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Abstract

In this work, we explicitly compute the group inverse of symmetric and
periodic Jacobi matrices with constant elements that have been extended
by adding a row and a column conveniently defined. For this purpose, we
interpret such matrices as the combinatorial Laplacian of a non–complete
wheel that has been obtained by adding a vertex to a cycle and some edges
conveniently chosen. The obtained group inverse is an incomplete block
matrix with a block Toeplitz structure. In addition, we obtain the effective
resistances and the Kirchhoff index of non–complete wheels.
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1. Introduction and notation

The invertibility of nonsingular tridiagonal or block tridiagonal matrices
has been studied in recent years; see for instance [1, 2, 10, 11]. Moreover,
explicit inverses are known in some cases, for instance when the tridiago-
nal matrix is symmetric with constant diagonals and subject to some re-
strictions. In [9], da Fonseca and Petronilho obtained explicit inverses of
tridiagonal 2–Toeplitz and 3–Toeplitz matrices which generalize some well-
known results concerning the inverse of a tridiagonal Toeplitz matrix. The
techniques used in the mentioned results are mainly based on the theory of
orthogonal polynomials. For the singular case, there is also a big amount
of work, for instance in [5] the authors carried out an exhaustive analysis of
the generalized inverses of singular irreducible symmetric M–matrices. The
key idea of the approach was to identify any symmetric M–matrix with a
positive semi–definite Schrödinger operator on a connected network whose
conductances are given by the off–diagonal elements of theM–matrix. More-
over, explicit expressions for the group inverses in the cases of tridiagonal
matrices and some circulant matrices were obtained in [7].
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In this work, we present a new formula for the group inverse of an ex-
tended symmetric and periodic Jacobi matrix with constant elements. By
extended we mean that a row and a column have been added to the matrix.
The idea is to see the extended symmetric and periodic Jacobi matrix as
the combinatorial Laplacian of a non–complete wheel and hence to obtain
the group inverse, by using some previous results obtained in [8]. A non–
complete wheel is a wheel where the central vertex is connected to a few
vertices of the cycle. This kind of networks has many applications in Com-
puter Science as the central vertex is called a hub (see [3]). Therefore, the
non–complete wheel can be seen as a cycle with an added vertex and some
new edges and hence, the result of [8] can be applied. Actually, a particular
example of this network can be found in [8]. Finally, we use the formula for
the group inverse to give the effective resistances and the Kirchhoff Index of
a non–complete wheel.

In the following, the triple Γ = (V,E, c) denotes a finite network, that
is, a finite graph without loops nor multiple edges, with vertex set V =
{1, . . . , n} and edge set E, where each edge eij = {i, j} has associated a
conductance cij > 0. The standard inner product on Rn is denoted by 〈·, ·〉,
thus, if u, v ∈ Rn, then 〈u, v〉 =

∑n
k=1 ukvk. For any i = 1, . . . , n we denote

by ei the i–th vector of the standard basis of Rn, by jn the all–ones vector
of dimension n and by Jn,m the all–ones matrix of size (n,m). Moreover
Tn(q), Un(q) and Vn(q) denote respectively the n-th Chebyshev polynomials
of first, second and third kind, that is, the Chebyshev polynomials satisfying
T0(q) = U0(q) = V0(q) = 1, T1(q) = q, U1(q) = 2q and V1(q) = 2q − 1, for
any n ∈ N.

A matrix is called a block Toeplitz matrix iff it is a block matrix, which
contains blocks that are repeated in each descending diagonal from left to
right, as a Toeplitz matrix in which each descending diagonal from left to
right is constant. A matrix A of order n = md + p, 0 < p < d, is called
incomplete block matrix if it is partitioned from the top–left–hand corner
using d× d submatrices as far as possible. Thus

A =



A11 · · · A1m A1m+1

...
. . .

...
...

Am1 · · · Amm Amm+1

Am+11 · · · Am+1m Am+1m+1


,

where Aij , i, j = 1, 2, . . . ,m is an d × d matrix, Aim+1 and A>m+1j , i, j =
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1, 2, . . . ,m are d× p matrices and Am+1m+1 is an p× p matrix.
The combinatorial Laplacian or simply the Laplacian of the network Γ

is the matrix L = (Lij), where Lii =
∑n

k=1 cik, and Lij = −cij when i 6= j. It
is well–known that the Laplacian is singular, symmetric and positive semi–
definite. Moreover Lu = 0 iff u is proportional to vector jn. The group
inverse of the Laplacian, L#, is known as the Green matrix of the network
Γ, and from now on will be denoted by G.

