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Abstract— Distributed Model Predictive Control (DMPC)
strategies require local controllers to share information among
each other. Considering the importance of communication
in such control strategies and the failures that may occur
in the information-sharing network, this paper proposes to
apply the distributed consensus algorithm as an information-
exchange protocol for DMPC controllers. The advantage of
the proposed protocol is twofold. First, it relaxes some com-
munication assumptions usually made for DMPC controllers.
Second, under some assumptions, it provides resilience against
some communication failures such that the performance and
the features of the implemented distributed controller are
preserved. A case study of a microgrid system is provided as an
example in which some simulations are carried out to illustrate
the aforementioned advantages.

Index Terms— Distributed Model Predictive Control
(DMPC), distributed consensus algorithm, communication
failures

I. INTRODUCTION

Model Predictive Control (MPC) is an optimization-based
control framework that is able to provide stability and/or ref-
erence tracking while achieving some desired performance.
Moreover, an advantage of employing such control method is
that physical and/or operational constraints can be imposed
directly when computing the control inputs. However, when
dealing with a large-scale system (LSS), the optimization
problem behind the MPC controllers can be intractable.
Furthermore, considering a centralized control approach for
some LSSs results in having more disadvantages in terms
of scalability, flexibility, and reliability [1]. Therefore, dis-
tributed approaches, in which there exist local controllers
that are assigned to the sub-systems, are promising solutions
for systems of such type [1]. In a distributed MPC (DMPC)
scheme, each local controller solves a smaller and tractable
optimization problem by using not only local information,
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but also information from at least its neighbors with which
they are physically coupled [2].

The key feature of any DMPC controller is that each local
controller must be able to exchange some information in
order to compute its control inputs [1], [2]. This feature
distinguishes such controllers with the decentralized coun-
terpart in which there is no interaction among local con-
trollers, being suitable for sub-systems with weak dynamical
coupling. It has been proved that DMPC controllers have an
advantage in particular for LSSs in which the sub-systems are
not weakly coupled [1]. With this feature, distributed control
methods not only provide stability guarantees and recursive
feasibility for such systems but also better performance than
the decentralized ones [1].

Regarding the communication procedure, DMPC con-
trollers can be classified into two categories: the approaches
that require local controllers to coordinate with their neigh-
bors either in a parallel or sequential fashion; and the
distributed approaches that require each local controller to
be fully connected with all the others [1]. Furthermore,
depending on the algorithm, non-iterative DMPC controllers
require the information to be exchanged once, whereas iter-
ative DMPC controllers must exchange information multiple
times within one sampling time [2].

The aforesaid requirements must be met during the control
design stage. Nonetheless, they may not be satisfied through-
out the control operation due to some issues, such as delays,
data packet dropouts or disorder, and link failures, that may
occur in the information-sharing network [3]. In this work,
the last issue is specifically addressed. A communication
failure is defined as follows: there exists at least one link of
the information-sharing network that is broken. This problem
may cause that the distributed control strategy cannot be
performed as desired/appropriately. Failures may also result
in sub-optimality of the solution or instability [3].

Communication failures in distributed control are quite
relevant with the current development of a large variety of
control problems in smart cities. For instance, in energy
systems, the emergence of distributed energy resources and
the microgrid concept inherently require a distributed control
strategy. A microgrid is a group of interconnected loads
and distributed energy resources that operates as a single
controllable entity with respect to the grid, which can be
isolated or connected to the grid [4]. Recent literature (e.g.,
[5], and [6]) shows that a group of microgrids is suitable
to be controlled with distributed strategies. The fact that
such systems are important infrastructure and that they can
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cover a wide area brings the necessity of having distributed
controllers that are not prone to communication failures.

There is some literature that answers the problem of
communication failures in DMPC controllers. For instance,
the work in [7] restricts the trajectory of control inputs to be
inside a tube around the last transmitted trajectory. Moreover,
the authors of [8] propose an observer to supplement a robust
DMPC controller in order to deal with communication loss.
Furthermore, a topology of the information-sharing network
in which a distributed control is resilient against certain
degree of failures is proposed in [9]. In addition, there
are also some distributed control strategies that provide a
contingency plan when a communication failure occurs. For
instance, the work in [9], [10] proposes that each sub-system
considers the control inputs from the disconnected neighbors
to be null during the failures. The previous contributions
specifically improve certain distributed control strategies in
dealing with communication failures. However, to the best
of our knowledge, a methodology to solve this issue that can
be applied to any DMPC controller has not been discussed.
Therefore, a possible methodology that copes with this
problem is developed in this paper.

