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Abstract

Internet coverage in the world is still weak and local communities are required to
come together and build their own network infrastructures. People collaborate for

the common goal of accessing the Internet and cloud services by building Community
networks (CNs).

The use of Internet cloud services has grown over the last decade. Community network
cloud infrastructures (i.e. micro-clouds) have been introduced to run services inside the
network, without the need to consume them from the Internet. CN micro-clouds aims for
not only an improved service performance, but also an entry point for an alternative to
Internet cloud services in CNs. However, the adaptation of the services to be used in CN
micro-clouds have their own challenges since the use of low-capacity devices and wireless
connections without a central management is predominant in CNs. Further, large and
irregular topology of the network, high software and hardware diversity and different
service requirements in CNs, makes the CN micro-clouds a challenging environment to
run local services, and to achieve service performance and quality similar to Internet
cloud services.

In this thesis, our main objective is the optimization of services (performance, quality)
in CN micro-clouds, facilitating entrance to other services and motivating members to
make use of CN micro-cloud services as an alternative to Internet services. We present an
approach to handle services in CN micro-cloud environments in order to improve service
performance and quality that can be approximated to Internet services, while also giving
to the community motivation to use CN micro-cloud services. Furthermore, we break
the problem into different levels (resource, service and middleware), propose a model
that provides improvements for each level and contribute with information that helps
to support the improvements (in terms of service performance and quality) in the other
levels.

At the resource level, we facilitate the use of community devices by utilizing virtualization
techniques that isolate and manage CN micro-cloud services in order to have a multi-
purpose environment that fosters services in the CN micro-cloud environment.

At the service level, we build a monitoring tool tailored for CN micro-clouds that helps
us to analyze service behavior and performance in CN micro-clouds. Subsequently, the
information gathered enables adaptation of the services to the environment in order to
improve their quality and performance under CN environments.

At the middleware level, we build overlay networks as the main communication system
according to the social information in order to improve paths and routes of the nodes,
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and improve transmission of data across the network by utilizing the relationships already
established in the social network or community of practices that are related to the CNs.
Therefore, service performance in CN micro-clouds can become more stable with respect
to resource usage, performance and user perceived quality.



Resumen

Acceder a Internet sigue siendo un reto en muchas partes del mundo y las comunidades
locales se ven en la necesidad de colaborar para construir sus propias infraestructuras de
red. Los usuarios colaboran por el objetivo común de acceder a Internet y a los servicios
en la nube construyendo redes comunitarias (RC).

El uso de servicios de Internet en la nube ha crecido durante la última década. Las
infraestructuras de nube en redes comunitarias (i.e., micronubes) han aparecido para
albergar servicios dentro de las mismas redes, sin tener que acceder a Internet para usarlos.
Las micronubes de las RC no solo tienen por objetivo ofrecer un mejor rendimiento, sino
también ser la puerta de entrada en las RC hacia una alternativa a los servicios de Internet
en la nube. Sin embargo, la adaptación de los servicios para ser usados en micronubes de
RC conlleva sus retos ya que el uso de dispositivos de recursos limitados y de conexiones
inalámbricas sin una gestión centralizada predominan en las RC. Más aún, la amplia e
irregular topoloǵıa de la red, la diversidad en el hardware y el software y los diferentes
requisitos de los servicios en RC convierten en un desaf́ıo albergar servicios locales en
micronubes de RC y obtener un rendimiento y una calidad del servicio comparables a los
servicios de Internet en la nube.

Esta tesis tiene por objetivo la optimización de servicios (rendimiento, calidad) en
micronubes de RC, facilitando la entrada a otros servicios y motivando a sus miembros
a usar los servicios en la micronube de RC como una alternativa a los servicios en
Internet. Presentamos una aproximación para gestionar los servicios en entornos de
micronube de RC para mejorar su rendimiento y calidad comparable a los servicios en
Internet, a la vez que proporcionamos a la comunidad motivación para usar los servicios
de micronube en RC. Además, dividimos el problema en distintos niveles (recursos,
servicios y middleware), proponemos un modelo que proporciona mejoras para cada
nivel y contribuye con información que apoya las mejoras (en términos de rendimiento y
calidad de los servicios) en los otros niveles.

En el nivel de los recursos, facilitamos el uso de dispositivos comunitarios al emplear
técnicas de virtualización que áıslan y gestionan los servicios en micronubes de RC para
obtener un entorno multipropósito que fomenta los servicios en el entorno de micronube
de RC.

En el nivel de servicio, construimos una herramienta de monitorización a la medida de
las micronubes de RC que nos ayuda a analizar el comportamiento de los servicios y su
rendimiento en micronubes de RC. Luego, la información recopilada permite adaptar los
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servicios al entorno para mejorar su calidad y rendimiento bajo las condiciones de una
RC.

En el nivel de middleware, construimos redes de overlay que actúan como el sistema de
comunicación principal de acuerdo a información social para mejorar los caminos y las
rutas de los nodos y mejoramos la transmisión de datos a lo largo de la red al utilizar
las relaciones preestablecidas en la red social o la comunidad de prácticas que están
relacionadas con las RC. De este modo, el rendimiento en las micronubes de RC puede
devenir más estable respecto al uso de recursos, el rendimiento y la calidad percibidas
por el usuario.



Sammanfattning

Internettäckningen i världen är fortfarande svag och lokala samhällen m̊aste samarbeta
och bygga egna nätverksinfrastrukturer. Människor samarbetar för det gemensamma
m̊alet att f̊a tillg̊ang till Internet och molntjänster genom att bygga community networks
(CN).

Användningen av Internet-molntjänster har ökat under det senaste decenniet. Community
Networkbaserade molntjänster (s.k. mikro-moln) har introducerats för att driva tjänster
inom nätverket, utan att behöva n̊a dem via internet. CN-mikro-moln syftar inte bara
till förbättrad serviceprestanda, men ocks̊a en startpunkt för ett alternativ till Internet-
molntjänster i CN. Men anpassningen av de tjänster som ska användas i CN-mikromoln
har sina egna utmaningar sedan användningen av l̊agkapacitetsenheter och tr̊adlösa
anslutningar utan central kontroll är dominerande i CN. Vidare, stor och oregelbunden
topologi hos nätverket, stor variation hos mjukvaran och h̊ardvaran, och olika krav p̊a
service i CN, gör CN-mikromoln till en utmanande miljö för att driva lokala tjänster och
för att uppn̊a serviceprestanda och kvalitet som liknar Internet-molntjänster.

I denna avhandling är v̊art huvudmål att optimera tjänster (prestanda, kvalitet) i CN-
mikromoln, vilket underlättar ing̊angen till andra tjänster och motiverar medlemmar
att använda sig av CN-mikro-molntjänster som ett alternativ till Internet-tjänster. Vi
presenterar ett sätt att hantera tjänster i CN-mikro-molnmiljöer för att förbättra service-
prestanda och kvalitet som kan liknas vid Internet-tjänster, samtidigt som de motiverar
samhället att använda CN-mikro-molntjänster. Dessutom delar vi upp problemet i olika
niv̊aer (resurs, service och middleware), föresl̊ar en modell som ger förbättringar för varje
niv̊a och bidrar med information som hjälper till att stödja förbättringarna (när det
gäller serviceprestanda och kvalitet) p̊a de andra niv̊aerna.

P̊a resursniv̊an underlättar vi användningen av gemensam utrustning genom att använda
virtualiseringstekniker som isolerar och hanterar CN-mikro-molntjänster i syfte att ha en
m̊angsidig miljö som främjar tjänster i CN mikro-moln miljön.

P̊a serviceniv̊an bygger vi ett övervakningsverktyg skräddarsytt för CN-mikromoln som
hjälper oss att analysera servicebeteende och prestanda i CN-mikromoln.

Därefter möjliggör den insamlade informationen anpassning av tjänsterna till miljön för
att förbättra deras kvalitet och prestanda i CN miljöer.

P̊a middleware-niv̊an bygger vi överlagringsnät som det huvudsakliga kommunikations-
systemet enligt den sociala informationen för att förbättra nodernas banor och rutter
och förbättra överföringen av data över nätverket genom att använda de relationer som
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redan upprättats i det sociala nätverket eller i gemenskapen av praxis som är relaterade
till CN. Därför kan tjänsteutövning i CN-mikro-moln bli stabilare med avseende p̊a
resursanvändning, prestanda och användarens uppfattade kvalitet.
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Chapter 1
Introduction

In recent years, cloud technology has been spreading towards the edges of the network.

In fact, modern cloud computing utilizes both edge computing and data center clouds.

Edge computing [1, 2, 3] has been growing in its use due to the fact that resources have

increased in their computational power, while also maintaining their proximity with the

users. Edge cloud computing utilizes the resources at the edge of the network to create a

cloud environment. The introduction of the Internet of Things (IoT) has also brought

other resources (e.g. sensors) onto the edges of the network, which can use processing at

the edges and in data center clouds, this notion has been named as fog computing [2]

and it is a use case of Edge cloud computing.

The Community networks (CNs) are a collaborative network, built and operated by

citizens, created for the common goal of accessing the Internet and cloud services where

it was not possible. The network is created through the use of heterogeneous devices

interconnected through antennas or limited wired connections throughout different

regions, such is the case of Guifi.net1, FunkFeuer2, AWMN3 and Freifunk4. The limited

connectivity towards the Internet is made through gateways or proxies in specific locations

of the network, and shared by the community. The development of Community network

cloud infrastructures (i.e. micro-clouds) has introduced cloud services inside of the

1http://guifi.net
2http://funkfeuer.at
3http://awmn,gr
4http://freifunk.net

1
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network, without the need to consume them from the Internet. Hence, CN micro-clouds

is another case of edge cloud computing, which utilizes the low-resource devices and

wireless network at the edges of the network to create a cloud environment.

In this thesis we focus on the particular case of edge cloud computing, micro-clouds [4, 5]

within a Community network. The focus on CN micro-clouds allows us to have resource

diversity, different geo-location on resources and a participation of the community. These

particular aspects may not be found in other cases of edge cloud computing. Thus the

impact of this thesis is to help and take part of a broader construction of edge cloud

computing in Community networks.

CN micro-clouds differ from fog computing, mobile computing [6] and data center clouds

since there is no use of remote data centers, and the focus is on reusing the computing

resources on those shared devices available in the community. CN micro-clouds share

similar characteristics with fog and mobile computing with respect to the use of wireless

methods and computing capabilities of the devices available. However, CN micro-clouds

are a collaboration where the community builds and manages the infrastructure, and

the use and deployment of the services is dependent on the users choices or available

devices instead of the use of data center resources and services’ requirements. The CN

micro-cloud type of cloud computing focuses on services that the community share with

each other, such as live video streaming through Peerstreamer [7], or distributed storage

through Tahoe [8], among many other services5.

The use of Internet services (data center clouds) has put a strain and higher cost in the

limited connectivity that CNs have to the Internet. Therefore, CN micro-clouds were

introduced as an alternative to data center clouds, in order to minimize cost and foster

Internet services within CNs. However, the adoption of CN micro-clouds is tied with how

users perceive service quality, performance and stability. The main research question is

how can services be improved in CN micro-clouds and match how services are perceived

from data center clouds?

5http://guifi.net/node/3671/view/services

http://guifi.net/node/3671/view/services
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The main objective of this thesis is the optimization of services in CN Micro-Clouds,

facilitating entrance to more Internet services and motivating the community to favor

them from within CNs as alternative to those in the Internet, which leads to a lower cost

(i.e. bandwidth, latency, throughput, monetary) with regards to the limited connectivity

that CNs have to the Internet.

(a) Typical scenario of Data center clouds, depict-
ing the centralization of devices running services
that are accessed by users through the Internet.

(b) CN Micro-cloud overview depicting differ-
ent devices that compose the micro-cloud, in-
cluding the three levels resources, services and
middleware where improvements are done to aug-
ment service performance and quality. Differ-
ent connectivity between super nodes and out-
door routers, depicting different geo-locations,
distances and communication.

Figure 1.1: Comparison between (a) CN Micro-clouds and (b) Data center Clouds. In
Data centers, users are separated from services and where they run. On CN Micro-clouds
users share their own resources running services from the available devices.

In this thesis we tackle the problem by breaking it down into three levels: resource, service

and middleware level. Each level allows us to focus on different aspects which compose

the CN micro-clouds, and grants information that is used on different levels in order to

improve service performance, quality and experience perceived by the users. Figure 1.1

depicts a scenario of Data center cloud, where typically data centers are centralized, have

homogeneous devices running services, and are accessed by the users through the Internet.