For every pair of vertices {i, j} we define the dipole between them as the
vector πij = ei − ej . Observe that πii = 0 and πij = −πji. The effective
resistance between two vertices {i, j} of a network Γ can be computed by
using the following formula of [6]:

R(i, j) = 〈Gπij , πij〉 = (G)ii + (G)jj − 2(G)ij , (1)

and the total resistance of the network or Kirchhoff index can be also com-
puted as follows:

K(Γ) =
1

2

∑
i,j∈V

R(i, j) = n

n∑
i=1

(G)ii.

Given m > 1, d ≥ 1, we consider a cycle Cn on n = md vertices with
constant conductances c = c(i, i + 1) > 0 for any i = 1, . . . , n − 1 and
c = c(n, 1). A non–complete wheel (n,m)-W , is a network obtained from
Cn by adding a new vertex n+ 1 to m of the vertices of the cycle placed at
the same distance, d, with new conductances a = c(n+ 1, 1 + d(i− 1)), for
any i = 1, . . . ,m.

It is known (see for instance [5]) that the Laplacian matrix of the cycle
Cn, is a circulant matrix L = circ(2c,−c, 0, . . . , 0,−c) and its group inverse
is

(G)ij =
1

12cn

(
n2 − 1− 6|i− j|(n− |i− j|)

)
, i, j = 1, . . . , n.

2. The group inverse of non–complete wheels

In this section we give an explicit expression for the group inverse of
extended symmetric and periodic Jacobi matrices. Not surprisingly, the ex-
pression is an incomplete block Toeplitz matrix whose coefficients involve
Chebyshev polinomials. In order to obtain the claimed expression we con-
sider the Laplacian matrix of the non–complete wheel network (n,m)-W in
terms of the Laplacian of the base cycle. Then, we obtain the matrix of
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order n+ 1 given by

L′ =

L + D s

s> α

 ,
where D is a diagonal matrix whose non null elements, a, are placed at the

(1 + d(i − 1))–elements of the diagonal, i = 1, . . . ,m, s = −a
m∑
i=1

e1+d(i−1)

and α = ma.

Theorem 1. The group inverse of L′ is

(L′)# =

(
L′11 L′12

(L′12)
> L′22

)
,

where

L′22 =
12cdn+ an(d2 − 1)

12ac(n+ 1)2
,

L′12 = v ⊗ jm,

with

(v)i =
a(d+ 1)[n(d+ 5) + 6]− 12cd

12ac(n+ 1)2
+
i(i− d− 2)

2c(n+ 1)
, for any i = 1, . . . , d,

and where L′11 is the block Toeplitz matrix

L′11 =


N1 N2 . . . Nm

Nm N1
. . .

...

...
. . .

. . . N2

N2 . . . Nm N1


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such that any submatrix Nk, k = 1, . . . ,m, has entries

(Nk)i j =
1

2cn

(
− |d(k − 1) + j − i| (n− |d(k − 1) + j − i|)

+
1

Tm(q)− 1

[
n(j − i) (Vk−1(q)− Vm−k(q))

−
(an
c

(i− 1)(j − 1− d)− nd
)

(Uk−2(q) + Um−k(q))

]
+

1

n+ 1
[(n(d− 2) + 2d− j)j + (d+ 2− i)i]

+ (n+ 2i− 2kd)j − (n+ 2 + 3d− 2kd)i

+ d(k − 1) [n− d(k − 1)]− 2cd

a

+
a(d2 − 1) + 12cd

6a(n+ 1)2
+
n(d+ 11)(d+ 1)− d2 + 1

6(n+ 1)

)
,

with i, j = 1, . . . , d and q =
ad

2c
+ 1.

