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ABSTRACT
Flexibility of small loads, in particular from Electric Vehicles (EVs),
has recently attracted a lot of interest due to their possibility of
participating in the energy market and the new commercial po-
tentials. Di�erent from existing work, the aggregation techniques
proposed in this paper produce �exible aggregated loads from EVs
taking into account technical market requirements. They can be
further transformed into the so-called �exible orders and be traded
in the day-ahead market by a Balance Responsible Party (BRP). As
a result, the BRP can achieve at least 20% cost reduction on average
in energy purchase compared to traditional charging based on 2017
real electricity prices from the Danish electricity market.
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1 INTRODUCTION
The integration of EVs into the Smart Grid reveals new business
opportunities by exploiting their inherent �exibility [13, 15]. A
market actor that controls the charging rate and time of a portfolio
of EVs could acquire �nancial gain from energy arbitrage [8, 10].
The energy required to charge (and/or discharge) the EVs can be
traded through bids in day-ahead and/or regulation market at a
minimum cost [21]. Numerous research studies, European (e.g., [1],
and national projects (e.g., [2]) focus on trading the required energy
to charge EVs taking into account di�erent parameters.

An optimization charging approach of EVs that activates the
participation in both day-ahead and regulation markets is proposed
in [7]. Scheduling techniques of EV charging that aim to maximize
the market actor’s pro�t and take into account electricity price
uncertainty are suggested in [26] and [31]. A risk-based scheduling
framework for charging EVs is also proposed in [30]. The suggested
algorithm is based on day-ahead prices and takes into account
driving activity uncertainties in order to minimize the charging
cost of the EVs. Similarly, a day-ahead optimization technique for
scheduling EVs considering the impact on the day-ahead prices is
suggested in [16]. Both optimization and heuristic techniques for
optimal charging of EVs aiming to the maximization of the revenue
by utilizing energy storage are proposed in [14].

The main characteristic of the research tackling the energy trad-
ing of �exible EV loads is the output of the proposed techniques,
i.e., an aggregated scheduled load. Unlike other work, we introduce
3 aggregation techniques that produce �exible aggregated loads
that can be traded in the market. As a result, the market itself,
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not the market actors, schedules the loads from the EVs as part of
the trading process, minimizing the uncertainty of bidding. For
instance, instead of placing a bid to purchase 30MW in hour 3, the
market actor places a bid to purchase 30MW in any hour between
hour 1 and 5. The market determines the activation time of the bid.
In many cases, the technical trading details of the market impose
hard constraints that are omitted by the proposed solutions and
the realization of the suggested techniques becomes very di�cult.
For instance, the proposed scheduling technique in [11] o�ers less
than 200kW in less than an hour in the regulation power market
where the minimum bid is 10MW, in full hours [8]. The bidding
strategies proposed in [5] and the high power �uctuations of the
scheduling outputs in [7] and in [21], would require single hour
independent bids [3] that might not ful�ll the energy requirements.
The conservative bidding approach for the bidding strategy pro-
posed in [27] covers less than 50% of the energy needed to charge
the EVs. On the contrary, our proposed aggregation techniques use
real technical market requirements derived from a speci�c order
(bid) type of Nordic market, namely, �exible orders [3].

Contributions. First, we describe both the so-called �ex-o�er
(FO) model, which captures the �exibility of the EVs, and a realistic
market framework where the �exibility is traded. Second, we inves-
tigate the market-based FO aggregation problem and its complexity.
Third, we introduce 3 heuristic algorithms that take into account
real market requirements and produce �exible aggregated FOs that
can be then traded through �exible orders in the market. Finally,
we compare our proposed techniques with 2 base-line approaches
and evaluate both the technical and the �nancial aspect of their
results based on real market prices. We show that our proposed
techniques achieve more than 20% cost reduction on average in the
purchased energy required to charge from 5K to 40K EVs.

The paper is organized as follows: we introduce the preliminary
de�nitions in Section 2 and we present the problem formulation
of market-based aggregation in Section 3. In Section 4, we pro-
pose 3 heuristic market-based aggregation techniques and we ex-
perimentally evaluate them in Section 5. We conclude the paper
in Section 6.

2 PRELIMINARIES
In this section, we describe the EV model that can be used to trade
�exibility and the market framework used for trading.

2.1 Electric vehicle model
We consider the energy used to charge EVs to be appropriate for
�exible energy trading. The reason is that the lithium-ion batteries
of EVs are ample power demand devices and their charge can be
time shifted when the EVs are plugged-in for more hours than
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needed for charging. We consider EVs that can be continuously
charged with a power-constant voltage (CP-CV) option [23] and
their charge is taking place in the range of 20% to 90% state of charge
(SOC) so that the battery life is preserved [17]. As a result, when
an EV is plugged in for charging, its battery capacity is at least 20%
and the user would like to fully charge it (90%) for his/her next trip.
The SOC is computed according to the following formula based
on [23]: SOC�nal = SOCini +

ηc ·ηb ·P ·t imecha
C (1) where SOC�nal is

the �nal state of charge equal to 90% of the total battery capacity (C).
Parameters ηc and ηb represent the e�ciency of the charger and the
internal resistance of the battery, respectively. We represent with
P the power used to charge an EV that is constant over the [20%,
90%] interval of SOC and timecha is the time needed to charge it
up to SOC�nal .

