhood. This functions squashes
the outputs of each spatial neighbourhood to be between 0 and 1 (like sigmoid func-
tion); but it also divides each output such as the total sum of the new cluster is equal
to 1. At the end, this functions indicates the probability for a feature to be true.

In Figure 2.4 we can see a graphical example of a Max Pooling operation in a 2D feature
map. It uses a 2x2 window over a 4x4 map. This window has a stride of 2, meaning that
will slide 2 pixels per operation taking the maximum per each segment.

Figure 2.4: Max Pooling example Source:[15]

Fully-Connected Layer

Other important operation for image classification is the fully-connected layer. Fully-
connected layer is used in several CNNs. On this particular layer each neuron is connected to
the next adjacent layer neuron, using a softmax function in the output layer. This classifies
in which final category the image belongs to. At that point the convolutions end and the
output prediction is done.

Figure 2.5 shows all basic building blocks of a typical CNN. In a classic CNN, first of
all a convolution operation is applied to the input image and, next, a ReLu to introduce
non-linearity to the results. Afterwards, to minimize the output feature map (that it will
the next layer input feature map) it computes a pooling stage. We can observe the feature
map is reduced at this point. This process is followed by a second convolution operation
and a pooling step to make the fully-connected layer even smaller. This is done to reduce
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memory usage, because fully-connected layers require a lot of memory since it includes all
possible neuron to neuron connections between consecutive layers. Eventually, after the fully-
connected layer we will obtain the output predictions. This forecast shows the categories
that has greater probability to fit in. The better the network the more accurate prediction
it obtains.

Figure 2.5: All basic building blocks of CNN. Source:[17]

Training

Training the network is an important phase for obtaining an accurate model. It must
be done before the neural network starts to make predictions for new images. Nowadays,
there are various algorithms to do so, but basically all of them teach the DNN by telling it
that the image processed is from a specific category (e.g a cat) and telling the answer again
and again until it is enough intelligent to say, Look! That is a cat!. This process is called
supervised learning.

The Backpropagation algorithm is the most common method used to train the DNNs.
It obtains better accuracy on image classification. Before backpropagation algorithm, it was
terribly difficult to optimize the networks. What this algorithm does is to train the weights
of the connections between the nodes. It will adjust its value depending on how good the
network is behaving. Prior to backpropagation, other more elementary algorithms were used.
One of the most exploited techniques consisted on adjusting the weights in a random uniform
direction (increase or decrease) and observe if the accuracy of the ANN was improved.

Backpropagation algorithm consist on selecting the optimal weight value to estimate the
best functions for modelling the training data. To select the optimal values, this algorithm
divides the training in two main stages:

• Forward propagation: It evaluates the neural network in the forward direction for the
new input image. When the last layer outputs its values, the results are compared
with the expected output and the error obtained computed by using a cost function.
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• Backward Propagation: It consist on propagating backwards the error obtained. Nor-
mally, error is propagated backwards to find the derivative of the error, i.e. cost
function, with respect to each weight and, afterwards, subtract this value from the
weight value. This mathematical model has been proved to reduce errors obtained in
the network.

This process of going forward and backward on the network can go over and over until
some threshold of accuracy is reached. Training the network is really time and computing
demanding. Fortunately Resnet152, the DNN that this master thesis is studying, is already
trained and therefore we do not need to train it again.

2.2.1 Residual Networks

Deep neural network achieve good results and performance in visual recognition jobs
due to its benefits from the ”deep models”. The number of features can be enriched by
the number of layers [19]. Therefore, it has been a trend on adding more layers in DNNs
in recent years. Deeper networks, theoretically, can solve more complex tasks and improve
classification accuracy.

When the network is very deep (above 25 layers), it becomes much more difficult to
train an a degradation problem occurs. Accuracy gets saturated and ends degrading the
overall results. Residual Networks, a.k.a. ResNets, represents a recent successful approach
to address the degradation problem [8]. It consist on introducing residual connections, which
means connecting the output of previous layers to the output of the current layers.

Figure 2.6: Left: Plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers.(Thin
curves denote training error, and bold curves denote validation error) Source:[8]

In Figure 2.6 we can see a graphic extracted from [8] where they analyze the performance
of the DNN on the ImageNet data set. ImageNet project is a huge visual database designed
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to be used in object recognition software research. Its database currently has 14.197.122
images from 21841 different categories [9]. In the left graphic we can see that 18 layers plain
networks achieve an error rate of 27.94%, pretty similar to Resnet-18 that gets very close but
worse results with a 27.88% error. This difference is reverted when we increase the number
of layers. When the number of layers is increased in 34 layers plain network has a higher
error rates reaching a 28.54% in comparison of the 25% in the ResNet-34.

For example, given an 8-layer residual network, output from layer 1 will not only go to
input layer 2, but also add up the outputs from layer 1 to the outputs of layer 2:

• Denotation of a layer: f(x)

• In a plain (standard deep) network: y = f(x)

• In a ResNet network: y = f(x) + x

This bypass of the output from a previous layer to a subsequent layer is called shortcut
connection. This new ”layer” does a bit-wise addition of its elements. We can see a graphical
example in Figure 2.7. ResNets can be deeper having up to 152 layers (the one we will
optimize) and achieving an accuracy of 93.8%, even though they can be slower and more
complex than their plain counterparts.

Figure 2.7: Residual block Source:[8]

2.3 Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are integrated circuits that are based on
matrix configurable blocks and interconnections circuits. They can be programmed with
different requirements after manufacturing. This flexibility allows to adjust its design to the
neural network requirements, contributing to an increase in performance and a reduction of
the power consumption with respect to conventional general purpose processors.
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2.3.1 The HARP Platform

Heterogeneous Architecture Research Platform (HARP) program, is an Intel project that
works on a platform based on a single chip, which integrates an FPGA and an Intel Xeon
processor. This is such a revolutionary design that allows to rethink the usual architectures
used for image classification. HARP platform enables a disruptive hardware solution that
adapts perfectly to the software being execute on it. This architecture is targeting big
workloads on data centers and application-customized hardware.