Proof. In order to obtain (L′)#, we use [8, Corollary 1] which reads:

(L′)# =
n2

α2(1 + n)2

(
CMC> + α

n2 Jn −α
n jn − CMs

−α
n j>n − s>MC> α+ s>Ms

)
,

where

C =
1

n

(
α(n+ 1)In + jns>

)
,

and M = G − GΠ(I + Π>GΠ)−1Π>G, where the elements of Π ∈ M
n,

m(m+1)
2

for any k = 1, . . . ,m, h = k, . . . ,m, are

(Π)ij =

√
a

m
·


1 if i = 1 + (k − 1)d, j = (2m− k)(k − 1)/2 + h,

−1 if i = 1 + dh, j = (2m− k)(k − 1)/2 + h,

0 otherwise.

So, to obtain the result we basically need to compute matrix

M = G− GΠ(I + Π>GΠ)−1Π>G.
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To do this we need to calculate the different involved matrices and their
products in different steps. For the sake of readability, we develop the proofs
in Section 4, throughout some technical lemmas.

i) In order to obtain B = (I + Π>GΠ)−1, we use a reduced form

Π>GΠ = ΠR
>GRΠR,

where GR is the m×m submatrix of G−n2−1
12cn Jn whose rows and columns

are placed at 1 + (k − 1)d, for any k = 1, . . . ,m, and where ΠR is the
submatrix of non-zero elements of Π, that is, ΠR ∈ Mm+1,

m(m+1)
2

and

for any k = 1, . . . ,m, h = k, . . . ,m, its elements are

(ΠR)ij =

√
a

m
·


1 if i = k, j = (2m− k)(k − 1)/2 + h,

−1 if i = 1 + h, j = (2m− k)(k − 1)/2 + h,

0 otherwise.

ii) Now we apply Woodbury’s formula, see [12], to get

B = (I + ΠR
>GRΠR)−1 = I− ΠR

>(GR
−1 + ΠRΠR

>)−1ΠR.

Thus, M becomes

M = G− GΠ[I− ΠR
>(GR

−1 + ΠRΠR
>)−1ΠR]Π>G

= G− G[ΠΠ> − ΠΠR
>(GR

−1 + ΠRΠR
>)−1ΠRΠ>]G

= G− G[ΠΠ> − ΠΠR
>MRΠRΠ>]G,

where MR = (GR
−1 + ΠRΠR

>)−1.

Observe that both GR and ΠR
ᵀΠR are, respectively, the circulant ma-

trices

GR = − d

2cm
circ(0,m− 1, . . . , j(m− j), . . . ,m− 1),

ΠR
ᵀΠR =

a

m

(
mIm − Jm

)
=

a

m
circ (m− 1,−1, . . . ,−1) .

Thus, for computing GR
−1 and GR

−1 + ΠR
ᵀΠR, we use Lemma 1.

iii) Now, from [7, Theorem 3.5], we obtain MR in Lemma 2.

iv) We next consider F = ΠΠ>−ΠΠR
>MRΠRΠ>. Notice that F is a matrix

which non-zero elements are the circulant submatrix
a

m
circ (m− 1,−1, . . . ,−1) .

It turns out that, F is the block Toeplitz matrix described in Lemma
3.
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v) Since, M = G− GFG, we first compute matrix H = GF, see Lemma 4.

vi) Next, we compute matrix K = GFG = HG in Lemma 5.

vii) Again, M is a block Toeplitz matrix whose expression is obtained in
Proposition 2.

viii) Finally, using Lemma 6, the claimed result of Theorem 1 follows.

3. Effective resistances and Kirchhoff index for non–complete wheels

The Green matrix is a fundamental tool for computing some desired
parameters of the network, like the effective resistances of the network or the
Kirchhoff index, very useful in electric circuit theory or in organic chemistry,
as natural indexes describing important structural properties of circuits or
molecules. Therefore, once we compute the Green matrix, the effective
resistances between any two vertices of the new network are easily obtained
from Formula (1) obtained in [6].

Proposition 1. Given two vertices of Γ′, the effective resistances of the
network between them are:

a) if i, j 6= n+1, i = (k1−1)d+h1, j = (k2−1)d+h2 and k′ = k2−k1+1,
where 1 ≤ k1 ≤ k2 ≤ n and h1, h2 = 1, . . . , d, with h1 < h2 when
k1 = k2, then

R(i, j) =
1

2cn

(
−1

Tm(q)− 1

[
2n(h2 − h1) (Vk′−1(q)− Vm−k′(q))

− 2
(an
c

(h1 − 1)(h2 − 1− nd)− nd
)

(Uk′−2(q) + Um−k′(q))