In our work, because we take into account time shifted loads,
we use the �ex-o�er (FO) concept [22], introduced in the MIRABEL
project [1, 9] to represent the charging of a �exible EV. An FO
captures �exibility from di�erent dimensions (e.g., time, energy,
and/or combined) [24], from di�erent devices [28], and can be used
for di�erent purposes, e.g., tackle electrical grid bottlenecks [25].
Thus, we de�ne an FO f to be a tuple f = (T (f ), P(f )) where T (f )
is the start charging �exibility interval and P(f ) is the power pro�le.
T (f ) = [tes , tls ]where tes and tls are the earliest start charging time
and latest start charging time, respectively. We de�ne time �exibility
(tf ) to be the di�erence between tls and tes . The power pro�le is a
sequence of (m ∈ N>0) consecutive slices, P(f ) = 〈s(1), . . . , s(m)〉
where a slice s(i) has a power value p measured in kW. The duration
of slices is 1 hour.

For instance, an EV is plugged in at a house between 1 and 8 a.m.
The EV continuously utilizes 3.7kW for 3.3 hours to be charged.
However, energy trading is performed per hour and we also use
hourly resolution to model the EVs charging. To respect the hourly
granularity, we equally distribute the sum of the energy needed
during the �rst and the last regular charging hours and we reduce
power �uctuations in the model. Therefore, we assume that the
EV consumes 2.4kWh both during the �rst and the last charging
hours and 3.7kWh during the hours in-between. The EV can be
modeled by an FO f =([1, 4], 〈2.4, 3.7, 3.7, 2.4〉), see Figure 1a. Next,
we describe the market framework where such FOs shall be traded.

2.2 Market framework
The Nordic/Baltic market for electrical energy named Nord Pool
is considered in our work. Nord Pool is one of the most mature
energy markets [29] and Europe’s leading power market [3]. It
consists of the day-ahead (Elspot) and intra-day markets. We focus
on Elspot because it has one of the largest turnovers in the Nordic
system and it also supports �exible energy trading [8]. Trading in
Elspot occurs daily through orders (bids). Each day before 12 p.m.,
the balance responsible parties (BRPs) place their purchase and/or
selling orders (bids) in Elspot for the following day. The orders
specify the energy amount a BRP desires to buy/sell and the price
the BRP is willing to pay/be paid for the corresponding energy.
Since 2016, Elspot supports 4 di�erent order types: single hourly
orders (price dependent or independent), block orders, exclusive
groups, and �exible orders [3]. We focus on �exible orders that
support �exibility trading.
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Figure 1: An examle of an FO and a �exible purchase order

When a BRP places a �exible order in Elspot, it states the name,
the time interval, the price limit, the volume, and the duration of
the order. The time unit is one hour and volume is expressed in
MW. The duration expresses the number of hours during which the
order can be activated over the interval [1, 23]. The time interval
must exceed the duration by at least one hour and expresses the
potential activation times of the order. Volume is either positive, if
the order is a purchase order or negative, if it is a sell order. A BRP
can place 5 �exible orders during a trading day.

Hypothetically, a BRP could purchase the energy needed to
charge the above mentioned �exible EV, represented by FO f
through a �exible order. The duration of a �exible order is mapped
to the number of slices of f , the volume to the power of the slices,
and the time interval to the time �exibility of f . For instance, a BRP
could place a �exible order named “F1”, with duration 4 hours and
time interval from 1 to 8. The volume of F1 is 0.0037MW (in order to
satisfy all the slices) and its price limit is 35 euros/MWh. However,
the energy needed to charge a single EV is (much) too small to
be traded in Elspot. In particular, the minimum contract size and
the volume trade lot for a �exible order are both 100kW, while the
power used by an EV is a few kW. Moreover, when the duration of
a �exible order is more than one hour, the volume needed for these
hours shall be constant. As a result, it is necessary to aggregate
FOs to trade the �exible loads of the EVs through �exible orders in
Elspot market.

The �exible order is activated in the time interval that optimizes
social welfare provided that the price is respected [3]. Given F1 in
a liquid market, the order is activated when the cost of buying the
required energy is minimized. For instance, we see in Figure 1b
that F1 is activated in time slots 3, 4, 5, and 6 where the price is
25 euros/MWh. Thus, the energy needed to charge the EV costs
25 · 0.0037 · 4 = 0.37 euros. On the contrary, if time �exibility of the
EV is disregarded, its charging occurs based on a price independent
order and its plug-in time (time slot 1-4 in Figure 1b). As a result,
the energy needed to charge the EV is purchased based on a price
independent order and the price is set by Elspot. In that case and
according to Figure 1b, the cost is 33 · 0.0037 · 2 + 25 · 0.0037 · 2 =
0.4292 euros, 16% more than the cost achieved by �exible order
F1. Therefore, a �exible order has a higher probability to achieve a
better price than a price independent order because it takes into
account the time �exibility of the �exible loads and thus can be
favored by price reductions. The absolute di�erence (imbalance)
between the purchased energy and the energy needed is traded in
the balance market and usually for a higher price than the one in
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Elspot. Consequently, the BRP desires to be as precise as possible
regarding the purchased energy from Elspot.

Regarding the communication among an EV and a BRP, we
assume an Information and Communication Technology (ICT) in-
frastructure [4]. When an EV is plugged in, an FO is generated
requiring the minimum interaction with the owner of the EV. The
FO generation takes into account the historical use of the EV, the
SOCini of the EV, the charging characteristics of the EV, and the
technical characteristics of the charging station, e.g., a home charg-
ing installation [20]. Identifying the time �exibility of an FO is
challenging, but appropriate forecast techniques can be designed
taking into account daily/weekly driving patterns [6].

