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Abstract

Statistical learning (SL) is the human ability to extract statistical regularities from the environment.
Most of the previous studies on SL have focused on the regularity extraction mechanisms taking place
within sensory modalities but there is little evidence that statistical regularities can be learnt across
different modalities. To test whether SL is a domain-general or modality-specific mechanism (Frost et
al., 2015), we conducted two experiments in which participants where exposed with a stream of visual
and auditory non-meaningful stimuli whereas they performed an oddball detection task. Stimuli were
grouped into unimodal (VV or AA) or crossmodal (VA or AV) pairs and the only cue to identify a pair
was a higher transitional probability between the paired elements.

In Experiment 1 (15 participants), we measured learning using a 2AFC task and gathered the
participants confidence on their answers. We found that only the unimodal transitional probabil-
ities could be explicitly reported above chance level. In Experiment 2 (2 participants) we used
electroencephalography (EEG) to obtain neurophysiological measures of learning. We investigated
event-related potentials (ERPs) and used neural decoding with the temporal generalization method to
investigate stimulus preparation.

In general, our results favor the hypothesis that SL is a domain-specific system tuned to work
within but not between sensory modalities.
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Chapter 1

Introduction

The information present in our environment is generally organised conforming regular patterns. In this

sense, most of the objects that we perceive can help us forecast the presence or appearance of other objects

in time and space. As humans, our brains have the ability to automatically learn these patterns without

being aware of their learning. For example, imagine someone going to work every day following the

same path, without paying explicit attention to the buildings surrounding her. However, one day, one

of these buildings is demolished and this person notices the change, to her surprise, since she was not

aware of having learnt the pattern of buildings. Through repeated exposure to the patterns, she had learnt

them automatically. This automatic learning of patterns just through exposure to them has been called

statistical learning, since it consists of sensing, extracting and learning the statistical regularities from

our environment. This mechanism has been characterized, for instance, as an important component in

language acquisition by infants, particularly in word segmentation. It is in this field that the term was

coined [1] and where much of research on statistical learning has been focused on [2][3].

The study of statistical learning consists of exposing experimental subjects to a collection of stimuli

that have controlled statistical regularities and later testing subjects’ knowledge about such regularities.

Of course, this definition encompasses many different types of learning and of statistical regularities, but

statistical learning research has mainly focused on one of those, namely the transitional probabilities (TP).

These are the probabilities that one object will be followed by another one every time this object appears.

They are calculated by dividing the apparition frequency of the sequence of both objects by the apparition

frequency of the first object. Humans seem to be more sensitive to these statistics than to other simpler

ones, like frequency count.

For instance, let us examine the word segmentation example. When we speak, we do not always

introduce noticeable pauses in between words that would enable a naive listener to detect where words

end and where they begin. A statistical learner could anyway identify word boundaries by computing

statistical regularities between syllables. If the TPs between two syllables is high, they most probably are

part of a word, since they appear often together. If the TPs are low, most probably they belong to two

separate words and a word boundary may be identified at this position.

Examples of this type of learning have been found regarding many different types of objects besides

language and in different sensory modalities. And not only in vision (as in our previous example about

the buildings) or audition (as in language acquisition), but even in the tactile modality. Given that these

processes work in very similar ways on the different modalities, a natural question is whether a supramodal
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mechanism governs the statistical learning in all sensory modalities, or whether statistical learning is a

modular process entailing separate cognitive mechanisms, each one encapsulated within their modality.

Experiments exploring the relationships between modalities during statistical learning processes

have been carried out using multiple approaches. For example, learning patterns of multimodal objects,

transferring knowledge from one modality to another, having stimuli from one modality affect the learning

of another modality pattern [4] and simultaneously learning patterns from different modalities[5]. All

these have been proven to work, adding to the body of evidence of integration between modalities in

statistical learning while also revealing some of the constraints between them.

However, as far as we know, it has not been researched whether humans also learn task-unrelated

cross-modal sequential patterns automatically, i.e., patterns that consist of elements of different modalities

that can predict each other. For this to be possible, we should be able to encode TPs between elements of

different modalities.

We know that it is possible to learn dependencies between objects of different modalities, as for

example in classical conditioning. In the most famous example of classical conditioning, a dog is able to

learn, through repeated exposure, a dependency between the sound of a bell and the apparition of food,

therefore associating an auditory stimulus with a visual or olfactory one [6]. These types of experiments

have been widely replicated also with humans, for example by making children associate furry objects

with harsh sounds [7].

These experiments deal for the most part with high-level objects that are already meaningful to the

subjects, which are explicitly confined in time and space and have associations related to the subjects’

survival that act as strong external incentives for learning (food is required not to starve and harsh noises

can be indicators of danger). Given an already meaningful object, our brains can direct our attention

towards its temporal and spatial neighbourhood in order to find patterns that can teach us more about

the nature of the object and help us predict it better in the future, even if these patterns are comprised by

objects of different modalities. Some experiments have shown the possibility of learning dependencies

between a priori non-meaningful stimuli of different modalities when the dependencies are directly related

to the task of the participant, thus rendering those stimuli and dependencies meaningful for the specific

context [8].

However, this learning process seems to be different from the automatic detection of patterns between

non-meaningful objects associated with statistical learning, such as in the learning of artificial languages,

where there are no clear external incentives or temporal boundaries that may help to direct our attention.

1.1 Objective

In this work we will specifically address the question whether humans can automatically learn the TP

between non-meaningful task-unrelated cross-modal objects in order to dissociate between two different

hypotheses:

1. SL is a domain-general cognitive mechanism that can integrate multiple modalities and extract

statistical regularities between them.

2. SL is a domain-specific cognitive mechanism that can only extract statistical regularities between

objects of the same modality. Associations between objects of different modalities are formed only

through higher-level cognitive mechanisms once they become meaningful objects.
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1.2 Experimental paradigm

In our experiment, we used the common SL paradigm, in which participants are exposed to a stream of

non-meaningful stimuli that has some hidden structures, unbeknownst to the participant, and then tested

about their knowledge of such structures.

We wanted to start with the simplest possible structure, which would be adjacent temporal depen-

dencies between stimuli, forming a set of stimuli pairs. We wanted to test cross-modal dependencies

in both directions: auditory to visual and visual to auditory. In addition to this, we wanted to include

unimodal dependencies, so that we can both check the validity of our paradigm and materials, given that

we would expect unimodal learning to work on the basis of the literature; and use this type of learning as

a baseline to compare cross-modal learning against. This results in four different types of dependency in

our experiments: auditory to auditory (AA), visual to visual (VV), auditory to visual (AV) and visual to

auditory (VA).

We considered separating the conditions into different blocks. However, that would add a repetitive

predictable pattern of modality switches to the cross-modal conditions (AVAVAV or VAVAVA) that could ei-

ther interfere with the statistical learning mechanism by making both modalities more easily differentiable

or enhance the detection of patterns by making their periodicity more apparent. Even after solving this

rhythmic issue, for example by adding noise stimuli that are not attached to any dependency, comparison

between unimodal and cross-modal conditions would still be unreliable because of differences in the

modality switching effect. Besides, a participant can only be tested for one block, since we do not want

them to know about the test while they are being exposed to the stream. So we decided to group all four

conditions into one single stream.