On the other hand, CN micro-clouds are depicted with heterogeneous devices spread

across the CNs, where a subset of the devices are used in each micro-cloud, services run
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on the devices that are shared by the users to the community. The communication is

done through the outdoor routers (OR) between devices of different households, and

different geo-locations between super-nodes (SN). Each of the levels are represented as

the main points towards improving service performance and quality in CN micro-clouds.

In the particular case that we study in CNs, our solution within the resource level

comprehends the creation of a multi-purpose environment through the use of virtualization

technologies. The use of this environment allows services in the CN micro-clouds to utilize

resources without being deployed in bare-metal, as is the case with current CN micro-

clouds. Furthermore, it allows for a fair and isolated use of the devices where services are

deployed within its own partition. Also, the use of a multi-purpose environment grants

motivation for the members to share their resources and use the available services, by

making certain that owners can still use their own devices whilst sharing it with the

community.

The CN micro-clouds services have either been ported from data center clouds, or not

built for CN environment, which creates a problem to deploy them in the environment.

The service performance and quality is perceived as lower than what happens in data

centers clouds, and therefore users still prefer the data center cloud services. At the

service level, we focus our solution in the creation of a monitoring tool tailored for CN

micro-clouds, that helps to analyze the service behavior and adapt service configuration

that improves service performance and quality under CN micro-clouds, without having

to change the environment. It allows to understand how services can be adapted towards

being used in CN micro-cloud environments.

In the middleware level, we focus on the overlay networks as main communication system

(i.e. message distribution), such as the case with SERF6, where data dissemination occurs

in order to inform all nodes of service availability, communication and location. The

problem in creating the overlay networks, is the amount of collateral nodes used (relay

nodes) that only relay messages towards other nodes, disregarding the workload or social

6https://www.serfdom.io/
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relations. Our solution in this level is to induce social information (i.e. social graphs of

user relations) into the creation of overlay networks in order to improve routing/path

of nodes used for message dissemination. Furthermore, the use of a gossip-enabled

networks [9], where dissemination is done according to the neighborhood of each node,

allows the communication between nodes regardless of the underlying infrastructure.

However it has its own limitations when not including information about the resources,

services and social aspects of the micro-cloud infrastructure.

The use of social information to improve services communication [10] and overlay net-

works [11, 12] has been proved to be successful regarding the timely message dissemination

in P2P networks, used by services within CN micro-clouds, and the use of fewer relay

nodes. Thus, it minimizes routing and maximizes dissemination across the network.

The use of gossip protocols [12] enhances the infrastructure without relying on specific

knowledge about paths, nodes or resources in order to disseminate messages.

1.1 Problem Statement

Community networks were created by citizens in order to fill a lack of Internet infras-

tructure in locations where Internet service providers would not provide Internet. The

community collaborates by using their own devices to reach places where Internet was

available in order to expand Internet access to regions that had none. The concept of

deploying services inside of the CNs, that could potentially be used by the community has

grown, such as radio stations, data storage, live video cameras, among other examples7.

This has also created an alternative for Internet services, which would favor services from

within CNs alleviating connectivity to the Internet.

The fact that cloud services have become predominant, has also brought a consequence

to CNs. The network has increased the load on its gateways or proxies to the Internet

in order to access cloud resources and services. Thus, the creation of CN micro-clouds

within community networks is an alternative move towards bringing cloud services closer

7https://guifi.net/node/3671/view/services

https://guifi.net/node/3671/view/services


6

to the community, while reducing communication with the rest of the Internet helping to

alleviate the limited connectivity that exists to the Internet.

CN micro-cloud services are in many ways similar to data center cloud services, e.g.

data storage. However, services running in community network environments suffer

from different issues that did not exist in data centers, such as varied latency between

devices, the use of heterogeneous devices, the sharing of devices by the community itself

without any centralized operator. Therefore, in order to bring Internet services into CN

micro-clouds, the environment requires to be prepared, and to match the service quality

and performance which was perceived from data center services. CN members also require

to share their resources with the community to create a collaborative environment and

to foster micro-cloud environments.

Moreover, services within CN micro-clouds are not adapted to the environment, which

creates an issue when deploying more services within CN environments. This may be

perceived by the users as a unattractive service (with low quality, performance) that

would be avoided to use as an alternative.

The message and data dissemination is mostly required by CN micro-cloud services in

order to reach the users and make use of the micro-cloud resources. This is because

the services can use different devices that are not co-located and diverge from how

services behave and run in data centers. Therefore, issues arise in the services’ main

communication system, like the routing between devices, which are not found in data

centers due to the use of heterogeneous devices and wireless networks, and that hinder

the performance and quality of the services.

1.2 Research Questions

The use of services in micro-clouds are becoming more prevalent, thus it is necessary

that improvement to message dissemination and communication routing becomes a focus.

Otherwise, the network may not guarantee enough support for all the services, since

resources have more constraints than data centers. Therefore, by enhancing services with
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the support of overlay networks that include information about resources, services and

social properties guarantees near-optimal paths for nodes communication and message

distribution. To this end, the following questions are hereby addressed.

RQ1: How can the support of virtualization techniques improve service per-

formance and quality within the CN micro-clouds? How does the community

share their resources to be used in CN micro-cloud and make use of such environment?

Micro-cloud services can be very diverse, such as live video streaming, distributed storage

or service announcement. Each service has its own requirements, being it resource

or network computationally demanding. Furthermore, micro-clouds are built by a

community, where shared devices are used to increase the cloud resources. The use of

virtualization is necessary to guarantee a fair use of resources across the community, since

micro-clouds resources are donated and shared among the community itself.

The use of virtualization technologies such as Linux containers or virtual machines are

a path towards an improved used of the resources available. Therefore, services can be

deployed with ease, while also making sure that there are enough resources for services

across the network where each service utilizes only an allotted amount of the community

resources, making a fair use of resources for all members.

The use of partitioning of resources by using virtualization techniques enables each device

to handle and structure the services that they can support for use by the community.

Moreover, the optimization at the resource level begins by using virtualization techniques

that provide isolation for different services in the same devices, while giving the owners

the ability to use their own devices for themselves.

RQ2: How do services behave and perform in CN micro-clouds settings? Can

services be optimized for CN environments without modifications in other levels?

CN micro-clouds differ from data centers in that resources are heterogeneous. In fact,

most of the network is composed by wireless infrastructure and low-capacity devices,

e.g. resources may be affected by weather conditions, or the position of the antennas.
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Therefore, services require to be adaptable to the unstable network conditions, which is

not an issue within data center clouds. It is required for CN micro-clouds to account for

low-capacity devices, the excessive use of network links within specific time-frames, or

simply the variable latency between devices in order to improve service performance and

perceived quality.

Services are required to be adaptable to extreme conditions, that may not appear in data

center environments. Thus, understanding service performance and how to augment its

use regarding the CN environment is key to enhance service use in CN micro-clouds,

while also attracting more of the community towards the CN micro-cloud services instead

of relying on the data center cloud services.

Service monitoring is fundamental to understand the impact that services have within

the network, and enable the proper configuration of each service to be adaptable to

different conditions. Thus, improvement of services (in terms of performance and quality)

can begin by the adaption that comes from a tailored configuration of services towards

different environments. Also, the adaptability depends on the type of service (such as

network intensive, or computational intensive) and its usage. This leads to improve

service performance and quality within CN micro-clouds as well as entrance to other

services.

RQ3: How can the introduction of social information further improve services

in CN micro-clouds? Does enhancing the middleware level with social information

optimize the routing of message dissemination for services in such environments?

Social behaviour has a great influence on service performance, e.g. the demand on service

usage within certain time frames or the use of trusted devices, among other examples.

Therefore, social properties cannot be disregarded when creating network routes/paths

for message dissemination used by services, included in CN micro-clouds. This leads

us to understand how social properties can affect the overall performance of services,

while improving overlay networks as main communication system, when dissemination of

messages occurs.
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In the middleware level, overlay networks serve as optimal paths towards dissemination

of messages and use of resources in the network. Thus, by introducing social information

we can create the paths towards the appropriate or close nodes, e.g. friends, social groups

or collaborative groups, instead of blindly or randomly choosing nodes that may not

guarantee a near-optimal path/route for message dissemination.

Furthermore, relay nodes in overlay networks usually serve as intermediary nodes towards

a receiver. Therefore, improving the overlay network by reducing the number of relay

nodes (that may also request such messages), means that dissemination can be achieved

without the use of unrelated nodes. In fact, such solutions have been presented in

publish/subscribe systems for P2P networks, and guarantee that dissemination can occur

with the use of low number of relay nodes that do not require the messages. However, we

can put forth that each factor of the network, such as resources, services or users, should

be considered as the input to create overlay networks and taking into consideration the

nature of community networks, in order to improve network routing, load balance in the

nodes and to minimize the nodes required when disseminating messages.

1.3 Objectives

The main objective of this thesis is the optimization of services in CN micro-cloud

environments, facilitating the entrance to more services and motivate the community

to share their devices and favor CN micro-cloud services as an alternative to Internet

services, in order to alleviate the limited connectivity between CNs and the Internet.

Furthermore, this thesis breaks down the problem into three levels, where we focus

on the main objective by improving the services performance and quality within CN

micro-clouds. Therefore, our goal in each level is to improve services (in relation to

performance and perceived quality) and gather information that helps the other levels

understand how services are deployed and run in the CN micro-cloud environment

and be able to make necessary changes that will improve the performance/quality

of the services. In the resource level our objective is to create an environment that
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is used in CNs that fosters services and motivates members to share their devices

with the community. In the service level our objective is to gather information about

service behavior and usage in order to adapt service configuration in CN micro-clouds

which improves service performance/quality. In the middleware level our objective is to

understand the communication system, and apply social information in order to enhance

routing/path of service communication/message dissemination.

1.4 Contributions

1.4.1 List of Publications

The content of this thesis is based on the following published and peer reviewed publica-

tions.

Chapter 3 focuses on the optimization on resource level, by introducing several layers of

virtualization, supported by the following publications:

P1 Nuno Apolónia, Felix Freitag, and Leandro Navarro. Leveraging deploy-

ment models on low-resource devices for cloud services in community

networks. Simulation Modelling Practice and Theory, 77:390-406, 2017.

P2 Nuno Apolónia, Roshan Sedar, Felix Freitag, and Leandro Navarro. Leveraging

low-power devices for cloud services in community networks. In Future

Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on,

pages 363-370. IEEE, 2015. [Runner-up for Best Paper award]

Chapter 4 focuses on the optimization on service level, by measuring and evaluating

service performance, supported by the following publications:

P3 M. Selimi, Nuno Apolónia, F. Olid, F. Freitag, L. Navarro, A. Moll,R. Pueyo,

and L. Veiga. Integration of an assisted p2p live streaming service in

community network clouds. In 2015 IEEE 7th International Conference on

Cloud Computing Technology and Science (CloudCom),pages 202-209, Nov 2015.
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P4 Nuno Apolónia, F. Freitag, L. Navarro, S. Girdzijauskas and V. Vlassov. Gossip-

based service Monitoring Platform for Wireless Edge Cloud Computing.

In 2017 IEEE 14th International Conference on Networking, Sensing and Control

(ICNSC), pages 789-794, May 2017.

Chapter 5 focus on the overlay optimization by introducing social properties of the

network, supported by the following publications:

P5 Nuno Apolónia, S. Antaris, S. Girdzijauskas, G. Pallis, and M. Dikaiakos Select:

A distributed publish/subscribe notification system for onlinesocial net-

works. In 2018 32nd IEEE International Parallel and Distributed Processing

Symposium, May 2018.

P6 Nuno Apolónia, S. Girdzijauskas, Felix Freitag, and Leandro Navarro Socially-

aware Micro-Cloud Service overlays optimization in Community Net-

works. In Submission to Journal of Software: Practice and Experience, Special

issue on Software tools and techniques for Fog and Edge Computing, 2018.

1.4.2 Contributions

The contributions of this thesis originate from each level: Resource, Service and Middle-

ware. We analyse and propose optimization for CN micro-cloud services by providing

tools and algorithms that leverage resource, service and social information in order to

improve communication of services in the CN environments. This is done by introducing

virtualization techniques in order to organize services in each device, provide different

configuration of cloud services to improve its performance and QoS and build efficient

overlay networks that improve message dissemination.

On the resource level our contribution, explained in more detail in Chapter 3, is the

partitioning of the available devices through the use of virtualization techniques in order

to give owners motivation to share their devices, while considering a multi-purpose
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environment in which services can be deployed, detailed in the work presented in [P1].

