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Abstract There is now a wide range of forecasts and observations of seasonal8

climatic conditions that can be used across a range of application sectors, in-9

cluding hydrological risk forecasting, planning and management. As we rely10

more on seasonal climate forecasts, it becomes essential to also assess its qual-11

ity to ensure its intended use. In this study, we provide the most comprehen-12

sive assessment of seasonal temperature and precipitation ensemble forecasts13

of the EUROSIP multi-model forecasting system over Europe. The forecasts14

from the four individual climate models within the EUROSIP are assessed15

using both deterministic and probabilistic approaches. One equally and two16

unequally Weighted Multi-Models (WMMs) are also constructed from the in-17

dividual models, for both climate variables, and their respective forecasts are18

also assessed.19

Consistent with existing literature, we find limited seasonal climate predic-20

tion skill over Europe. A simple equally WMM system performs better than21

both unequally WMM combination systems. However, the equally WMM sys-22

tem does not always outperform the single best model within the EUROSIP23

multi-model. Based on the results, it is recommended to assess seasonal tem-24

perature and precipitation forecast of individual climate models as well as their25

multi-model mean for a comprehensive overview of the forecast skill.26
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1 Introduction29

Recent hydrological extreme events demonstrate the vulnerability of European30

society to water-related natural hazards and there is a strong evidence that31

climate change will worsen these events (Lavell et al. 2012, chap1; National32

Academies of Sciences and Medicine 2016). The impacts of these hydrologi-33

cal extreme events can be reduced by early-warning design support systems34

(Wanders and Wood 2016). Hydrological simulations in these support systems35

rely on initial land surface conditions from upstream river flow, snow cover,36

soil moisture and/or skillful seasonal prediction of continental meteorological37

conditions, such as temperature and precipitation (Wanders and Wada 2015;38

Yuan et al. 2016). The predictability of precipitation and temperature is ex-39

ploited particularly for long-term hydrological forecasts (Velázquez et al. 2009;40

Yuan et al. 2016) and thus, high-quality Seasonal Climate Forecasts (SCFs) are41

essential for the success of seasonal hydrological forecasting based on climate42

models.43

SCFs are forecasts of climate conditions at timescales of a few weeks up44

to a few months, for statistics such as monthly/seasonal averages of tempera-45

ture and/or precipitation or frequency of occurrences of extreme events. SCFs46

are possible due to the long-term predictability of the oceanic circulation (i.e.47

up to a few years) and by the fact that the variability in tropical Sea Sur-48

face Temperature (SST) has a significant global impact on the atmospheric49

circulation (Balmaseda and Anderson 2009; Doblas-Reyes et al. 2013). Con-50

siderable efforts have been made in the field to better represent the coupled51

ocean-atmospheric dynamics and to improve the operational Climate Forecast52

Systems (CFSs) such as the National Centers for Environmental Prediction53

(NCEP; Saha et al., 2014) and the Predictive Ocean Atmosphere Model for54

Australia (POAMA; Colman, 2005), which are single-model CFSs as well as55

the European Multimodel Seasonal to Interannual Prediction (EUROSIP; Vi-56

tart et al. 2007; EUROSIP 2016; Stockdale 2013) system, which comprises of57

four independent CFSs.58

Generally, forecast skill of seasonal climatic conditions in areas influenced59

by ENSO is higher than in the extra-tropical regions (Alexander et al. 2002;60

Kumar et al. 2013; Palmer et al. 2004; Sordo et al. 2008). In Europe, strato-61

spheric processes (Bell et al. 2009), snow cover (Senan et al. 2016), soil moisture62

(Prodhomme et al. 2016) and sea-ice (Guemas et al. 2016) are also proven to63

be effective sources of predictability. Recently, the North Atlantic Oscillation64

(NAO) has also been reported as an important source of predictability for65

European winter climate (Athanasiadis et al. 2017; Scaife et al. 2014). Yet,66

the overall seasonal forecast skill over Europe for surface variables is still quite67

low (Arribas et al. 2011; Kim et al. 2012; Scaife et al. 2014).68

An ensemble forecast is a set of forecasts that generate a range of future69

climate possibilities. Ensemble forecasts are often preferred over deterministic70

ones because they can convey the uncertainties that arise due to the inability to71

accurately model atmospheric dynamics and the initial condition uncertainty72

(Hawkins and Sutton 2009, 2011; Lorenz 1963; Palmer et al. 2004; Tebaldi73
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and Knutti 2007). To obtain ensemble forecast, a climate model is run multi-74

ple times, each time with slightly different initial conditions and with slightly75

perturbed numerical models. Each forecast in an ensemble, known as a mem-76

ber, are then used to calculate the probability distribution of the potential77

near-term future climate (Bröcker and Smith 2008; Fortin et al. 2006; Wilks78

2006).79

In addition to ensemble prediction, combining ensembles of multiple CFSs80

to make climate predictions has also garnered a lot of attention (Doblas-Reyes81

et al. 2003; Palmer et al. 2005; Rodrigues et al. 2014; Weigel et al. 2010; Yun82

et al. 2003). The EUROSIP multi-model, which became operational in 2005, is83

the result of DEMETER (Palmer et al. 2004) and other research projects that84

confirmed the scientific benefits of combining forecasts from several climate85

models. Such multi-model predictions address issues of structural uncertainties86

within models that arise due to incomplete physical parameterizations and nu-87

merical approximations (Palmer et al. 2004). In general, equally weighting each88