3 PROBLEM FORMULATION
In this section, we show how aggregation of FOs that represent
�exible charging loads of EVs can ful�ll the requirements of �exible
orders. We also introduce the problem of market-based aggregation.

3.1 FO aggregation
Based on [22], FO aggregation is the function that given a set of
FOs F , produces a set of aggregated FOs AF where |AF | ≤ |F |.
The produced AFOs capture large amounts of energy that can be
traded in the market. Due to the time �exibility of the FOs, there
are di�erent alignment combinations that can lead to di�erent
AFOs. According to start-alignment FO aggregation, the earliest
start charging time of an aggregated FO (AFO) fa is the minimum
earliest start charging time among all the FOs that produced it, i.e.,
fa .tes =minf ∈F ′(f .tes ), F ′ ⊆ F . The latest start charging time of
fa is the sum of its tes and the minimum time �exibility among
all the FOs in F ′, i.e., fa .tls = fa .tes +minf ∈F ′(t f (f )). The power
pro�le of fa is produced by summing up the power pro�les of the
FOs when they are aligned according to their earliest start charging
time.

For instance, we see in Figure 2a three FOs, f1 = ([1, 5], 〈1, 1〉)
f2 = ([2, 3], 〈1, 1〉), and f3 = ([4, 5], 〈1〉), that produce AFO f123
where f123.tes = f1.tes = 1 and f123.tls is the sum of f123.tes and
time �exibility of f2 or f3, i.e., f123.tls = 2. The power pro�le of
f123 is produced by summing up the power pro�les of f1, f2, and
f3 based on their alignments. Thus, f123.s(1).p = f1.s(1).p = 1,
f123.s(2).p = f1.s(2).p+ f2.s(1).p = 2, f123.s(3).p = f2.s(2).p = 1, and
f123.s(4).p = f3.s(1).p = 1.

Due to the time �exibility of the FOs, there are di�erent align-
ment combinations that can lead to di�erent AFOs. For instance,
given the 3 FOs f1, f2, f3 in Figure 2 with time �exibility 4, 1, and
1, respectively, there are 20 (5 · 2 · 2) alignment combinations. As
a result, based on di�erent alignments, time �exibility of the FOs
can be adjusted accordingly and di�erent power pro�les for the
AFOs are produced. Moreover, a set of FOs can be partitioned and
each subset can produce an AFO. Consequently, the output size of
aggregation can be greater than one. For instance, we see in Fig-
ure 2b that the output of aggregation is 2 AFOs, i.e., f12 and f3.
In particular, FO f1 is aligned with f2 and time �exibility of f1 is
adjusted so that f1.t ′es is equal to f2.tes . Consequently, the power
pro�les of f1 and f2 are summed up and they produce AFO f12.
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Figure 2: Flex-o�er aggregation according to di�erent align-
ments

3.2 Market-based FO aggregation
Given a portfolio, the goal of a BRP is to maximize its pro�t by
purchasing, for the minimum price, the energy that it sells to its
customers. We consider �exible EVs to be part of a BRP’s portfo-
lio and, since the energy purchase takes place through orders, we
examine if the energy needed to charge the �exible EVs can be pur-
chased through �exible orders. The purchasing strategy of a BRP
depends on many di�erent factors, e.g., the content of the portfolio
(factories, households, etc.) and pricing forecast. The strategy is
out of scope of this work and left for Future work. However, since
a �exible order has in general a higher probability to achieve a
lower purchase price, we consider the goal of a BRP to be the maxi-
mization of the purchased energy through �exible orders. In our
work, we introduce market-based FO aggregation (MAGG) to be the
aggregation that given a set of FOs, outputs between one and �ve
AFOs that ful�ll the �exible order requirements, see Equations (1a)–
(1b). AFOs summarize the energy requirements and �exibilities
in amount and time imposed by the technical requirements of a
�exible order.

In order for an FO to ful�ll the �exible order requirements, the
FO must have (1) time �exibility at least one (Equation (1c)) and
(2) between 1 and 23 slices (Equation (1d)). Moreover, since the
minimum contract size and the trade lot of a �exible order are both
100kW, (3) the values of the slices of the FOs shall be multiples of
100kW.
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For illustrating purposes, we assume in our example below that
both the volume and the trade lot for a �exible order is 2kW instead
of 100kW. For instance, we see in Figure 2 that none of the individ-
ual FOs ful�lls the power pro�le requirements of a �exible order
(2kW). Thus, market-based FO aggregation is necessary. In that
case, market-based FO aggregation produces AFO f12 that ful�lls
the �exible-order requirements since its time �exibility is 1 and the
power of both the slices equals to 2, see Figure 2b. FO f3 is also
part of the aggregation output, but it is not a valid AFO because it
does not ful�ll the power pro�le requirement, i.e., its slice amount
is lower than 2.