We need to move to a more heterogeneous computing architectures like HARP, to go
beyond homogeneous parallelism and incorporate the strong demand for silicon specially
tuned for machine-learning techniques. Is it true that shrinking transistors have powered
decades of advance in computing. However, we are achieving the physical limit of transistor
density per chip and we can no longer rely on Moore’s law to achieve better processing power.

Intel Arria 10

As explained, the HARP prototype used for this master thesis consist of an IntelXeonE5−
2600v2 product family with an FPGA module Arria10 [3] connected via QPI bus. There
exists also more oldish models that uses AlteraStratixV , other FPGA device with less com-
puting power than the actual Arria 10. Intel Arria 10 is a high performance FPGA, it can
provide 20GB/s bandwidth with the processor and has the following specifications:

LUTS (LookUp Tables) 427,200
REGISTERS 1,708,800
BRAMS (Block DRAM) 2,713
DSP (Digital Signal Processors) 1,518

Table 2.1: Intel Arria 10 resources

System Overview

HARP FPGAs have a coherent low-latency interconnection and full access to system
memory. Intel Xeon is connected though a Quick Path Interconnect (QPI) bus to the FPGA.
This QPI bus has a speed of 6.4 GT/s [7].

The processor and the FPGA communicate using a cache protocol, as shown in Fig-
ure 2.8. In HARP, the FPGA hardware module for communication is composed by the
Intel QPI channel and the AFUs (Accelerated Function Unit). QPI connects the FPGA
to the CPU last level cache. The cache allows zero cost in copy data buffers between the
multiprocessor and the FPGA. In the best case, we would obtain a read hit and we would
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not need to access main system memory. AFUs can access to the last level CPU cache
(which is coherent) but they can not implement a second level cache since they are outside
of the coherence domain of the CPU. In this organization the FPGA and the CPU share the
same address space, this simplifies the data sharing and it largely reduces the overheads of
offloading computation to the FPGA, avoiding transfers between CPU memory and FPGA
memory.

Figure 2.8: Cache Protocol in HARP platform Source: [14]

In Figure 2.9 we can see the overall architecture of the platform. Apart from the QPI
bus, this FPGA also has an expansion connector PCIe 3.0 for extra I/O connections (e.g
Ethernet). This platform can exploit a good workload balance distributed between the host
and the device obtaining hybrid algorithms.

Working with HARP platform requires part of the code running in the processor and the
other part running on the FPGA side. Normally, FPGAs need to be programmed in a low
level programming language such as Verilog or VHDL. Early versions of HARP machines
only enabled this programming languages. It was a high cost programming task since there
were too many options of configuration being decided by the programmer and backward and
forward compatibility with different FPGA generations was very difficult to achieve.

Nowadays, HARP allows to have unified application code that is abstracted from the
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hardware environment in order to port algorithms across different generations and families of
CPUs and FPGAs. Intel provides a specific SDK for OpenCL for developing heterogeneous
applications [6]. Intel also provides different libraries and drivers to simplify the programming
procedure to communicate host/device.

Figure 2.9: Harp platform overview Source:[7]

A normal program pipeline executed in HARP would consist on a program running in
the Intel Xeon part, then at certain point it triggers a call to the FPGA. The FPGA starts its
computations and return its results to the multiprocessor (host). Once the host has received
its results it ends the connections with the FPGA (device). It means that in the CPU side,
the user only needs to prepare the attributes for the services implemented and does not need
to worry on how the FPGA implementation is done, just needs to rely on its results. On the
other hand, the FPGA does not need to care about the implementation in the host.

Calls between host and device need to prepare a pointer system that allows to access
the region of shared memory for read and write access, to be able to pass the parameters
between them. The CPU also needs to take care of the activation signals of the FPGA and
control when it needs to be stopped; due to the Intel’s provided libraries these processes
are rather easy and does not degrade performance. Finally, FPGA needs to receive the
activation signals and execute its functions that as said can be programmed in Verilog,
VHDL or OpenCL. Once it has finished it will send an end signal to the processor. Host will
recover its state and carry on with the program execution.

27





3
Evaluation Methodology

3.1 Darknet

To do this research we have employed the ResNet152 implementation on Darknet open
source neural network framework [13]. Darknet is a pull of neural networks written in C,
providing a high-performance CUDA version for each network for GPUs, and an efficient
implementation for multicore CPUs by using OpenBLAS library.

Each DNN found in Darknet has its own configuration, weights and it is already pre-
trained. It is up to the user to choose which type of DNN needs to be run. Darknet is an
interesting framework because its networks are trained using the Imagenet dataset for image
recognition. On Darknet website all the pre-trained models can be found with the accuracy
and performance they have obtained on the Imagenet ILSVRC challenge.

3.2 OpenCL on FPGA programming model

The OpenCL (Open Computing Language) is a standard language for parallel program-
ming of heterogeneous systems. It is an open, royalty-free standard for cross-platform devices
used in personal computers, mobile phones and embedded platforms [10]. It differentiates
itself from other languages since it is not a proprietary programming model; it is based on
ANSI C (C99) with extensions to extract parallelism. OpenCL also includes an application
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programming interface (API) for the host, i.e. CPU, to communicate with the device, i.e.
FPGA, traditionally over the PCIexpress. Nonetheless, in this thesis we use it over the Intel
proprietary channel QPI explained in the previous chapter.

We have decided to implement this master thesis problem in OpenCL for a more quickly
development environment. The program developed will be portable to future FPGA plat-
forms, in this way we abstract FPGA details. OpenCL implementations still deliver good
performance in comparison to Verilog or VHDL implementations [4].

Kernels

In Figure 3.1 we can observe how the programming model fits over the HARP architec-
ture. Kernels (OpenCL functions) can communicate with the host over the cache. There
exist OpenCL functions to coordinate the calling of the kernels with the execution of the
code in the host. Normally, the host calls the kernel (or kernels) and blocks itself until FPGA
signals it to return to program execution.

This kind of OpenCl architecture also has its drawbacks. The limitations of the OpenCL
design are mainly that some resources (I/O pins, registers..) are used for basic host/device
communication and, therefore, the programmer can do nothing to reduce the resource usage
for this part. Another constraint to take into account of this programming model is that
OpenCL APIs are bounded to the thread that creates the OpenCL context, meaning that
the user can not create multiple kernel queues or wait with a secondary thread the kernels
completion.