Another requirement of our experiment was that we wanted participants to drive their attention

towards the stream of visual and auditory attention, but did not want to explicitly drive their attention

towards the hidden statistical regularities. To do this we included an oddball detection task which was

orthogonal to the hidden structure of pairs. So, participants had to detect oddball stimuli (both visual and

auditory) that randomly appeared during the stream, but the hidden statistical regularities were completely

uninformative about the position. Therefore, learning of the statistical regularities could be considered to

be task-unrelated.

The inclusion of this task also served an additional purpose, namely to use the reaction time to oddballs

as an online measure of learning. This is based around the concept of stimulus preparation, which is the

preparation of the neuronal networks required for encoding a stimulus. This preparation happens when the

stimulus is being predicted. Therefore, if a stimulus is being predicted due to a dependency having been

learnt, we would expect the time required to encode the stimulus to be reduced; which would also reduce

the total time required to discriminate whether the stimulus is an oddball or not. For this measure to

work, oddball and standard stimuli needed to share similar stimulus preparation activations and encoding

processes, so we used slightly distorted versions of the standard stimuli as oddball stimuli.

However, we did not finally include this measure in our analysis due to a bug in the experiment

program. The bug caused some of the keypresses to be registered as happening at a slightly different time

than their true occurrence. This shift in the registered times was small enough (20 ms at maximum) that it

did not affect any of our others computations relating oddball stimuli, but it caused any results of this

analysis to become unreliable.

Two versions of this experiment were conducted, each one with a different approach to measure
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learning effects.

In experiment 1, we assessed whether participants had learnt or not through a behavioural test after

they had been exposed to the stream of stimuli. The test was a two-alternative forced choice task, in

which the effects of learning were measured by the capacity of participants to, given two pairs of stimuli,

identify which one shared statistical regularities with the stream of stimuli they had been previously

exposed to. This is a common test used in SL research to assess learning [9][2]. We were also interested in

knowing how explicit or implicit (i.e., whether the person is aware or not of possessing such knowledge)

cross-modal learning is compared to unimodal learning. This question was of interest since, if the

domain-specific SL hypothesis were true, we might expect that a higher threshold of explicitness was

required for cross-modal dependencies to be learnt than for unimodal ones. So, if the correctly identified

cross-modal pairs were, by average, more explicitly recalled than the correctly identified unimodal ones,

we could attribute this cross-modal learning to cognitive processes of higher-level than unimodal SL,

hence favouring the second hypothesis. To test this, we asked participants after each test trial to report

their degree of confidence about their previous answer using the same procedure as [10].

In Experiment 2 we investigated learning through internal neurophysiological markers of learning

using electroencephalography (EEG). We analyzed brain activity during the exposure to the stream

of stimuli using two approaches. In the first place, we compared event-related potentials (ERPs) in

response to stimuli with different levels of expectancy. If learning was taking place we expected to see, in

comparison to brain activity response stimuli unaffected by predictions, an expectation suppression effect

in the response to predictable stimuli and a surprise enhancement effect in the response to stimuli that

violate a prediction. These effects have been used as markers for learning in previous SL research on both

humans [3][11] and animals [12][13].

Secondly, we looked for neurophysiological markers of stimulus preparation preceding a predictable

stimulus. The brain activity of stimulus preparation appears to be similar to the one of the stimulus that

is being predicted [14]. So, in order to identify this effect, we measured up to which point the brain

activity preceding a predictable stimulus shared information about the stimulus by training neural decoders

through Linear Discriminant Analysis (LDA) on the brain activity during a stimulus and testing it on the

period preceding the stimulus. Training decoders on one timepoint and testing it on other timepoints is

called temporal generalization and has been used to identify similarities between mental representation

and get a better picture of the temporal dynamics of cognitive processes [15][16].

With these two neurophysiological analyses we hoped to notice effects of implicit learning that may

slip past the explicit behavioural test, since the recollection prompted by the test could interfere with

implicitly learnt knowledge.
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Chapter 2

Methods

In this chapter, we provide a self-contained account of some of the methods employed in the experiments

of the thesis. This includes details on data acquisition methods, such as Electroencephalography (EEG)

and their analysis, such as Event Related Potentials (ERP). It also include descriptions of data analysis

methods such as Linear Discriminant Analysis (LDA) and Independent Component Analysis (ICA).

2.1 Electroencephalography (EEG)

EEG is a non-invasive neuroimaging technique that can measure the electrical activity from the brain

placing electrodes along the scalp. The electrical activity measured is the one produced by the excitatory

or inhibitory postsynaptic potentials of synchronized clusters of similarly oriented neural cells, mostly

pyramidal cells in the cerebral cortex. The voltages recorded are potential differences between a reference

electrode and the scalp electrode we are interested in measuring, referred to as channel electrode.

This neuroimaging technique has very low spatial resolution, since the electric signals get distorted

when passing through the dura mater, skull and scalp. The folds of the cortex and signals bouncing against

the skull can make the electric signals interfere with one another and highly displace the location where

a signal is measured with respect to where it originated. There are methods for source localization that

tackle this problem, but in general the spatial resolution of EEG is very low and one should avoid thinking

of an EEG topography as a direct representation of the spatial location of brain activity.

On the upside, EEG recording possesses a very high temporal resolution, up to the milliseconds. This

high temporal accuracy and its non-invasiveness have made it very popular in neuroscience research.

2.1.1 Event-related potentials (ERPs)

When analyzing EEG recordings, a researcher may be interested in the brain activity surrounding a certain

event, such as the onset of a stimulus or a keypress. However there is very high variability between trials,

due to biological and external artifacts or to the different thoughts that the subject has at any moment. To

solve this problem, a high number of samples of activity around the event of interest are needed, so that

they can be averaged in order to better approximate the true signal of interest. The process of cutting a

continuous EEG recording into samples (or epochs) around a certain event is called timelocking. The

averaged signal of those epochs is what we know as ERP. It is convention to plot ERPs with the potential

axis flipped.
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An ERP curve is made up of a set of positive and negative peaks. These curves and peaks are the

composition of electrical activities relating to different brain functions. Research of ERPs centers around

relating these curve characteristics to brain function through the measure of differences in them (e.g., of

the peaks’ amplitude or latency) given variations in experimental conditions. Positive or negative peaks

that are associated to a certain temporal period and cognitive processes are called components. They are

often referred to by a letter, which indicates it’s polarity (either N or P), and by a number that indicates

its usual temporal position. For example, the component N400 component is a component with negative

amplitude that appears around 400 ms after the event to which the ERP is timelocked.

In this study we looked for components that have been associated with the effects expectation

suppression and surprise enhancement, which can be used to identify learning. Expectation suppression

is the reduction in amplitude of components produced by a the prediction of a stimulus. Surprise

enhancement is the increase in amplitude of components when a prediction is violated.