As the main contribution, the consensus protocol [11], [12]
is proposed to be applied as an information-exchange sub-
routine of DMPC controllers. It can be seen as a complemen-
tary plug-in for already existing DMPC controllers in order
to relax some communication requirements and mitigate
the problems of communication failures. Nevertheless, the
advantages of this method come with the cost of extra com-
putation and communication, in terms of the amount of data
exchanged. Finally, it is also shown how this methodology
is applied to the power allocation problem of microgrids.

The remainder of the paper is organized as follows. In
Section II, both the DMPC controller for LSSs and its
communication issues are introduced. In Section III, the
information-exchange methodology based on consensus is
described. Section IV provides an example of its application
to electrical grids as well as the numerical results that display
the advantages of the proposed method. Finally, Section V
concludes the paper.

Notation: The diagonal matrix of the column vector x
and the block-diagonal matrix of the matrix A are denoted
by diag(x) and diag(A). Discrete-time instant is denoted
by sub-index k while continuous-time instant is denoted by
sub-index t. Real numbers are denoted by R while integers
are denoted by Z. Moreover, R≥a denotes all real numbers
in the set {i|i ≥ a, i, a ∈ R} and similarly Z≥a denotes all
integers in the set {i|i ≥ a, i, a ∈ Z}. In addition, | · | is
the cardinality and ‖ · ‖2 is the Euclidean norm. Finally, 0n
denotes [0 0 · · · 0]> ∈ Rn and 1n = [1 1 · · · 1]> ∈ Rn.

II. DISTRIBUTED MPC FOR LARGE-SCALE SYSTEMS

Consider a discrete linear time-invariant LSS, which can
be described by an undirected graph denoted by G = (V, E).
The LSS is composed of n number of sub-systems that are
denoted by the set of the vertices V = {1, 2, . . . , n}. The
set of the links, which is denoted by E ⊆ {(i, j)|i, j ∈ V},

represents whether or not there are physical connections
(dynamical coupling and/or coupled constraints) among sub-
systems, i.e., (i, j) ∈ E shows that the ith sub-system
is physically coupled to the jth sub-system. The graph-
representation is considered to be undirected since the in-
terest is to the existence of communication between sub-
systems, as in [7]. Therefore, for (i, j) ∈ E , one cannot
tell whether the ith sub-system influences the jth sub-
system, vice versa, or both influence each other. Moreover,
let Ni be the set of neighbors of the ith sub-system, i.e.,
Ni = {j|(i, j) ∈ E}. The dynamics of the whole LSS are
represented by the state-space model of each sub-system as
follows:

xi,k+1 = Aiixi,k +Biiui,k + Fidi,k + vi,k, ∀i ∈ V, (1a)

vi,k =
∑
j∈Ni

(Aijxj,k +Bijuj,k) , ∀i ∈ V, (1b)

where xi ∈ Rnx,i , ui ∈ Rnu,i , di ∈ Rnd,i and vi ∈ Rnx,i

denote the system states, the control inputs, the disturbances,
and the existing coupling of the ith sub-system with other
sub-systems at time instant k ∈ Z≥0, respectively. Moreover,
Aij ∈ Rnx,i×nx,j , Bij ∈ Rnx,i×nu,j , Fi ∈ Rnx,i×nd,i , for
all j ∈ Ni ∪ {i} and i ∈ V , are the matrices that define the
state-space model in (1). In addition, nx,i, nu,i, nd,i ∈ Z≥1,
for all i ∈ V . Notice that (1) can be rewritten in a compacted
form as follows:

xk+1 = Axk +Buk + Fdk, (2)

where xk = [x>i,k]
>
i∈V ∈ Rnx , nx =

∑
i∈V nx,i, uk =

[u>i,k]
>
i∈V ∈ Rnu , nu =

∑
i∈V nu,i, dk = [d>i,k]

>
i∈V ∈ Rnd ,

nd =
∑
i∈V nd,i, A = [Aij ] ∈ Rnx×nx , B = [Bij ] ∈

Rnx×nu , and F = diag(Fi) ∈ Rnx×nd . Furthermore, the
system is constrained by

g(xk,uk) ≤ 0ng
, (3)

where g : Rnx × Rnu → Rng and ng ∈ Z≥1. Notice that
the function g can represent both local and global coupled
constraints among the system states and/or the control inputs.