The �exible EVs are represented by a set of FOs. For instance,
5000 EVs that are part of a BRP’s portfolio are represented by a
set of FOs F . Each EV is an FO f of the set, i.e., f ∈ F , f =

(T (f ), P(f )),T (f ) = [tes , tls ], P(f ) = 〈s(1), . . . , s(m)〉. A BRP must
aggregate the FOs to produce AFOs that ful�ll the �exible order
requirements and can be then placed in the market as �exible orders.
The volume of energy is expressed through the sum of the slices of
the FOs and the power of each slice must be a multiple of 100kW
(Equation (1f)). However, due to technical charging characteristics
(EV power demand is in the interval [3.7kW,11kW] for household
charging), we take into account a power range to de�ne the valid
power amounts. Thus, instead of considering exact multiples of
100kW for the power amount of each slice, we permit an insigni�-
cant amount deviation of ekW per slice, e.g., 5kW (Equation (1f)).
When the �nancial evaluation of market-based aggregation occurs,
the deviated amount will be considered to be traded in balance mar-
ket, see Section 2.2. Hence, the problem of maximizing the bidden
energy through �exible orders given a set of FOs is formulated as
follows:

Maximize
∑

fa ∈AF

∑
s ∈P (fa )

s .p (1a)

subject to AF = MAGG(F), 1 ≤ |AF | ≤ 5 (1b)
∀fa ∈ AF , tf (fa) ≥ 1 (1c)
∀fa ∈ AF , 1 ≤ |P(fa )| ≤ 23 (1d)
∀fa ∈ AF ,∀s ∈ P(fa ), (1e)
s .p = x · 100kW ± ekW,x ∈ N>0, e ∈ [0, 5] (1f)

3.3 Market-based FO aggregation complexity.
Given a set of FOs F , there are

{ |F |
k

}
ways (Stirling numbers of the

second kind [12]) to partition the |F | FOs into k subsets. Applying
aggregation on each subset produces an AFO. In market-based FO
aggregation, the size of the output is between 1 and 5. Thus, k can
be assigned values from 1 to 5. Therefore, there are

{ |F |
1
}

ways to
partition |F | FOs into 1 non-empty subset of FOs. There are

{ |F |
2
}

ways to partition the |F | FOs into 2 non-empty subsets, where the
aggregated FOs are 2 and so on. Thus, given |F | FOs, there are{ |F |

1
}
+

{ |F |
2
}
+ · · · +

{ |F |
5
}
=

∑5
k=1

{ |F |
k

}
ways to partition the FOs.

Moreover, the number of the di�erent aggregated FOs depends
on the alignments of the FOs and thus on their time �exibility.
In particular, given a set of FOs SF (SF⊆F ) with time �exibil-
ity tf (f1), . . . , tf (f |SF |) respectively, the number of the aggrega-
tion results (aggregated FOs) that can be produced is:

∏ |SF |
i=1 tf (fi).

Hence, given an average number of partitions (avg(al)), there are

Algorithm 1 Heuristic Market-Based Aggregation
Input: F - set of FOs, e - amount deviation
Output: AF - set of AFOs

1: continue ← true , AF ← ∅
2: while continue = true do
3: ppt ← 23, spt ← 100
4: PF ,UF , fini , t� ←Initialize(F )
5: PF ,AF ←Process(PF ,AF , fini , t�, ppt, spt, e)
6: F , continue ←Examine(PF ,UF ,AF , continue)
7: return Top5EnergyAFOs(AF)

Algorithm 2 Longest Pro�le - Initialization phase

1: function Initialize(F )
2: fini ←SelectAmongLongestTheMostFlexibleFO(F )
3: return F \ fini , ∅, fini , 1

∑5
k=1

{ |F |
k

}
) × avg(al) potential aggregation results. Furthermore,

the complexity of the problem, as an Integer Linear Programming
problem, is too high to be solved by state-of-the-art solvers [19].

Example 3.1. Given a set with 100 FOs, there are
∑5
k=1

{100
k

}
=

6.5738 · 1067 potential partitions that can produce from 1 to 5 AFOs.
Assuming 20 alignments per partition on average, there are in total
20 · 6.5738 · 1067 = 1.3148 · 1069 (approximately the estimated
number of atoms in the Milky Way Galaxy) potential aggregation
results that have to be examined in order to �nd the optimal one.

4 HEURISTIC SOLUTIONS
Due to the unrealistically large solution space, we instead propose
3 variations of a heuristic algorithm, i.e., Heuristic Market-based
Aggregation Main Algorithm (HMAMA) that tackles the market-
based aggregation problem.

4.1 Heuristic Market-based Aggregation Main
Algorithm

The goal of HMAMA is to produce AFOs that respect the �exible
order requirements while avoiding the high complexity of the prob-
lem and at the same time provide good results in terms of bidden
energy amount. Thus, given a set of FOs F , HMAMA (Algorithm 1)
performs incremental binary aggregations so that the produced
AFOs increase the captured energy in each step. In addition, the
algorithm maps the �exible order requirements to threshold param-
eters that must be respected during the performed aggregations.
Consequently, it introduces 3 thresholds, namely, the slice power
(spt), time �exibility (t�), and power pro�le (ppt) thresholds that
correspond to �exible order requirements. It sets spt to 100 since
�exible orders must have multiples of 100kW power. Moreover,
HMAMA assigns 1 and 23 to t� and ppt, respectively, since �exible
orders must have a time interval of 1 and duration at most 23 hours.
Permitted amount deviation is represented by e that is assigned
values from 0kW to 5kW.