of the CFSs has been recognized to have consistently better performance than89

that of the individual models (DelSole 2007; Hagedorn et al. 2005; Kharin and90

Zwiers 2002; Peng et al. 2002). This is because random individual model errors91

tend to compensate one another and the robust predictable signal tend to stand92

out by averaging across a number of models. This is particularly important93

for medium-to-long range forecasting, where the timescale over which model94

errors accumulate are much longer and can significantly degrade long-term95

forecasts. On the other hand, improved performance of unequally Weighted96

Multi-Model (WMM) systems have also been reported (Krishnamurti et al.97

2000; Robertson et al. 2004; Rodrigues et al. 2014; Wanders and Wood 2016).98

Intuitively, it makes sense to give more (less) weight to forecasts from a model99

that has consistently better (poor) historical performance. However, consen-100

sus on the optimal way of weighing the different models has yet to be reached101

(DelSole et al. 2013; Tebaldi and Knutti 2007).102

Whether we use deterministic, probabilistic or some weighted combination103

of forecasts from multiple models, they are ultimately beneficial only if they104

have skill and can add value to the users. The objective of this study is to assess105

the seasonal forecasting skill of each of the forecast system in the EUROSIP106

multi-model and to compare it with that of equally and unequally WMMs in107

order to provide users in hydrology an overview on current potential and/or108

limits of seasonal temperature and precipitation predictability over Europe. A109

systematic investigation across different models of EUROSIP and for different110

seasons specifically over the European region is still lacking and this study111

aims to highlight the need for further studies by contributing to the limited112

extant literature. The assessment is done for winter and summer, temperature113

and precipitation forecasts over a period of 21 years (1992-2012) in terms of114

the Anomaly Correlation Coefficient (ACC) for deterministic forecasts and the115

Continuous Ranked Probability Skill Score (CRPSS) for probabilistic forecasts116

on each grid point.117

The article is structured as follows: Section 2 describes the datasets used,118

the methods applied to assess the forecast skill and to construct the WMMs.119
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Section 3 presents the subsequent results followed by a discussion and a final120

conclusion in Section 4 and 5, respectively.121

2 Data and Methods122

2.1 Data123

This study relies on a comprehensive set of seasonal temperature and precip-124

itation forecasts from the EUROSIP multi-model over the European region125

specified as 20◦W-70◦E and 25◦N-75◦N, for the period 1992-2012. Four indi-126

vidual CFSs – Global Seasonal forecasting system version 5 (Glosea5) from127

Met Office, System4 of European Center for Medium Range Weather Fore-128

casts (ECMWF), System2 of NCEP and System5 of Meteo France (MF), are129

integrated into one common EUROSIP multi-model framework (EUROSIP130

2016). These are the common choice of operational multi-model in the Eu-131

ropean region (Soares and Dessai 2015; Stockdale 2013) and we select the132

longest available hindcast period in common for this study. The number of133

ensemble members and the horizontal resolutions of these four climate models134

are given in Table 1. More details on the dynamical cores and the physical pa-135

rameterizations of individual models within EUROSIP can be found in their136

corresponding documentations (MacLachlan et al. 2015; Molteni et al. 2011;137

Saha et al. 2014; Voldoire et al. 2013).138

[Table 1 about here.]139

The reference dataset for temperature is obtained from the ERA-Interim140

(ERAINT) database, which includes a 4D variational analysis with a 12-hour141

analysis window (Dee et al. 2011). The spatial resolution of the dataset is ∼=142

80 km (T255 spectral) on a reduced Gaussian grid with 60 vertical levels from143

the surface up to 0.1 hPa (Dee et al. 2011). The results (not presented) are144

insensitive to the comparison with the observation dataset from Global His-145

torical Climatological Network (GHCN 2.2). For precipitation, the reference146

dataset is provided by the Global Precipitation Climatology Project (GPCP),147

which comprises a gridded analysis based on gauge measurements and satellite148

estimates of precipitation (Adler et al. 2003).149

The original values of both forecasts and observations are interpolated150

using a bilinear interpolation to match the coarsest grid among each climate151

variable. The coarsest grid is chosen as a preferred grid for such interpolation152

method (Starks et al. 2003). All computations are done on grid point by grid153

point basis. The sea points are masked and only data over land is assessed.154

The forecasts from the four models and the reference datasets are available155

with monthly averages of daily mean temperature and precipitation values156

for the period 1992-2012. The study is performed at seasonal (average of three157

months) timescale for winter and summer seasons. Winter consists of forecasts158

from December to February (DJF) while summer consists of forecasts from159

June to August (JJA). All forecasts are initialized around the first day of the160
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month preceding the target season. These particular seasons and years are161

selected for study because a homogeneous history of hindcasts on a monthly162

timescale across all four participating forecast systems is available only for163

this time period. This is an important limitation of the study because a short164

time series of 21 years usually cannot accurately account for the sensitivity165

of climate system performance to the chaotic nature of climate, which differs166

greatly within the various regions of Europe. The data limitation also extends167

to the verification metrics used and the methodologies applied to combine168

forecasts as statistics derived from limited number of data is expected to suffer169

from uncertainty due to sampling error. Longer common period hindcasts are170

essential in studies to allow the results of analysis to be extended.171

All calculations in this study are applied to the forecast anomalies com-172

puted with respect to model’s own climatology. Therefore, the ability to predict173

departures from the seasonal cycle is measured rather than the absolute values174

of temperature and precipitation. Thus, the model bias does not appear in the175

verification metrics (or only indirectly since it might affect the variability).176

2.2 Methods of Verification177

2.2.1 Anomaly Correlation Coefficient (ACC)178

In this study, for all deterministic forecasts i.e. the ensemble mean, ACC is179

used to assess the forecast skill. ACC is the most widely used skill metric for180

SCF quality (Doblas-Reyes et al. 2013; Fricker et al. 2013; Scaife et al. 2014),181

due to its invariant property (i.e. not affected by certain data transformation).182