+
(an
c

((h1 − 1)2 + (h2 − 1)2 − d(h1 + h2 − 2))− 2dn
)
Um−1(q)

]
+ 2

∣∣(k′ − 1)d+ h2 − h1
∣∣ (n− ∣∣(k′ − 1)d+ h2 − h1

∣∣)
− 2d(k′ − 1)

[
n− d(k′ − 1) + 4d(h1 − h2)

]
+ 2(h1 − h2)[h1 − h2 + n]

)
,
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b) if i = (k1 − 1)d+ h1 6= n+ 1 and j = n+ 1, then

R(i, n+ 1) = − 1

2c(Tm(q)− 1)

(a
c

(h1 − 1)(h1 − 1− d)− d
)
Um−1(q).

with q =
ad

2c
+ 1. Moreover, the Kirchhoff index of Γ′ is

K(Γ′) =
n(n+ 1)(6cd+ a(d2 − 1))

12c2
Um−1(q)

Tm(q)− 1
− (d2 − 1)an+ 12cdn

12ac
.

Proof. Firstly we point out that for any i = 1, . . . , n we can consider that
i = (k1 − 1)d + h1, for any 1 ≤ k1 ≤ m, 1 ≤ h1 ≤ d, and thus any
element of the main diagonal ((L′)#)ii = (L′11)ii = (N1)h1h1 . Besides we
know that ((L′)#)n+1n+1 = L′22. Therefore, for any i, j 6= n+1, without loss
of generality we can assume that i = (k1 − 1)d+ h1, j = (k2 − 1)d+ h2 for
any 1 ≤ k1 ≤ k2 ≤ m and h1, h2 = 1, . . . , d, with h1 < h2 when k1 = k2, and
if k′ = k2 − k1 + 1. Then

R(i, j) = (L′11)ii + (L′11)jj − 2(L′11)ij

= (N1)h1h1 + (N1)h2h2 − 2(Nk′)h1h2 ,

and for i = (k1 − 1)d+ h1 6= n+ 1 and j = n+ 1,

R(i, n+ 1) = (L′11)ii + L′22 − 2(L′12)i

= (N1)h1h1 + L′22 − 2(L′12)h1 .

By simplifying the previous expressions we obtain the claimed result, and
besides the Kirchhoff index of the non–complete wheel (n,m)-W is obtained
by simplifying the expression

K(Γ′) = (n+ 1)trace(L′) = (n+ 1)trace(L′11) + (n+ 1)L′22.

Finally, if we consider the case where d = 1, n = m, we obtain a complete
Wheel, and in this case we notice that the Kirchhoff index coincides with
the result obtained in [4].

Corollary 1. The Kirchhoff index of a Wheel on n+ 1 vertices is

K(Γ′) =
n(n+ 1)

2c

Un−1(q)

Tn(q)− 1
− n

a
.
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4. Technical lemmas

In this section we include the technical lemmas and their proofs. Observe
that the first Lemma excludes the case of adding a pendant vertex (m = 1).
Besides, we point out that the result of Lemma 2 is obtained from the
application of Theorem 3.5. from [7].

Lemma 1. The inverse matrix of GR is the circulant matrix

GR
−1 =

12c

n(m2 − 1)
circ (b0,−b1,−1, . . . ,−1,−b1) ,

where b0 = (m3 −m− 6)/6 and b1 = (m3 −m+ 12)/12. Moreover,

GR
−1 + ΠR

ᵀΠR =
1

n(m2 − 1)
circ (c0,−c1,−c2, . . . ,−c2,−c1) ,

where

c0 = 12cb0+ad(m−1)(m2−1), c1 = 12cb1+ad(m2−1), c2 = 12c+ad(m2−1).

Proof. Taking into account that
∑m

k=1 k(m − k) = −(m3 −m)/3, the first
part of the result can be checked by simple multiplication of both matrices.
The second part of the statement is straightforward.

Lemma 2. The circulant matrix GR
−1 + ΠR

ᵀΠR is invertible iff m > 1 and
in this case

MR = (GR
−1 + ΠR

ᵀΠR)−1 = circ(t1, . . . , tm),

where

tj =

[
[Uj−2(q) + Um−j(q)]d

2c[Tm(q)− 1]
− 12c+ ad(m2 − 1)

12acm

]
, j = 1, . . . ,m,

with q =
ad

2c
+ 1.