The body of HMAMA consists of 3 phases (functions), i.e., ini-
tialization, processing, and examination (Algorithm 1, Lines 2–6).
During the initialization phase (Line 4), HMAMA identi�es the FO
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Algorithm 3 Initialization phase - Dynamic Pro�le algorithm

1: function Initialize(F )
2: uf ←UpperFencePro�leSize(F )
3: PF ←FOsWithPro�leAtLeastUF(F , uf )
4: fini ←SelectTheMostFlexibleFOAmongLongest(PF )
5: return PF \ fini , F \ PF , fini , 1

with which to start binary aggregations (fini ) and the subset of
the FOs (PF ) that participates in the aggregations. Then, during
the processing phase (Line 5), it produces all the potential binary
aggregations between fini and the FOs in PF to produce AFOs that
ful�ll the �exible order requirements. Afterwards, during the exam-
ination phase (Line 6), HMAMA examines whether it shall restart
using the remaining FOs or terminate.

4.2 Main Algorithm variants
The initialization phase is salient for the outcome of the algorithm
as it mainly de�nes the solution space that the algorithm explores.
Hence, we introduce 3 variants of HMAMA that have di�erent ini-
tialization phases, namely, the Largest Pro�le (LP), Dynamic Pro�le
(DP), and Dynamic Time Flexibility (DTF).

LP focuses on producing AFOs with many slices because a long
FO usually captures large energy amounts. On the other hand,
given an FO with many slices, it is very di�cult to ful�ll the �exible
order amount requirements and, especially, the slice amount equal-
ity required. For this reason, DP excludes from aggregation the
FOs with extremely large pro�les (outliers). DTF focuses on time
�exibility of the FOs that has a prominent role in aggregation since
it is directly correlated to the alignments. Thus, DTF takes into
account the time �exibility distribution of the initial set and grad-
ually excludes from aggregation the FOs with low time �exibility
compared to the initial set.

LP - Initialization phase. LP starts by selecting the most
�exible FO among the ones with the largest pro�le size (Algo-
rithm 2, Line 2). An FO with large pro�le size and high time �exibil-
ity has high probability to time-wise overlap with pro�les of other
FOs. So, AFOs that ful�ll the �exible order requirements through
di�erent alignments can be produced. LP uses the initial set F as
the processing set PF (Line 3) and then executes the processing and
examination phase.

DP - Initialization phase. During the initialization phase, DP
divides the initial set F into 2 subsets. First, DP computes the
upper fence (uf ) [18] of the power pro�le size of the FOs in F
(Algorithm 3 Line 2). Then, it stores in PF the FOs that have pro�le
size of at most uf (Line 3). It selects as fini the most �exible FO in
PF among the ones with the longest pro�le and removes it from PF
(Lines 4–5). For instance, given the set F in Figure 3a ({ f1, . . . , f6}),
uf is 4, see Figure 3b. DP excludes f1, which has a very long pro�le
compared to the other FOs (red circle in Figure 3b), from F and
selects FO f6 as fini . FOs with very long pro�les have di�culties
satisfying the slice equality and it is likely that they have small time
�exibility due to their long pro�les (e.g., many charging hours for
the EVs). Thus, they have less potential alignments to further satisfy
the �exible order requirements. Then, DP continues aggregation
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Figure 3: DL and DTF example, pro�le size and time �exibil-
ity box plots

Algorithm 4 Initialization phase - Dynamic Time Flexibility

1: function Initialize(F )
2: t� ←LowerFenceTimeFlexibility(F )
3: PF ←FOsWithTimeFlexibilityAtLeastt�(F , t�)
4: fini ←SelectTheMostFlexibleFOAmongLongest(PF )
5: return PF \ fini , F \ PF , fini , t�

with the processing and examination phase using PF , i.e., F \{ fini ∪
f1}.

DTF - Initialization phase. DTF takes into account the time
�exibility distribution of the initial set F and excludes FOs with low
time �exibility compared to the initial set. It computes the lower
fence of time �exibility distribution of F and sets the time �exibility
threshold (t�) equal to the lower fence [18] (Algorithm 4 Line 2). It
splits F based on the lower fence of the time �exibility distribution
in the set. It stores the FOs with time �exibility at least t� in PF
(Line 3). DTF then selects fini from PF (Line 4). As a result, the
algorithm excludes the FOs that have very small time �exibility. For
instance, given the set F in Figure 3a, t� equals 6, Figure 3c. Thus,
DTF excludes f3, which has very low time �exibility compared to
the other FOs in the set, from F , see the blue circle in Figure 3c. DTF
then sets t� to 6, selects FO f1 as fini , and continues aggregation
with PF , i.e., F\{ fini∪f3}. FOs with small time �exibility have lower
probability to contribute in aggregation due to the low number of
alignments that they have. Moreover, by setting t� equal to the
lower fence, DTF reduces the number of examined alignments and
consequently the complexity of the algorithm. Thus, AFOs with
greater time �exibility are more likely to be produced.

Processing phase. In the processing phase, HMAMA examines
all the potential binary aggregations between fini and the FOs in
PF de�ned in the initialization phase. The FOs are examined in
descending order according to their time �exibility. FOs with high
time �exibility have more potential to participate in an aggregation
that ful�lls the �exible order requirements because of high number
of alignments.