ACC assesses the degree of linear correspondence between the target forecast183

anomalies and the anomalies of the observed climate variable. Additionally,184

for linearly re-calibrated forecasts, the squared ACC is equivalent to the mean185

squared skill score (Siegert et al. 2017). It is worth noting however, that cor-186

relation coefficient are extremely noisy in smaller sample sizes, meaning small187

changes in forecast values can impact correlation skill significantly. We test the188

significance of ACC at 5% significance level, controlling the False Discovery189

Rate (FDR) (Benjamini and Hochberg 1995).190

2.2.2 Continuous Ranked Probability Skill Score (CRPSS)191

The second metric selected to assess forecast skill is the Continuous Ranked192

Probability Score (CRPS), which is a standard measure for assessing the ac-193

curacy and reliability aspects of probabilistic forecasts. CRPS evaluates the194

predictive skill of the full probability distribution of forecast obtained from195

the ensemble members (Hersbach 2000; Matheson and Winkler 1976). Such196

evaluation is desirable since climate forecasts are used as forcings in models197

such as the hydrological models (Boucher et al. 2009; Candille and Talagrand198

2005; Gneiting et al. 2005; Murphy 1969).199
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Given that F is the cumulative density function of ensemble forecasts and
y is the value that actually occurred, the CRPS is defined as:

CRPS(F, y) =

∫ ∞

−∞

[
F (t)−H(t− y)

]2
dt, (1)

where H(t−y) denotes the Heaviside function that takes the value of 0 when t200

< y and 1 otherwise (Hersbach 2000; Matheson and Winkler 1976). Thus, the201

CRPS measures the difference between the predicted and observed cumulative202

distributions. For deterministic forecasts, the average CRPS becomes the mean203

absolute error and therefore, has similar interpretation.204

The skill score based on CRPS is CRPSS, computed as:205

CRPSS =
CRPSf − CRPSclim

CRPSperf − CRPSclim
, (2)

where CRPSf , CRPSclim and CRPSperf stand for CRPS of the forecast in206

question, of the reference/benchmark forecast and that of the perfect forecast,207

respectively. In this study, climatology is used as the reference forecast, which208

refers to the average conditions over some recent reference period. Skill scores209

below 0 are unskillful compared to a naïve climatological forecast. Those equal210

to 0 are no better than that of climatology and anything above 0 (up to 1)211

signals an improvement upon climatology. The standard deviation of the skill212

score is approximated by propagation of uncertainty and the significance is213

measured at 95% confidence interval.214

2.2.3 Fair Continuous Ranked Probability Skill Score (FCRPSS)215

One drawback of the CRPS is that it inflates the score for models with higher216

number of ensemble members. To correct for this, Ferro et al., (2014; 2008)217

recommended the Fair Continuous Ranked Probability Score (FCRPS), which218

evaluates the underlying ensemble distribution and is independent of the em-219

pirical distribution of the ensemble members (Fricker et al. 2013). Results of220

FCRPSS (skill score based on FCRPS) are also provided.221

2.3 Methods for Weighted Multi-Model (WMM) Combination222

An important objective of this study is to combine forecasts from dynami-223

cal systems to estimate a single optimal forecast with an aim to understand224

benefits of such combination on the overall forecast quality. Separate models225

are established for each season and grid cell independently. Three methods of226

combinations are used in this study:227
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2.3.1 Multi-Model Mean (MMM)228

The first combination approach consists of an equally WMM system, which229

is obtained by averaging ensembles of each CFS and then again, averaging230

these four ensemble means to obtain a multi-model ensemble mean anomalies.231

Hereinafter, this method is referred to as the Multi-Model Mean (MMM). This232

is one of the most commonly used method to combine forecasts of independent233

CFSs (DelSole et al. 2013; Kharin and Zwiers 2002; Krishnamurti et al. 2000).234

The basic idea behind this approach is the assumption that each individual235

CFS is equally likely to represent the truth whatever its performance (Wanders236

and Wood 2016).237

2.3.2 Best OLS Combination Method (BOCM)238

Various forms of regression have been tested on seasonal and weather forecasts239

to obtain optimal weights based on historical performance of the model (Del-240

Sole et al. 2013; Kharin and Zwiers 2002; Rodrigues et al. 2014; Weigel et al.241

2008). The second method uses the Ordinary Least Squares (OLS) regression242

technique to obtain optimal weights. 15 possible OLS models are built out of243

the ensemble mean of each of the four available CFSs - one Multiple Linear244

Regression (MLR) model with all four CFSs, four MLR models with only three245

CFSs, six MLR models with only two CFSs and four linear regression models246

with only one CFS. For each of these 15 OLS combinations, ensemble mean247

of the participating CFS(s) are regressed onto the corresponding observations248

and their respective weights are the regression coefficients estimated from the249

data. Out of the 15 possible OLS models, the one that has highest correlation250

with the observation dataset is chosen as the Best OLS Combination Model251

(BOCM) for each grid point.252

2.3.3 Correlation As Weight Method (CAWM)253

The final weighted combination method uses as weights the ACC value between254

ensemble mean anomalies of each CFS and the anomalies of the observation.255

While correlation does not take into account the system performance in terms256

of variance, it is often the value relied upon for forecast verification. In addition,257

correlations are indicative of model performance and thus, it is reasonable to258

think of correlation values as potentially trustworthy weights. Note that this259

method may choose a CFS with only a minor correlation improvement among260

the competing CFSs. Here, the ACC value of each CFS is first multiplied to261

its respective forecast value. They are then added together and divided by the262

sum of their ACCs to standardise the forecast value. Hereinafter, this model263

is referred to as Correlation As Weights Model (CAWM).264
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2.3.4 Evaluation of Optimal Weights265