2.2 Independent Component Analysis

ICA is signal separation technique used to identify the source signals of a multivariate signal that

assumes non-Gaussianity and independence of the source signals. In mathematical terms, given a

multivariate signal X , composed of data samples x = (x1, x2, . . . , xn) with n features, the task of

ICA is to find a transformation matrix W comprised of weights wi,j that can project the data into

a new space Y , with a new set of components y = (y1, y2, . . . , ym), such that y = Wx, where

yi = (wi,1x1 + wi,2x2 + · · ·+ wi,nxn), and optimizing an independence function g(Y ).

It can be used in neuroscience research to identify ERP components or during signal preprocessing in

order to remove artifacts such as blinks, eye movements or heartbeats [17][18]. It is particularly useful for

the later, since the signal produced by these artifacts is highly independent from other sources of activity,

so they are easily separated into distinct components when applying ICA. Once separated, they can be

identified for example by looking at their ERPs or topography (which corresponds to their weights wi,∗).

Once the artifact components have been identified, they are discarded (i.e., their values yi are set to zero)

and the remaining components are projected back into the original signal’s space by multiplying them

with the inverse of the weights matrixW−1.

There are multiple approaches to compute this, and the one we used in this study was infomax-

based ICA[19]. This method is based on the maximization of the entropy of Y , thus maximizing the

independence between its features by maximizing the mutual information between Y andX . This mutual

information is defined as I(Y ,X) = H(y)−H(Y |X), where H(Y ) is the entropy of Y and H(Y |X)

is the entropy of Y conditioned on X , which intuitively means how much information is contained in

Y that was not included inX . In a model that does not contemplate noise (as the one used in common

ICA, where noise is usually treated as another independent component), this conditional entropy can be

neglected, since the relationship between X and Y is simply the linear transformation matrix W . So,

I(Y ,X) and H(Y ) become directly proportional. To maximize I(Y ,X), the relationship between the

probability density functions of Y and X is traversed using stochastic gradient ascent. This gradient

ascent corresponds to updatingW by maximizing its Jacobian.

We used the runica implementation of this method, included in the EEGLab Toolbox for Matlab [20],

for artifact removal during EEG pre-processing.
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2.3 LDA

LDA is a supervised dimensionality reduction technique that can be used to obtain linear classifiers of

multivariate data. Given a set of multivariate data X , where each sample x = (x1, x2, . . . , xn) has n

features and belongs to a known class, LDA works by finding a set of weightsW , so that its eigenvectors

project the data into a space that maximizes between-class variance while minimizing the within-class

variance of the projected data. More precisely, it is Fisher’s criterion what is being maximized:

arg max
W

W TSBW

W TSWW
(2.1)

where SB is the between-class covariance matrix and SW the within-class covariance matrix. The weight

matrix that maximizes this criterion can then be calculated as follows

W = S−1
W SB (2.2)

Once W has been calculated, we obtain its eigenvalues λ = (λ1, λ2, . . . , λn) and corresponding

eigenvectors V = (v1, v2, . . . , vn). Each eigenvector can be used to project the data into a new dimension

and their corresponding eigenvalues represent the discrimination power of the projection; the higher the

eigenvalue the higher the between-class variance and the lower the within-class variance of the projection.

So, if the objective is to reduce the dimensionality of the data down to k features, the eigenvectors can

be sorted in descending order according to their eigenvalues and the first k of them selected, to form a

transformation matrix that can project the data from a n-dimensional space to a k-dimensional one. The

results from the LDA can also be directly used as a linear discriminator, by selecting only the eigenvector

with maximal eigenvalue, since it’s projection maximizes the separability of the data.

A problem of LDA occurrs when dealing with a very high-dimensional data sample, which can lead to

a singular SW matrix that makes its inversion and the computation ofW impossible. There are different

approaches to deal with this problem, one of them being shrinkage (or regularization) of the covariance

matrix [21]. This method softens extreme values that may appear in the within-class covariance matrix

according to a parameter γ. The optimal value of γ in order to increase discriminability can be analytically

calculated as explained in [22].

We did not face small-sample size problems, since our sample size was bigger than the number of

features (29); however, we still performed shrinkage regularization given the improvements in performance

reported by applying it to neural decoding tasks [23]. The optimal γ value we obtained was very close to

zero, producing almost no regularization and showing that it was not necessary in our case.

2.3.1 Temporal generalization

In our neural decoding analysis we used an approach called temporal generalization. This method deals

with a collection of trials belonging to some known classes, where each trial has both a feature dimension

consisting of n features and a temporal dimension consisting of m timepoints and therefore each trial

actually consists of m× n values. For example, a trial could be the activity of all electrode channels in an

ERP. This method serves as a way of measuring the information correlation between two timepoints. It

consists of training several classifiers (also referred to as decoders) to discriminate class, each one with

data of a different timepoint, and then testing them in all timepoints. This results in a matrix of accuracies

A ∈ Rm×m with the dimensions training time and decoding time. The diagonal of this matrix corresponds
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to normal classification of a single timepoint and so it indicates the information about the class contained

in that timepoint. Points outside of the diagonal show how well a decoder trained on a data from a

timepoint can generalize to data from a different timepoint, thus showing that the class information in

similarly encoded in both timepoints. For example, high accuracy in the position at,d ∈ A would indicate

that class-related information is similarly encoded during timepoints t and d. A low accuracy (below

chance level) would indicate an inverse correlation between the class encoding at different timepoints.

This approach can be very useful to explore the spatiotemporal dynamics of cognitive processes

during ERPs, since similarities in encoding at different timepoints can indicate that the same (or similar)

cognitive processes are active at those timepoints.
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Chapter 3

Experiments

In this chapter we will present both conducted experiments, whose main experimental paradigm has been

described above. For each experiment we will describe the materials used, the procedure followed and the

analysis carried (including the preprocessing steps in the case of the EEG experiment). A brief discussion

follows the exposition of the results for each experiment.

3.1 Experiment 1: Behavioural experiment

3.1.1 Participants

Twenty-eight naive adults participated in the experiment in return for remuneration. Before the study,

participants provided written informed consent. They reported no hearing problems and normal or

corrected-to-normal visual acuity. We excluded from the analysis participants that failed to detect more

than 75% of oddballs in any modality (7 participants) and participants that had more false detections than

correct ones (3 participants). We also excluded 3 participants due to experimental errors. Finally, fifteen

participants (mean age of 22.9 years, 9 female and 6 male) were included in the analysis.

3.1.2 Materials

Visual stimuli consisted of artificially generated images of symmetric round fractals of 800 px of diameter.

In total, 100 images were created in Apophysis 7x, a fractal flame renderization software that uses iterated

function systems [24]. The procedure consisted of building a function system out of random linear and

nonlinear transformations, forcing the resulting fractal to adopt a cyclic symmetry of order from 3 to 12,

rendering it with a random color palette and filtering the image through a round Tukey window that faded

the borders of the fractal into transparency. We manually selected 12 of them trying to maximize their

perceptual dissimilarity. The luminance saliency of the selected stimuli was normalized using histogram

equalization applied to the value channel of their HSV (hue, saturation, value) representation. Visual

stimuli were presented in the middle of a CRT monitor, above a black background. The viewing distance

from the participants to the monitor was approximately 50 cm. The stimuli were downscaled as needed in

order to occupy 20o of the participants visual field.