A DMPC controller is considered to be applied to the
LSS. In general, according to (2) and (3), the following
optimization problem, assuming the existence of feasible
solutions, should be solved at each time instant k:

minimize
uk|k,...,uk+hp−1|k

k+hp−1∑
`=k

f(x`|k,u`|k) + f t(xk+hp|k) (4a)

subject to x`+1|k = Ax`|k +Bu`|k + Fd`, (4b)
g(x`|k,u`|k) ≤ 0ng

, (4c)
xk+hp|k ∈ X

t, (4d)

for all ` ∈ {k, . . . , k+hp−1}, where the prediction horizon
is denoted by hp ∈ Z≥1. The function f(x`|k,u`|k) :
Rnx×Rnu → R denotes the stage cost function, the function
f t(xk+hp|k) : Rnx → R corresponds to the terminal cost,
and X t ⊆ Rnx is the terminal set of the system states.
Note that the terminal cost f t and set X t are introduced and
defined such that the stability of the closed-loop system is



guaranteed [1]. The main philosophy of a DMPC controller
is to assign smaller sub-problems, derived from (4), to local
controllers that belong to each sub-system. Moreover, when
solving the corresponding optimization problem, each local
controller must exchange some information with the others.

The exchange of information among the local controllers
occurs throughout the information-sharing network. Since
this network has bi-directional information flow, it is de-
scribed as an undirected connected graph G̃ = (V, Ẽ). The set
Ẽ shows how the local controllers share information in this
network. Most of the distributed control methods require that
local controllers communicate with their physical neighbors
with which there is coupling, i.e., Ẽ = E , as in [13] and [14].
Meanwhile, other methods, e.g., the work in [15], require that
local controllers exchange information with all the others.
This means that G̃ should be a complete graph. In Section
III, it is shown that the communication requirements might
be relaxed and an information-exchange method is proposed.

III. CONSENSUS-BASED INFORMATION EXCHANGE

Consider the information-sharing network G̃. Let pi ∈
R be the information state of the ith sub-system, which
represents the state of the information that is coordinated in
the network G̃ at continuous time t ∈ R≥0. The consensus
protocol in which multiple sub-systems are coordinating to
agree on a joint state value has the following dynamics [11],
[12]:

ṗi,t =
∑
j∈Ñi

(pj,t − pi,t), ∀i ∈ V, (5)

where Ñi denotes the set of neighbors of the ith sub-
system in the information-sharing network G̃, i.e., Ñi =
{j|(i, j) ∈ Ẽ}. Notice that under protocol (5), each sub-
system, i ∈ V , only communicates with its neighbors, Ñi.
Furthermore, (5) can be rewritten as ṗt = −Lpt, where
pt = [p1,t p2,t · · · pn,t]> ∈ Rn, and L is the Laplacian
matrix of G̃.

Assumption 1: The graph G̃ is connected. ♦
Theorem 1 (presented in [11]): Suppose that Assumption

1 holds and the sub-systems apply the consensus protocol
(5). As t→∞, pt converges to p?i =

1
n

∑
j∈V pj,0, ∀i ∈ V ,

where pi,0 is the initial condition of the information state of
the ith sub-system. ♦

This protocol can be used conveniently to reconstruct
information. For instance, information of the ith sub-system
can be reconstructed in the jth sub-system even though
they are not neighbors in the information-sharing network
G̃, i.e., (i, j) /∈ Ẽ . To illustrate the application of the
consensus (5) as an information-exchange protocol, let si =
[s1i s

2
i · · · s

ns,i

i ]> ∈ Rns,i be the collection of data that
needs to be shared by the ith sub-system to all other
sub-systems. Note that the superscript m in smi is intro-
duced to identify the mth datum in the ith sub-system.
Furthermore, the vector si can be the control sequence
obtained by solving the local optimization problem, i.e.,
{ui,k|k ui,k+1|k . . . ui,k+hp−1|k} and/or the current state of
the sub-system xi,k. Thus, all sub-systems should exchange

with each other s = [s>1 s>2 · · · s>n ]> ∈ Rns , being
ns =

∑n
i=1 ns,i.