Figure 3.1: Programming Interfaces in OpenCL Source:[8]

30



3.2. OPENCL ON FPGA PROGRAMMING MODEL

Autorun Kernels

Furthermore, Intel FPGA SDK for programming allows to have autorun kernels. This
specific kind of kernels omit the logic to communicate with the host and start to execute
automatically with any explicit call. They restart automatically when they finish its exe-
cution. Even though, we had to be carefully with our implementation since they do not
support either I/O channels nor any arguments.

Autorun kernels can be replicated in order to have several compute units doing the same
task without the need to replicate the code. One important feature for the programmer is
that they can be distinguished by its id. The function get compute id() return a valid ID in
a range from 0 to N-1, being N the number of autorun kernels created by the programmer.

Channels

One of the key concepts in OpenCL are the channels. They are a special extension
originally designed by Altera corporation. They are a special structure that handles in/out
data. However, they can not read and write concurrently. They can be blocking calls or not
blocking calls, depending on the design requirements. These channels are used to pass data
between kernels, no matter if kernels are autorun or not or even between a normal kernel
and an autorun kernel.

Channels do not use global memory. If the data is too big, they are translated as a BRAM
inside the FPGA. The Intel FPGA SDK for OpenCL channels extension allows kernels to
communicate directly with each other through FIFO buffers [6]. Channels are important
because they decouple data movements between the FPGA and the host.

Figure 3.2: Intel SDK channel implementation Source: [6]
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Compiler

In order to be able to execute a C/OpenCL program in the Harp platform, we need to
compile it using the Intel SDK compiler. It is a source to source compiler that generates
intermediate Verilog code for the FPGA from the OpenCL code provided by the programmer.
At the end it creates a bitstream from the OpenCL code. The bitstream is a binary file that
describes how the low-level FPGA resources have to be configured to implement the required
function. Currently it is almost transparent to the user to upload code to the HARP platform.
The steps to do it are:

1. Generate the bitstream using the Intel SDK compiler for OpenCL.

2. Connect to a Harp machine and create a project directory.

3. C compiled objects need to be copied in a directory explicitly called host.

4. Store the bitstream files (.aocx and .aoco) in the project directory.

5. Enqueue the job in a HARP node that supports OpenCL, or connect a session to a
HARP node and run the jobs there.

This workflow for compilation to execution is very time consuming. To generate a com-
plex design bitstream, it can take an average time of 6 hours. The bitstream generation
for this project takes up to 7 hours to be generated (circa 8/9h if you are not lucky, and
assuming the design is feasible to place in the FPGA). This has supposed an obstacle since
a little change on the design represents a whole day of compilation to obtain the results.
Furthermore having access to the remote cluster of HARP machines has been sometimes
difficult due to overcrowded nodes.

In this master project, compilation step and bitstream generation has been done in an
old version of HARP Machine v1, owned by the UPC’s investigation group ARCO. This rep-
resents an advantage since there are not many people using this resource. Nonetheless, when
running the design it has been used the newest HARP platform, owned by the University of
Paderborn, in Germany.

Simulator

To overcome the bitstream generation problem and speed up the development process a
simulator has been used. Intel SDK provides the HARP user with the Quartus II emulator.
The compiler can generate project files from the OpenCL source code and emulates it with
the Quartus software. This tool provides functional emulation of the OpenCL code, allowing
for quick functional verification of the OpenCL. It checks initially the syntax errors and
creates the intermediate files in order to simulate the correct hardware.
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This is very suitable and profitable for HARP platform users. We have tested and
simulated several architectures in the simulator. Although this is a clear improvement on
the workflow for testing the designs, the emulator also has its drawbacks. For a single image
classification, the emulator can take more than an hour, just to verify the prediction results
are correct. This very same image on a real HARP platform cost only 6 seconds. Iterative
development stages take very long even if the emulator is used. Additionally, the simulator
does not consider any resource limitations (e.g too many channels or not enough memory)
meaning that not all the architectures that work well on the emulator will work well on
hardware. This has also been a milestone to overpass in this project, due to some design
failing during the bitstream generation process (after 5h) even thinking they would fit in the
FPGA.
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4
CNN Accelerator on Hybrid CPU-FPGA

Platform

One of our main objective is to build a DLA (Deep Learning Accelerator) for the
Resnet152 network on the HARP platform. On this chapter we will describe the archi-
tecture of the CNN accelerator we have built in order to improve Resnet152 performance.
We will also reason and explain the implementation details and the steps followed to achieve
it.

4.1 Original Resnet152

First of all we performed an analysis of how this particular DNN was behaving. A main
distinctive characteristic is that we will need to operate with a deepness of 152 layers. These
layers have different memory requirements. Inputs feature maps size can differ a lot, from
just a 0.015625MB up to 9MB, and the same happens to the weights (filters), their sizes
range from 0.125MB to 4MB.

It was relatively easy to determinate which part of the network we were going to accel-
erate. Doing some profiling we found out that the 93% of the execution time of the network
corresponds only to the convolution operations. ResNet152 has a total of 152 convolutional
layers spending the vast majority of computation resources needed for this DNN. To sum-
marize, we will work with a total amount of 218.47MB needed for filters and 101,625MB
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needed for input feature maps. Other operations performing such as average pooling, maxi-
mum pooling, shortcuts and the activation functions associated to the convolution layers were
only representing the 5% of the total time execution in the image classification procedure.

Studying the behaviour of that network we realized that the convolution layer was already
highly optimized for CPUs. As stated before, convolution consists on doing a dot product
between the input feature map and the associated weight. The original Resnet152 code
implements that operation using a high performance library for matrix multiplication called
OpenBLAS [18]. OpenBLAS is a BLAS (Basic Linear Algebra Subprograms) library that
provide parallel routines for matrix and vector operations. We discovered that this matrix
multiply optimization was having a huge positive impact on performance.