Auditory stimuli were created using random parametrization of multiple synthesizers from the digital

audio workstation FL Studio. Sounds were generated this way until we got 12 differentiable enough
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stimuli. They were then edited using the software Audacity. Their amplitude was normalized and their

length reduced to 500 ms by cutting and time-stretching. To remove any clicking in the sounds we applied

to them an envelope of 100 ms of attack and 100 ms of release. Auditory stimuli were presented through

speakers located at the sides of the monitor, to avoid the addition of a spatial attention shift effect when

modalities switched.

Figure 3.1: Illustration of the creation of standard pairs. Out of 12 stimuli of each modality, 3 pairs were
created for each pair modality.

Those 24 stimuli were randomly grouped for each participant into 12 ordered standard pairs: three

pairs for each one of the four pair conditions. During exposure, pairs were presented sequentially to the

participant, ordered in such a way that any pair was followed an equal amount of times by any other

pair. The sequence was created by finding an Euler tour in a directed graph whose vertices represent

the transitions between different pairs. This way transitional probabilities between the stimuli within a

standard pair always stayed at 100% and the ones between stimuli of different pairs at around 9%. Each

pair was presented 110 times during exposure. Three different pair sequences were created and they were

counterbalanced across participants.

Figure 3.2: Illustration of the creation of

deviant pairs for the test trials of Experi-

ment 1.

Oddball versions of all stimuli were created for the at-

tentional task. The oddball versions were designed so that

they could be easily discriminated from the standard stimuli

while still sharing enough characteristics with their corre-

sponding standard stimulus so that they could be identified as

alterations of each standard stimuli and would share similar

encoding processes with them. In the visual modality, a layer

of upscaled RGB white Gaussian noise with the same shape

as the stimuli was added to each stimuli. The noise was up-

scaled in order to get an additional pixelated effect. In the
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auditory modality, white Gaussian noise with the same am-

plitude as the stimuli was added to the stimuli. Each stimulus

appeared in its oddball version 10 times, out of a total of 110.

These oddball appearances were randomly scattered across

the exposure phase.

After exposure to the sequence of auditory and visual objects, participants were tested for their

learning of the contingencies. For this test phase, we created six deviant pairs for each pair condition used

in the exposure, by replacing the trail stimulus of the three standard pairs by the trail stimulus of each one

of the two remaining standard pairs of the same pair condition. Figure 3.2 illustrates this process.

3.1.3 Procedure

Figure 3.3: Diagram of the phases of Experiment 1.

The experiment consisted of three phases: a training phase, in which participants got familiar with the

stimuli and the task; an exposure phase, in which participants were exposed to statistical regularities; and

a test phase, in which participants were tested regarding their knowledge of such regularities. Each phase

was separated by a short break.

Figure 3.4: An example of a segment of the exposure phase, showing the difference in TPs depending on
the pairs structure.

During the training and exposure phases, and in order to keep the participants’ attention in both

modalities, participants were asked to perform a cover task orthogonal to the objectives of the study in

which they had to detect oddball stimuli and press the spacebar key whenever they saw or heard one.

They were instructed to direct their gaze at a white fixation cross at the center of the monitor. Instructions

were given to the participants both in written form printed on the screen and orally by the experimenter.
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One example of a stimulus per modality and their corresponding oddballs were shown to the participants

during the instructions.

During the training and exposure phases, each visual or auditory stimulus was presented for a duration

of 500 ms separated by a 250 ms black interval.

During the training phase, stimuli were presented to the participant in a random order, without any

regard to the pair structures. During this phase, oddballs appeared at a higher rate than during the exposure

phase (35% of the stimuli), because the objective of this phase was to teach participants to discriminate

between normal and oddball stimuli. The training phase lasted for one minute, but was repeated as needed

until the experimenter was confident that the participant had understood the task and learnt to differentiate

the oddball stimuli.

In the exposure phase participants were exposed to the sequence of standard pairs while being unaware

of its underlying structure and while performing the cover task. This phase was divided into 5 blocks,

each of them lasting for approximately 6 and a half minutes. Between blocks, participants were given the

chance to rest and then resume the experiment by pressing a key whenever they wanted. After each block,

participants received feedback on the monitor about the percentage of oddball stimuli detected, in order to

keep them engaged in the task during the experiment. For this computation, we considered an oddball

stimulus as detected whenever a keypress occurred no later than 2 seconds after the stimulus’ onset.

Figure 3.5: Example of both a Normal trial and a Reversed trial, showing the transitional probabilities
(TPs) between the stimuli of the pairs.

After the exposure phase, we revealed for the first time to the participants that there is an additional

task they had to undertake. During the test phase participants had to perform a two-alternatives forced

choice task (2AFC). Each trial consisted of two stimuli pairs: a standard one, meaning that it shared

statistical regularities with the stimuli sequence of the exposure phase; and a deviant one, meaning that it

violated such statistical regularities.

Besides the Normal trials, we included an additional type of trial in the test, Reversed trials. In Normal

trials, the familiar pair was one of the standard pairs and the deviant pair maintained the correct order of

presentation of objects in relation to their position in the standard pairs. However in the Reversed trials,

the stimuli of both standard and deviant pairs was presented in the reverse order (i.e., the trailing stimulus

appearing first and the leading stimulus appearing last). We consider the reversed standard pair as the

17



familiar pair during Reversed trials, since the association between stimuli is the same as in the standard

pairs.

We included Reversed trials in the test for two reasons. First, they would serve as ‘noise’ trials that

would make difficult for participants to use explicit deductive strategies that could help them to correctly

recognize all standard pairs. This strategy can follow from the assumption that in each trial there was

a correct and a false answer and just a single trial in which they were certain about their answer (so it

could also make them incorrectly recognize all deviant pairs, in case the participant was wrong in their

certainty). Secondly, it also served to test whether, in the case of learning, participants were only learning

TPs (which should be order-sensitive) or some other order-insensitive association. If participants learned

the association irrespective of the order, we expected that they should perform better than chance (i.e.

>50% responses) at recognizing the familiar pair in both Reversed and Normal trials. If they learned TPs

with the specific order, participants should only perform better than chance in the Normal trials and if they

did not learn the associations at all they should be at chance in all conditions.

Within each of the four pair conditions, half of the six deviant pairs were used for Normal trials and

the other half for Reversed trials, resulting in 18 different trials per pair modality. Each trial appeared

twice during the test, the order of the pairs within a trial and of the trials within the test was randomized.

In total, there were 144 trials.

After being shown both pairs in a trial, participants were asked to select, using the left and right

arrow keys, which one was more familiar to them, regarding what they had just seen during the previous

exposure phase. After choosing a pair, participants were asked to report why they had chosen that one by

selecting one of the following options (which were translated into Spanish) by pressing either the ‘Z’,

‘X’ or ‘C’ key: “I remembered the sequence”, “The sequence was more familiar to me” or “I guessed”.

These answers correspond to the confidence conditions Remember, Know and Guess, respectively. We

considered the Remember and Know conditions as indicators of explicit knowledge being accessed either

through recall or familiarity, respectively, and the Guess condition as indicator of implicit knowledge.