Lemma 3. The matrix F is a block Toeplitz matrix given by

F =


F1 F2 . . . Fm

Fm F1
. . .

...

...
. . .

. . . F2

F2 . . . Fm F1


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where each submatrix Fi has all its elements equal 0 except the first one, and

(Fi)11 = fi = aδi1 −
a2d

2c

[Ui−2(q) + Um−i(q)]

[Tm(q)− 1]
, for any i = 1, . . . ,m,

with q =
ad

2c
+ 1.

Proof. Observe that

f1 =
a(m− 1)

m
+
a2

m

m∑
j=1

tj − a2t1,

fi = − a
m

+
a2

m

m∑
j=1

tj − a2ti, for any i = 2, . . . , d.

Therefore, we first compute

m∑
j=1

tj =

m∑
j=1

[
[Uj−2(q) + Um−j(q)]d

2c[Tm(q)− 1]
− 12c+ ad(m2 − 1)

12acm

]

=
d

2c[Tm(q)− 1]

 m∑
j=1

Uj−2(q) + Um−j(q)

− 12c+ ad(m2 − 1)

12ac

=
d

2c[Tm(q)− 1]

2c

ad
[Tm(q)− 1]− 12c+ ad(m2 − 1)

12ac
=
−d
12c

(m2 − 1).

And now we have

f1 =
a(m− 1)

m
− a2d(m2 − 1)

12cm
− a2

[
[Um−1(q)]d

2c[Tm(q)− 1]
− 12c+ ad(m2 − 1)

12acm

]
= a− a2d

2c

Um−1(q)

[Tm(q)− 1]
,

and for any i = 2, . . . , d,

fi = − a
m
− a2d(m2 − 1)

12cm
− a2

[
[Ui−2(q) + Um−i(q)]d

2c[Tm(q)− 1]
− 12c+ ad(m2 − 1)

12acm

]
= −a

2d

2c

[Ui−2(q) + Um−i(q)]

[Tm(q)− 1]
.
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Lemma 4. The matrix H is a block Toeplitz matrix given by

H =


H1 H2 . . . Hm

Hm H1
. . .

...

...
. . .

. . . H2

H2 . . . Hm H1


where each submatrix Hk has all its elements equal 0 except its first column,
and for any i = 1, . . . , d

(H1)i1 = −d
n
− a

2c

1

[Tm(q)− 1]

[
(i− 1)(Vm−1(q)− 1)− dUm−1(q)

]
,

(Hk)i1 = −d
n
− a

2c

1

[Tm(q)− 1]

[
(i− 1)(Vk−1(q)− Vm−k(q))

− d

c
[a(i− 1) + c](Uk−2(q) + Um−k(q))

]
, for k = 2, . . . , d,

with q =
ad

2c
+ 1.

Proof. We point out that G is also a block Toeplitz matrix and thus H is
again a block Toeplitz matrix, and hence we need to compute just the first
d rows. We first define the following summations:

s1(i, j) =

j∑
p=i

fp, s2(i, j) =

j∑
p=i

pfp and s3(i, j) =

j∑
p=i

p2fp.

In particular,

K1 = s1(1,m) = a− a

2

1

[Tm(q)− 1]
2 [Tm(q)− 1] = 0,

K2 = s2(1,m) = −a
2

m

[Tm(q)− 1]

[
Vm−1(q)− 1

]
,

K3 = s3(1,m) = = −2c

d
− a

2

1

[Tm(q)− 1]

[
m2Vm−1(q)− 2mUm−2(q)−m(m+ 2)

]
.
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And moreover,

B1 = s1(k + 1,m) = −a
2

1

[Tm(q)− 1]

[
Vm−1(q)− Vk−1(q) + Vm−k(q)− 1

]
,

B2 = s2(k + 1,m) = −a
2

1

[Tm(q)− 1]

[
mVm−1(q) + k(Vm−k(q)− Vk−1(q))

+Uk−2(q) + Um−k(q)− Um−2(q)− (m+ 1)
]
.

Now observe that when j = 1 + (k − 1)d and k = 1, . . . ,m, for i = 1, . . . , d
we have that

(Hk)i1 =
k∑
`=1

gi,1+(`−1)dfk−`+1 +
m∑

`=k+1

gi,1+(`−1)dfm+k−`+1

= gi,1fk +
k∑
`=2

gi,1+(`−1)dfk−`+1 +
m∑

`=k+1

gi,1+(`−1)dfm+k−`+1

= A1 +A2 +A3.