HMAMA examines, through the potential alignments, all the
binary aggregations that ful�ll the time �exibility t� and the power
pro�le thresholds ppt (Algorithm 5, Lines 3–5). Among the AFOs

5



Algorithm 5 Processing phase

1: function Process(PF ,AF , fini , t�, ppt, spt, e)
2: PF tmp ← ∅, fa ← null
3: for each f ∈ PF do
4: fcand ← null, bestCV ←∞
5: for each alignment al of { fini , f } do
6: fx ←BinaryAggregation(fini , f ,al , t�, ppt)
7: if RMSE(fx , spt)<RMSE(fini , spt) then
8: if CV(fx )<bestCV then
9: bestCV ←CV(fx ), fcand ← fx

10: if fcand , null then
11: PF tmp ← PF tmp ∪ f , fini ← fcand

12: if ∀s ∈ P(fini ), spt − e < s .p < spt + e then
13: fa ← fini
14: PF ← PF \ PF tmp
15: PF tmp ← ∅, spt ← spt+100
16: return PF , AF ∪ fa

Algorithm 6 Examination phase

1: function Examine(PF ,UF ,AF , continue)
2: if PF ∪ UF=∅ or (|AF |≥5 and

totalEnergy(PF∪UF )<Energy5thAFO(AF )) then
3: continue ← f alse

4: return PF ∪ UF , continue

that reduce the root mean square error (RMSE) between fini and
the slice power threshold spt, it chooses the one with the minimum
coe�cient of variation (CV) (Lines 7–9). By promoting the reduction
of RMSE, the produced AFO fcand has a power pro�le closer to
spt. In particular, the use of RMSE during aggregation prevents the
increase of pro�le length of the potential AFO and contributes to
the production of slices with values closer to spt. Consequently,
alignments that lead to power pro�les that time-wise overlap each
other are preferred for aggregation. Moreover, because the slices of
an AFO might have power deviations, the second condition of CV
(Line 9) is used. A low CV of fcand contributes to the elimination
of power pro�le deviations and to the production of AFOs with
slice power amounts closer to each other. For instance, given the
FOs in Figure 2 and spt equal to 3, the RMSE between the slices of
AFO f12 and spt is equal to 1 and lower than the RMSE between
the longest FO f123 and spt, which is 1.8. Similarly, f12 and f123
have CV equal to 0 and 0.4, respectively, with f12 having no power
�uctuations. Thus, the reduction of RMSE and CV lead to AFOs
that ful�ll the �exible order energy requirements.

When an AFO with power amounts around spt is produced,
an e kW deviation per slice is permitted (Algorithm 5 Line 12).
At that point, an AFO fa that ful�lls the �exible order criteria
is produced (Line 13). The FOs that participate in aggregation
are temporally stored (Line 11) and when an AFO fa is produced,
they are removed from PF (Line 14). Then, spt is increased by 100
(Line 15) so that AFOs with larger energy are produced during the
following aggregation. As a result, the processing phase produces
an AFO that captures large amounts of energy and ful�lls the time
�exibility and power amount requirements of a �exible order. When

all the FOs in PF are processed, HMAMA returns both PF and the
output set AF with the aggregated FO fa (Line 16).

Examination phase. During the examination phase, HMAMA
�rst examines if there are any FOs in either PF or UF to further
continue aggregation (Algorithm 6 Line 2). In case, the total energy
of the remaining FOs is larger than the 5th in descending size
energy AFO, HMAMA continues using the remaining FOs (Line 4).
Otherwise, HMAMA does not continue the execution (Line 3). As a
result, the algorithm ensures that the remaining FOs cannot produce
an AFO with energy greater than one of the 5 produced AFOs. Since
the 5 AFOs with the most energy will be transformed into �exible
orders, the algorithm terminates (Algorithm 1 Line 7).

5 EXPERIMENTAL EVALUATION
5.1 Experimental setup
We consider a BRP managing a portfolio of EVs represented by
FOs. The BRP utilizes our proposed aggregation algorithms to
produce AFOs that respect the �exible order requirements. The
BRP transforms the 5 AFOs which capture the highest amount of
energy into �exible orders and trades them in Elspot. In order to
examine the scalability of our proposed algorithms, we create 8
di�erently-sized FO datasets, from 5K to 40K FOs (multiples of 5K),
with characteristics based on the probability distributions suggested
in [23]. Moreover, we consider that all EVs use the charging option
described in Section 2.1 and need to be fully charged. Thus, the
initial SOC of all EVs is within [20%, 85%], while they must be
charged up to 90%. Details about the characteristics of the datasets
are in Table 1.

We compare our techniques with two baseline aggregation tech-
niques [22]. We use Start-Alignment (SA) aggregation, see Sec-
tion 3.1 and Start-Alignment Grouping (SAG) aggregation. SAG
groups together FOs that have both the same earliest start charging
time and the same time �exibility and then applies SA on each
group. As a result, it produces one AFO per group. We evaluate our
techniques in terms of output size (#AFOs), participation of FOs in
aggregation, percentage of energy traded in the market, running
time, and both time �exibility and pro�le length of AFOs.

5.2 Market-based aggregation results
Output size. SA always produces one AFO whereas SAG produces
more than 100 AFOs in all cases. Both LP and DP produce less than
or equal to 5 AFOs in all cases. DTF produces more than 5 AFOs
in 75% of the cases as the energy threshold is activated in a later
step compared to the other techniques due to the division of the
processed set.