Historical data is required to not only build statistical models but to also eval-266

uate them. In this study there are only 21 years of records, which is considered267

not long enough to develop and validate regression-based model. However, a268

homogeneous history of hindcasts on a monthly timescale across all four par-269

ticipating forecast systems is available only for this time period. This is a270

major limitation of this study, albeit common in seasonal climate forecasting271

(Kumar 2009; Shi et al. 2015). To address the issue of small sample size, we272

apply leave-one-out cross-validation procedure in both WMMs (Efron 1983;273

Molinaro et al. 2005). This means for each forecast year, the model weights274

are estimated from the other 20 years of data and a seasonal forecast is made275

for that year. The process is repeated over each of the 21 years and the re-276

sulting hindcasts are then compared with the corresponding observation. An277

accuracy estimate obtained using leave-one-out cross-validation is known to278

be almost unbiased but has high variance (Chapelle et al. 2002; Efron 1983).279

Another possible reason for unstable weights in linear regressions is the280

collinearity among the predictors, which can be dealt with by ridge regression281

(DelSole et al. 2013). However, multicollinearity among EUROSIPs CFSs was282

found not to be high enough to pursue further (See Fig. S1-2 in supplementary283

section).284

Finally, the weights in both WMMs are constrained meaning both zero285

or negative weights are not allowed in the model. Model with unconstrained286

weight was tested by Wanders and Wood (2016) but omitted eventually due to287

poorer performance. This is because unconstrained models give rise to over-288

confident estimates of weights when the number of sampling years is small.289

Besides, it is reasonable to assume constrained weights because a CFS that290

consistently lacks skill for any given region can be removed from the combined291

model.292

3 Forecast Skill Assessment of EUROSIP293

3.1 Assessment of Individual Model Ensemble Mean Anomalies294

3.1.1 Strength and Weakness of the Individual Models295

This section focuses on the evaluation of the prediction skill of the individual296

CFSs of EUROSIP in terms of ACC. Figure 1 shows the ACC of seasonal297

temperature anomalies for both winter and summer seasons. There is a differ-298

ence in skill exhibited by the four models between the two seasons. Glosea5 has299

some skill over Europe during winter, although it is not statistically significant.300

ECMWF has high statistically significant skill over the British Isles, South-301

ern Sweden and parts of Central Europe during winter. NCEP exhibits some302

statistically significant skill over the North-Eastern Europe (close to Barents303
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sea) and the skill of MF is significantly higher during winter over the Western304

Europe, the British Isles and the south of Scandinavia.305

During summer, Glosea5 has notably higher, statistically significant skill306

over the Northern Scandinavia (close to the Norwegian sea) and the Southern307

Europe. ECMWF exhibits higher statistically significant skill notably over308

large parts of the Southern and the Eastern Europe. For NCEP, the summer309

seasonal temperature skill is higher over the East-Central Europe. MF exhibits310

limited skill (although not significant) mostly over the Southern regions during311

summer.312

[Fig. 1 about here.]313

[Fig. 2 about here.]314

Figure 2 shows the results of the same evaluation as that of Figure 1 but for315

seasonal precipitation. It can be noted that the skill across Europe for seasonal316

precipitation is very low and sporadic. The skill is higher in winter for Glosea5317

and ECMWF, mostly concentrated over the Eastern Europe. During winter,318

NCEP shows some significant skill over the Northern Scandinavia and MF319

exhibits significant skill over most of Scandinavia and over the British Isles.320

Higher skill in winter could be because precipitation is hard to both observe321

and to forecast, given its high variability during the dry months of summer.322

Conversely, winter precipitation are more dependent on large scale circulation,323

such as the NAO that has recently shown to have predictability and could be324

one of the sources of skill here (Scaife et al. 2014; Trigo et al. 2002).325

For summer, Glosea5 and ECMWF exhibit significant skill over the Mediter-326

ranean region. NCEP has some significant skill over North-Eastern Europe.327

The summer seasonal precipitation skill of MF is notably low over Europe.328

The skill pattern for seasonal precipitation must be considered with caution329

however, because in regions with limited rain, small changes in observed precip-330

itation can greatly impact correlation values. Thus, more evidence is needed to331

make conclusions about EUROSIP’s seasonal precipitation forecast skill over332

Europe.333

3.1.2 Utilizing Differences of Individual Model Skill334

An important benefit of using multiple models is their potential capability335

to complement each other. It is unknown a priori which model performs best336

in which region. Thus, the different levels of skill of the different models can337

be exploited in an operational context. Figure 3 shows which model has the338

highest correlation at each grid point. While MF has an overall relatively low339

seasonal prediction skill in summer, it is in fact the only model among the340

EUROSIP multi-model that has high skill during winter over central Europe341

and Southern Scandinavia for seasonal temperature and over the British Isles342

and south of Scandinavia (close to North and Baltic seas) for seasonal precipi-343

tation. Thus, if a strategy to choose the best model for each region is adopted,344

MF would add value to the overall EUROSIP multi-model as the preferred345

model for these regions for the winter season.346
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[Fig. 3 about here.]347