The multi-purpose environment assures that each service can run isolated, without

interfering with each other on each device. Furthermore, the work considers the fact

that allocation of the resources is necessary between owners and community in order to

have a collaborative environment. The work detailed in [P2] demonstrates that services

continue to run without quality degradation, which in turn can be motivational for

the community to collaborate with their own resources, while assuring that resources

can run cloud services within their own isolated environments. Therefore, one of the

major contributions is a multi-purpose environment that fosters cloud services in CN

environments, and a motivation for the community to practice collaboration in order to

bring resources and services to the community network.

On the service level, we begin by understanding and analyzing service behavior in CN

micro-clouds, explained in more detail on Chapter 4. The information on services is

essential to understand and optimize how services run in the CN micro-clouds. Therefore,

our first work relates to gathering of information on CN micro-cloud services by providing

a platform for monitoring regarding service usage. The work detailed in [P3] demonstrates

the use of gossip-enabled networks to enhance monitoring of services in CN micro-clouds,

such that information flows through the network without interfering with major services

and their performance. Furthermore, we give a comprehensive analysis on services

in particular live video streaming, detailed in the collaboration work of [P4], which

cultivates the understanding on how cloud services behave in CN micro-clouds. The

use of a particular service, such as live video streaming, serves as representation of the

behavior of other services that require network and computing infrastructure. Thus, our

focus on such a service is considered to be important to understand how other services

that can have similar properties would behave and be adapted on CN micro-clouds.

Moreover, CN micro-cloud services QoS and QoE is enhanced through the appropriate

configuration when using low-capacity devices and wireless environments. The use of

different parameters on services, is a required step in order to provide users an improved

QoS and QoE. Data center cloud services are not prepared to be used within CN
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environments, because data centers have different capabilities. Therefore, aiming for

compatibility with CN environments, our contribution is a comprehensive look on the

alterations that cloud service require to withstand the CN environments without having

to change the entire environment (devices, network).

On the middleware level, we optimize the overlay networks that serve as main com-

munication system, by adding social information, which is detailed in Chapter 5. The

overlay networks are created in order to enhance service communication between different

instances or nodes. The use of relay nodes for message dissemination is a common method

to forward messages to all nodes that require them. Therefore, the minimization of relay

nodes within the work of [P5] is a contribution that optimizes service communication.

However, transporting such work to community networks has its challenges, since com-

munity networks do not have a clear social network. Instead, the social interaction is

based on community of practice and collaboration within the communities. The work in

[P6], enhances CN micro-cloud services by exploiting the collaboration and established

relations within community networks in order to build an overlay network that aggre-

gates the community of practice, and therefore enhances service communication in CN

micro-clouds.

1.5 Thesis Limitations

The aim of this thesis is to provide to the CN an improved model for service usage

and message routing in CN micro-clouds, that mainly uses wireless infrastructures and

low-capacity devices. The topic can be diverse and thus we focus on improving each layer

of the infrastructure with respect to service performance and quality perceived, and leave

out related aspects that are not in consideration, such as security issues that potentially

hinder service deployment under CN micro-clouds. In this thesis we then assume that

the community would not have intentional malicious acts towards the community built

infrastructure, diminishing capacity, performance and quality of the infrastructure.
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To improve the way services can handle message dissemination the use of overlay networks

are regarded as improving the overall micro-cloud environment. Services use different

devices and routes to communicate between users, nodes or applications. Therefore,

optimization of message distribution can bring an overall stability to the network, by

minimizing the required network resources for each service, while maximizing the resources

available to all services. However, the underlying network needs to be accounted with in

the improvement of routing/paths, in order to build a sustainable relation between the

overlay and underlay networks (in terms of latency, bandwidth between nodes). Also,

the improvement to the performance of CN micro-cloud services brings trust for the

community to utilize them as an alternative to Internet services, but does not impose

any member to share devices or utilize services from CN micro-clouds.

The use of social information should come with the consent of the users, however

in community networks the users are the main part and contributors of the network

infrastructure. Therefore, the use of their social information is regarded as a benefit for

the community. Issues can arise from the use of private information, and thus such acts

should be evaluated towards being anonymous and to respect users privacy.

Security of private devices is also a concern, however it is outside of the scope of this

thesis. Furthermore, security issues are very important when handling information and

multiple devices from different sources. In fact, since the community networks are opened

to any users, occurrence of malicious intent may need to become more prominent in the

creation of CN micro-clouds.

Thesis Organization

The thesis described in Fig.1.2 includes an outline of the context, research questions,

contributions and the accomplished evaluation.



15

 Context
Service optimization on Micro-Clouds within Community Networks

Research Questions

Contributions

Evaluation

Community Networks
- Users contribute and use the infrastructure

- Internet as the main focus for
the shared environment

- The consequence is an overflow
on the network and higher costs for users
with growth of users, without concerning

the resources available.

Micro-Clouds
- Issues arise when porting cloud services

to micro-cloud settings 
- The use of heterogeneous resources

- A varied network capability
 across the all regions

- Service discovery method used to share
Information on services disregarding

the environment.

Social Information
- The service usage information can be

gathered from resources and shared
with the community.

- The relations between users across the
network can give insight on how services

can be managed, and deployed.
- Factoring the small-world network

concepts, bridge between services and
resource usage.

RQ1: How can the support of
 virtualization techniques improve

service performance
and quality within the

 CN micro-clouds?
How does the community share
their resources to be used in CN

micro-cloud and make use
 of such environment?

RQ2: How do services behave and
 perform in CN micro-clouds settings?

 Can services be optimized for
 CN environments without

 modifications in other levels?

RQ3: How can the introduction of social
 information further improve

 services in CN micro-clouds?
Does enhancing the middleware level

 with social information optimize
 the routing of message dissemination
 for services in such environments?

Chapter 3. On resource level,
 device partitioning through the

use of virtualization. 
To give owners motivation to
 share their devices with the
community allowing them

to still make use of their own resources

Chapter 4. On service level,
The understanding, monitoring
 and configuration of services

 for different service types.
  Deployment and resource

 usage dependent on user behavior

Chapter 5. On middleware level,
Optimization of overlay

 networks by adding
 social information, 

to minimize relay nodes
 and enhance message routing.

The use of virtualization technologies,
such as linux containers and virtual

 machines is an approach to partition
devices among users and owners.

[P1 P2]

Analysis on service behavior
 and monitoring ability on micro-clouds.

Gives a clear view on service usage,
and user QoE perceived,

 to improve the QoS. 
[P3 P4]

The use of social information
 to create overlay networks in

 pub/sub systems with lower relay nodes. 
The use of community of practice,

as the source of social information where
clear social networks are not visible.

[P5 P6]

Global Objective: Optimization of services in Micro-Clouds on
 community network environments, facilitating entrance to more services,

 enhancing existent and motivating the community for the use of internal services

Figure 1.2: Thesis layout





Chapter 2
Background and Related Work

In this chapter, we review some of the background information and the relevant related

work with specific focus on the most recent work regarding community networks (CN)

aspects in resources, services and social infrastructure. We also review the previous

approaches to service optimization in CN micro-clouds.

2.1 Background

2.1.1 Wireless mesh networks

Wireless mesh networks have emerged as a specific model in networking. The use of

wireless mesh networks started to generate new concepts and paradigms towards mobility

in devices, such as the case of vehicular networks [13]. Our case study for wireless mesh

networks is Community Networks, which is explained below in more detail.

CNs have characteristic properties, such as, varied latency between nodes [14], dynamic

routing changes and low-capacity devices used for node interconnection. Also, node

connectivity is based on mesh routing protocols [15].

Resource sharing within CNs refers, in practice, to the sharing of network capacity from

each device to route traffic through routers to its destination. The sharing of services,

such as video streaming, storage, VoIP, a common practice in the Internet thanks to

cloud computing, has slowly began to expand in CNs. Therefore, a community cloud

17



18

model could accommodate services and/or resource sharing among community members

without relying on the Internet or the major cloud providers.

Furthermore, by understanding services and resources properties, and how users interact,

we can start to improve the organization of the CNs micro-clouds.

2.1.2 Edge Cloud Computing

Edge cloud computing is a specific case of cloud computing, which moves computation

to the resources at the network edge. Thus, it uses edge resources and relies less on

the Internet cloud resources. In this way, edge cloud computing works to share its own

services and resources without having to go outside of the local network (i.e. Internet) to

utilize cloud services.

There are significant differences between data center cloud environments and edge clouds.

An important characteristic is the use of distributed low-capacity devices instead of

centralized data centers with powerful computing devices. Additionally, the network

between devices has higher variance in latency and bandwidth different to traditional

data centers.

Community networks clouds are formed by a collaborative effort to create a computing

platform where the infrastructure is shared between a number of organizations and

members of the CNs in order to provide a platform for joint computing needs.

The CONFINE research project aimed at expanding community networks and facilitate

the deployment of experimental or production services [16], as if they were deployed in

any commodity cloud platform. More details can be found in subsection 2.1.3.2

2.1.3 Micro-Clouds

The Cloudy system distribution1 (Cloudy OS) has been created under the Clommunity

research project2 to provide community networks an easy way to manage and deploy

1http://cloudy.community
2http://clommunity-project.eu
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cloud infrastructures and interfaces for service discovery and deployment. The result is

that any user can enjoy the benefits of cloud services which are freely available in the

community without relying on any specific server infrastructure. The Cloudy OS is a free

and open source software based on a customized version of Debian Linux. By default, it

comes with an installation of the tinc distributed VPN3 daemon which creates a secured

private overlay network between hosts on the Internet. With the help of tinc, networked

nodes can communicate securely with each other.

Therefore, Cloudy’s development was driven by important aspects, such as the ease of

usage, deployment in low-capacity devices, automated service discovery and services

pre-configuration. Figure 2.1 indicates some of the already integrated types of services

on the Cloudy CN distribution. An example of these services are the ones we consider in

this work, the video streaming service such as PeerStreamer, and the discovery service

named Serf.

Furthermore, community services are included in the distribution, in order to facilitate the

process for edge cloud computing, e.g. Peerstreamer as a peer-to-peer based live streaming,

Tahoe-LAFS as a decentralized storage service, Syncthing4 as a data synchronization

between various storage nodes, among others. Also, the shared services within Cloudy

are expected to be announced to the network (published/unpublished) in an automated

way, when initiated by the users.

In addition, Cloudy uses Avahi5 (or Serf6 in latest versions), serving as a zero-configuration

networking implementation, to publish and discover the services in the community. For

the simplicity of service discovery, the Cloudy OS provides an interface that fetches

service information through the overlay and lists the services in order for the users to

easily connect to them.

3http://www.tinc-vpn.org
4https://www.syncthing.net/
5http://www.avahi.org
6https://www.serfdom.io
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In Cloudy, services can make use of an overlay network created through existing tech-

nologies, such as Serf, which specifically cluster nodes and manage service availability in

the CNs micro-clouds.
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2.1.3.1 Cloudy architecture

The internal architecture of the Cloudy distribution is depicted in Figure 2.1, inside the

central rectangle. On the bottom part, the virtual Layer 2 over Layer 3 network provides

the overlay to interconnect all the servers (nodes) in a micro-cloud. This overlay network

is used in the service announcement and discovery processes, that respectively publish

local information to the cloud and receive data from other cloud nodes.

Another special service module in the Cloudy instance is the distributed announcement

and discovery of services. On the lower layer it provides the mechanisms and the

infrastructure to other services to publish their information all over the CN. This is a

valuable resource to orchestrate the CN cloud itself as it allows room for self-discovery,

management and federation of services and resources. On the user interaction layer, the

DADS allows the end user to discover the available cloud services in the CN and decide

which service provider to choose according to certain metrics (e.g. network round-trip

time (RTT) to the services and number of hops).

The main block of Cloudy comprehends the CN services, stressing the important role of

cloud services in the center of the diagram (see Figure 2.1). These services are the ones

that benefit from or embrace the CN cloud environment to operate or offer a richer quality

of experience (the list in the diagram is non-exhaustive, but mentions key services like

distributed storage or different ways to reach video contents). Among them, virtualization

is a special case. While other services focus on interaction and contents for the end user,

provision of Infrastructure as a Service (IaaS) by means of virtual machines focuses on

fostering the deployment of other services that run on top of this infrastructure.

2.1.3.2 CONFINE Project: Community Networks Testbed for the Future
Internet

The CONFINE project goal is to augment the capabilities of community networks by

providing a platform for the existing community network in which users can use services

with ease [16], as if they were deploying in any commodity cloud platform. Members of
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the CONFINE community network testbed are privileged to get a set of IP addresses

(IPv4) in order for them to be able to run multiple services, as they may require. This

enables members to run multiple services on top of the existing network, while sharing

the resources with the community.