Time �exibility and pro�le length. Regarding the baseline
techniques, SA produces long AFOs with very low time �exibility
as it aggregates all FOs into one. On the contrary, SAG produces
short and time �exible AFOs due to the grouping phase it applies,
see Figure 4a, b. LP uses as initial FO (fini) the longest FO of
the dataset. Usually, such an FO has low time �exibility and so
do the produced AFOs. Due to the long pro�le of fini , LP might
utilize all the time �exibility of the remaining FOs to produce an
AFO that reduces the distance to the power pro�le threshold (ppt).
Consequently, LP produces long AFOs with very low time �exibility,
see Figure 4a, b. The AFOs produced by DP are more �exible than
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Distr. Mean St. dev Min Max
Battery capacity (kWh) UD∗ 23 4 16 30

Arrival time TGD∗ 19:00 2h 16:00 1:00
Departure time TGD∗ 7:00 2h 5:00 12:00

Initial Battery SOE (%) TGD∗ 75 25 20 85
∗ UD: uniform distribution, TGD: truncated Gaussian distribution

Table 1: EV data probability distribution

the ones from LP since DP applies a dynamic pro�le size approach
and excludes from aggregation very long FOs. As a result, FOs with
similar pro�les are aggregated together and less time �exibility is
required to �nd a proper alignment that minimizes the distance
to ppt. Consequently, AFOs with less slices compared to LP are
produced, see Figure 4b. Finally, DTF produces the most �exible
AFOs among our proposed techniques. We see in Figure 4a that the
average time �exibility of the produced AFOs is greater than 4 in all
datasets. DTF achieves it by utilizing the time �exibility threshold.
However, DTF produces long AFOs, similar to LP, because it also
selects as fini the longest AFO of the processed set, see Figure 4b.

Participation and traded energy. In order to quantify the
participation of FOs in aggregation, we take into account only the
FOs that participate in the aggregation of the 5 (or less) largest
in energy AFOs, i.e., the AFOs that are transformed into �exible
orders. Similarly, we compute the traded energy by taking into
account only the energy captured by the AFOs that are transformed
into �exible orders.

SA aggregates all FOs into one AFO and thus participation in
aggregation is 100%, see Figure 4c. The slices of the AFO have very
high power di�erences and since a �exible order requires a �at
power pro�le, the power of the highest slice is considered for the
whole pro�le of the AFO. As a result, on average, 2.5 times the
energy captured by that AFO is traded, see Figure 4d where 100% is
the energy needed for all the FOs. On the contrary, SAG produces
too many AFOs and since only the 5 largest are traded, we see a
very low participation percentage and the lowest percentage of
traded energy among the techniques (69.7% on average). In general,
the longest AFOs capture more energy as they have more slices
and more FOs participate in their aggregation. Thus, LP, which
produces the longest AFOs, obtains both the highest participation
percentage (98.6%) and traded energy percentage (97.5%) in all the
cases among our proposed techniques, see in Figure 4c, d. DTF
follows with an average participation value of 94.4% and 91.7%
percentage of traded energy. DP has the lowest percentage in
both participation and traded energy, 94.2% and 88.8% on average
respectively. The reason is that DP excludes very long FOs, which
usually capture large energy, from aggregation.

Processing time. Both SA and SAG are fast techniques with
processing times below one second as they examine a very small
solution space and do not consider the market requirements. LP is
the fastest among all our proposed techniques since it e�ciently
activates the energy threshold, see Figure 5a. The processing time
of DP follows a close to linear growth rate. DTF has an increasing
trend for processing time, but it shows similar processing times
for datasets with di�erent sizes, e.g., for datasets with 30K and 35K
FOs. The reason is that the processing time is highly driven by
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the number of initialization phases. The size of the dataset might
increase, but the new added FOs might lead to less initialization
phases and therefore to less aggregation comparisons. That is why
we also notice that both processing time and number of initial-
ization phases follow similar patterns. Whenever the number of
initialization phases is increased compared to the previous dataset,
processing time also increases. For instance, we see in Figure 5b
that when the size of the dataset is increased from 15K to 20K for
both LP and DTF, the number of initialization phases is reduced.
As a result, the processing time is similar for both the datasets
and slightly increases for the 25K. Eventually, when the size of
the dataset is further increased, it becomes more di�cult for DTF
to ful�ll the market requirements and thus both the initialization
phases and the processing time are highly increased.

5.3 Financial evaluation
Since the overall goal of a BRP is to trade the AFOs in the market
using �exible orders, we �nancially evaluate our aggregation tech-
niques. We compare the cost of buying the energy needed to charge
the EVs based on plug-in time (traditional approach) with the cost
of charging the EVs by utilizing �exible orders. Moreover, in order
to compare our techniques with the optimal solution, we consider
a non-realizable in practice scenario where each FO directly partici-
pates in the market without aggregation and each EV is charged
when the charging cost is minimized.

Due to the fact that �exibility appears during the night [14], we
consider a 48 hours trading period with a repetition of the 24h
Elspot average prices of 2017 [3], see price curve in Figure 5c. In
the same �gure, we illustrate the time and the energy amount used
to charge the 40K dataset based on our techniques, the two baseline
techniques, the plug-in times of the EVs, and the optimal charging.
We see that the charging of the EVs based on the plug-in time occurs
when the prices are still high and it does not take advantage of the
price drop that occurs in the night of the �rst 24 hours.

SA and SAG produce AFOs that do not ful�ll the market require-
ments. As a result, more energy than needed has to be traded in
the market. In particular, SA trades 1.52 times more energy than
needed to charge the EVs. Thus, the surplus energy is traded in the
regulation market and it results in losses for the BRP, see negative
cost reduction in Figure 5d. Regarding SAG, the produced AFOs
capture a low percentage of the energy needed and they also require
extra energy to be traded in order to ful�ll the market requirements.
Consequently, the cost reduction due to the �exible orders trading
is eliminated by the losses from the surplus energy trading. As a
result, we see only 1.1% cost reduction on average when SAG is
applied. On the contrary, the optimal charging option charges all
the EVs when the price has the lowest value. That is why we see a
spike in the graph reaching 180MW after the 24th hour.