The test was self-paced: participants had to press a key before each pair appeared and had no time

limit to answer the questions, but they were encouraged to answer as fast as possible. Instructions were

given to the participants in Spanish both printed on the screen and orally by the experimenter. We showed

the participants a diagram of a trial while giving the instructions and made sure they had understood their

task by asking them to repeat it.

3.1.4 Analysis and results

First of all, in order to know whether participants were able to recognize the standard pairs during the test

phase we compared their performance against chance level in the different conditions. For the Normal

trials, we ran four two-tailed one-sample t-tests on the participants mean test performances against chance

level (50%). We used an alpha level of .05 as significance criterion for all statistical tests. In this analysis,

because we performed multiple comparisons, we applied a Bonferroni correction and the alpha was

corrected at .0125. Our results indicated that test performance was significantly above chance level on the

VV (M = 59%, t(14) = 2.9, p = .012) and AA (M = 61%, t(14) = 3.02, p = .009) conditions; but not

on the VA (M = 54%, t(14) = 1.1, p = .291) or AV (M = 55%, t(14) = 1.6, p = .131).

Next we performed the same analysis on the Reversed trials’ performance. We found no significant

difference from chance level in any condition. The full results of the t-tests for both Normal and Reversed
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Figure 3.6: Mean accuracies and standard errors for familiar pair identification in Normal test trials during
Experiment 1, separated by modality.

Table 3.1: Results of t-tests performed on the accuracies of Normal and Reversed trials against chance
level.

Trial type Pair modality Mean t p

Normal trials VV 59% 2.9 0.012*
AA 61% 3.02 0.009*
VA 54% 1.1 0.291
AV 55% 1.61 0.131

Reversed trials VV 56% 2.12 0.052
AA 56% 1.97 0.069
VA 53% 0.86 0.403
AV 50% -0.09 0.928

trials are shown in table 3.1.

Table 3.2: Results of χ2 tests performed on the accuracies of Normal trials against chance level, aggregated
by pair modality and reported confidence level.

Pair modality Reported confidence Sample size Mean χ2 p

VV “Remember” 68 66% 7.12 0.008
“Know” 123 60% 5.08 0.024
“Guess” 79 51% 0.11 0.736

AA “Remember” 104 63% 7.54 0.006
“Know” 126 61% 6.22 0.013
“Guess” 40 55% 0.40 0.527

VA “Remember” 75 48% 0.12 0.729
“Know” 115 57% 2.51 0.113
“Guess” 80 54% 0.45 0.502

AV “Remember” 87 47% 0.29 0.592
“Know” 116 57% 2.21 0.137
“Guess” 67 63% 4.31 0.038
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Figure 3.7: Mean accuracies and standard errors for familiar pair identification in Normal test trials during
Experiment 1, separated by pair modality and reported confidence level. The standard error of each
condition is directly proportional to the sample size of the condition.

To look at possible interactions between pair modalities and confidence ratings, we aggregated the

test trials according to pair modality and reported confidence level and performed chi-square tests of

independence for each condition combination. Results of all chi-square tests are presented in the following

table. In this analysis the alpha was corrected at .0042 after applying Bonferroni correction. Unimodal

trials (VV and AA) resulted in high performance when explicitly recognized, either by recall (Remember) or

familiarity (Know), but not when guessed. When implicitly recognized (Guess), AV trials had the highest

performance, χ2(1, N = 67) = 4.31, p = .038. However, none of the conditions had a performance

significantly different from chance level according to our multiple comparisons correction criterion. The

full results are shown in table 3.2.

3.1.5 Discussion

In this experiment we tested SL of both unimodal and crossmodal patterns. As we expected, participants

were able to learn the unimodal pairs. Participants were not able to learn the crossmodal ones, suggesting

that the SL mechanism is highly constrained within the different modalities. However this conclusion is

not yet clear, since the lack of positive results in the cross-modal conditions could be attributed to other

factors, such as the lack of power of the experiment due to the small sample size, the difficulty of the

attentional task that may have left few cognitive resources for the SL mechanisms or the fact that we

used an explicit measure of learning to measure knowledge that is many times implicit. Solving this last

problem is what motivated us to perform the follow up EEG experiment, where we would be able to better

detect implicit knowledge by looking at neurophysiological measures of learning.

When separating the results by confidence rating, we found in the unimodal conditions the trend

that one would expect: participants performed better the more confident they were on their answers. In

the crossmodal conditions, on the contrary, the opposite trend seems to appear, particularly in the AV

condition, where accuracy was at its highest when participants reported just having guessed. None of this
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Figure 3.8: Mean accuracies and standard errors for familiar pair identification in Reversed test trials
during Experiment 1, separated by modality.

was statistically significant, so these tendencies could be just noise due to the small sample size, but they

also further suggested that there may be some implicit learning happening that we were missing due to

the nature of the test, since explicit memory recall processes could interfere with implicit knowledge.

We found no significant differences from chance level in the performances of Reversed trials, so

participants did not learn the pair associations irrespective of order.

A drawback of the experiment was the difficulty of the attentional task, that made us remove many

participants (7) from the experiment because they failed to pass the oddball detection threshold that we

set as a requisite. Upon examination, this was mostly due to the auditory oddballs and particularly to

two auditory stimuli, for which the standard and oddball versions were not easily distinguishable. For

the follow up experiment we replaced these two auditory stimuli by another two that where more easily

distinguishable from their oddball versions and put more effort into making sure that participants were

able to correctly perform the oddball detection task before the start the actual experiment.

3.2 Experiment 2: EEG experiment

3.2.1 Participants

Three naive adults (mean age of 23.3 years, all female) participated in the experiment in return for

remuneration. Before the study, participants provided written informed consent. They reported no hearing

problems and normal or corrected-to-normal visual acuity. One of the participants was removed from the

analysis due to too many noisy channels making channel interpolation impossible.

3.2.2 Materials

For this experiment we used the same stimuli as in the previous experiment (except the two auditory

stimuli that were replaced) and the pairs were created in the same manner.
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The sequence orders of the stimuli pairs, oddballs and deviants within each of the subphases of the

exposure phase (described below in the Procedure section) were created using Mix, a tool for generating

pseudorandom sequences using constraint programming [25].

The timings for the presentation of the stimuli were the same as in Experiment 1 and a short break

separated each phase.

3.2.3 Procedure

Figure 3.9: Diagram of the phases and subphases of Experiment 2

The experimental procedure was similar to the previous experiment, but with the following differences.

Some changes were made to the training phase of the previous experiment in order to better ensure that

participants had understood the task and were able to reliable discriminate between oddball and standard

stimuli. Each stimulus was presented in a random order four times, 50% of which as an oddball. During

the training phase participants received online feedback about their performance with the appearance

of a coloured ‘X’ of the same size as the fixation cross centered on the screen. The X is coloured blue

whenever the participant misses an oddball stimulus (false negative) and it is coloured red whenever the

participant incorrectly identifies a standard stimulus as an oddball (false positive). During this phase we

considered an oddball stimulus as detected whenever a keypress occured no later than 750 ms after the

stimulus’ onset. False negatives and positives were tracked in order to compute the participants F1 score

for each block separately. It was calculated as follows:

F1 =
2 · true positives

2 · true positives + false negatives + false positives
(3.1)

This score was shown to participants at the end of the phase. This training phase was repeated as long

as participants F1 score was below 80%.