Figure 2.2: System Overview of the Community-Lab Testbed

Community-Lab [17], shown in Fig. 2.2, is an infrastructure that provides a set of

tools allowing researchers to easily deploy, run, monitor and experiment community

cloud services, protocols and applications in a real community IP network (Guifi.net7,

FunkFeuer8, AWMN9 and Freifunk10) instead of simulated environments.

The platform is monitored by a single entity named Community-Lab controller, which

allows users to lease the resources from the network, and deploy their experiments on

the selected nodes. Particularly, users can choose geographically distributed computing

resources through the controller and are able to customize the deployment according

to their specific requirements. In addition, users are allowed to choose the appropriate

7http://guifi.net
8http://funkfeuer.at
9http://awmn,gr

10http://freifunk.net

http://guifi.net
http://funkfeuer.at
http://awmn,gr
http://freifunk.net
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configurations for the computing resources, i.e., to have public IPv4 addresses, which can

be used to communicate within the community network.

Each Community-Lab node can contain several slivers, shown in Fig. 2.2, which are

grouped at a higher level in slices. As such, a slice is defined as a set of resources spread

across several physical devices in the testbed which allows users to run experiments

over it. A sliver is defined as the partition of the resources (or virtual machine) of a

community node assigned to a specific slice.

The purpose of the controller is to manage and control the testbed through simple

operations such as managing users, nodes, slices and slivers. This controller provides an

aggregation point where members can register their devices as Community-Lab nodes. In

the web interface researchers can choose geographically dispersed nodes to create slices

for their experiments. The nodes retrieve the given information to deploy local slivers

acting as containers in the devices. Whenever users make a request to deploy a new sliver

the controller creates a Linux container on the node by allocating the resources required

to run the new sliver. Therefore each sliver runs on the node isolated from one another.

Linux containers guarantee isolation in terms of security and resources however the host

kernel system is shared between all containers. In this way, users can deploy many slivers

in a single node to run many services concurrently.

To be part of the Community-Lab infrastructure the devices require to operate a specific

operating system, based on OpenWrt11 configured to provide automatically an open

network connection with the Community-Lab controller, becoming part of the testbed for

the experiments. These devices serve as the infrastructure layer of the Community-Lab

and most are low-capacity devices which can be affordable to have at the edges of these

types of networks.

11http://openwrt.org
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2.1.4 Sustainability on Community Networks

The growth of community networks have made an impact on how under-served areas

could reach the Internet and enjoy network services and applications. Nowadays, these

established community networks can expand its usefulness with cloud-based computing

services and community-wide services. This can be achieved by having cloud-like service

infrastructures like Cloudy OS that can involve home users (home resources) and provide

low-latency services over community networks that can be a challenging environment

(e.g. wireless mesh networks).

It has been described in [18] how these resources and services can be organized as

a common pool of resources, shared, accessible, and managed by the members of a

community. In this way, the community can govern and use its own cloud resources and

services, allowing any community member deploy new services using these resources held

in commons.

The feasibility for such cloud-like deployments begins with the interest and the incentives

given to the community to share resources. As such, motivations for users to utilize

cloud resources need to be balanced with the motivation to volunteer offering community

resources for community usage, and the perceived added value of the service offer.

2.1.5 Virtualization Systems

Most of the Community network devices that are used in the CN micro-clouds are

low-capacity devices such as Home gateways, set-up boxes, research devices. However,

these devices are capable of running multiple CN micro-cloud services simultaneously. For

instance, the Cloudy OS comes with a few pre-installed services such as Tahoe-LAFS 12

distributed file storage system and PeerStreamer 13: P2P video streaming framework. As

we discussed previously, these devices are configured to deploy CN micro-cloud services

bare-metal. We can say that, as an entry-point, virtualization can give us the means

12http://tahoe-lafs.org
13http://peerstreamer.org
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to create multi-purpose environments in a single device. Therefore, we can study two

main virtualization techniques and measure the system behaviour of each case in terms

of performance and complexity. To choose one of these mechanisms we need to consider

the complexity of the platform configurations, system performance and the hardware

support that the devices have.

One type of virtualization system is called Virtual machines (or machine emulation) such

as QEMU which is an open source machine emulator, used to run virtual machines on top

of an operating system such as Linux. It is also capable of direct virtualization when using

the KVM (Kernel-based Virtual Machine) kernel module in Linux and having hardware

compatible with virtualization technology. Otherwise, it can only emulate machines, and

thus the virtual machines created cannot directly access some of the hardware which can

provide a better guest performance.

Another virtualization technology, also available with most Linux kernels, is called Linux

Containers (LXC), and it is comparable to other virtualization technologies. However it

may lack some of the security and isolation methods that other virtualization technologies

have, such as OpenVZ.14 Also, it can be more lightweight since it uses the already in

place features of the Linux kernels that adopted this type of virtualization. It separates

the user context for each container and maintains a shared link to the host kernel in

order to run multiple systems in an OS-Level virtualization method.

2.1.6 Gossip-Enabled Networks

Gossip protocols rely on disseminating information by utilizing a small subset of neigh-

boring nodes to pass on data towards the whole network, instead of flooding the network

or using a single server. Thus, each neighbor is required to disseminate the messages only

to its direct neighbors, forming a directed graph over the current networks to achieve

quick and efficient dissemination.

14http://openvz.org
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The purpose of having gossip overlays over networks is to overcome the issues of node

discovery, detection or data dissemination [19]. In addition, gossip-enabled networks

can scale with the network, since each node is only required to perform a fixed set of

operations for dissemination; the network becomes resilient to node failures, node failure

has little impact on the dissemination of data; avoids overloading the network with

data, while ensuring all nodes eventually learn about shared information. Moreover,

gossiping protocols rely on eventual consistency, where all nodes will have the data within

a time-frame. Therefore, an issue on the gossip approach is that not all points of the

network have the same information at the same time.

In CNs micro-clouds, the use of gossip overlay is an efficient way for service discovery,

publicizing shared services to the network members. Furthermore, users can utilize

and announce shared services without relying on discussion forums or “word of mouth”

knowledge.

Our case study for gossip-enabled networks is Serf, a system that creates a gossip overlay

between different members of a network [20]. Each node has a local agent that sends

and receives messages from the other nodes. Each agent publishes its information to

the members of the network, e.g. includes the nodes’ name, number of members known,

events queued to be processed and other tags with custom information. Thus, additional

information can be shared between members, apart from the default information from

Serf, by using custom tags. Furthermore, each interconnected node through Serf spreads

the information to their neighbor nodes (Tfanout), 3 nodes by default. The gossip interval

(Tgossip) to send data is also adjustable as a configuration option, with a default of 0.2

seconds.

2.2 Related Work

In this section we present the most relevant works related to our topic, and bridge them

between what has been done before with the optimization to be made on service overlays

on micro-clouds. We begin by explaining the cloud concept and how it is transported out
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of data centers towards the edges of the network. We also explain the monitoring ability

and tools that exist in order to understand how we gather information in community

network environments. We include an overview of the services that are deployed in

such micro-clouds and the social integration of SNs into publish/subscribe systems,

demonstrating how we can integrate social properties into existing systems.

2.2.1 Cloud Computing and Edge Cloud Computing

In the Personal clouds proposal [1], the authors enhance the capabilities of mobile devices,

seen as low-powered devices, by using either remote or nearby cloud resources, instead

of having to process data locally and thus reducing consumption within the mobile

devices. Furthermore, this work explains how network resources are to be integrated in

an heterogeneous environment, while enhancing the user experience. In this way, each

device can be seen as a single device cloud and active participants can run the services

which are of interest to the end users. Their primary goal is to take the data processing

and storage on mobile devices into nearby cloud resources, thus focusing their work on

the mobility aspects for edge cloud computing.

The work reported in [3] describes techniques that may satisfy the offload computation of

mobile devices. A comparison is provided to better understand and succeed when doing

processing on low-powered devices. This system only accounts for service concurrency

and not user independent, thus only considering the virtualization layer for service to

run concurrently in a low-powered device.

The work in [21] shows how clouds that have under-utilized resources can be enhanced by

sharing these resources with other communities, while still maintaining the same aspects

that the cloud owners have agreed upon. They define formulation for under utilization

of resources, by VMs, and construct an analytical model on unreliable VMs in order

to understand the optimization on sharing resources with other communities. However

their premise on community clouds is based on costumer and service providers pricing

agreements for cloud computing.
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In the Paradrop system [22] the authors have created a platform in which low powered

resources are used, such as home gateways, in order to deploy different services running

and processing concurrently and with different data. Trying to get the most use out

of such devices, while also taking advantage of the parallelism that devices can create

between computations. This system only accounts for service concurrency and not

user independency, thus it only considers the virtualization layer for services to run

concurrently in a low-powered device.

The area of Fog computing [2] is related to our work in the concept of integrating edge

devices. To this end, Fog computing aims to extend data center-based cloud computing

by integrating hosts at the edges of the networks into the cloud process. Edges are seen

as being proactive components for services, data usage and storage.

The work in [23] demonstrates that container-based system virtualization is performed

well over hypervisors by giving the opportunity of isolation in terms of security and

resources. Their results show that container-based system virtualization provides up to

2x the system performance of hypervisors for server-type workloads and scale further

while maintaining the system performance at a higher level.

Docker [24] is a modern virtualization option that has succeeded in bringing a lightweight

and high performance to computing platforms. Virtualization makes applications able to

execute in an isolated way from the host system, while also able to secure them against

other parallel applications interference. Moreover, this technology brings us closer to the

cloud paradigm without requiring closed software.

Kubernetes [25] is aimed at being the management layer for containers, as an open

source platform for automating deployment, scaling, and operations of application

containers across clusters of hosts, providing container-centric infrastructure. This system

demonstrates the forthcoming options to manage edge and cloud computation that we

need to consider when creating our own platforms to handle services on networks such as

community networks.
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2.2.2 Monitoring tools in Cloud resources

The decentralized monitoring of resources and services have been studied before. Cluster

monitoring and management, in the work of [26], is done through an hierarchical overlay

network of the available resources. The use of virtual IP system is required to identify

each node of the network and to exchange monitor data. In their work, the nodes of each

cluster periodically push their information to the master nodes, in this way information

is sent hierarchically to the masters of the network in order to control each of the clusters.

This work focuses on monitoring resources for management of clusters, and does not

account for the actual information shared or the amount exchanged. The dissemination of

data is done in an hierarchical manner, between nodes and masters. Also, the information

sharing is done as a push based system in order for the masters to obtain the monitoring

data from the nodes.

In the work of [27] monitoring tools are used for workstations in clusters. Information

sharing is done through a communication interface between nodes and monitoring proxies.

The proxies act as receivers of data from a particular group of nodes, which can be based

on resource types or job allocation policies. An important lesson learned is the behaviour

of monitoring clusters, which needs to be open environments, flexible and scalable. The

behaviour of the current monitoring tools only account for the system they are based on,

and may not be flexible enough for handling different loads or resource types. This work

uses workstations as clusters, and the inter-connectivity in the infrastructure is intended

to be as the Internet infrastructure, which does not account with wireless connectivity and

the issues that are added when accounting with wireless infrastructures. The monitoring

process is done through the use of agents in the nodes to gather local information and

relate to a central monitor to be processed. The central node will then contain the data

statistics for the clusters.

Monitoring Large-Scale Cloud Systems with Layered Gossip Protocols [28] presents with

an alternative to monitoring services through additional infrastructures in cloud systems.

Their work is focused on the gossiping communication for data collection and monitoring
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on large scale cloud systems, aggregating data from the virtual machines deployed with

the services, for a self monitoring process among the grouped virtual machines. The

grouping process is done by evaluating each virtual machines primary applications and

their location related to each other, e.g all virtual machines running a web server would

be grouped together. The grouping of virtual machines helps on the dissemination of

monitoring data across the network.

The monitoring in cloud environments is an extension to previous works done with

grid and clusters. In the work of [29], they analyse the concepts for monitoring cloud

systems, and make reference on the solutions available, the trends and future directions

to be taken into consideration. In the concepts on how monitoring systems support the

cloud features and requirements they include scalability, elasticity, migration, accuracy,

autonomy and comprehensiveness. These concepts are required to be handled in some

level, matching the requirements of the cloud systems. Each of the concepts behind

monitoring are required to be handled in some level, in order to match the requirements

of the cloud systems. This step is done in order to enable the monitoring process handling

the requirements of the system it is built for.

In the work of [30] they present a way for monitoring data across nodes of the network,

by using gossip protocols. The dissemination occurs in a gossip-based method, in

order to analyse the resource information and as well as failure detection of the nodes.

The monitoring functions are mostly for networking and resource failures, and do not

account for the services themselves. Their work accounts for nodes data consistency and

dissemination to other nodes, by using a layered network to interconnect various nodes.