Firstly we suppose k > 1. We compute separately A2 and A3 as follows

A21 =
k∑̀
=2

fk−`+1 =
k−1∑
p=1

fp = s1(1, k − 1),

A22 =
k−1∑
p=1

(k − p)fp = js1(1, k − 1)− s2(1, k − 1),

A23 =
k−1∑
p=1

(k − p)2fp = k2s1(1, k − 1)− 2ks2(1, k − 1) + s3(1, k − 1),

and thus,

A2 =
k∑
`=2

gi,1+(`−1)dfk−`+1 =
1

12cn

[(
n2 − 1 + 6(i− 1)(n+ i− 1)

)
A21

−6d(n+ 2i− 2)A22 + 6d2A23

]
=

1

12cn

[
α1A21 + α2A22 + α3A23

]
=

1

12cn

[
(α1 + α2k + α3k

2)s1(1, k − 1)− (α2 + 2α3k)s2(1, k − 1)

+ α3s3(1, k − 1)
]
.

12



Besides,

A31 =
m∑

`=k+1

fm+k−`+1 =
m∑

p=k+1

fp = s1(k + 1,m),

A32 =
m∑

`=k+1

(`− 1)fm+k−`+1 = (m+ k)s1(k + 1,m)− s2(k + 1,m),

A33 =
m∑

`=k+1

(`− 1)2fm+k−`+1 =

= (m+ k)2s1(k + 1,m)− 2(m+ k)s2(k + 1,m) + s3(k + 1,m),

and thus,

A3 =

m∑
`=k+1

gi,1+(`−1)dfm+k−`+1 =
1

12cn

[
α1A31 + α2A32 + α3A33

]
=

1

12cn

[
(α1 + α2(m+ k) + α3(m+ k)2)s1(k + 1,m)

−(α2 + 2α3(m+ k))s2(k + 1,m) + α3s3(k + 1,m)
]

=
1

12cn

[
(α1 + α2k + α3k

2)s1(k + 1,m)− (α2 + 2α3k)s2(k + 1,m)

+α3s3(k + 1,m) +
(
α2m+ α3m

2 + 2α3mk
)
B1 − 2mα3B2

]
.
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Now adding all A1 +A2 +A3 =

=
1

12cn

[ (
n2 − 1− 6(i− 1)(n− i+ 1)

)
fk + (α1 + α2k + α3k

2)(−fk)

− (α2 + 2α3k) (K2 − kfk) + α3

(
K3 − k2fk

)
− 2mα3B2

+
(
α2m+ α3m

2 + 2α3mk
)
B1

]
=

1

12cn

[
(n2 − 1− 6(i− 1)(n− i+ 1)− α1)fk − (α2 + 2α3k)K2 + α3K3

−2mα3B2 +
(
α2m+ α3m

2 + 2α3mk
)
B1

]
= −d

n
− a

2c

1

[Tm(q)− 1]

[
(i− 1)(Vk−1(q)− Vm−k(q))

−d
c

(a(i− 1) + c) (Uk−2(q) + Um−k(q))
]
.

Now observe that if k = 1 then j = 1, and in this case A2 = 0. Besides it
holds s1(2,m) = −f1, s2(2,m) = K2 − f1 and s3(2,m) = K3 − f1.
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Thus

(H1)i1 = gi,1f1 +
m∑
`=2

gi,1+(`−1)dfm+2−`

=
1

12cn

[ (
n2 − 1− 6(i− 1)(n− i+ 1)

)
f1 − (α1 + α2(m+ 1)+

α3(m+ 1)2)f1 − (α2 + 2α3(m+ 1))(K2 − f1) + α3(K3 − f1)
]

=
1

12cn

[
(n2 − 1− 6(i− 1)(n− i+ 1)− α1 − α2(m+ 1)− α3(m+ 1)2

+α2 + 2α3(m+ 1)− α3)f1 − (α2 + 2α3(m+ 1))K2 + α3K3

]
=

1

12cn

[
(n2 − 1− 6(i− 1)(n− i+ 1)− α1 − α2m− α3m

2)f1

−(α2 + 2α3(m+ 1))K2 + α3K3

]
=

1

12cn

[
(12d(i− 1)− 6dn− 12d2)K2 + 6d2K3

]
= −d

n
− a

2c

1

[Tm(q)− 1]

[
(i− 1)(Vm−1(q)− 1)− dUm−1(q)

]
.