For seasonal temperature during summer, it can be seen that different348

models are preferred over different regions of Europe. Glosea5 is the preferred349

model for seasonal temperature over the Scandinavian region, ECMWF over350

the Mediterranean region and NCEP over the British Isles and East-Central351

Europe. The skill for seasonal precipitation forecast is mostly noisy and scat-352

tered among the four models. The superior correlation of MF for winter over353

Western Europe, the British Isles and parts of Scandinavia can be noticed.354

3.2 Assessment of Probabilistic Ensemble Forecasts355

3.2.1 Ensemble Performance of Individual Models356

While the ensemble mean in general is the best available estimate of future357

conditions, the Probabilistic Ensemble Forecasts (PEFs) can provide further358

information about the distribution of the potential outcome of a prediction.359

This can be verified using a skill score based on the CRPS, which assesses360

the relative improvement of the PEFs over climatology to reliably and accu-361

rately predict differing observations (Gneiting 2011). In this section, the PEFs362

drawn from each individual EUROSIP model are assessed using the CRPSS.363

Figure 4 shows the prediction skill of individual EUROSIP models based on364

CRPSS for seasonal temperature. During winter, ECMWF exhibits low but365

significant skill over the British Isles. Other than that, the skill is very limited366

for all models during winter. For summer, the models exhibit CRPS skill over367

similar regions as where they exhibited ACC skill, although the skill based368

on CRPS is lower due to its stringent scoring rule. Glosea5 exhibits skill over369

Northern Scandinavia and Southern Europe. ECMWF exhibits skill over the370

Mediterranean regions and South-Eastern Europe. NCEP exhibits very lim-371

ited significant skill over the East-Central Europe and MF does not exhibit372

statistically significant CRPS skill over Europe.373

We noted earlier that CRPS is known to inflate skill for models with larger374

ensemble size and ECMWF with the largest ensemble size indeed exhibits the375

highest skill based on CRPS over most of Europe for seasonal temperature.376

To verify whether this high skill of ECMWF is due to its larger ensemble377

size, we calculated the proposed FCRPSS (Ferro 2014; Fricker et al. 2013)378

for each individual models and show similar results in Figure 5. Additionally,379

we calculated CRPSS for all individual models using first, only 9 members,380

and then 15 members (See Fig. S3-4 in supplementary section). Based on these381

results, we note two things - (1) even with the reduced ensemble size, ECMWF382

still exhibits higher significant skill and (2) when accounting for the ensemble383

size, the skill of all CFSs remains over the same regions but is lowered. Thus,384

the higher skill of ECMWF cannot be attributed solely to its larger ensemble385

members. This is also true for Glosea5 and NCEP with ensemble size greater386

than that of MF as well as for MF, when comparing between its 9 and 15387

ensemble members. Hence, these models are accurately and reliably capturing388
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atmospheric dynamics to the extent that they perform better than climatology389

over the parts of Europe where they exhibit skill.390

[Fig. 4 about here.]391

[Fig. 5 about here.]392

Figure 6 shows the results of the same evaluation as that of Figure 4 but for393

seasonal precipitation. It is seen from these maps that none of the individual394

CFSs accurately predict seasonal precipitation over Europe for both seasons.395

Additionally, no noticeable change in skill is found in terms of FCRPSS (see396

Figure 7) as well as CRPSS with just 9 and 15 ensembles members (see Fig.397

S5-6 in supplementary section). Thus, PEFs of EUROSIP for seasonal precip-398

itation show very limited skill over Europe.399

[Fig. 6 about here.]400

[Fig. 7 about here.]401

3.2.2 Multi-Model Ensemble Performance402

The PEFs of the EUROSIP multi-model for seasonal temperature and precip-403

itation are obtained by taking ensemble anomalies from all four CFSs (118 for404

winter and 114 for summer). Then, the CRPSS is calculated for the resulting405

multi-model PEFs to assess whether such multi-model provides higher pre-406

diction skill than the single best CFS. Based on the results shown in Figure407

8, a superior predicting skill is not gained by this combination method with408

respect to the single best model. For both seasons and for both climate vari-409

ables, the CRPSS of the multi-model PEFs is mostly lower than that of the410

single best model. For winter seasonal temperature over the British Isles, the411

CRPSS is much higher for ECMWF than it is for the multi-model PEFs. Simi-412

larly, significant skill exhibited by PEFs of Glosea5 over Northern Scandinavia413

for seasonal temperature during summer is not seen in the multi-model PEFs.414

Some significant skill is gained by multi-model PEFs in parts of Southern Eu-415

rope and Central Europe during winter and summer, respectively. However,416

overall the decrease in skill is more evident when compared to that of the417

single best model. This is seen more clearly in Figure 9, where the maps show418

only the maximum positive CRPSS among the individual CFSs and the multi-419

model for seasonal temperature (not shown for seasonal precipitation due to420

very low skill).421

[Fig. 8 about here.]422

[Fig. 9 about here.]423
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3.3 Assessment of Optimal Method of Combining Forecasts424

In this section, weighting each of the individual CFS of EUROSIP with dif-425

ferent techniques is tested to determine to which extent the past performance426

of these CFSs can be utilized to make better predictions of seasonal climate.427

The maps here evaluate the prediction skill of the three WMM systems (as428

described in Section 2c) for seasonal temperature (Figure 10) and seasonal429

precipitation (Figure 11) over Europe. As seen in both figures, a simple MMM430

is the best combination for SCFs over most of Europe and its predicting skill431

is significantly higher during summer than winter. Some exceptions can be432

seen however. For example, BOCM model performs better over the British433

Isles (most notably over Ireland) during winter. During summer, the skill of434

BOCM is also higher over parts of Spain, Northern Scandinavia, north of435

Eastern Europe and over the south of Black sea. The CAWM model shows436

limited competing skill, although higher skill over the British Isles and along437

the coastlines of North sea over Western Europe.438

When compared to that of the single best models on any given grid point,439

it is difficult to interpret the skill of these WMMs as it is sensitive to the440