Assumption 2: All sub-systems have prior knowledge of
the number of sub-systems (n) and the amount of data
transmitted by other sub-systems (ns,i for all i ∈ V). ♦

Corollary 1: Suppose that Assumption 1 holds. Let pi,t =
[p1i,t p

2
i,t · · · p

ns
i,t ]
> ∈ Rns be the information state of the

ith sub-system. Moreover, suppose that Assumption 2 holds
such that each sub-system initializes its information state as

pi,0 = [q>j ]
>
j∈V ∈ Rns , where

qj =

{
nsi if j = i,

0ns,j
otherwise,

in which qj ∈ Rns,j , for all j ∈ V , are auxiliary variables
that decribe the initialization of the elements of pi,t. Then,
by applying the consensus protocol,

ṗi,t =
∑
j∈Ñi

(pj,t − pi,t), ∀i ∈ V, (6)

as t→∞, pi,t, for all i ∈ V , converge to s.
Proof: Let pt = [p>1,t p

>
2,t · · · p>n,t]> ∈ Rnsn be

the information state of the overall system. There exists a
permutation matrix Φ ∈ Rnsn×nsn such that p̃t = Φpt,
where p̃t = [p1>t p2>t · · ·pns>

t ]> ∈ Rnsn, in which
pjt = [pj1,t p

j
2,t · · · p

j
n,t]
> ∈ Rn for j = {1, . . . , ns}.

The dynamics of p̃t are ˙̃pt = −Lp̃t, where L = diag(L) ∈
Rnsn×nsn. Therefore, the eigenvalues of L are the same as
the eigenvalues of L with the algebraic multiplicity of ns.
Hence, the claimed statement follows from the same line of
proof of Theorem 1 [11, pp. 46].

Remark 1: The convergence rate of the consensus is char-
acterized by the second smallest eigenvalue of L, denoted by
λ2(L), which is positive for a connected graph [11]. A large
λ2(L) implies a fast convergence rate. Furthermore, it has
been observed that a dense undirected graph has relatively
large λ2(L) [12]. ♦

Remark 2: Although consensus is asymptotically
achieved, in practice, sufficiently similar information can be
recovered in a finite time. ♦

There are two main advantages of adding the consensus
protocol as the subroutine of information exchange in a
distributed control strategy at the cost of extra computa-
tion and communication. First, the requirement regarding
communication of the distributed control strategy can be
relaxed. For instance, in [15] each sub-system must have
communication links with all the other sub-systems, while
in [13] and [14], it is necessary to have communication
links between two sub-systems that are neighbors in the
physical network G, i.e., Ni ⊆ Ñi, for all i ∈ V . However,
by employing the consensus protocol, the only requirement
of the information-sharing network topology is Assumption
1. Therefore, even if the information-sharing network is
not a complete graph, the cooperative DMPC in [15] can
still be applied, or if some sub-systems do not have direct
information link to some of the neighbors, i.e., it is possible



that Ni * Ñi, for i ∈ V , the algorithms proposed in [13]
and [14] can still be performed.

The second advantage is the enhancement of the resilience
of distributed algorithms against some communication fail-
ures. If some links in the network fail, each sub-system is
still able to obtain the necessary information when using
consensus as the information-exchange protocol and as long
as Assumption 1 still holds. Therefore, the distributed control
algorithm can still be performed under some degree of com-
munication failures, implying that the features and perfor-
mances of the controlled closed-loop system are preserved.