Lemma 5. The matrix K is a block Toeplitz matrix given by

K =


K1 K2 . . . Km

Km K1
. . .

...

...
. . .

. . . K2

K2 . . . Km K1


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where each submatrix Kk has as elements

(Kk)i,h+1 = − 1

2cn

1

Tm(q)− 1

[
n (h− i+ 1) (Vk−1(q)− Vm−k(q))

−
(an
c

(i− 1)(h− d)− nd
)

(Uk−2(q) + Um−k(q))

− 2cd

a
(Vm−1(q)− 1)− d2Um−1(q)

]
+ dh+ nh− nd− n2

6
+
d2

6

+ (2 kd− 3 d+ 2h− n) (i− 1) + kd (n− 2h)− d2(k − 1)2,

with q =
ad

2c
+ 1, for any k = 1, . . . ,m, i = 1, . . . , d and h = 0, . . . , d− 1.

Proof. Again we multiply two block Toeplitz matrices and thus K is a block
Toeplitz matrix, and hence we can just compute only the first d rows. For
each submatrix Kk, k = 1, . . . ,m, we compute its elements. We point out
that the i(h+1)-element of Kk is the ij-element of K, with j = 1+(k−1)d+h,
for any h = 0, . . . , d− 1.

(Kk)i,h+1 =

m∑
`=1

hi,1+(`−1)d · g1+(`−1)d,j = gi,1hi,1 +

k∑
`=2

hi,1+(`−1)d · g1+(`−1)d,j

+
m∑

`=k+1

hi,1+(`−1)d · g1+(`−1)d,j = A1 +A2 +A3.

We compute separately

A1 =
1

12cn
hi,1

[
n2 − 1− 6(h+ kd− d)(n− h− kd+ d)

]
,

A2 =
1

12cn

k∑
`=2

hi,1+(`−1)d
[
n2 − 1− 6(h+ kd− `d)(n− h− kd+ `d)

]
=

1

12cn

k∑
`=2

hi,1+(`−1)d
[
n2 − 1− 6(−h2 − 2kdh− k2d2 + 2(kd2 + dh)`

−d2`2 + n(h+ kd)− `dn)
]
,
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A3 =
1

12cn

m∑
`=k+1

hi,1+(`−1)d
[
n2 − 1− 6(−h− kd+ `d)(n+ h+ kd− `d)

]
,

=
1

12cn

m∑
`=k+1

hi,1+(`−1)d
[
n2 − 1− 6(−h2 − 2kdh− k2d2 + 2(kd2 + dh)`

−d2`2 − n(h+ kd) + `dn)
]
.

Besides,

B1 =
k∑
`=2

hi,1+(`−1)d = −d(k − 1)

n
− a

2c

1

(Tm(q)− 1)

[
(i− 1)

(
Uk−2(q) + Um−k(q)

−Um−1(q)
)
− c

a

(
Vk−1(q)− Vm−k(q) + Vm−1(q))− 1

)]
,

B2 =

k∑
`=2

`hi,1+(`−1)d) = −d(k − 1)(k + 2)

n
− a

2c

1

(Tm(q)− 1)

[
(i− 1)

(
(k + 1)Uk−2(q)

+ (k + 1)Um−k(q)− 2Um−2(q)− 1− 1

2(q − 1)
(Vk−1(q)− Vm−k(q) + Vm−1(q))

)
− c

a

(
kVk−1(q)− kVm−k(q) + Vm−1(q)− Uk−2(q)− Um−k(q) + Um−1(q)

)]
,

and

K1 =
m∑
`=1

hi,1+(`−1)d = 0,

K2 =
k∑
`=2

`hi,1+(`−1)d) = − 1

(Tm(q)− 1)

[(
(i− 1)

(
a− 1

d
− a

2c
(m+ 2)

)m+ 2

2

)
(
Vm−1(q)− 1

)
+
( a

2c
(i− 1)(m− 1)− q + 1

)
Um−1(q)

]
− m+ 1

2
,

K3 =

k∑
`=2

`2hi,1+(`−1)d) = − 1

(Tm(q)− 1)