Data is gathered through sensors, which are external to the services being monitored,

and stored in local persistent state processes, which will then disseminate to other nodes

through the use of gossiping protocols. Their work only accounts for wired networks,

maintaining the same state of network for each node.

The monitoring solutions can be divided in three categories: generic, cluster and grid,

and cloud-specific. The solutions proposed are designed to handle the cloud requirements,
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however in each case they are specific to each environment or a generic way for dealing

with monitoring without accounting for all the requirements. The solutions presented

are mostly made for cloud, cluster or grid environments and do not account for network

instability, only node failures. The current monitoring tools available are only capable of

handling one of the categories and few of the requirements of the systems, mostly built

with specific vision according to a given setup and system. Furthermore, the monitoring

solutions presented do not account fully with the service and resource utilization, or do

not have a decentralization of monitoring data over wireless mesh networks.

2.2.3 Micro-cloud Services

In [5] the authors report on how the deployment of the cloud model on top of guifi.net

was undertaken. They elaborate a system where users can benefit from cloud-based

services inside of the network without having to consume them from the Internet. Instead

they can utilize the resources that already exist in their community network, while also

granting access to cloud-based services. Their work is based in the same infrastructure

and environment, however they do not account with social networks or community of

practice as the primary source to create an overlay towards optimizing the routing.

In terms of evaluating the performance of PeerStreamer in unreliable networks, the work of

Baldesi et al. [31, 32] is the most relevant to our work. The authors evaluate PeerStreamer,

a P2P video streaming platform, on the Community-Lab, the wireless community network

(WCN) testbed of the EU FIRE project CONFINE. Their experiments highlight the

feasibility of P2P video streaming, but they also show that the streaming platform must

be tailored ad-hoc for the WCN itself to be able to fully adapt and exploit its features

and overcome its limitations. However they evaluated with a limited number of nodes

(16 Guifi.net nodes), which were located in the city of Barcelona and they do not use live

video stream. A recent PhD dissertation [33] includes some discussion on P2P streaming

on WCNs, but does not elaborate on live streaming, but consider streaming of Video on

Demand (VoD) retrieval.
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Another work [34] studies different strategies to choose neighbours in a P2P-TV system

(PeerStreamer). The authors evaluate PeerStreamer on a cluster and on Planetlab. In

wireless networks PULLCAST [35], is a cooperative protocol for multicast systems, where

nodes receive video chunks via multicast from a streaming point, and cooperate at the

application level, by building a local, lightweight, P2P overlay that supports unicast

recovery of chunks not correctly received via multicast.

The impact of uncooperative peers on video discontinuity and latency during live video

streaming using PlanetLab is studied in [36]. The paper in [37] investigates the impact

of peer bandwidth heterogeneity on the performance of a mesh based P2P system for

live streaming.

2.2.4 Enhancement of Overlay Networks with Social information

In other works, the construction of P2P pub/sub systems aims to minimize the number

of relay nodes. The proposed approaches can be divided in two main categories: i) the

design of a routing tree, the construction of which relies on the routing process of the

underlying P2P overlay network [38]; and ii) the construction of a P2P topology such that

the paths in the routing tree contains the minimum number of relay nodes [39, 12, 40].

In the first category, Bayeux [38] organized peers into a DHT, where each peer maintains

O(logN) connections. Then a routing tree is built for each topic with a rendezvous node

at the root, which delivers the events to the peers that join the tree. This approach,

however, forces many nodes to relay the messages for which they have not subscribed.

Consequently, Bayeux-based systems suffer from high traffic overhead as they fail to

minimize the number of relay nodes.

Rahimian et al. [12, 41] proposed a gossip-based hybrid P2P overlay for pub/sub systems,

called Vitis. Peers in Vitis are organized in a ring structure and run a gossip-based peer

sampling algorithm to identify the subscription and establish connections so that peers

that are interested on similar topics are organized in clusters. Although Vitis manages

to reduce the number of relay nodes, peers with high social degree present high traffic
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overhead since the rest of the peers aim to connect with the social users that maintain

the most social friends in common.

Finally, OMen [11] is one of the most recent approaches that emphasizes on the design of

the P2P overlay network in order to provide a P2P pub/sub system. OMen [11] incorpo-

rated the design of a Topic connected Overlay (TCO) [42], which is an approximation of

the GM algorithm [39]. Forming a P2P small world overlay network of [40], each peer in

the OMen pub/sub system maintains a shadow set, which is a subset of backup peers that

maintain the information to repair the TCO when churn occurs. Although OMen provides

a fast recovery mechanism, while maintaining low number of relay nodes, no monitoring

on the peers’ online activity is performed, thus presenting high traffic overhead to the

peers that establish connection to peers with extremely low online behavior.

Other works such as [43, 44], can be considered as improvements to the above in

their respective fields, however, each still not consider to build the overlay with the

social information, only establishing the social strength between peers as the main part

for connectivity; or consider utilizing community of practice as the source for social

information.

Recent works such as SpiderCast [45] and PolderCast [46] extend the mentioned works

however we do not compete directly with them. Furthermore, such works build upon the

same frame of reference works, not fully exploiting the underlying social structure for

efficient routing, which can result in heavy relay costs or different handling of the social

and P2P graphs.

Community of practice are not well documented, in [47] they describe CoP as a vertical

evolution of social networks, members share common interests and cooperate with each

other for certain goals. Based on their study, such CoP can achieve the same metrics in

betweenness, centrality and closeness as other social networks. CoP can be described as

a social network
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Table 2.1: Comparison between Data center clouds and CN micro-cloud environments in
relation to the creation of services.

Data center clouds Vs. CN micro-clouds

Central authority
Decentralized,

no owner entity
Homogeneous,

rack-based servers
(high computing)

Heterogeneous,
low-capacity devices

Wired Infrastructures
Generally wireless

infrastructure

Services are mature,
easy access

Services ported from clouds
or not designed for
CNs environment

High perceived
quality, performance

Low perceived
quality, performance

Improved traffic
to the Internet

To avoid congesting
traffic to the Internet

Far away from
people (remote)

Closer to the
people (local)

2.2.5 Discussion

Data centers clouds and CN micro-cloud environments are built with different properties.

Table 2.1 gives a comparison on properties that appear in data center clouds versus CN

micro-clouds, where we see different aspects such as homogeneous infrastructure within

data center clouds versus an heterogeneous infrastructure within CN micro-clouds. There

is clear evidence that the environment created within each cloud approach is different,

however a question remains on how services perform (and of their perceived quality)

within CN micro-clouds, which is included in the first part of this thesis.

The cloud services presented in the related work, serve as a baseline and representation of

different services, which require different aspects from the infrastructure, e.g. Peerstreamer

represents services that demand real-time communication and computational use of

resources, while Tahoe-LAFS is a representation of services that demand storage, and
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computational resources. Each service helps to have a broader view of other services that

require similar properties within clouds, and be ported to CN micro-clouds.

Moreover, services do have social interactions, formed from either by their usage, content

or the relation between people, depending on the type of service. This means that,

commonly with state-of-the-art solution, when creating P2P overlay networks, the social

interactions are lost. Peers are positioned according to other metrics, or randomly within

the overlay network, and links between peers are found to favor high degree nodes, which

can create latency and traffic issues for this type of solutions, and can become a hinder

to the overlay and underlay network activity.

Why state-of-the-art solutions are not applicable to CNs micro-clouds? The state-of-

the-art works center and tailor their solutions towards the data center infrastructure,

therefore do not account with issues, such as latency/traffic variation, services deployed

without environment awareness, service communication patterns that come from a tailored

network topology based on tree topology. Solutions that apply in edge cloud computing,

have assumed a mobility aspect of the resources, such as the case of mobile networks,

or do not take into consideration the fact that CNs are built by the community, with

limited resources. Therefore, state-of-the-art solutions are not tailored to deploy services

within CN environments, and service quality and performance remains as a secondary

step towards bringing services into CN micro-clouds. However, in order to motivate the

community to favor CN micro-cloud services, we need to account with the perception of

service performance and quality that users can have in CN micro-clouds and match to

what is expected from data center clouds.





Chapter 3
Resource utilization, monitoring and

evaluation

In this chapter we bridge between the optimization of services at the resource level, and

analyze resource performance in order to understand the behavior of the resources and

be able to act on other levels according to how resources are being used. The separation

of levels, in this case, helps to understand the issues that arise from each and make

certain that information is not lost between levels, i.e. using the resource information to

improve services regarding how resources are used or spread throughout the network can

be used in the improvement of service communication. The creation of a multi-purpose

environment allows to prepare CN micro-clouds, by creating isolated spaces between

owner and community services, and motivate the community to share resources and use

services from the CN micro-clouds.

Community networks are crowd-sourced IP networks that evolved into regional-scale

computing platforms. This has led to adapting the cloud computing model for services

that can operate and use computing resources inside a community network. Resource

sharing is done by users, from their own low-capacity devices, such as home gateways,

routers, or limited computers. The resources are fully shared with the community

disregarding any organization or their owners needs, where services are deployed bare

metal in the devices.

37
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Therefore, the use of shared devices can be turned into multi-purpose execution envi-

ronments, by applying virtualization techniques in order to address the resource sharing

within community networks, and giving owners motivation towards allowing the commu-

nity to run micro-cloud services.

Our comparative analysis with the current infrastructure in community networks gives

evidence about how devices can concurrently run multiple services, the trade offs between

the number and resource requirements of services and the degradation of quality that

services may suffer.

3.1 Overview

Community networks are large-scale, self-organised and decentralised networking infras-

tructures built and operated by the community itself. They are open, free and neutral IP

networks. The infrastructure is contributed by individuals, companies and organizations

in a joint effort.

Resource sharing within the community networks refer in practice to the sharing of

network bandwidth from each device. This enables traffic from devices to be routed

through others to its destination. The sharing of services, such as video streaming,

storage, VoIP, which through cloud computing that has become common practice in the

Internet, hardly exists in community networks. Therefore, a micro-cloud model could

suit to accommodate services and/or resource sharing among community members.

The environments used in this work have restrictions in using computing resources

for private purposes (in Community-Lab) or for the deployment of generic services (in

Clommunity). We address this limitation by designing an environment in each device

that can benefit both the community and the device owner. Consequently, this produces

a multi-purpose environment in a single device, such as one environment for the device

owner and another environments shared with the community network. With the support

of machine or operating system virtualization, these environments can achieve the requited

security or performance objectives.
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The main contribution of this chapter include:

• The design of container-based resource virtualization on top of low-power devices,

enabling a multi-purpose environment isolated from each other. Users can share a

portion of the device resources, isolating the portion allocated to the owner from

the portion for third-party services.

• Evaluation of the performance of devices when running services on the virtual

environments, and comparison with the current Community-Lab devices.

• Evaluation of the quality degradation on services in our proposed approach with

an heterogeneous environment, when increasing the number of services running

concurrently.

For validation we create a small-scale physical Community-Lab infrastructure using several

low-power devices together as computing and storage devices and its own Community-Lab

testbed controller. In the experimental system we deploy services such as file storage

(Tahoe-LAFS) [8, 48], video streaming (PeerStreamer) [32, 49] and IoT (Thingspeak)1, as

micro-cloud services. These services serve as an entry point to measure their performance

when running in an environment according to our design. This way, we can gather

knowledge on the quality of service when running services from both owner and community

networks simultaneously and in an heterogeneous infrastructure. These services represent

typical network, processing or storage demanding services of community networks.

3.2 System Architecture

The architecture for our proposed system explores two approaches for virtualization.

In the first approach we used virtual machines (QEMU) to optimize separation of the

context in which every service is deployed. In the second approach we used virtual

operating systems (LXC containers) a lightweight virtualization to optimize performance

while running services.

1http://thingspeak.com
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Figure 3.1: Models for execution environments.

3.2.1 Models for service deployment

The models for execution environments are an approach to have shared resources between

contexts, which achieves a multi-purpose environment. As a social incentive to share

resources and still being able to use ones’ own resources, the approaches demonstrated in

Fig. 3.1 result from properties that can be dealt with virtualization technology, such as

isolation, performance or security. Each approach can also depend on the infrastructure

that is available, with newer resources or the intent that the services are given for. The

creation of different contexts for individuals and community within the devices can result

in an incentive to sustain the community networks clouds without losing perspective on

the users properties that are fundamental to the usage of micro-cloud environments.

The proposed approaches, leveraging virtualization resources, are enhanced with different

contexts where owners can share (shared context) only part of the device resources

while also giving access to their own (private) context, where owners can run their own

independent services, as demonstrated in Fig. 3.2.
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Figure 3.2: Example of two device deployment. Devices are divided in two contexts for
owner and shared to the CN. In shared context several slivers run as nested containers
belonging to each slice deployed.