Computing the CNN in the FPGA we cannot use OpenBLAS library, so instead of it,
we will use a standard matrix multiply algorithm. To be able to perform the convolution, a
certain padding has been added to the input matrix in order to make it easier to multiply
input feature maps with its associated weights (and avoid extra control signals). Table 4.1
shows the big impact that high performance library OpenBlas has. The results obtained
were executed on an Intel Xeon (1 socket with 2 threads per core and 14 cores per socket,
making a total of 28 thread contexts). It shows a 16.60x Speed-Up when using OpenBlas
compared to the straightforward dot-product algorithm. In the standard matrix multiply
execution the percentage of the time doing a convolution is even bigger and it represents the
99% of total execution time.

Resnet152 Total Time (ms) Convolution Time (ms) Convolution %
OpenBlas matMul 5.59 5.19 93%
standard matMul 74.28 73.82 99%

Table 4.1: Original ResNet152 execution times

To clarify, even our DLA will be implemented using the standard matrix multiplication
procedure, all the metrics and results provided in the next chapters will be in comparison
on the OpenBLAS improved version to provide a fair comparison, i.e. we will compare our
accelerator with the best implementation available for CPUs of Resnet152.

4.2 CNN Accelerator

In this section we will define the actual architecture of the CNN accelerator. As a big
sketch, we will have three kernels that have a communication host-device, and as much as
possible autorun kernels that do the hard computational work. In this chapter we will define
how the work between this autorun kernels called processing elements (PE) is distributed
and how they are interconnected.
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We are building an DLA just for the convolutional layer since convolutional layers com-
putation suppose the 93% of total time execution in Resnet152. It is not worth using more
resources (adders, multipliers, registers...) in other layer, given their low computational
cost compared with the convolutional ones. Additionally, HARP allows you to easily and
efficiently calculate some layers in the CPU and others in the FPGA.

Convolutional Layers

To improve the throughput and performance we need to exploit the parallelism from the
dimensions of the matrices (inputs + filters). Since we have retrieved big input and output
features map, enough parallelism can be extracted from breaking the convolution operation;
the computation is broken in dot-product operation processed in each PE; this will also help
us to use as much as possible the available resources in the FPGA.

It can be applied as many filters per layer as required, but the filters always need to have
as many channels as the input features map does (seen as a 3D matrix, they need to have
the same third dimension value). Based on that convolution operation assertion, each PE
will receive the input feature map and just one of the filters (e.g. one 3D matrix) to compute
with them the dot-product operation. Therefore each PE at the end of its execution will
have computed a channel of that layer output feature map.

To explain better the weight and input distribution we take a look at Figure 4.1. For
example, first PE needs to receive the whole input feature map illustrated in grey, and one
filter illustrated in a green matrix (size∗size∗ l.c) . This particular PE generates the output
feature map 0. The ideal case would be to have as many PEs as filters (l.n), this would
guarantee that at the end of the PEs computation a whole output feature map would have
been generated. The optimal fitting case is unfeasible because in the worst case the number
of filters per layer is too high (l.n = 2048). In order to solve this problem, we call for the
CNN accelerator multiple times with the remaining filters to apply, therefore to solve one
convolution layer we may have several calls to the FPGA.

Input kernel and Stream buffer

Based on the OpenCL on FPGA programming model, the program has a device kernel
named Input Kernel that communicates with the host. Its main objective consists of receiving
and storing the input data. This entry point to the CNN accelerator is connected to just the
first PE (autorun kernel), showed in Figure 4.2. This will feed the adjacent PE; PEi will
pass it to PEi+1 and son on.

PEs broadcast data every cycle in a linear daisy-chain fashion. This is more efficient
placing than a point to point connection with the input kernel, since the FPGA is a 2D
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Figure 4.1: PE filter distribution

grid of logic. At that moment, it seems an acceptable idea to, once the input is received,
store the whole input for each PE so they can operate with it. Nevertheless, this option is
unfeasible. A full input map can demand 9MB of memory, assuming 32 PEs we would need
288MB used only for input storage.

To solve the storage problem, the Stream Buffer was created. This control block intro-
duces some kind of intelligence to the input kernel. It supplies only the needed data for
each dot product step. Stream buffer allows to not store the whole input feature map and
receive at every dot product cycle just the chunk of the input map needed for the specific
operation. For example, if PE0 operates with a filter size of 2x2x3, Stream Buffer will only
need to provide in the fist iteration to PE0 input[0][0][0], input[0][1][0], input[1][0][0] and
input[1][1][0] to compute the first dot product in the channel 0 of the feature map.

Stream buffer complexity increases when we take into account the stride. If the stride
is 1, implies sending the same value over the channels more than once. Even it can have
performance issues, it is better than storing the whole input maps over all the PEs. In all
the cases, channel connections between input kernel and PE, and PE with PE are blocking.
PEi−1 is not able to start a new computation until PEi has read all the sent data.
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Weight Fetcher

Weight fetcher is similar to input kernel, it is also a connection between the host and the
device. Essentially, its fundamental objective is to feed the first PE with the weights needed
to compute the convolution. For doing so, we encounter a similar problem as in the input
distribution; we can not store all weight on each PE or we would be out of memory pretty
soon. Fortunately, the amount of a single filter is not that high, in the worst case a single PE
should store just 2304 bytes. Following a linear daisy-chain fashion the filters are distributed
among the first PE; PE0 takes its weights, and it distributes to PE1 the remaining filters.

As an example, if we have 64 filters with 7x7x3 size, all of them (7x7x3x64) are dis-
tributed to PE0. PE0 then keeps the first 7x7x3 weights and forwards the remaining
(7x7x3x63) weights to PE1 and so on. The last PE does not need to send any informa-
tion. A snippet code of that procedure can be seen in algorithm 1.

In Figure 4.2 Weight Fetcher can be depicted as Weight Fetcher. As we can see, it has a
connection to the first PE, and is this PE the one in charge of following the filter distribution
to the chain. However, it is not in charge to decide if all filters fit in a single call to the
FPGA. In the host side it exists an offset value, when setting the kernel arguments, it can
be decided which chunks o total filter will be transferred to the FPGA.