[
−
(

(i− 1)
(m+ 3

d
+
anm

2cd
+
an

cd

)
+
m2

2
+m+ 1 +

2c

ad

)(
Vm−1(q)− 1

)
+
( a

2c
(i− 1)(m2 + 2m− 3)

+ m− q
)
Um−1(q)

]
− (m+ 1)(2m+ 1)

2
.
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Now adding A1 +A2 +A3 =

=
1

12cn
(n2 − 1)

m∑
`=1

hi,1+(`−1)d −
1

2cn
hi,1 [−6(h+ kd− d)(n− h− kd+ d)]

− 1

2cn

m∑
`=2

hi,1+(`−1)d(−h2 − 2kdh− k2d2 + 2(kd2 + dh)`− d2`2

− 1

2cn

k∑
`=2

hi,1+(`−1)dn(h+ kd)− `dn+
1

2cn

m∑
`=k+1

hi,1+(`−1)dn(h+ kd)− `dn

= − 1

2cn

[
hi,1(h+ kd− d)(n− h− kd+ d) + (−h2 − 2kdh− k2d2)(−hi,1)

+ 2(kd2 + dh)(K2 − hi,1)− d2(K3 − hi,1) + n(h+ kd)(2B1 + hi,1)

− dn(2B2 −K2 + hi,1)
]

= − 1

2cn

[
2nhi,1(kd+ h− d) + 2n(h+ kd)B1

− 2ndB2 + (dn+ 2dh+ 2kd2)K2 − d2K3

]
− 1

2cn

1

Tm(q)− 1

[
n (h− i+ 1) (Vk−1(q)− Vm−k(q))

−
(an
c

(i− 1)(h− d)− nd
)

(Uk−2(q) + Um−k(q))

− 2cd

a
(Vm−1(q)− 1)− d2Um−1(q)

]
+ dh+ nh− nd− n2

6
+
d2

6

+ (2 kd− 3 d+ 2h− n) (i− 1) + kd (n− 2h)− d2(k − 1)2.

Finally, taking into account that qUm−1(q)− Um−2(q)− 1 = Tm(q)− 1, we
obtain the desired result.

Proposition 2. The group inverse of the Schur complement of L is a block
Toeplitz matrix given by

M =


M1 M2 . . . Mm

Mm M1
. . .

...

...
. . .

. . . M2

M2 . . . Mm M1


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where each submatrix Mk has as elements

(Mk)i,h+1 =
1

2cn

(
− |i− 1− d(k − 1)− h| · (n− |i− 1− d(k − 1)− h|)

+
1

Tm(q)− 1

[
n (h− i+ 1) (Vk−1(q)− Vm−k(q))

−
(an
c

(i− 1)(h− d)− nd
)

(Uk−2(q) + Um−k(q))

− 2cd

a
(Vm−1(q)− 1)− d2Um−1(q)

]
+ dh+ nh− nd

+ (2 kd− 3 d+ 2h− n) (i− 1) + kd (n− 2h)− d2(k − 1)2

)

+
d2 − 1

12cn
,

with q =
ad

2c
+ 1, for any k = 1, . . . ,m, i = 1, . . . , d and h = 0, . . . , d− 1.

Lemma 6. The product Gs = n⊗ jm is a column vector where

(n)i = − a

12cn

(
n(6 + d) + 5m+ 6mi(i− d− 2)

)
, for any i = 1, . . . , d.

Besides, it holds Ms = Gs.

Proof. For a given row i = 1, . . . , d, we have

(Gs)i = −a
m∑
k=1

gi,1+(k−1)d = −agi,1 − a
m∑
k=2

gi,1+(k−1)d = − a

12cn
(n2 − 1)m

− a

2cn

(
(i− 1)(n− i+ 1) +

m∑
k=2

(1 + (k − 1)d− i)(n− 1− (k − 1)d+ i)

)
=
−a

12cn

(
6n+ 5m+ dn− 6mi(d+ 2− i)

)
.

Moreover, as G is a block Toeplitz matrix, it holds (Gs)i = (Gs)i+(k−1)d, for
any k = 1, . . . ,m.

Besides, Ms = (G− GFG)s = Gs− GFGs = Gs, as it is straightforward to
verify that FGs = (0, . . . , 0)>.
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