location and the combination method. Over the entire region of Europe as441

shown in the map, notably fewer negative skill is exhibited by MMM during442

winter and by CAWM during summer. However, seasonal temperature skill443

exhibited during winter over East-Central Russia, the British Isles, Northern444

coastlines of Russia and Western Europe by Glosea5, ECMWF, NCEP and445

MF, respectively, is not surpassed by any of the WMMs. During summer,446

CAWM model exhibits higher skill over the Northern coastlines of Western447

Europe than that of NCEP, although the skill is not significant. Over south448

of Europe below Black sea, the skill exhibited by BOCM is higher only by a449

slight margin.450

[Fig. 10 about here.]451

[Fig. 11 about here.]452

Based on these results, the additional post-processing of forecast data to453

obtain optimally weighted forecasts is hard to justify. Although, it is also454

important to note the limitation of these WMMs due to the small sample455

size. The superiority of a simple MMM technique compared to the unequally456

WMM in predicting seasonal climate could be attributed to the small sample457

size available, which for linear combinations methods, is usually not enough to458

attain robust weights. The coefficients in the linear regression models adapt459

to the unpredictable variability within the available historical training dataset460

and thus, performs poorly in the independent data when sample size is limited.461

Similarly, in the CAWM technique, estimated correlation coefficients can ex-462

hibit large uncertainty (Bellprat et al. 2017) and thus, stand as highly volatile463

weights. Besides, when atmospheric internal variability is large, as in the case464

of Europe, more information may be lost by inappropriate weighting and there-465

fore, equal weighting may be safer to use. Finally, optimally WMM generally466
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perform better than the single best models only when there is too little in-467

formation provided by other CFSs within the multi-model (Rodrigues et al.,468

2014a; 2014b). However, in the case of EUROSIP, each CFS exhibit varied469

prediction skill based on climate variable, season and region.470

4 Discussion471

Most of the research on the assessment of forecast skill of SCFs by climate472

models is done globally and lower skill over the extratropics than in the trop-473

ics is reported. Very few studies focus exclusively on the European region.474

The H2020 IMPREX European project has offered an opportunity to study475

the performance of SCFs over Europe focusing on their usability in adaptation476

to water-related climate hazards. Robust assessment is needed to objectively477

evaluate whether SCFs are fit for purpose. To this end, this study aims to fill478

an important gap in the literature by quantifying the skill of SCFs over Eu-479

rope using the EUROSIP multi-model and its component operational forecast480

systems – Glosea5, ECMWF, NCEP and MF.481

The evaluation is done for seasonal temperature and precipitation forecasts482

over a period of 21 years (1992-2012) using ACC for deterministic forecasts483

and CRPSS for probabilistic forecast. The assessment is applied to forecast484

anomalies (with respect to the models own climatology) against that of obser-485

vations provided by ERAINT and GPCP for temperature and precipitation,486

respectively. We also constructed one equally and two unequally WMM sys-487

tems to evaluate the prospects of model weighting in the context of improving488

SCFs. Based on the results of this study, limited predictive skill of seasonal489

temperature and very low skill of seasonal precipitation forecast is found over490

Europe.491

For seasonal temperature, the forecast skill of competing models differ492

based on both regions and seasons. The predictability is higher during sum-493

mer than winter. The higher skill based on ACC during summer for seasonal494

temperature forecasts can be associated with the warming trend (results not495

shown) as the data has not been detrended (Doblas-Reyes et al. 2013). The496

higher skill during summer can also be because interannual variability tends497

to be weaker for temperature during summer (Doblas-Reyes et al. 2000). The498

skill of MF over the Western Europe during winter can be attributed to the499

extreme soil moisture conditions in South-Central Europe (van den Hurk et al.500

2012). The low predictive skill for European winter was also reported by Wehrli501

et al. (2017), who assessed the seasonal temperature forecasts of ECMWF back502

to 1981. This low skill can be associated with blocking events or winter me-503

teorological perturbations as well as the misrepresentation of teleconnections504

leading to erroneous NAO-related signals (Doblas-Reyes et al. 2003; Kim et al.505

2012; Wehrli et al. 2017). Scaife et al.(2014), however, showed NAO forecasting506

skill in Glosea5 and thus, attributed the low skill over temperature to overdis-507

persion, suggesting that increasing the ensemble size would increase forecast508

skill. However, we show that the skill of a multi-model PEF, which combines509
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ensembles from all four models, did not surpass the skill of the single best510

model over most of the grid points.511

In the case of winter precipitation, MF has some significant correlation skill512

over the British Isles, parts of Scandinavia and Italy. Some skill over parts of513

Eastern Europe is found in ECMWF and Glosea5 during winter, and in NCEP514

and MF during summer. Other than that, seasonal precipitation predictability515

over Europe is remarkably low. The results of this study are consistent with516

that of Brankovič and Palmer (2000), Doblas-Reyes et al. (2000), Graham517

et al. (2000), Lavers et al. (2009) and Wehrli et al. (2017), all of whom also518

assessed the forecast skill of seasonal precipitation and showed lower skill over519

the extratropics than in the tropics, although not negligible. This predictability520

for seasonal mean precipitation over Europe is attributed to ENSO and local521

North Atlantic SST forcings. (Doblas-Reyes et al. 2013; Frías et al. 2010; Lloyd-522

Hughes and Saunders 2002).523

Additionally, our results highlighted the benefits of having a multi-model524

system given that the skill of each individual CFS varied across locations,525

seasons and climate variables. The difference in skill exhibited by different526

models also provides context to further examine and understand the climate527

phenomena that are differently represented by these models. However, the dif-528

fering number of ensemble sizes among the CFSs complexifies the comparison529

between the models. In terms of probabilistic skill assessment using CRPS,530

it was highlighted by Ferro et al. (2014; 2008) that CRPS inflates the score531

for models with higher number of ensemble members. We tested the effect532

of ensemble size on superior predictability by models with higher number of533

members. First, we calculated the recommended FCRPSS that corrects for534

systematic bias in skill scores induced by the finite ensemble size (Ferro 2014;535