3.2.2 Virtual machine deployment

Our initial approach consists of the deployment of virtual machines, using QEMU,

installed on top of the Cloudy OS. This allows us to concurrently run services while still

isolating the device to be used by its owner. In a physical device we install Cloudy OS

where we can execute several instances of QEMU creating multiple virtual environments,

one for each service instance. As an example, Fig. 3.3 shows this scenario using two

Community-Lab nodes and its slivers as independent services on top of one instance of

Cloudy OS. The figure demonstrates the ability to have multiple environments on one

device, therefore one of the virtualized Community-Lab nodes can be considered as the

owners’ context. The virtualization context is done in order to gain control over the

device and enable multiple services running from different user contexts while maintaining

the owners’ ability to take advantage of its own resources.

The performance of QEMU is greatly increased when running it with kernel integration

(KVM) or hardware-support from virtualization. This guarantees that each virtual

machine has higher performance and some of the physical resources can be directly
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Figure 3.3: Example of the VM deployment approach. Two services running (serving
as Community-Lab nodes) on QEMU virtual machines. LXC runs from within the
Community-Lab node to create slivers.

utilized by the virtual machines. However in low-power devices such option may not

be available, and instead QEMU has to emulate the virtual machine in software, which

hinders the performance of the virtual machine.

In this scenario, within certain conditions (such as KVM enabled or virtualization

support), we can achieve a separation of services and utilize a physical device to be

shared between the owner and the community network. This type of deployment is a

quick and easy way of fostering multiple services in a single device. Furthermore, this

approach is best when services need higher isolation from the host system by enhancing

its security or when the service performance is not affected or critical.

3.2.3 Virtual operating system (containers) deployment

Our second approach consists on the deployment of Linux containers (LXC). This allows

running concurrent services with a low overhead in terms of virtual resources and processes.

LXC creates different user contexts in the host machine to deploy separate systems, but

shares the same kernel (OS-Level virtualization)

In this approach we consider the isolation of the services while guaranteeing a higher

performance for services since there is no hardware emulation involved. The virtualization



43

layer considered is in the OS-Level, where the host kernel is shared between containers

and the host system. In Fig. 3.4 we show an example of the deployment of this approach

using the Cloudy OS as the host system and deployment of a Community-Lab node in

a LXC container. It is worth mentioning that the Community-Lab nodes deploy their

own slivers as LXC containers and with our approach this does not change. This is

provided by tuning the configurations of LXC to deploy nested containers, while adding

the AppArmor 2 policies for security concerns.

Figure 3.4: Example of LXC deployment approach. One service running (serving as
Community-Lab node) on a OS-level container virtualization. Nested LXC runs in the
Community-Lab.

With this approach, we can use the device as a shared environment between the owner

and the micro-cloud, maintaining the isolation from each user context. The security issues

that arise from such usage are respectfully handled by LXC or the Linux security policies.

Therefore the containers have access to the host kernel. If this way is not acceptable

for some services, the alternative is the virtual machines approach as it provides better

isolation.

Under this scenario we can achieve a lighter isolation and a concurrent access to the

physical devices. This allows services running with higher performance than with the

virtual machine approach.

2http://wiki.apparmor.net
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It is relevant to mention that in this approach the system running in the containers

only have access to the host kernel as such the host kernel requires to be compatible (or

with the required kernel modules loaded) in order to correctly run the system inside the

container, i.e. the Community-Lab nodes require that the overlayFS file system should

be native, enabling it to deploy the requested slivers on the Community-Lab nodes.

A main feature of our proposed deployment scenario is the introduction of a virtual

environment in which services are able to run with different contexts and maintaining

an isolated part of the device to be used by the owner. As a result when using the

Community-Lab node as a service each node registered in the Community-Lab controller

can deploy its own slivers in the physical device without interfering with other services or

the usage by the owner. This enables sharing of resources for a micro-cloud environment

while maintaining the owner’s exclusive access to the device.

3.3 Experimental Setup

For our experimentation setup, we used four physical research devices (computing devices

in Community-Lab) with different configurations. These devices are built with Intel

powered Atom N2600 CPU processors. Two of them have 2 GB of RAM, 60 GB storage,

another has 2 GB of RAM, 120 GB storage, and the last device has 4 GB of RAM with

500 GB of storage disk, and all are linked to the community network (Guifi.net). A

desktop computer was used to deploy a local Community-Lab controller in a virtual

machine environment. It was necessary to use such deployment in order to not affect

the performance of the production Community-Lab infrastructure. We also included a

newer device called Minix that is built with Intel Z3735F CPU (with hardware-enabled

virtualization), and 32GB of storage. This is the typical device deployed in guifi.net by

the Clommunity project with Cloudy OS.

For our experiments, we setup a replica of the Community-Lab testbed architecture, such

as, one local controller which controls the overall system and a set of computing nodes

(Community-Lab nodes) that can be used to deploy slivers from the controller. In this
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case, the local controller can be deployed either in a container or in a separate virtual

machine instance.

The reason for the layered virtualization in the physical devices is that we intend to

augment the current services of the Cloudy OS such that the users can have a service that

deploys Community-Lab nodes in an automatic manner. This allows taking advantage of

the virtualization environment in order for users to share their resources through the

Community-Lab platform and extending the number of nodes present in the Community-

Lab. Furthermore we can examine the applicability and measure the efficiency to deploy

micro-cloud services in order to understand the feasibility for sharing devices in community

networks while maintaining the owners’ private space in the device.

In our experiments we make use of services such as PeerStreamer, Tahoe-LAFS and

Thingspeak, which are processing, storage and network intensive types of services.

This allows us to test a realistic use of the infrastructure in our experiments. The

experimental setup was created similarly to the current community network cloud

environment, therefore we are able to directly compare the performance resulting from

the new approach.

3.4 Evaluation

In the evaluation of the proposed approach (LXC deployment approach) we augment our

findings with several scenarios. Each scenario is designed to gather knowledge about the

feasibility, the environment progression with heterogeneous devices and complex network

infrastructure. These devices as explained in section 3.3, have less resources compared

to Desktop PCs, and similar to the Community-Lab infrastructure, which users have

disposed at home to share with the community network.

3.4.1 Experiments

Our experiments were performed to evaluate the proposed deployment scenarios, summa-

rized in Table 3.1, by using different combinations of services with different purposes and
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Table 3.1: Summary of evaluation scenarios and settings

Scenario / Service # Devices # Slivers Metrics

1 - Streaming service

(PeerStreamer) 4 RD 8
Chunks Received,

Play-out

2 - File service
(Tahoe) 4 RD 8 Storage Benchmark

3 - Tahoe and
PeerStreamer

4 RD 16
Storage Benchmark,
Chunks Received,

Play-out

4 - PeerStreamer 4 RD 8 (*2, *3, *4)
Average Quality

Loss

5 - Tahoe 4 RD 8 (*2, *3, *4) Storage Benchmark

6 - Tahoe and
PeerStreamer

(minix)
4 RD / 1 Minix 10 (*4)

Average Quality
Loss, Storage
Benchmark

7 - IoT service
Tahoe and

PeerStreamer
4 RD / 1 Minix 10 (*2)

Average Quality
Loss, Storage
Benchmark

8 - Device
Performance

1 RD / 1 Minix 1 Processing Time

with heterogeneous devices. Also, each device supports two (Community-Lab) nodes, in

order to account for owner services and community services running concurrently. In this

way our experiments can validate our proposed deployment as being a multi-purpose

execution environment, running owner’s services and community services separately. The

following describes each scenario in detail.

• The first evaluation scenario uses PeerStreamer, a peer-to-peer video streaming

application, to evaluate the impact on the services that have time sensitive data

processing.

• The second scenario uses Tahoe-LAFS distributed storage, and a storage benchmark

application to evaluate the impact of the proposed deployment on the physical
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devices. These first two scenarios establish a baseline on the feasibility and perfor-

mance of the services involved.

• The third evaluation scenario combines both services and allows an evaluation of

the concurrency of services within the same physical devices with our proposed

approach.

• The fourth and fifth evaluation scenarios are done to know how the environment

progresses when adding more services of the same type using the proposed deploy-

ment. Each experiment is run with either 2, 3 or 4 services concurrently (each

service has 8 slivers across the devices used).

• The sixth evaluation scenario adds an heterogeneous infrastructure, by adding a

different type of device (Minix) and the network interference. This provides us

with not only information about how these newer devices can perform, but also

allows to compare the performance of the services in an heterogeneous environment

as Community networks.

• The seventh evaluation scenario is done with the addition of an IoT-based service

(ThingSpeak which is a data collector, analyser for sensor data) to account for a

combination of user services and community services.

• The last scenario is used to understand how different types of virtualization impact

the processing time of services. In this last scenario an encryption job is performed

in the same way and its processing time is recorded in each of the environments

tested.

For each scenario we collected results and plotted them against the baseline values. The

baseline values were obtained by running the same set of experiments on the Community-

Lab infrastructure (from earlier works in our research group [4, 50]) under the same

set of configurations. This gives us the behaviour of the proposed system in terms of

performance and user experience against what is currently done.
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In the Tahoe-LAFS experiments we measured the performance for read and write

operations in order to understand the impact these type of operations have on the

proposed deployment. In the PeerStreamer experiments we measured the average chunk

rates (data that is received in the peers side); average chunks played out on peers (data

that is sent to be watched in the peers side) in order to measure the quality of the video

stream; and the average quality loss which is the percentage of chunks that did not

arrived from the overall number of chunks sent by the source. In the first scenarios we

measured the CPU utilization to demonstrate that these low-power devices can deliver

enough performance in a multi-purpose execution environment while maintaining the

multi-service community cloud model.

First Scenario: In our first evaluation scenario, we used one sliver deployed per

node, running concurrently a Cloudy OS template. In each of these slivers, we ran a

PeerStreamer experiment.

For this scenario, we ran four tests in different time periods, with 1 hour for each run,

in order to account for different network and device activity. We used seven slivers as

peers (each peer retrieves data from the network in order to play out the streaming video

locally). PeerStreamer uses an overlay network to exchange data (known as chunks)

between its peers. We also setup one sliver to serve as the source peer which disseminates

the source video partitioned in chunks (as default, one frame of the video is one chunk)

to be played out by the other peers.

The PeerStreamer source gets a live camera stream and sends the chunks to the overlay

network between each peer that watches that stream. This results in each peer trying to

fetch chunks from other peers to play out the continuous stream and display it locally to

the users.

Results: Fig. 3.5 and Fig. 3.6 depict the measurements of the average of chunks that a

peer can receive and the percentage of chunks that were sent to be played out, averaged

by all peers. As a baseline we have the current deployment from previous experiments

with the Community-Lab testbed in which the proposed deployment is able to reach



49

Figure 3.5: Average chunks received rate at peers from PeerStreamer execution in the
second evaluation scenario. Baseline as the current deployment in Community-Lab.

without losing too much data on average. It is also noted that because of the shared

resources there is a minimum amount of chunks that are not received in the proposed

deployment. These time sensitive applications require that data should arrive on time to

be displayed/processed, if the data does not appear in the time allotted it is discarded.

In the proposed deployment this amount does not vary much from the baseline (2% on

average).

Fig. 3.7 shows the average measurements of CPU utilization during an hour, when the

service runs continuously. The alterations we see in the CPU utilization is in fact because

the PeerStreamer neighbourhood size changes over time (the overlay network is constantly

updated even when there are no new peers) and therefore the utilization of the resources

change when the operations of reorganising the topology of the network are performed.

Moreover the CPU utilization on the source node is higher than on the peer nodes since

it transcodes the video stream and partitions it into chunks that will be sent to the peers.

Thus the CPU utilization on the peers is considerably lower on average and does not

interfere as much with other services running concurrently. This is a result of the peers

running a more lightweight process such as gathering and decoding of chunks.
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Figure 3.6: Average play-out ratio at peers from PeerStreamer execution in the second
evaluation scenario. Baseline as the current deployment in Community-Lab.

10 20 30 40 50 60

5

10

15

20

Time (min)

C
P

U
U

ti
li
za

ti
on

(%
)

Figure 3.7: CPU utilization on PeerStreamer (PS) source node on second evaluation
scenario

Second Scenario: In our second evaluation scenario, we created one sliver for each

available node (eight slivers in total) and each sliver running the Cloudy OS. For each of

the slivers we ran a Tahoe instance, Tahoe-LAFS is a service that comes bundled with

the Cloudy OS and is used for distributed storage.