The main concerns of applying the consensus-based proto-
col are extra computation and communication, in the sense
of data size, that are required to reach consensus. In this
respect and in terms of practical application, some assump-
tions should be met. First, the available time to apply the
consensus-based protocol and solve the optimization problem
must be less than the sampling time of the controlled scheme.
Especially for iterative-based DMPC controllers, one must
ensure that the sampling time is enough to perform the
DMPC algorithm and the consensus-based communication
iteratively. In practice, it depends on the system complexity,
i.e., the instrumentation, the hardware, and the software of
the controllers. Furthermore, each sub-system should provide
data storage as many as the total information data that are
exchanged within the network, i.e., ns. In addition, each
sub-system should also agree on the labeling and ordering
of the sub-systems. In order to optimize the data storage
required, smaller connected information-sharing networks
might be used so that each agent does not need to gather
the information of all other agents, but only a subset of V .

Additionally, [12] has also discussed an extension of the
consensus protocol when dealing with time delays. The pro-
tocol becomes ṗi,t =

∑
j∈Ñi

(pj,(t−τi,j)−pi,(t−τi,j)), ∀i ∈
V, where τi,j denotes the time delay of the edge (i, j) ∈ Ẽ .

In Section IV, the implementation of the proposed
method is presented. Specifically, it is applied to a dual-
decomposition-based DMPC controller that is designed to
solve a power allocation problem of electrical grids.

IV. DMPC WITH THE CONSENSUS-BASED APPROACH IN
MICROGRIDS

Consider a power allocation problem of an electrical power
network with distributed generators. In this problem setup,
the set-points of the distributed generators are optimized such
that the power demands and some operational constraints are
met. Moreover, it is assumed that the obtained set-points can
be satisfied by the local low-level controller of the generators.
In addition, the problem is defined such that there exist global
optimal solutions and the DMPC controller that is designed
is able to compute those solutions. In this regard, one can
clearly compare the performance of the controller during
failures and in a normal condition.

A. Description of the Electrical Grid

The electrical power network is considered as a group of
connected microgrids. A microgrid consists of local loads,

a distributed generator, a battery, and a local controller. The
power to satisfy the local loads can be obtained from the local
distributed generator, the distributed generators of neighbors,
and/or importing power from an external party.

The dynamics of the state of charge (SOC) of each battery
xi,k are described by a discrete-time state-space model, i.e.,

xi,k+1 = aixi,k + bip
b
i,k, ∀i ∈ V, (7)

where 0 < ai < 1 denotes the efficiency of the battery. The
term pbi,k ∈ R is the power delivered by or to the battery,
and bi = −Ts/emax

i , where Ts ∈ R≥0 is the sampling time
and emax

i denotes the maximum energy that can be stored.
The SOC of the battery and the charging/discharging rate are
bounded, i.e.,

xmin
i ≤ xi,k ≤ xmax

i , ∀i ∈ V, (8)

−pchi ≤ pbi,k ≤ pdci , ∀i ∈ V, (9)

where xmin
i , xmax

i ∈ R≥0 denote the minimum and the max-
imum SOC of the battery of the ith microgrid, respectively.
Note that 0 ≤ xmin

i ≤ xmax
i ≤ 1. Moreover, pchi , p

dc
i ∈ R≥0

denote the maximum charging and discharging power.
The operational constraints for the power generated by

the distributed generators pgi,k ∈ R are the capacity and the
power ramping constraints of the generators as follows:

pg,min
i ≤ pgi,k ≤ p

g,max
i , ∀i ∈ V, (10)

−pg,doi ≤ pgi,k − p
g
i,k−1 ≤ p

g,up
i , ∀i ∈ V, (11)

where pg,min
i , pg,max

i ∈ R≥0 denote the minimum and the
maximum power generated by the distributed generator of
the ith microgrid, respectively; while pg,doi , pg,upi ∈ R≥0
denote the maximum ramping down and up of the power.
Furthermore, the power balance equations, which show that
the demand is satisfied at each time instant, are

pdi,k − pbi,k − p
g
i,k − p

im
i,k −

∑
j∈Ni

ptij,k = 0, ∀i ∈ V, (12)

where pdi,k ∈ R≥0 denotes the local demand (load) of the
ith microgrid, pimi,k ∈ R≥0 is the imported power from an
external party, and ptij,k ∈ R is the power that is transferred
between the ith microgrid and its neighborhood Ni. Note
that there are additional coupled constraints related to ptij,k
that should be satisfied at each time instant, which are

ptij,k + ptji,k = 0, ∀(i, j) ∈ E . (13)

Additionally, ptij,k and pimi,k are limited by

−pt,max
ij ≤ ptij,k ≤ p

t,max
ij , ∀(i, j) ∈ E , (14)

pimi,k ≤ pim,max, ∀i ∈ V, (15)

where pt,max
ij , pim,max ∈ R≥0 are the upper bounds.