Ferro et al. 2008; Fricker et al. 2013). Then, we also compared the skill based536

on CRPS taking equal numbers (9 and 15) of ensemble members for all CFS.537

The results show that ECMWF still has higher prediction skill over most of538

Europe compared to other CFSs. Additionally, we show that increasing the539

ensemble size contributes to higher and more significant prediction skill, not540

only for ECMWF, but for all CFSs.541

Varied levels of skill among the models has also garnered an interest to542

combine their forecasts based on historical performance of individual CFSs.543

In this study however, the multi-model PEFs of EUROSIP did not present544

a considerable improvement in CRPSS when compared to that of the single545

best model. This could be because the optimal set of models in the ensemble546

may vary in time for continuous forecasting scenarios as argued by Krikunov547

and Kovalchuk (2015). They suggested a method to dynamically select ensem-548

ble members in multi-model and demonstrated slight improvement of forecast549

skill. Further improvement opportunities also lie in the use of different machine550

learning techniques and artificial neural networks for such dynamic selection551

procedures.552

In case of deterministic multi-models, the two unequally weighted methods,553

BOCM and CAWM, did not always outperform the simple equally weighted554

MMM. When compared to the single best model, the skill of WMMs is sensitive555
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to the location and combination method and thus difficult to interpret. The556

limited sample size in this study can be attributed to this sensitivity. A sample557

size of 21 years is usually not enough to attain robust weights with linear558

regression or correlation methods. In principle, optimal weighting can optimize559

the predictive skill (DelSole et al. 2013). However, the ideal way to combine560

these forecasts is still far from being trivial. These results are also consistent561

with Rodrigues et al.(2014), who also found that equally or unequally WMM562

approaches does not always perform better, especially when a models with563

lower skill are present in a multi-model system.564

In contrast to this, Wanders and Wood (2016) showed considerable im-565

provements through unequally WMM. This can be attributed to their assess-566

ment of SCFs skill for longer time-period of 30 years (and over large-scale567

area averages), which yields temporally and spatially stable relationships and568

allows more robust estimation of weights. Thus, larger homogenous dataset569

of competing individuals CFSs is critical for the performance of WMMs. The570

Copernicus Climate Change Services (C3S) by the Copernicus programme571

comprise all year round seasonal climate forecasts from several state-of-the-572

art seasonal prediction systems for longer a period. This offers an opportunity573

to extended the analysis of this study in the near future.574

All verification scores in the study are obtained from forecast anomalies575

to filter out the systematic biases existent in climate models that can lead to576

underestimation of true predictability. However, anomaly correction only par-577

tially removes these biases. The systematic errors in the model variability can578

be possibly accounted for by implementing other bias correction and calibra-579

tion methods (Bazile et al. 2017; Crochemore et al. 2016; Torralba et al. 2017).580

We implemented a Simple Univariate Bias Correction (SUBC) method, which581

resulted in further decrease in the prediction skill (See Fig. S7-8 in supplemen-582

tary section, not shown for precipitation due to the inappropriate Gaussian583

assumption). This is because SUBC directly adjusts the distribution of fore-584

casts from CFSs against the observations to match their statistical properties585

(mean and standard deviation), which requires parameter estimation and fur-586

ther adds uncertainty in the forecast datasets (Bazile et al. 2017; Manzanas587

et al. 2017). Besides, the choice of bias correction method also depends on the588

climate variable and the intended use of its seasonal forecast. In addition, cal-589

ibration of pattern errors and probability forecast adjustments generally also590

require longer training datasets.591

5 Conclusion592

This study evaluated forecasts from the EUROSIP multi-model database and593

highlighted the limited skill of forecasting seasonal mean temperature and pre-594

cipitation over Europe for winter and summer. Based on these results, for a595

comprehensive assessment of the prediction skill of seasonal climate variables,596

it is recommended to analyze the prediction skill of both individual and com-597

bined multi-model systems to identify the one with the highest skill over any598
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given area and/or season. The overall lack of forecast skill is because most599

of the mechanisms driving changes in seasonal temperature and precipitation600

over Europe are a topic of active research still. In addition, even if the mech-601

anism are well known such as the NAO, they are challenging to represent by602

coupled global climate models. Thus, significant improvements in the opera-603

tional climate forecast systems are required through an improvement of the604

initial conditions and the realism of the climate models. Improved predictabil-605

ity can benefit decision making based on these forecasts and better prepare606

the European society against the anticipated water-related climate hazards.607
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FIGURES 27

Correlation of Seasonal Temperature for Individual EUROSIP Models
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Fig. 1: Anomaly Correlation Coefficient (ACC) between the predicted ensemble mean of each
individual climate model of EUROSIP and the observed seasonal winter (DJF; top row) and
summer (JJA; bottom row) temperature obtained from ERAINT over the European region
(20◦W-70◦E and 25◦N-75◦N) for the period 1992-2012. The individual climate models are
Glosea5, ECMWF, NCEP and MF (from left to right; see details in section 2). Forecasts are
initialized in November for DJF and in May for JJA. Areas covered in red are indicative of
positive correlation, while areas covered in blue indicate negative correlation. Dots in each
grid point indicate significant positive correlation at 5% significance level using one-sided
Student t-test and controlling for false discovery rate.
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Correlation of Seasonal Precipitation for Individual EUROSIP Models
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Fig. 2: Same as Fig.1 but for precipitation and reference data obtained from GPCP