The scenario was tested in several runs using the same configuration for each, extending

to an amount of 3 hours each run. We used seven slivers as Tahoe-LAFS storage instances
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Figure 3.8: Performance of Tahoe-LAFS service, baseline as the current deployment
and set1 as within the proposed deployment on the first evaluation scenario (operations
shown as average All, write, re-write, read, re-read, among others). Representing average,
and deviations for each operation.

(these instances serve as storage for the files written by any client). One of these slivers

ran Tahoe’s Introducer (a publish-subscribe hub responsible to notify clients and storage

nodes about each other) and the eighth sliver operates the Tahoe-LAFS client instance

which can write or read files from a mounted folder that accesses directly the Tahoe-LAFS

system. This is done through the use of sshfs and the Fuse kernel module3 allowing a

folder on the Tahoe-LAFS system to become available on any computer system seamlessly.

Furthermore we ran a well-established disk benchmark application, i.e. IOZone [51],

to measure the storage operations of each node in order to evaluate the proposed

deployment and compare it with the performance of the same services when using the

current Community-Lab infrastructure. The benchmark uses the Tahoe-LAFS system

as a disk, writing and reading file happens across all storage nodes, making all nodes

working together for the given task and therefore the performance taken on the client

includes the performance of the storage nodes.

3http://fuse.sourceforge.net/sshfs.html
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Figure 3.9: CPU utilization on Tahoe-LAFS client node in the first evaluation scenario

Results: Fig. 3.8 shows the measurements of the baseline system corresponding to the

current Community-Lab environment, and the same set of operations on the proposed

deployment (named set1). Note that all operations are completed when the transactions

between instances are finished therefore the results account with the performance of all

Community-Lab nodes used. In the proposed deployment there are two services running

on the same physical devices therefore each Tahoe-LAFS system has concurrent access

to the resources which is, as expected, reflected by a general lower operation speed for

all the operations measured. However this still accomplishes the operations with the

approximated speeds as the baseline evaluation.

The benchmark application stresses the device resources in order to find the maximum

speed for operations such as reading/writing of files. It is important to notice that

while network part is an important process in distributing files throughout the instances,

our evaluation accounts more for the resource usage locally. Thus, CPU utilization is

important to understand the system behaviour in the proposed deployment.

Fig. 3.9 shows the average CPU utilization during three hours of running the IOZone

benchmarking application in the Tahoe-LAFS client instance. It has consumed around

20% of CPU time on average during the complete test. The client node performs

encryption/decryption and erasure code computation on each file block in the phase of
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writing and/or reading to/from the disk. Furthermore the Tahoe-LAFS client instance

consumes more CPU time as opposed to the Tahoe-LAFS storage nodes.

Third Scenario: In our third evaluation scenario, we ran both services (Tahoe-LAFS

and PeerStreamer) in separate slices, running concurrently in a Cloudy OS template on

the same nodes. We measured the performance of our proposed approach while running

different services in a concurrent way.

In this scenario we ran the same number of experiments as before, while cutting down

the Tahoe-LAFS test to 1 hour, in order to only account for the interference between

services. It also uses the same deployment of slivers as before, however, each physical

device runs concurrently four slivers each with its own service and groups of two from

the same slice.

Figure 3.10: Performance of Tahoe-LAFS service, baseline as the current deployment and
set1 as within the proposed deployment in third evaluation scenario (operations shown
as Average All, write, re-write, read, re-read, among others). Representing average, and
deviations for each operation.

Results: Fig. 3.10 shows the results from the current deployment in Community-Lab

as baseline, against the proposed deployment in Set1. This shows that when different

concurrent services are running on the same device, the impact on the services are
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noticeable, with higher loads on the system. This can be attenuated with service

scheduling or with a more social understanding of the services usage to avoid very high

peaks on devices.

Figure 3.11: Average chunks received rate at peers when Tahoe-Lafs is also running
(third evaluation scenario). Baseline as the current deployment in Community-Lab.

Fig. 3.11 and Fig. 3.12 show the results of the current deployment on the Community-Lab

as a baseline against the proposed deployment results. We can see a noticeable, to

a certain degree, variation of the chunks played out which affects the video quality

perceived. This is due to the CPU time being shared among more processes. However,

while concurrent services may differ, for our results we can say that the loss is minimal

when using the proposed deployment against the current Community-Lab deployment.

The average CPU utilization of the Tahoe-LAFS client instance is shown in Fig. 3.13,

demonstrating that the CPU utilization of the Tahoe-LAFS client instance is around

35% - 40% on average over the course of the experiment. This also means that it uses at

most half of one core of the device. This is a result of the added processing in the client

instances while the storage instances have a lower process utilization, performing only

read and write operations.
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Figure 3.12: Average chunk playout at peers when Tahoe-LAFS is also running (third
evaluation scenario). Baseline as the current deployment in Community-Lab.
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Figure 3.13: Average CPU utilization of Tahoe-LAFS and PeerStreamer (PS) in third
evaluation scenario

On the other hand, the average CPU consumption for PeerStreamer is nearly five times

higher than what Tahoe-LAFS uses. This behaviour is accounted by the fact that while

running the service, we also saved the video to the disk (in all the peers, including the

source), therefore driving more utilization of the resource for that service. The CPU

utilization on the peers remains lower than in the source peer and still feasible to be

running concurrently with other services.
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Figure 3.14: Performance degradation evaluation of RD devices when running multiple
Peerstreamer service.

Fourth Scenario: In this scenario we ran the PeerStreamer service adding instances of

the service for each time frame. Each service runs concurrently in the nodes available,

totalling 32 slivers running with its own intent. Each test runs as the first scenario, in

time periods of 1 hour, seven slivers as peers and one sliver as source that disseminates

the video to its peers. Each addition of a service means a creation of a sliver within

each node and therefore isolated from each other. The scenario is done is this way, in

order to establish a correspondence between increasing the same type of services, and

the resources available with our proposed approach.

Results: Fig. 3.14 shows the progression of the quality degradation that services suffer,

on average, when increasing the number of services concurrently running on our proposed

approach. As demonstrated there is a loss of quality in each service, when adding this type

of services, however the quality loss is compensated by the higher number of services that

can be run isolated, diminishing 1 to 2% of quality each service added, also constraining

the device with more network activity. For a higher number of concurrent services the

quality loss is expected to drop drastically since the network and the device will be
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Figure 3.15: Performance degradation evaluation of RD devices when running multiple
Tahoe service.

overused. Thus, a concrete number of services that can run concurrently is an open issue

that should be addressed, that include the network and the device usage along time.

Fifth Scenario: In this scenario we ran the Tahoe-LAFS service adding instances of the

service for each time frame. Like in the fourth scenario, each service runs concurrently

in the nodes available, totalling 32 slivers running with its own intent. Each test runs

as the second scenario, in time periods of 3 hour, seven slivers as Tahoe storage nodes,

one sliver as the Tahoe-LAFS Introducer and one sliver as the Tahoe client that stores

files into the established service. Each addition of a service means a creation of a sliver

within each node and therefore isolated from each other. Also, each client (from each

service running) uses IOZone to measure the reads and writes response of each service in

order to gather the necessary information about the performance of each service, and

therefore establish results on the performance of this type of services when increasing

the number of concurrent services.
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Results: Fig. 3.15 shows the average operations speeds of this type of service when

increasing the number of concurrent services. As demonstrated the operation speed

decrease less than 1% for each service added. This is because the devices use memory

cards to store data instead of the conventional disks, therefore the operation speed depend

more on the transfer of data between nodes. This type of service can be more reliable

when activity increases, since the processing on the storage nodes is minimal compared

with the client. Also, with a higher number of concurrent services it is expected that

the operation speed for all services would decline rapidly, since the network will become

saturated with requests. Further study on this issue would be required.

Sixth Scenario: This scenario serves as an argument to our findings in order to assess our

proposed approach with more realistic infrastructure and with other devices that can be

deployed for community network clouds. Therefore, we added a new device with different

specifications (Minix) in order to account for an heterogeneous infrastructure. We also

acknowledge the network activity in these tests as a more realistic setup. Therefore we use

the new device with our proposed approach and compare with current Community-Lab

infrastructure and the evaluation previously done. In this scenario we ran four concurrent

services, with either PeerStreamer or Tahoe-LAFS as a service, within different time

periods of 1 hour each and with the same setup as the previous scenarios.

Results: Fig. 3.16 represents the average quality loss of the service when adding the new

device and the network normal activity. We observe that PeerStreamer suffers quality

loss when running four services concurrently and in an heterogeneous environment. We

can also notice that the first service in each time frame has more degradation due to the

source being farther away (in the network) than on the other services. The figure also

shows a constant loss across all experiments because of the network involvement; from

previous work [50] the loss happens with less than 20% when network is involved; and

from our previous experiments the loss is around 7%. Also, the figure shows, with the

last bar on each time frame, that the new device performs on average equally across all

experiments. This means that having an heterogeneous environment with newer devices

for this type of service only serves to increase the number of services that can concurrently
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Figure 3.16: Quality Loss evaluation, with Minix device. Line represents quality loss on
Community networks, dotted line represents quality loss on research devices.

run. We also notice that the different geo-location of each source affects the quality of

service, degrading the quality since the nodes will be further away in the network.

Fig. 3.17 shows the average operations speeds of four Tahoe-LAFS services running

concurrently in different time frames on an heterogeneous environment and with normal

network activity. The figure shows that the operation speed results on average in less

performance than our previous experiments (around 0.6 MB/s) due to the network

activity, and more performance than the average from previous work [4], which was

done with current Community-Lab infrastructure. As with the previous experiments,

the operation speeds on average only suffers with network activity and higher demand

on storage operations. Therefore, having an heterogeneous environment with low-power

devices for this type of service can be advantageous to still share with the community

network, while having a owner private environment.
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Figure 3.17: Average Operations speed evaluation, with Minix device. Line represents
operations speed on Community networks, dotted line represents operations speed on
research devices.

Seventh Scenario: In this scenario we augment the services by adding an IoT-based

service as a user service close to their homes. ThingSpeak4 is a data collector and

analyzer for sensors and IoT devices. This service added to the scenarios already studied

can enhance our knowledge about different types of services working concurrently and

isolated, and the interference each service can have on our proposed approach. We setup

two services each from PeerStreamer and Tahoe-LAFS, with the same properties as

the other scenarios and the same time periods as before; and we create a ThingSpeak

server (the server gathers all the data, analyses and creates real-time graphics of the

data) for each sliver (ten slivers in total from each node available) that runs concurrently

with other services. For each test, we send data to each ThingSpeak server every 30-

45 seconds during the whole time frame that the other services run. In this way the

ThingSpeak service is constantly being used to update the current data (this data can be

like temperature, noise, wind conditions, among others).

4http://thingspeak.com
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Figure 3.18: Average Quality loss of the two concurrent PeerStreamer services, when
other services are running concurrently (Tahoe-LAFS and Thingspeak)

Results: Fig. 3.18 shows the average quality loss for two PeerStreamer services running

concurrently with Tahoe-LAFS and Thingspeak. As we can see the loss is under 4%,

meaning that the other services can influence the degradation that happens, however

still the same it has with previous experiments. Fig. 3.19 shows the average operation

speed for the two Tahoe-LAFS services, within the same values as previous experiments,

however can be with less performance since the IoT-based service demands more from

the data storage. The figures shows that running many services concurrently and isolated

with our proposed approach can have beneficial results in terms of increased activity,

with lower quality loss. However the environment has a threshold where it may not

support an increase in services without losing too much of its quality.

Eighth Scenario: The last scenario is done to expand our findings in order to

understand what are the impacts that different types of virtualization can have on the

processing environments, such as our proposed approach. Therefore, we used one of

our research device and the Minix device, with LXC approach or the QEMU approach

explained in section 3.2. We then ran an encryption application sixty times in bare metal
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Figure 3.19: Average operations speeds of the two concurrent Tahoe-LAFS services, when
other services are running concurrently (Peerstreamer and Thingspeak)

as a baseline for the processing time and do the same encryption in LXC and QEMU

environments to obtain the processing times for each environment. With this we can

understand how each virtualization interferes with the services that can run in each

device and with our approaches.

Results: Fig. 3.20 shows the processing times with each type of device used (RD or

Minix) and with each type of virtualization (LXC or QEmu and LXC nested). It is

shown that the performance between using LXC and without virtualization (bare metal)

is mostly the same, with 1 to 3 seconds for context exchange, and that the QEMU

without virtualization support has very low performance, while in the Minix device with

virtualization support (KVM) it achieves mostly the same performance as running in

bare metal. The time difference between each experiment gives us motivation to accept

that our proposed approach can work with little difference between each service while

running isolated and concurrently.
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Figure 3.20: Performance evaluation of devices Minix and RD, using LXC or QEmu.