By introducing the vector ui,k = [ul>i,k u
c>
i,k ]
> with uli,k =

[pbi,k pgi,k pimi,k]
> and uci,k = [ptij,k], for all j ∈ Ni, and

considering a quadratic economical cost as the stage cost
function, i.e., fi,k = u>i,kRiui,k, where Ri ∈ R|ui,k|×|ui,k|,
for all i ∈ V , are positive definite matrices, the centralized



optimization problem that needs to be solved in an MPC
scheme can be written as

minimize
{{ui,`|k}i∈V}

k+hp−1

`=k

k+hp−1∑
`=k

n∑
i=1

fi,`(ui,`|k) (16a)

subject to xi,`+1|k = aixi,`|k + biui,`|k, (16b)
Eiui,`|k + ei,` ≤ 0, (16c)

uci,`|k +
∑
j∈Ni

Giju
c
j,`|k = 0, (16d)

for all i ∈ V and ` ∈ {k, . . . , k+ hp − 1}. The dynamics of
the SOC of the batteries are rewritten as in (16b) in which
bi = [bi 02+|Ni|]. The constraints that only include local
decision, which are (8)-(12), and (14)-(15), are compacted
in (16c) with the appropriate Ei and ei,`. Moreover, coupled
constraints in (13) are rewritten as in (16d).

B. DMPC based on Dual Decomposition

A DMPC controller that is based on dual decomposition
is considered. In this approach, Problem (16) is dualized
and decomposed into smaller problems. Then, a distributed
gradient-based algorithm, which requires information shar-
ing, is developed by considering the obtained decomposition
[16]. Since Problem (16) is convex, the solutions of the
distributed algorithm converge to the global optimal solutions
[16]. Denoting λi,` ∈ R|Ni| as the Lagrange multipliers
associated to the coupled constraints (16d) and ψi,` =(
uci,`|k +

∑
j∈Ni

Giju
c
j,`|k

)
, for all ` ∈ {k, . . . , k+hp−1}

and all i ∈ V , the iterative procedure that solves the
dual problem associated to (16) is obtained and shown
in Algorithm 1. In this algorithm, each sub-system should
solve the local optimization problem in (17) and update
its Lagrange multipliers via the gradient-ascent method at
each iteration. Moreover, it is worth to emphasize that there
are two steps of exchanging information between one agent
and its neighbors at each iteration (step 4 and 6). The
default protocol of exchanging information is that a sub-
system exchanges immediately the necessary information
with the neighbors through the direct communication links
available among them. On the other hand, if the consensus-
based protocol is applied, it is assumed that the information
shared at the end of the information-exchange steps is similar
enough such that it does not affect the convergence of the
algorithm. Additionally, the iterations stop when rmax, which
denotes the maximum number of iterations available in one
sampling time, is reached.

C. Simulation Results and Discussion

Numerical simulations are carried out in MATLAB. The
topology of the grid and the information-sharing network of
the controllers in these simulations are depicted in Figure 1.
Moreover, it is considered that each microgrid has at least
two neighbors in the information-sharing network in order to
maintain the network connectivity in the scenarios of com-
munication failure satisfying Assumption 1. Additionally,
some links of the information-sharing network are broken
in some simulations (indicated by double lines in Figure 1).