Our proposed aggregation techniques also take advantage of the
lowest prices. LP produces long AFOs which expand over many
hours and have low time �exibility. That is why we see in Figure 5c
that part of the charging occurs when the prices are high. DTF
produces AFOs that are also long, but they are more �exible than
the AFOs produced by LP. Therefore, EVs are charged when prices
are a bit lower and DTF achieves a higher cost reduction, Figure 5d.
Finally, DP produces short and �exible AFOs. As a result, it takes
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Figure 6: Yearly cost reduction based on DP

advantage of the lowest prices occurring only for a few hours,
see Figure 5c.

When the energy for the 40K FOs dataset is purchased based
on the plug-in times of the EVs, it costs 8,612 euros. On the con-
trary, when LP, with the highest participation, is applied on the
40K dataset, 39,584 FOs participate in aggregation, see �rst bar
(98.96%) in Figure 4c. The 39,584 FOs produce 5 AFOs which are
further transformed into �exible orders. The cost of purchasing the
energy needed for the 5 AFOs is computed based on the �exible
orders trading and it is 6,670 euros, see Figure 5c. The price also
includes the cost (0.46 euro) of the imbalances (62kW) of the �exible
orders, see Section 2.2. The energy needed for the remaining 416
(40,000−39,584) FOs is bought based on their plug-in time and it is
117 euros. Thus, the overall energy bought to charge 40K EVs, when
LP is used, costs 6,670+126=6,796 euros. Therefore, LP achieves a
21% cost reduction in energy purchase, see LP bar for 40K dataset
in Figure 5d.

We see in Figure 5d that DP achieves on average a 24.4% cost
reduction. DTF follows with 20.2% and LP with 19.1% average cost
reduction. The cost reduction based on the optimal solution is
27.4% on average. Thus, LP, DTF, and DP achieve 69.8%, 73.7%,
and 88.9% of the optimal cost reduction, respectively. Notably, the
cost reduction that DP achieves only for the FOs that participate in
aggregation is on average 98.3% of the optimal one.

In Figure 6, we illustrate the cost reduction that DP achieves
during 2017. We consider 364 trading periods of 48 hours. The
�rst trading period includes both the 1st and the 2nd day of 2017.
The second trading period includes the 2nd and the 3rd day of 2017
and so on. The average cost reduction is 28% and, interestingly, we
notice at the end of the year a cost reduction of more than 800%.
The reason is that for several consecutive days, Elspot prices were
negative early in the morning and even reached −50 euros/MWh
on the 24th of December at 2:00.

Uncertainty on FOs forecast. The driving behavior can usu-
ally be forecasted with very high precision and accuracy. However,
there might be cases where the anticipated �exible load is smaller
because the EVs are not plugged-in as anticipated. Thus, we con-
sidered an uncertainty scenario for the 40K FOs set according to
which a percentage of the FOs that participated in aggregation do
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not need the purchased energy after the �exible orders derived
from DP are placed. As a result, BRP has to sell back the exceeded
purchased amount of energy for a lower price (regulating price).
The di�erence between the initial cost of purchasing the energy via
�exible orders and the cost of the exceeded energy is considered
as losses for the BRP. Moreover, BRP has to distribute (assuming
no pro�t) the purchased energy and thus the cost to less costumers
(EV owners) compared to the initial estimation. We see in Figure 7,
that the price paid by the EV owners based on plug-in time is �xed.
On the other hand, the price for the energy purchased via �exible
orders increases as the percentage of the EVs that do not participate
in aggregation increases. The reason is that the cost is higher due
to the imbalances and at the same time less consumers use the pur-
chased energy. We see in Figure 7 that the cost for the consumers
via �exible orders is greater than the plug-in charging cost when
more than 23% of the EVs where imprecisely forecasted.

Summary: By applying our proposed techniques on the afore-
mentioned 365 trading periods, DP achieves the highest cost re-
duction in 66% of the periods and DTF achieves the highest cost
reduction in the remaining 34% of the periods. The reason is that
the �nancial impact of the techniques is highly correlated with the
pricing curve of the trading period. Thus, in cases where the price
drops for only few hours close to the plug-in charging time, DP is
the most suitable technique. On the other hand, when the price
drops for longer periods but much later than the plug-in charging
time, DTF achieves a higher reduction than DP.

6 CONCLUSION AND FUTUREWORK
This paper investigates the market-based aggregation problem us-
ing the FO model to capture �exible charging loads of EVs. It
proposes 3 market-based FO aggregation techniques that e�ciently
aggregate loads from thousand of EVs taking into account real
market requirements. Consequently, the techniques produce ag-
gregated FOs that can be transformed into �exible orders and be
traded in the energy market. The paper �nancially evaluates the
proposed techniques based on real electricity prices and shows
that a 27% cost reduction on energy purchase can be achieved via
�exible orders.

In our future work, we will enrich our techniques considering
pricing forecast models and uncertainty in patterns of driving be-
havior. Furthermore, we will investigate more variations of the
proposed algorithm and we prove the theoretical lower bounds for
the their complexity. Moreover, we will examine a price-maker
market scenario and di�erent market strategies for the BRPs.
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