Algorithm 1 Weigh distribution on the PE

Pe(i): Dot Product
while w < total number of weights do

dataWeight = read Channel(i)
if w < single filter then

dataWeight[w] = dataWeight

else if getComputeId() < NUM PROCESSING ELEMENTS - 1 then
write channel(i+1) = dataWeight

++w;
end

Control Unit

As it names suggest it serves as a control unit for all the designed elements. It contains
the width, height and number of channels of the input feature map. It also contains the
the number of filters and the size of each layer. Input, output and weight kernels receive
information from the CU (Control Unit). Every kernel uses the information for different
purpose but all of them need to receive it to compute the same number of iterations. The
control unit also must take into account the stride applied for the convolution. As it happen
with the filters and the input features maps, CU feeds PE0 and is this kernel the one in
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charge to distribute to its contiguous PE.

It may happen that all the filters do not fit in the same FPGA call. When that happens
we should store the data in the host and prepare another call to the FPGA with the new
filters. In this case, CU is updated and it contains the information with the remaining filters
to be applied. At the end, the output feature maps obtained must be merged with the
already computed output feature maps from past calls to the FPGA.

Output Writer

Output writer is a kernel also connected with the host. Its main task is to populate the
results of the PEs to the main memory. Even its task is theoretically easy it is quite complex
to implement, due to the daisy-chain topology. First, the row PE computes a dot product
with an input feature map and a filter. When it has the results it start to send it to the
next neighboring PE. In the same way PE1 needs to send the received results from PE0,
calculates its own and send it to PE2. This process will carry on until it get to the last PE
in the row. PEn will send to the output writer all received results, compute its dot product
and then send the last output map result to the output writer.

The output writer does not care if the output maps are all computed in just one call to
the FPGA, or if it needs more calls because the number of filters is larger than the number
of available PEs. It is the host which gathers the output maps and appends to the previous
output maps of the same convolution layer.

Processing Element

PE are autorun kernels, meaning that they are always automatically executing, i.e. they
are not invoked from the host CPU. The information control they receive is very important
since they have been programmed to do a dot product just when they receive a valid con-
trol information. By reason of being an autorun kernels, PEs kernels can not receive any
information as a parameter so we need to communicate between kernels and other PEs using
blocking channels.

PEs do not have intelligence, they will be blocked by the channels until they receive the
information control. At that point they will know which weight size are waiting. They read
the exact amount of filters they need, remove from the filter channel and forward it to its
contiguous PE. Once PEs have this information they can perform the dot-product operation.
While computing, each PE will be sending/receiving the appropriate chunk of input map.
As all PEs use the same input map and the filter sizes are the same, they can communicate
to share inputs inside the loops. In 4.2 the overall architecture design is showed.
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Figure 4.2: ResNet152 DLA on FPGA
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4.3 Optimizations

At that point we have explained the basic architecture needed to build a CNN accelerator
on the HARP platform. Nevertheless the design is already fairly complex and has been a
rough task to implement, its performance is still not comparable to the original version
using OpenBLAS libraries. In the results chapter we will discuss this topic. Aiming to
obtain better performance results, this chapter explains the optimization done during this
project.

4.3.1 Stream Buffer

Stream buffer optimization was one of the most necessary implementations in the early
design stages. We realize very soon that if we stored all the input feature map in each PE we
could not fit the program in it. We had to be extra carefully because some implementations
work properly in the simulator but they are not feasible to map into the FPGA due to lack
of resources.

A first attempt to operate with smaller inputs consisted on receiving a chunk of input
feature map. As the PE stores its associated weights it can apply the dot product operation
over that input block. Afterwards, before operating with the next input map block we could
send to the next PE the used input feature map chunk. We execute this approach not
without realizing it was not efficient enough. The drawback was that the input feature block
maps were still too big. They did not reduce as much memory use as we wanted and it was
not as fast as we wish. That was due to the bottleneck we were causing when calculating
the dot-product. PEi was not able to start operating with the first chunk of input until
PE0...i−1 was finished. Furthermore, PEi was not able to following its execution until all
data was transmitted over its channel.

To solve all the encountered problems, input feature maps will no longer be send by
chunks. They are sent one by one every time the PE needs them. This means reading and
writing the channels as many times as dot product operations need to be performed. This
has not supposed any performance degradation since the data movement between Intel SDK
channel extensions are low latency and highly efficient.

We will have as much channels used for input scattering as PEs. We will refer as the
total number of PEs as NUM PROCESSING ELEMENTS. Each PEi will read from the
channeli−1 and write to the channeli+1. We need to take into account that the PE0 will be
reading the input from a channel connected directly to the Input Fetcher Kernel. On the
other hand PEn must not write to any channel. In the following snipped pseudo-code 2 this
phenomena is showed.
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It can be observed that the PE do not have control over the input it is receiving. It only
reads its corresponding channels and assumes that the obtained value is the correct for that
dotProduct iteration. This assertion is true since all the logical needed to determine which
input to send is controlled by the stream buffer (placed on the Input Fetcher kernel).

Algorithm 2 Input distribution on the PE

Pe(i): Dot Product
while output feature map do

dataInput = read Channel(i)
if getComputeId() < NUM PROCESSING ELEMENTS - 1 then

write channel(i+1) = read Channel(i)
end
compute();

end

4.3.2 Vectorization

In this context vectorization consist on exploiting the OpenCL vector data types that
allow to create vector from a given list of scalars. Intel SDK is also prepared to create
vector data types for its channels, being able to support communication between kernels
sending packs of 4, 8 or even 16 floats. We introduce this optimization to reduce the call to
read/write channel without losing the benefits of our design.

Vectorization has been applied to the input and weight feature maps. They can be sent
in a pack and computed in the PE. Nonetheless, additional logic utilization will be needed.
Before, a PE was receiving a single input and with the corresponding weights it output
every time a single value of the output, sending it then to the output Kernel. Now, it will
be executing four parallel dot-product operations, assuming a vector size of four elements.
Note that OpenCL supports addition and product with vector data types.