Algorithm 1 The Dual-Ascent DMPC Algorithm
1: All sub-systems, i = {1, 2, . . . , n} do
2: Set r = 1 and initialize λ(r)

i,` .
3: while r ≤ rmax do
4: Information exchange: Receive λ

(r)
j,` , ∀` ∈

{k, . . . , k+hp−1}, from the neighbors, all j ∈ Ni, and
send λ(r)

i,` , ∀` ∈ {k, . . . , k + hp − 1}, to the neighbors.
5: Solve the local optimization problem:

minimize
{ui,`|k}

k+hp−1

`=k

k+hp−1∑
`=k

(
fi,`(ui,`|k) + y

>
i,`u

c
i,`|k

)
subject to (16b) and (16c),

(17)

for all ` ∈ {k, . . . , k + hp − 1}, where y>i,` = λ
(r)>
i,` +∑

j∈Ni
λ
(r)>
j,` Gji.

6: Information exchange: Receive ucj,`|k, ∀` ∈
{k, . . . , k+hp−1}, from the neighbors and send uci,`|k,
∀` ∈ {k, · · · , k + hp − 1}, to the neighbors.

7: Update λi,` for all ` ∈ {k, . . . , k + hp − 1} as
λ
(r+1)
i,` = λ

(r)
i,` + γψi,`, for 0 < γ < 1.

8: end while

1
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Fig. 1. The microgrids (dots) in their electrical network G (solid lines) and
information-sharing network G̃ (dashed lines).The double lines, ‖, indicate
the broken links during communication failures in the simulations.

The sampling time of the system is 15 minutes, and the
simulation time is one day (96 steps). Moreover, hp = 4
and the parameters corresponding to each microgrid are
shown in Table I. Note that the weight matrix in the cost
function is defined as Ri = diag

(
[cbi c

g
i c

im
i cti1

>
|Ni|]

>
)

.
Furthermore, it is assumed that each local controller knows
the load trajectory at each time instant.

In order to compare the performance of the pro-
posed method, four scenarios are simulated (see Ta-
ble II). During the failures, the communication links
{(2, 3), (4, 5), (9, 11)} ∈ Ẽ are broken (see Figure 1) at
k = {4, 10 − 13, 30, 31, 50, 80 − 82}. Notice that the
choice of the broken links is motivated by the requirement to
maintain the connectivity of the information-sharing network
while disconnecting two microgrids that are neighbors in the
physical network G.



TABLE I
PARAMETERS OF THE MICROGRIDS

Parameters Value Unit Sub-system (i)

xmin
i , xmax

i 40, 200 kWh 1,2,. . . ,12

pchi , pdci 50, 50 kW 1,2,. . . ,12

pg,min
i , pg,max

i 0, 1000 kW 1,2,. . . ,12

pg,doi , pg,upi 100, 100 kW 1,2,. . . ,12

pt,max
ij , pim,max

i 100, 2000 kW 1,2,. . . ,12

ai 0.95 - 1,2,. . . ,12

cbi , cimi , cti 0.1, 250, 0.1 - 1,2,. . . ,12

cgi 2 - 2, 5, 11
10 - 1, 3, 4, 6, 7,

8, 9, 10, 12

TABLE II
THE AVERAGE STAGE COST AT TIME INSTANTS AT WHICH THE

FAILURE OCCURS

Scenario Protocol, Communication Cost (Proportional)

1 Default, no failures 1.00
2 Consensus-based, no failures 1.00
3 Default, with failures 1.18
4 Consensus-based, with failures 1.00

Scenario 1 provides the benchmark performance of the
DMPC controller. In this scenario, the controller produces
the global optimal solution at each time instant. In Scenario
3, when the information links are broken, the sub-systems
that are disconnected do not receive information from their
neighbors when the default protocol is applied. Thus, the
information from the neighbors is considered as null by the
controllers, as in [9], [10]. It results in decisions that are
in average 18% more expensive than in the optimal case.
Furthermore, it is important to highlight that the proposed
protocol is able to cope with communication failures (Sce-
nario 4). It can be seen by comparing the data from Scenarios
1 and 4, where they both produce the same cost.

V. CONCLUSION AND FUTURE WORK

The standard distributed consensus protocol is exploited as
an information-sharing method and it can be implemented to
any DMPC controller. As an example, the implementation
in a DMPC based on dual decomposition for the power
allocation problem in electrical grids has been shown. As
future work, it is interesting to relax the assumptions of the
method such that it can work in a more general information-
sharing network.
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