FIGURES 29

Maximum Correlation among EUROSIP Multi−Model for
Seasonal Temperature and Precipitation
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Fig. 3: Maximum positive Anomaly Correlation Coefficient (ACC) among the four indi-
vidual models from EUROSIP. ACC for each model is calculated between their respective
predicted ensemble mean anomalies and the anomalies of the observed temperature obtained
from ERAINT (left) and of precipitation obtained from GPCP (right) for winter (DJF; top
row) and summer (JJA; bottom row) seasons over the period 1992-2012. Blue, red, yellow
and green colors indicate that the maximum correlation is obtained for GloSea5, ECMWF,
NCEP and MF respectively. Negative or 0 correlations appear in white.
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CRPSS of Seasonal Temperature for Individual EUROSIP Models
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Fig. 4: CRPSS of the probability ensemble forecasts of each individual climate model of EU-
ROSIP with climatology used as reference forecast obtained from ERAINT for winter (DJF;
top row) and summer (JJA; bottom row) seasonal temperature over the European region
(20◦W-70◦E and 25◦N-75◦N) for the period 1992-2012. The individual climate models are
Glosea5, ECMWF, NCEP MF (from left to right). Forecasts are initialized in November for
DJF and in May for JJA. Areas covered in red are indicative of positive CRPSS, suggest-
ing skill better than climatology. Areas covered in blue indicate worse skill than climatology.
Dots in each grid point indicate significant positive CRPSS using the standard deviation of
the skill score, approximated by propagation of uncertainty at 95% confidence interval.
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FCRPSS of Seasonal Temperature 
for Individual EUROSIP models
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Fig. 5: FCRPSS of the probability ensemble forecasts of each individual climate model of
EUROSIP with climatology obtained from ERAINT used as reference forecast for winter
(DJF; top row) and summer (JJA; bottom row) seasonal temperature over the European
region (20◦W-70◦E and 25◦N-75◦N) for the period 1992-2012. The individual climate mod-
els are Glosea5, ECMWF, NCEP and MF (from left to right). Forecasts are initialized in
November for DJF and in May for JJA. Areas covered in red are indicative of positive
CRPSS, suggesting skill better than climatology. Areas covered in blue indicate worse skill
than climatology. Dots in each grid point indicate significant positive CRPSS using the
standard deviation of the skill score, approximated by propagation of uncertainty at 95%
confidence interval.
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CRPSS of Seasonal Precipitation for Individual EUROSIP Models
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Fig. 6: Same as Fig.4 but for precipitation and reference data obtained from GPCP.
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FCRPSS of Seasonal Precipitation 
for Individual EUROSIP models
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Fig. 7: Same as Fig. 5 but for precipitation and reference forecast obtained from GPCP.
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CRPSS of Seasonal Temperature and Precipitation for EUROSIP Multi−Model
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Fig. 8: CRPSS of the probability ensemble forecasts from all four individual climate models
of EUROSIP (Glosea5, ECMWF, NCEP and MF) treated as one single model with clima-
tology used as reference forecast obtained from ERAINT for temperature (left) and GPCP
for precipitation (right) for winter (DJF; top row) and summer (JJA; bottom row) seasons
over the European region (20◦W-70◦E and 25◦N-75◦N) for the period 1992-2012. Forecasts
are initialized in November for DJF and in May for JJA. Areas covered in red are indicative
of positive correlation suggesting skill better than climatology. Areas covered in blue indicate
worse skill than climatology. Dots in each grid point indicate significant positive CRPSS
using the standard deviation of the skill score, approximated by propagation of uncertainty
at 95% confidence interval.
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Maximum CRPSS for Seasonal Temperature among 
 Individual EUROSIP models and the Multi−Model Ensemble
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Fig. 9: Maximum positive CRPSS among the four individual models from EUROSIP and the
multi-model with climatology used as reference forecast obtained from ERAINT for winter
(DJF; left) and summer (JJA; summer) over the European region (20◦W-70◦E and 25◦N-
75◦N) for the period 1992-2012. Forecasts are initialized in November for DJF and in May
for JJA. Blue, red, yellow, green and purple colors indicate that the maximum CRPSS is
obtained for GloSea5, ECMWF, NCEP, MF and the multi-model, respectively. Negative or
0 correlations appear in white.
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Correlation of Weighted Multi−Models for Seasonal Temperature 
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Fig. 10: Anomaly Correlation Coefficient (ACC) between the predictions obtained from the
three Weighted Multi-Model (WMM) systems of EUROSIP - Multi-Model Mean (MMM),
Best OLS Combination Model (BOCM) and Correlation As Weights Model (CAWM; from
left to right) and the observed seasonal winter (DJF; top row) and summer (JJA; bottom
row) temperature obtained from ERAINT, respectively, over the European region (20◦W-
70◦E and 25◦N-75◦N) for the period 1992-2012. Areas covered in red are indicative of
positive correlation, while areas covered in blue indicate negative correlation. Dots in each
grid point indicate significant positive correlation at 5% significance level using one-sided
Students t-test. Details on the construction of each WMM system are given in Section 2c.
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Correlation of Weighted Multi−Models for Seasonal Precipitation 
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Fig. 11: Same as Fig.10 but for precipitation and reference data obtained from GPCP.
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Table 1: Individual climate models of EUROSIP multi-model seasonal forecasting system

Climate Model No. of Ensemble Members Resolution (in Gaussian grid)

Glosea5 24 512x256

ECMWF 51 432x325

Meteo France 15 256x128 for temperature

360x181 for precipitation

NCEP 28 for winter 384x190
24 for summer

Reference Dataset Resolution (in Gaussian grid)

ERA-Interim for temperature 512x256

GPCP for precipitation 144x72