Data disposition for vectorization is very important since a bad addressing would intro-
duce overhead. A naive attempt to vectorize the dot product is to just extend the channels
to operate with float4, receive four inputs per iteration and operate with the corresponding
weights. This approach requires an extra reduction at the end of each dot product operation
to maintain the coherence. Hence, the filter would be applied in the first channel in the
feature map sequentially over the rows and, later, applied the filter to the second channel of
the input and so on.
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Figure 4.3: Naive vectorization

This approach would work if the size of the filter would be greater than 4x4 filter inde-
pendently of its third dimension. If that would be true, as seen in Figure 4.3, it would be
as easy as receiving four inputs and multiply by its four weights, do the same with the next
row and when a block ends slide right the filter and repeat the same operation. Having a
look on Resnet152 filter sizes we found that they are extremely small; all of them are 1x1 or
3x3 size and just one layer has 7x7 matrix filter. On the other hand, Resnet152 has up to
2018 channels. In Table 4.2 we can see the number of channels an input map has and how
many times these sizes appear over the layers.

Input Channels Size 3 64 128 256 512 1024 2048
Occurrences 1 7 16 75 14 36 3

Table 4.2: Number of channels occurrences per input maps.

A more suitable architecture is needed to fulfill the network requirements. To do so,
vectorization along multiple channels has been implemented. It consist on, instead of sending
the vector size (e.g four) first elements in the first row of the first channel to the PE, sending
the first elements of the different channels in the input map. Doing that, we can exploit the
parallelism and compute vector size channels at the same time, we can see it in Figure 4.4.
This optimization requires multiple changes in the kernels.
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Figure 4.4: Channel Vectorization

Changes to Input Fetcher Kernel and Stream Buffer

Stream Buffer, rather than feeding the PE with always the first channel of the input
feature (e.g.: input[0][0][0], input[0][1][0], input[0][2][0]...) and increasing the row sequen-
tially, now it has to interleave the accesses through the channel. Following the example
in Figure 4.4 with a vectorization size of four; stream buffer first write channel will con-
tain input[0][0][0], input[1][0][0], input[2][0][0], input[3][0][0]. On a bigger matrix, the next
iteration would send input[4][0][0], input[5][0][0], input[6][0][0], input[7][0][0].

Stream buffer acting in this interleaved mode demands extra control actions. When the
number of channels in the input matrix does not divide the vectorization size exactly, it
happens that the vector is not correctly set. To solve this problem, extra padding is inserted
to initialize a valid vector. The used padding ends creating a fake last channel of input
feature map which values are 0.

Changes to Weight Fetcher

Weight Fetcher will act as usual when retrieving the data from the host. However as
it will send the filter using vectorization it would need to add extra padding to have valid
vectors. If it is needed, it creates a fake last filter channel which will be send to the PE.
This may increase the memory usage since in the worst case it will create an additional fake
layer to each PE. In Figure 4.5 we can see how a weight fetcher would act. In this example
we would have a certain number of filters of size*size*3 channels. Weight fetcher will add a
fake last channel to all the filters to be able to create the fake last channel and send them
to the PEs.
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Figure 4.5: Weight Vectorization

Since weights will be sent also interleaved each PE will receive and store its weights
ready for the dot product operation. This will allow a better locality for memory access.
Each PE will receive the same amount of size ∗ size ∗ lc filter but with different addressing
and will store its filters with the new disposition adding the padding. PEs does not have a
problem to cope with the padding due to the added channels are set to 0. They will do a
dot product but will not alter the final reduction over the vectors.

Changes to Output Writer

Output Kernel does not add extra padding but needs to ignore the possible received extra
layer added for the vectorization. Moreover, adding this optimization makes the output
kernel to receive the results disordered. In Figure 4.6 we can see an example of how the
results are retrieved. This kernel needs to properly rearrange the output feature maps and
send them back to the host in the way they are expected. If it would maintain the FPGA
new order, shortcuts and pooling stages would fail because they are executed on the host
and they are not aware of this FPGA implementation changes.

Figure 4.6: Output Kernel Vectorization
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4.3.3 Reducing resource usage

The biggest limitation encountered was the lack of memory in the device. To reduce the
memory usage we have reduced the CU information struct. Previously we store the data
as integers. Now, the data is stored in shorts data type. Also some control information
that can be computed was erased from the control unit information. We could reduce from
36 bytes per struct to 10 bytes. Since all this control data was distributed through all the
system, assuming 32 PEs and one instance per input, output and weight fetcher kernels we
are saving up to 910 bytes (1260 bytes vs 350 bytes). This do not suppose a big difference
but it will help to generate the bitstream for the FPGA.

To use bigger vectorization sizes to improve the performance, we decided to reduce
even more the memory usage. We were operating with float data types of 32 bits (FP32), we
converted them to a half precision floating point (FP16). This drastically reduces the resource
requirements of each PE. The conversion from FP32 to FP16 is performed on the data before
entering to the PEs and, thus, it only needs to be applied once and it will be common for
all the PEs. After all dot-product computation, output kernel need to transform again from
FP16 to FP32 since host operates with FP32. To operate with FP16, an especial extension
on Aria 10 needs to be enabled ( #pragma OPENCL extension cl khr fp16). Enabling this
extension is compulsory because the FPGA does not support FP16 natively, this leads to
additional use of logic. However, at this point, we still have enough logic resources to cope
with this problem.
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5
Experimental Results

In this chapter we are going to present the results obtained during the development of this
master thesis on the different version of the architecture design. As stated, all speedups will
be compared with the best Resnet152 implementation found in Darknet repository (which
used high performance libraries for matrix multiplication). We discuss the performance
obtained and the resource usage of the FPGA.

To test the timing execution we have performed 5 image inferences to the network, is
really important to choose in which machine the timings are obtained because they can differ
a lot. OpenBLAS library optimizes the matrix multiply operation according to the number
of threads available in the processor, it attempts to use all the thread contexts and the vector
units of the CPU. We have used an Intel R© Xeon R© E5-2628L v4 [1]. Just by switching from
an Intel R© i5-6200U to the Intel Xeon we already gain 14x speedup.