The exposure phase consisted of three subphases: baseline, normal exposure and exposure with

deviants.

In the baseline subphase all the stimuli were presented in random order. This subphase was constrained

so that transitional probabilities between all different stimuli were equal, no stimulus repetition occurred

and at least two standard stimuli appeared between any oddball stimuli. Each stimulus was presented

during the baseline subphase 46 times, 2 of which as an oddball. Without taking into account time between

blocks, this subphase had a duration of approximately 14 minutes.

The normal exposure subphase was like the exposure phase of Experiment 1. This phase was

implemented in order to allow participant to learn the transitional probabilities. It was constrained so

22



that transitional probabilities between all different pairs were equal, no pair repetition occurred and at

least two pairs without oddballs appeared between any oddball stimuli. Each pair was presented 77 times

during the normal exposure subphase. Each stimulus appeared twice as an oddball. Without taking into

account time between blocks, this subphase had a duration of approximately 23 minutes.

During the exposure with deviants phase, some pairs had their trailing stimuli replaced by trailing

stimuli of other pairs, in order to include violations of the already introduced statistical regularities.

Two types of deviants were included: modality-coherent and modality-incoherent, which differed on

whether the deviant stimulus is of the same modality as the replaced original trailing stimulus or not. The

constraints used were the same as in the normal exposure subphase and the same maximum distance

constraints were applied to deviant stimuli as to oddball stimuli. Each pair was presented 99 times during

the exposure with deviants subphase, 10 of which included a modality-coherent deviant and other 10

included a modality-coherent deviant. Without taking into account time between blocks, this subphase

had a duration of approximately 30 minutes.

During the exposure phase, participants were given no information about the statistical structure

behind the stimuli or of the different subphases, which were concatenated seamlessly. The phase was

divided into 10 blocks, each of them lasting for approximately 6 and a half minutes. Between blocks,

participants were given the chance to rest and drink some water or juice and then resume the experiment

by pressing a key whenever they wanted. After each block participants were shown their F1 score for that

block. Here, we considered an oddball stimulus as detected whenever a keypress occured no later than

1.5 seconds after the stimulus’ onset, thus giving participants some more leeway than during the training

phase.

We included a test phase like the one of Experiment 1 in order to contrast behavioural with neurophys-

iological types of measure. Given the longer duration of the exposure phase during this experiment, in

order to reduce the testing time and minimize participant fatigue this time we did not include Reversed

trials.

3.2.4 EEG Recording and pre-processing

Electroencephalograms were recorded during the exposure and test phases using the BrainAmp DC (Brain

Products) acquisition system and tin electrodes located at 29 standard positions (Fp1/2, Fz, F7/8, F3/4,

FCz, Fc1/2, Fc5/6, Cz, C3/4, T3/4, Cp1/2, Cp5/6, Pz, P3/4, T5/6, PO1/2, Oz) mounted in an elastic

cap. Electrode impedances were kept below 5 kΩ. The electrophysiological signals were digitized at a

sampling rate of 250 Hz and filtered with an online high pass of 0.016 Hz. Eye movements were monitored

with an electrode at the infraorbital ridge of the right eye. The ground electrode was located in the AFC

position. The reference electrode was located at the side of the right eye. Scalp electrodes were later

re-referenced offline to the mean activity of electrodes located at the left and right mastoids.

Electroencephalograms were recorded during the exposure (including all its subphases) and test

phases, through only the signal within blocks in the exposure phase was pre-processed and analyzed. All

preprocessing was done using the FieldTrip Toolbox for Matlab [26].

The recordings were subjected to a 0.1 Hz high-pass filter. Channels that exhibited many artifacts were

interpolated using the distance-weighted average of their neighbouring channels. Channel neighbours

were calculated using Delaunay triangulation.
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The recordings were cut into epochs time-locked to the stimuli onsets that included the stimulus

presentation period as well as the previous inter-stimulus-interval. 20 ms were removed both from the

beginning and the end of the epochs in order to avoid occasional overlaps between epochs and the rejection

of epochs because of the detection of artifacts right at their borders. This resulted in epochs with 230 ms

pre-stimulus and 480 ms post-stimulus periods. Epochs corresponding to oddball stimuli or whose onset

occurred up to 500 ms before or 750 ms after a keypress were removed from the analysis to avoid any

motor preparation or motor execution interferences.

We identified (but did not reject at this point) blink artifacts automatically by thresholding the z-

normalized Hilbert transform of the eye channel’s signal. The threshold was chosen by visual inspection.

In one participant the eye channel’s signal was very low, so we transformed all other scalp channels

instead and thresholded their average. Next we visually inspected the variability of the epochs in all

channels both with and without using a 100 Hz high-pass filter to reject epochs containing muscle and

jump artifacts respectively.

The epoched data of the scalp channels was then subject to an infomax-based ICA decomposition. The

resulting components were visually inspected by looking at their topographies, their average activation

across all epochs, their epoch variability during the whole experiment and their correspondence with

the previously identified blinks. Eye-blink components were identified and rejected. Other artifact

components were not rejected since they occurred in a small number of epochs, favouring the removal of

such epochs. After the remaining components were backprojected to the original channel levels, we used

the previously identified eye-blinks to remove epochs in which such a blink overlapped with the stimulus

onset.

Finally, the epochs were passed through a 30Hz low-pass filter and their pre-stimulus signal was used

for baseline correction.

3.2.5 Analysis

ERP Analysis

We computed average ERPs separately for each pair modality (AA, VV, AV and VA) and each of the

following conditions: Control, Predictable, Deviant stimulus and Deviant modality. Within each pair

modality condition (each having a leading and a trailing modality) we always compared stimuli of the

trailing modality that were preceded by the leading modality. So for each pair modality, the Control

condition consisted of stimuli taken from the baseline subphase whose modality was that of the condition’s

trailing modality and that were preceded by stimuli of the leading modality. These are stimuli that were

not subject to any statistical regularities but shared the same modality switching effect as the stimuli

they were going to be compared against. The Predictable condition consisted of the trailing stimuli of

standard pairs that appeared during the exposure with deviants subphase, once the statistical learning

mechanisms have supposedly taken place. The Deviant item condition consisted of the trailing stimuli of

modality-coherent deviant pairs that appeared during the exposure with deviants subphase. The Deviant

modality condition consisted of the trailing stimuli of modality-incoherent deviant pairs that appeared

during the exposure with deviants subphase. Note that in the Deviant modality condition, given the change

in modality of the trailing stimulus and in order to make meaningful comparisons between ERPs of the

same modality, we compared effects of crossmodal learning against unimodal ERPs and vice versa. For
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example, a standard AV pair turns into an AA when appearing as a modality-incoherent deviant, so in

order to notice effects of learning we compared their ERP against the Control ERP of the AA condition.

For each pair modality we visually compared the Predictable, Deviant stimulus and Deviant modality

conditions against the Control condition. In the Predictable condition we looked for expectation suppres-

sion effects in ERP components, such as a reduction in the P3a component, which has been associated

with stimulus novelty. In the Deviant stimulus and Deviant modality conditions we looked for surprise

enhancement effects in ERP components, such as an increase in the P300 or N400 components, which

have been associated with unexpected stimuli.