In Table 5.1 we can observe the different images used to infer to the DNN. For these
images, Intel Xeon takes an average time of 5.9 img/sec. In the third row, we can see the
predictions that the DNN has done. Predictions are very accurate foretelling even the dog
breed, however it also fails. It recognizes the horses in the fourth pictures as a bighorn with
a confidence of just a 30.13%
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Total
Average

darknetOriginal
on Intel Xeon

5.62 5.63s 5.52s 5.67s 5.49s 5.59s

Prediction

91.01%malamute
6.8% Eskimo Dog
0.92% Siberian Husky
0.59%bicycle-built-for-two
0.10% mountain bike

86.93% bald eagle
11.23% kite
1.46% ruddy turnstone
0.05% ptarmigan
0.03% goose

74.66% zebra
4.58% impala
2.96% ostrich
1.87% gazelle
1.02% leopard

30.13% bighorn
17.20 water buffalo
16.17% plow
13.94% ram
4.41% ox

76.10% kelpie
4.34% collie
3.24% German Shepard
3.02% llama
2.36 great Pyrenees

Table 5.1: Prediction example in Resnet152

The results obtained without vectorization optimization were worse than the ones ob-
tained with the Intel Xeon multiprocessor. With 32 PEs the DNN needed an average of 8.23
img/sec to predict the outputs. This had supposed a huge milestone to overcome solved by
using vectorization. It significantly improved the performance of the algorithm, we will see
it later in this chapter.

The maximum number of PEs we have been able to generate for all the possible versions
of the design has been 32 due to limitations of the FPGA. We have also tried to generate
a bitstream with more PEs. However, we could not generate the bitstream due to mem-
ory limitations. In Table 5.2 we can see how the memory usage grows dramatically when
increasing the number of PEs.

# PEs 4 8 16 32 48
RAM blocks 21 % 23 % 27 % 35 % 64 %

Table 5.2: FPGA memory usage by number of PEs.

Vectorization

An important factor in order to optimize the code, as said, has been to take into account
the number of PEs we were setting. In the optimal case we would have, in each layer of the
DNN, the same number of PEs as channels in the input map. This may not happen since
the number of autorun kernels and channels must be set during compilation time and the
number of input channels is variable during the execution. Furthermore, the design must
not exceed the FPGA resources. When the number of PEs is increased by two, the execution
time is reduced by a factor of two. In Table 5.3 we can see the different execution times
obtained with the same design (vectorization size of 4) just by changing the number of PEs.
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vec 4 4PE 8PE 16PE 32PE
Convolution Time 38.98 18.95 9.72 5.36
Total Time 39.12 19.39 10.17 5.45

Table 5.3: Execution times depending the number of PEs

Resource usage also increases with the number of PEs. In Table 5.4 we can see the
evolution. As the same way as the previous table, we have used the same design with a vector
size of 4 increasing the number of PEs. We can appreciate that I/O pins are independent
from the number of PEs. This is because this program does not require any I/O pins further
from the ones needed to establish communication between host/device. Logic utilization is
one of the most demanded resources and it can also restrict the number of PEs. Nonetheless,
with 32 PEs there is still enough ALUTs (programmable logic element) , registers and DSP
blocks available on the FPGA. In Arria10, DSP blocks consists of basically one adders and
one multipliers. With 32 PEs we are just using 23% of the total DSPs. It is expected that
a growing use of DSP is reflected with a performance improvements.

# PEs 4 8 16 32
ALUTs 130504 142363 1667705 214728
Registers 204052 229283 283442 381184
Logic Utilization 30 % 33% 38 % 49 %
I/O Pins 19 % 19 % 19 % 19 %
DSP blocks 5 % 8 % 21 % 24 %
RAM blocks 21 % 23 % 27 % 35 %

Table 5.4: FPGA resource usage by number of PEs.

Increase vectorization size

We would not like to stuck with the minimum vectorization size (4) and not using all the
DSPs available. To increase the FPGA area in use, we have incremented the vectorization
size up to 8. This change implied wasting too much logic and memory resources. Again,
we were not able to generate the bitstream due to hardware limitations. To decrease the
memory usage we have changed the float precision to FP16 to fit the new vectorization size
(explained in previous chapter).

Resource usage in this version were heavily increased as can be observed in Table 5.5.
The amount of registers needed is more than doubled and the RAM blocks are above the
60% in use. As stated before, I/O pins remains constant. On the other hand, DSP blocks
are slightly increased.
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# PEs 32 V4 32 V8
ALUTs 214728 333251
Registers 381184 536389
Logic Utilization 49 % 66 %
I/O Pins 19 % 19 %
DSP blocks 24 % 28 %
RAM blocks 35 % 65 %

Table 5.5: FPGA resource usage for different vector sizes.

This optimization is not improving the performance drastically. This is due that Intel
Arria 10 does not support natively the use of halfs. To support this feature, it needs to
add extra logic for computing the conversions and, thus, reducing the possible performance
growth. In Figure 5.1, we see the DSP usage corresponding to different design versions (4,
8, 16 ,32 vector size 4, and 32 PEs vector size 8) and the speedup obtained. The baseline
configuration is the software implementation running on Intel Xeon CPU.

Figure 5.1: Speedup evolution depending on DSP usage. Baseline configuration is the soft-
ware version running on Intel Xeon CPU

We also check that the results were not altered when using half-precision instead of single
precision. Other designs (as AlexNet Intel implementation) also appeal to this techniques.
We found that even reducing the float precision the output predictions were practically the
same. With a vector size of 8 we have obtained a slightly better version.
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Bandwidth

Bandwidth host/device is an interesting point to have a look in the HARP platform.
Normally FPGA implementations have bottlenecks when they need to communicate with
the host. Not just FPGA, also DNN algorithms running on GPU platforms need memory
interchange and lose performance doing it. In HARP this overhead is almost negligible, all
the iterations of copying to the device and back to the host is tiny because of the memory
sharing architecture.

The Table 5.6 shows the total amount of megabytes read/write to the device. A total
of 207744 MB is transferred host/device in just the 0,08% of the total execution time. This
allows to have the shortcut and pooling layers in the host. It is not needed to overload the
FPGA since it the cost to connect it with the host is negligible. This is one of the main
advantage of this platform; the work can be balanced and transferred from the CPU to the
FPGA with negligible overhead.

32 PEs Total Bytes host/device Total Bytes device/host
Data 102.625 MB 105.119 MB
Time in seconds 0.26 0.29
TOTAL ∼0.08% of total time code

Table 5.6: Bandwidth with 32 PEs

Profiling

We tried to do a profiling of the latest code version (32 PEs with a vector size of 8). Un-
fortunately, we were not able to generate the associated bitstream. When instrumenting the
code using Intel SDK directives, it automatically enables performance counters, increasing
the FPGA area usage which is normally translated to a small decrease in performance. In
this case the growth of logic and memory caused the compiler to fail. It outputs an error
saying that the design does not fit on Arria 10. To avoid that problem, we have focused on
the vector 4 size version.

In Figure 5.2 we can see the time intervals where kernels are executed. Input Fetcher
kernel is always executing. This is what we should expect because it is always feeding PE0

with the needed input values. Output writer executing all of the time means the results are
being obtained at the first cycles of the FPGA computation. It starts almost at the same
time as the input kernel, retrieving the first dot-product result in just a few milliseconds. On
the other hand, Weight fetcher execution intervals are really small. At the beginning we can
see the that the kernel is distributing the filters to PE0. Once it ends writing the channel
it stalls until the end of the program. At that moment, the synchronization primitives with
the host are applied in order to finish the FPGA call.
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Autorun Kernels (PEs) by definition are automatically executed before the host explic-
itly launches them and they restart automatically on completion. Since autorun kernels
never totally complete in a single FPGA call, the profiler does not capture any data. In this
case, is the programmer who must instruct the host code with the SDK library call clGet-
ProfileDataDeviceIntelFPGA . When adding this call the user can retrieve autorun kernels
data. In our case, adding this call also causes the bitstream to fail due to resource limitation.
This program is calling the FPGA several times and adding Intel SDK counters infers too
much overhead in memory usage.

Figure 5.2: Intel SDK kernels profiling

Power Consumption

To summarize, we have obtained a 1.06x total of speedup in comparison to a high
performance multiprocessor using OpenBLAS library. Nevertheless, this proposal reduces
the power consumption of the design. CPUs are multipurpose architectures that, as a rule,
consumes more power than a FPGA. The Intel Xeon used for this experiment has a TDP
(Thermal Design Power) of 75 W. When running the image classification algorithms it uses
all the CPU available resources, for that reason, we can assume a 75 W TDP. On the other
hand, FPGA Arria 10 has a TDP of 35W. In the worst case, this architecture is using only
66% of the total resources of the FPGA thus, achieving a power consumption of 23W. We are
enabling low-powered solution for the image recognition problem that does not downgrade
the performance of the CNN.

To wrap up, our DLA accelerator achieves 6% speedup, 69.3% reduction in power and
70.9% reduction in energy consumption over a highly optimized software implementation
running on a modern Intel Xeon CPU.
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6
Conclusions

6.1 Conclusions

It has been a tough task to develop this project. I have learned a new programming
language, i.e. OpenCL, to operate with the FPGA. Furthermore, HARP platform is rather
new and there are not much studies on how it behaves or how to configure it. One problem
that we encountered was that, at the beginning of each compilation stage, it generates
an approximation of the resources it will need. At first, it seemed that none of our designs
fitted on the FPGA and it was delaying the project. Theoretically it was impossible that this
happened, it take time and effort to discover that the approximation that it was showing
to the user was a very pessimistic approximation and had nothing to do with the actual
results. Afterwards (and after 9hours of compilation) when the bitstream was generated we
were able to assert that the resource usage was much lower than the approximated values.

It has been challenging to work with this new environment, finding were the correct logs
where and discover a different way to work. We had to cope sometimes with the crowded
servers and retry some compilations. When several users were trying to generate a bitstream,
it usually fails or lasted even longer.

Other essential point was to understand how Resnet152 was behaving and which were
the possibilities to optimize its performance. Studying Resnet152 has been very different
from other proposals, even if you are trying to do as much as possible a customized DLA,
each layer in ResNet152 has very different dimensions and requirements. Part of this project
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has also consisted of learning the state-of-the-art solutions that existed and try to apply
some of the best techniques to this project.

We have realized that the inputs are very big, causing to exploit the memory and under-
utilized other FPGA resources. If we had not the memory limitation, we could have achieved
better design performance, either augmenting the number of PEs or storing at each PE more
values to reduce the usage of channels. Nonetheless, with a vector size of 8 we achieve almost
a 70% of logic utilization, meaning that this network is very computing intensive. We achieve
that 92% of the DNN is executed on the FPGA reducing drastically the CPU resource usage
that can perform other tasks.

To summarize, we have obtained a suitable DLA for Resnet152 6% faster than in a high
performance CPU counterpart. Moreover this implementation is low power solution. Our
DLA accelerator 69.3% reduction in power and 70.9% reduction in energy consumption over
a highly optimized software implementation running on a modern Intel Xeon CPU. This
DLA could be suitable for other DNNs that apply convolutional layers.

We have also fulfilled the second objective of this thesis that consisted of exploring and
studying the behaviour of HARP. Once you get to know the environment is easy to use the
HARP platform and work with your designs, but it is rather confusing to getting started
with it. In my opinion, HARP platform is a disruptive architecture with lots of potential
that can provide good results in a near future. Other DLAs can be designed using HARP
because of its advantages in memory bandwidth and low power solution. However, it would
be nice to have more documentation about it.

Overall it has been enjoyable experience. I have worked and discovered a new Intel
experimental platform while getting to know state-of-the-art neural networks. Image recog-
nition is a trending topic nowadays that still have a lot of opportunities to grow. It has lots
of practical purposes with emerging possibilities.

6.2 Future Work

In this master thesis we have obtained a good DLA but there is still future work that can
be done. First of all, we could distribute the same data in different ways. We could distribute
the input channels on different PEs and apply its corresponding filters. That would suppose
that, instead of each PE computing an output feature map, a single PE would compute only
a chunk of output feature map. This approach would require less memory usage since the
FPGA would receive less filters and just a portion of the input map, but would increase the
logic utilization for reordering the results of the feature map when the results need to be
send to the host.

Other interesting solution would be to maintain the same functionality in the FPGA
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but having non-blocking calls to it. Now, the host blocks and waits until the FPGA send
the results. There are ways to configure the host to have non-blocking calls. Doing that,
we would obtain an algorithm that balances the convolution work between the host and the
device. This approach would require additional synchronization tasks to ensure a correct
output map for the next layer iteration is obtained. Different architectures can be proposed
and tested in HARP platform to obtain low power and fast solutions.
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