To plot the ERPs, we averaged the activity of the 4 channels with bigger variance in their grand

average ERPs selected for each modality (visual or auditory) .

Neural decoding analysis

Next, we performed a neural decoding analysis using the temporal generalization method. The objective

of this analysis was to get another neurological measure of learning to compare unimodal and cross-modal

learning and to take a deeper look into the internal representations of the stimuli beyond what can be

seen in an ERP. An important assumption of this analysis is that the spatial activation patterns of stimulus

preparation are similar to the ones that would originate from processing the stimulus when no predictive

mechanisms are involved [14]. For example, the pre-stimulus activation may share activation patterns

with the post-stimulus activations of a family of similar stimuli, but they may not be precise enough

to discern precisely which one of those stimuli was the one predicted. Another difficulty in making a

comparison between pre- and post-stimulus activations are their differences in temporal dynamics: the

post-stimulus activation varies greatly in time, so it is not trivial to make comparisons at which timepoint

or time window we should look or, in general, how to deal with the temporal dimension.

Taking this into account, we decided to identify stimulus preparation by looking at the capacity of

pre-stimulus activation to discriminate the modality of the stimulus. The activation networks of distinct

modalities are different enough that we would expect to easily be able to discriminate their corresponding

preparation activations.

To achieve this, we took a neural decoding approach using shrinkage LDA with temporal generalization.

This analysis was performed separately for each participant and their results were later averaged. The data

used, as in the previous analysis, were epochs that were composed of 230 ms of pre-stimulus activity and

480 ms of post-stimulus activity. We will refer to these epochs as trials. Decoders were trained and tested

on the channel activity at single timepoints of the trials, so each sample consisted of 29 features, one per

each channel.

Using temporal generalization, we were able to avoid the problem of the temporal differences between

the pre- and post-stimulus activations, since it compares all timepoints with each other.

The decoders were trained to discriminate between the auditory and visual modalities on all the trials

from the baseline subphase, since these trials were unaffected by any predictive mechanisms. The optimal

γ value was calculated based on the average between the within-class covariance matrixes of auditory and

visual data.

We balanced the training data in order to avoid biases towards a modality or towards a modality switch

effect. The data were separated into four bins, depending on their stimulus modality and the modality of
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their preceding stimulus. To select which trials include in the training, we randomly sampled trials from

each bin an equal number of times, matching the size of the smaller bin.

One decoder was built for each timepoint in an epoch, resulting in 179 decoders. These decoders

were then applied to stimuli from the exposure with deviants subphase, separating between the unimodal

and cross-modal conditions. Two conditions were considered: Predictable and Deviant modality. In the

Predictable condition we included the trailing stimuli of standard pairs. In the Deviant modality condition

we included the trailing stimuli of modality-incoherent deviant pairs. We considered the precise limit

between the pre- and post-stimulus periods to be not the stimulus onset time, but the moment in which

brain activity starts to hold information with discriminative power about the stimulus, thus ignoring the

uninformative earliest perceptual processing stages. To pinpoint this moment we visualized the temporal

generalization matrix of the baseline data. To get this matrix and avoid circular analysis, another batch

of decoders was trained and tested on the baseline data (the same data used to train the decoders of the

other conditions) by the means of 10-fold cross-validation. From the resulting temporal generalization

matrix we could visually identify the limit between timepoints containing no information about stimulus

modality (considered as the pre-stimulus period) and timepoints containing information about the stimulus

modality (the post-stimulus period). Then we identified the area where markers of stimulus preparation

were expected to appear. This area is the one corresponding to pre-stimulus timepoints being decoded by

decoders trained on post-stimulus timepoints. We will refer to this area as the stimulus preparation area; it

has been marked with a box in the temporal generalization visualizations.

In order to visualize the Predictable and Deviant modality conditions and avoid showing effects of

modality switch, we created both an unimodal and a cross-modal Control condition, similar to the one

used in the ERP analysis. However, instead of using stimuli from the baseline subphase (since these

stimuli had been used for training and we wanted to use the same decoders as for the other conditions),

we used leading stimuli of pairs of the exposure with deviants subphase that were either preceded by

a stimulus of their same modality (to use as control and contrast for the unimodal conditions) or by a

stimulus of the other other modality (to use as control and contrast for the cross-modal conditions).

By contrasting the temporal generalization matrix of the Predictable condition against the correspond-

ing Control condition, a positive difference in accuracy in the stimulus preparation area would indicate that

information regarding the stimulus modality was present during the pre-stimulus period, thus suggesting

the presence of stimulus preparation.

The Deviant Modality temporal generalization matrix was contrasted against the Control matrix of

the corresponding modality switch effect. In these contrasts we expected the opposite effect. A negative

difference in accuracy in the stimulus preparation area would indicate information regarding the predicted

stimulus modality (which is different to the modality of the presented stimulus), thus suggesting the

presence of stimulus preparation. We included this condition because we expected the switch from

predicting one modality to processing the other modality to be easily noticeable.

3.2.6 Results

Behavioural results

We performed no statistical analysis on these results and did not investigate the relationships between

performance and reported confidence due to the small number of participants. Looking at the average

performance, no pair modality seemed to have been reliably learnt. Participants did not perform better on
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Figure 3.10: Mean accuracies for familiar pair identification in test trials during Experiment 2, separated
by modality.

unimodal pairs than on multimodal pairs. They did perform better in conditions in which auditory stimuli

worked as predictors (AA and AV) than on the conditions were visual stimuli were the predictors. This

effect was due to one of the participants, while the other participant analyzed performed near chance level.

ERP results

Figure 3.11: Results of the ERP analysis. a) and d) show the variance topography used to select which
electrodes to plot.
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We performed no statistical analysis given the small participant sample size. In each Control and

Predictable conditions, around 200 epochs per subject were used to compute the average ERPs. In each of

the Deviant conditions, only around 30 epochs were used to compute the average ERP. The small sample

size for these last conditions means that their ERPs had a low signal-to-noise ratio and one should be

careful when drawing conclusions from them. We visually inspected the ERPs to look for qualitative

differences in the ERPs, which given a bigger sample size could result in true effects.

We noticed reductions of the N400 component with respect to the Control conditions in the VV Deviant

stimulus, AA Predictable and AA Deviant modality (which corresponds to effects of learning AV pairs)

conditions. The reduction in the AA Predictable N400 component could be due to expectation suppression,

but we have no interpretation for the other N400 reductions.

In the AV Predictable condition, there seems to be a reduction in the P200 component, or an early

P3a component; both components have been related to unexpected or novel stimuli, so their reduction

could be due to expectation suppression. This is the clearest difference in components that we found and

it agrees with the behavioural results, where AV was the pair modality that entailed a higher performance.

Some very early components also seem to appear in the unimodal Deviant modality conditions: an

increase in the N100 component in the VV Deviant modality condition (which corresponds to an effect in

learning VA pairs) and an increase in the P50 component in the AA Deviant modality condition. The N100

component has been associated to unexpected stimuli. P50 is an auditory component that is known to be

reduced after stimulus repetition and has also been linked to attention. This component being higher than

in the other conditions could be explained by participants expecting to see a visual stimulus (since this

condition is associated with AV learning) and hence suddenly increasing attention and removing the P50

reduction effect that may be taking place in the other conditions. However we can not be sure about the

validity of these effects due to the low signal-to-noise ratio in the Deviant conditions.

Neural decoding results

Figure 3.12: Results of the neural decoding analysis.
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We did not notice any of the accuracy differences that we expected to see in the stimulus preparation

area of the contrasts (d, e, f or g). A negative difference appears in stimulus preparation area of the

Unimodal deviant modality contrast, but this negativity does not switch polarity or disappear once

information of the stimulus appears along the decoding time axis (which is what we would expect to

happen id this were stimulus preparation of a stimulus of a different modality), but it steadily continues

during the rest of the epoch.

In fact, this negativity also appears in a weaker form in the Unimodal predictable condition and can

be also noticed in the curves of the diagonal in a. We currently have no hypothesis as to what the cause of

this difference in accuracy might be.

In the Baseline matrix, we can see a symmetric temporal generalization effect between the periods

between 80-120 ms and 200-250 ms.

3.2.7 Discussion

The results of the behavioural test, although not significant due to the small sample size, were very

different to the ones obtained in Experiment 1. This could be due to an important strategic component

involved in the task, resulting in a higher within-groups than between-groups variability in the test results

that makes impossible to infer the real group variability from a small sample size. This strategic variability

may have been increased by the lack of Reversed trials in this test, so we could not be sure of whether

the measured performances were a product of real learning that occurred during the exposure phase or of

inferential strategies that had taken place during the test. These inferential strategies could also explain

below chance performances, such as the one observed in one participant in the VA condition, in case

participants had started their inferential processes from an incorrect assumption.

In the ERP analysis, we saw some evidence suggesting learning of AA, VA and AV pairs. Only

the VV condition showed no signs of learning, which coincides with the behavioural results, since the

VV condition was the only one where both participants performed at or below chance level. However,

we also saw some effects that could not be attributed to learning and were of similar size to the ones

explainable by learning, namely the reduction of the N400 component in the VV Deviant stimulus and

AA Deviant modality conditions. So, variations in the N400 component may be due to noise or other

processes different from learning. The N400 component may not be a good measure of learning for

this paradigm, since according to some previous research [27], N400 surprise enhancement only takes

place when semantic mismatch happens. Thus it would require the stimuli to be semantically meaningful,

precisely what we were trying to avoid in our paradigm.

The clearest effect we noticed was the P200 or P3a decrease in the AV Predictable conditions.

Differences in the 200 - 300 ms have been associated to stimulus novelty (and thus their reduction to

expectancy) without the need of semantic associations [28][29]. This effect agrees with the results of

the behavioural test, where the best performance was in the AV modality, therefore strengthening the

conclusion that AV learning really took place.

Unfortunately the neural decoding analysis did not show any of the signs of stimulus preparation that

we expected to notice. This may have been due to no learning, and thus no stimulus preparation, taking

place; or only learning a very limited number of pairs, so stimulus preparation would appear in too few

trials to be noticeable above the noise level that is present in the contrasts; or due to stimulus preparation
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encoding the modality in a different way than the actual, so that its decoding can not be generalized in this

way.
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Chapter 4

Final discussion and conclusions

This chapter summarily discusses the thesis findings, which allow us to reach a number of conclusions.

Importantly, it also outlines a few potential future lines of research stemming from the thesis work.

In Experiment 1, we found that participants were able to explicitly learn unimodal but not cross-modal

patterns of non-meaningful auditory or visual stimuli while performing an orthogonal attentional task.

However, implicit learning of cross-modal AV pairs might have also occurred.

In Experiment 2, we found some neurophysiological evidence indicating the presence of cross-modal

AV learning. However, we cannot extract general conclusions from these particular findings, given the

small sample size and the high individual variability that seems to affect the task.

In general, the experimental thesis findings support our second hypothesis, namely that SL is a

domain-specific system with high constraints between modalities, thus agreeing with much of existing

previous research.

A surprising result that did not agree with the second hypothesis that we stated at the onset was the

learning of AV pairs. We hypothesised that in the case of SL being domain-specific, any cross-modal

learning would be more explicit than the unimodal learning, since it would be due to higher-level cognitive

processes that required explicit recognition of the stimuli. However, the results of Experiment 1, although

not significant, seemed to suggest the opposite to be true.

The reality of the SL system may be much more complex than discerning whether it is domain-general

or domain-specific and its differences from other types of learning is not completely clear[30] [31]. Even

though similar computational processes seem to take place in each modality, they also have very distinct

constraints (temporal, contextual, attentional, etc.) and integrate with the rest of modalities in different

ways. These constraints and cross-modal relationships may have evolved ad hoc in order to solve the

different problems faced in our environment. For example, the ability to learn dependencies from auditory

to visual stimuli may have been crucial to our survival in order to predict the appearance of predators

before having them on sight, but the opposite dependency (from visual to auditory) may not have been as

useful.

Our experiment suffered from some drawbacks. The principal one being the small sample size,

particularly in the second experiment, that did not allow us to extract meaningful conclusions in many

analysis. Also, the attentional task included appeared to be very difficult to many participants and it is

unclear whether it helped or hindered the SL processes. Attention seems to play a crucial role in SL

[32][2], although its role is not completely understood and not agreed upon in the literature. In hindsight,
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we should have callibrated better the difficulty of the attentional task.

4.1 Conclusion

We wanted to discern whether the statistical learning system is domain-general or domain-specific. Our

findings showed that it is much harder to learn cross-modal patterns than unimodal ones, revealing

that there are big constraints between modalities and that SL is a primarily domain-specific cognitive

mechanism.

4.2 Future work

There are several ways in which this research could be continued. Clearly more participants are needed

for both experiments, particularly for Experiment 2, in order to get more conclusive results. Besides

getting more participants, we could obtain more information about the learning processes going on

without the need of many changes to the experimental paradigm by performing new analysis. For example

tracking the neurophysiological responses to individual items to see which pairs were the ones being

learnt, whether they correspond to the ones being correctly identified in the test phase and whether there

are other confounding factors that favor the learning of some dependencies over others and that we did not

control for. We could then investigate the evolution of the neurophysiological responses throughout the

exposure, in order to obtain a learning curve. This curve could also be obtained by correctly implementing

the oddball detection reaction time measure that we initially intended to use. Obtaining learning curves

opens many possibilities, since we could notice other differences between unimodal and cross-modal

learning that would be hidden otherwise and qualitatively compare the curves with the ones resulting from

different computational models of learning.

A blocked experimental design, where cross-modal and unimodal are learnt separately would also

be very interesting to conduct, since it would avoid the possible interference between different types of

learning. There are also additional experimental factors that could be included into the experimental

design, such as variations in the TP in order to add uncertainty or variations in the difficulty of the

attentional task, to see how much an attentional task

Finally, it would be very interesting to further explore the possibilities of temporal generalization in

neural decoding. It is a fairly new analysis method that can show us many things about the dynamics of

cognitive processes.
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