3.5 Discussion

In the proposed approach we see an impact that affects the performance of the services,

which is minimal compared to running more concurrent services within a physical device.

We also state that both approaches (virtual machines and containers) can be used

according to the resources available. Virtual machines should be more suitable for

services that demand higher isolation from the host system or with higher security

concerns. Containers should be chosen when having lower-capacity devices or to achieve

higher performance, and still maintain some isolation from each service. The main

problem still remains on who has the rights to dictate the best trade offs between security

and performance. In overall, the users may want both performance and security when

running their services externally; while the owners would only need security between

services, and the highest performance of their own services. The community may prefer

higher performance over security, increasing the amount of computing power available to

all, while security concerns are addressed by common secured protocols.

In our experiments the resource utilization was key to understand the impact and how

we can optimize the shared resources. Further study with simulation or even high scale

deployment will narrow down other issues that can arise, such as the maximum number

of services, how many services per user one device should handle or even how much of



64

the device should be given to the owners and the community. These issues are important

to understand and to have a better utilization of the resources spread on community

networks, and should be addressed with further social studies.

Furthermore each type of service explored (being network, processing or storage bound)

has its own characteristics, and impact on other services in specific ways. Adding

scheduling or resource allocation control mechanisms across all devices available can

minimize this impact.

Cloud-like services can be deployed on the edges of the network with the added effect of

motivating the owners to share only part of their resources.

Moreover we can say that using such deployments we can guarantee isolation of services

while maintaining mostly the same quality of service. Therefore, our approach shows to

be feasible for the current deployment of devices on community networks with minimal

performance loss in the services, and that the threshold for the increase of services on

the edge of network can be large enough to accommodate most demands of community

network services.

In our experiments the failure of nodes and network in not mentioned as a problem in the

scenarios. Although an important issue for the services, each service deals with failures

in its own way (i.e. in a P2P fashion). The Community-Lab nodes do reconnect to the

network and resume operating. Therefore such issues can occur on the scenarios without

long lasting effects on performance, or with graceful degradation in a service specific way

i.e. if the source node in case of Peerstreamer fails, is equivalent to the video stopping

being streamed, thus not accounting as a failure.

3.6 Conclusion

We argue that community networks are underutilized if only Internet access is tar-

geted. The resources in the network can actually support more services, which can give

community members advantages and benefits when participating in shared services.
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The container-based lightweight virtualization approach proposed in this work for con-

tributed low-capacity devices, maintains the benefits of running concurrent services on

these low-power devices and delivers a multi-purpose system. Also it features isolation of

both resources and security whereby guaranteeing a better overall system performance

even on resource-constrained devices. The work also addressed the current limitations of

micro-cloud infrastructures such as the scalability of the existing infrastructure, and the

performance of low-power devices.

We demonstrate that through virtualization we can deliver a multi-purpose environment.

This allows us to run multiple services in low-power devices (which are similar to the

resources shared in community networks) to guarantee the micro-cloud environment

remains feasible while giving the owners a space for their own usage. We replicated the

Community-Lab infrastructure to deploy different services in the devices available in

order to understand the performance issues that our proposed approach can have.

Moreover, in our evaluation we demonstrated the advantages that our proposed approach

can have on the quality performance of services, when increasing their concurrent running

usage on these devices. We show that there is a balance between having multiple services

and the quality loss, which depends on the type of service in use (network, processing or

storage intensive), which can still function as a cloud-like infrastructure with limits on

resource consumption while granting resources to the owners.

Furthermore, the proposed approach can augment the established network infrastructure

of community networks and the ability for users to have access to more computing power,

exploring the micro-cloud environments and achieving a multi-purpose system. This

way we can add value to the community networks and lower the impact on the services

when running concurrently within the community network infrastructure. However, cloud

services can become disruptive in micro-cloud environments even when the infrastructure

is prepared to handle multiple services. Can the same cloud services work out-of-the-box

in micro-cloud environments, or do resources affect their behavior?





Chapter 4
Services performance and optimization

in CN Micro-clouds

In this chapter we address the issues raised within the service level were we give an

overview of monitoring tools in order to understand how services behave in CN micro-

clouds, and analyze service performance under CN environments. The analysis of services

is an important step to understand within the service level how services can be adapted

in order to enhance services, QoS and users’ perceived QoE.

Section 4.1 describes an approach to monitoring in CN micro-clouds, and general wireless

edge clouds, using gossip technique that offers the possibility to disseminate and gather

information of the services among all the devices of the micro-clouds. In addition, this

work is central to obtain the information and behavior of resources, services and users in

order to optimize the services configuration and management.

Section 4.2 describes the analysis done on a particular service, such as live video streaming.

The analysis gives motivation to the different configurations that a service can have under

CN micro-clouds, and obtain advantages over such networks. The modifications are done

on the service layer, without requiring other layers to be altered. Therefore, services can

be made to withstand the different capabilities of micro-clouds.

67
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4.1 Service Monitoring in CN Micro-Clouds

Edge cloud computing proposes to support shared services, by using the infrastructure

at the network’s edge. An important problem is the monitoring and management

of services across the edge environment. Therefore, dissemination and gathering of

data is not straightforward, differing from the data center cloud infrastructure. We

consider the environment of community networks for edge cloud computing, in which the

monitoring of cloud services is required. We propose a monitoring platform to collect

near real-time data about the services offered in the community network using a gossip-

enabled network. We analyze and apply this gossip-enabled network to perform service

discovery and information sharing, enabling data dissemination among the community.

We implemented our solution as a prototype and used it for collecting service monitoring

data from the real operational community network cloud, as a feasible deployment of our

solution. By means of emulation and simulation we analyze in different scenarios, the

behavior of the gossip overlay solution, and obtain average results regarding information

propagation and consistency needs, i.e. in high latency situations, data convergence

occurs within minutes.

4.1.1 Overview

The edge environment we introduce in this section is based on community network (CN)

environments. Participants in CNs can also share local cloud computing resources and

provide local cloud services. In this way, the community creates its own edge cloud

computing environment without relying on data center clouds from outside the network.

In our case, Cloudy1 is used to manage the edge cloud computing and services such as

Peerstreamer [32, 49], an open source P2P Media streaming, or Tahoe-LAFS [4], an open

source decentralized cloud storage system.

Current solutions for monitoring services under data center cloud systems support and

are tailored towards the use of data centers, which disregards the unique properties that

1http://cloudy.community
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an edge cloud environment has, such as the high latency between nodes, changes in

network (nodes churn rate), and most importantly the use of low-capacity devices.

Furthermore, an issue found in the edge cloud computing (such as community network

clouds) is the lack of a suitable mechanism for logging, monitoring of resources and

services, and dissemination of information. Thus, this work is intended to bring the best

features of monitoring services from data center cloud environments, towards the edge

cloud computing. Also, by understanding the properties of community edge environments,

we can tailor monitoring service to better suit the community requirements. And in part,

granting knowledge of the cloud infrastructure to the community.

We developed the monitoring platform for Cloudy, in order to give community network

clouds an efficient monitoring service. The platform considers the way to handle the

dissemination of data, by using a gossip overlay to intercommunicate with the nodes.

Also, the platform gathers distributed data, by using the gossip-enabled network through

which it disseminates data. The gossiping properties are aligned towards its use on edge

cloud computing, since it provides eventual consistency of the data without relying on a

single entity, and can still be used when node churn is evident. Other methods, such as

flooding, direct communication does not deal gracefully with the issues that arise from

these types of environments.

The main goal of our work is to bring an efficient way of monitoring services on wireless

community network clouds, as a study case of edge cloud computing, using gossip-enabled

networks to achieve efficient data dissemination and sharing.

The main contributions of this section are summarized as: a) The characterization and

implementation of a monitoring platform for edge cloud computing in a wireless mesh

network environment over a gossip overlay; b) The understanding of service, resource

and network properties that relate to the functionality of monitoring with the use of a

gossip overlay for data dissemination.
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Our work leverages a gossip overlay in wireless mesh networks to disseminate monitoring

information in a fast and efficient manner. Gossiping protocols allow for rapid transmission

of information across the network, i.e. each node only needs to contact a subset of

neighboring nodes, instead of the whole network. The gossiping mechanisms gives

guarantees (such as resilience to node failures, eventual data consistency) towards its

optimal application when instability of the network is constant, with high node churn

or high latencies. Furthermore, we integrate the monitoring platform into the already

deployed technologies (e.g. Cloudy distribution) that are part of community network

clouds and its services. The monitoring platform in Cloudy is also designed to become

a Software-As-a-Service for users to install on their own devices, to support users in

monitoring usage.

4.1.2 Monitoring platform for Edge Clouds

We extended the Cloud distribution with a monitoring platform, towards enhancing the

information gathered from edge cloud services. The platform aims to gather raw data

from the shared devices, and disseminate the relevant information to the community.

The platform requires to have shared data among the network members; to be able to

access information about services and resources at each of the shared nodes; and, to

have enough resources to process the raw data and store the processed data. Therefore,

making use of the available devices and services, and support the knowledge of their

usage to the community.

The CN environment creates its own challenges, differing from classic cloud environments,

which need to be addressed, such as low-capacity devices used, network changes (node

churn rate), low bandwidth and high latency between nodes and user related privacy

concerns. In our work, we address these challenges by using eventual consistency and

gossiping methods on the shared data, while also making sure that, by means of Serf,

that each node can join or leave the network without affecting the overall information

within the network.
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The type of information monitored are the resources, services and social aspects of the

community. For our work, one of the main reasons to gather knowledge on the community

cloud system, is to understand social behavior on the network and the usage of services

and resources. Also, the monitoring data can be extended with additional types of

information, such as service configuration, resource configuration and usage. Nevertheless,

the boundaries for such information sharing, need to meet the security issues that can

arise from contributing users’ privacy related aspects, out of the scope for this work.

The monitoring platform is split in three stages: 1) Logging of raw data from services,

resources and user interaction shared by the member nodes; 2) processing of the raw

data, into a format that is user readable and can be shared among the community, such

as a time-line of service usage; 3) dissemination and presentation of the results to the

users in the community, through the user interface, which is an additional service in

Cloudy. These stages represent the major objectives on which we focus our attention,

tailoring them towards an efficient monitoring service on the edge community cloud.

Figure 4.1 presents an overview of the modules in the monitoring platform integrated

in Cloudy. The integration of the monitoring part is done in the middle layer, where

a service is added to enable users to install and see the results of monitoring across

the network. Additionally, the resource and service monitoring module is added in the

communication path with other nodes and services, to gather the necessary information

from the services and to disseminate it to other nodes using the gossip overlay. The

monitoring module utilizes the already existing gossip overlay, created through Serf, to

disseminate the relevant information to the other nodes. Meanwhile, the module also

uses the same overlay to retrieve information from other nodes. Data dissemination and

convergence in nodes happens at Serf level, since data is retrieved from the local Serf

instance.

The reason for integrating the monitoring platform in Cloudy, as explained above, is

because logging of services is required to occur during service initialization. The use

of a monitor UI as a service is done to simplify the view of shared data from the users
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Figure 4.1: Overview of Cloudy modules, showing the monitoring components and the
integration with the gossip overlay.

perspective, in this way, users have access to relevant information from their services

and the usage of services across the network. Also, the implementation involves both

low-capacity devices and edge cloud computing paradigms.
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Additionally, the information gathered from the monitoring service has two functions:

presented to the users to motivate them on how services are being deployed and used on

their community network; as well as, for management purposes, the information gathered

can give an current picture on how the network, service utilization and allocation is done

across the network, e.g. hotspots of utilization, time-frames where resources may be

overused, among other examples.

4.1.3 Monitoring Platform Prototype

The prototype for the monitoring platform was developed using the available low-capacity

devices and connected to the community network (Guifi.net). The devices used are

equivalent to those deployed by the Clommunity project2 in the community network at

users’ homes.

The prototype shows the feasibility for monitoring services and resources under edge

cloud computing. Therefore, services were started and terminated at certain intervals of

time in the available nodes, in order to gather service usage information. The information

for each service is sent to Serf when a service is published. The information is updated in

Serf when the service terminates. Thus, all nodes can gather the logs of services within

the data coming from Serf members (nodes interconnected in the gossip overlay).

In our prototype, we gather information and process it on one node, to be shown as a

time-line graph of service usage, as seen in Fig. 4.2. The figure depicts the time of actions

across three nodes, such as publishing and unpublishing of services, where each bar

represents time-wise the service usage for a given node. Moreover, information relevant

to the users, that comes directly from the nodes in the network, can be displayed in

the GUI. Furthermore, since data travels through the gossip overlay, the whole network

information (services from all nodes) becomes more accurate over time, when all nodes’

data converges, as low as one second in Serf3.

2http://clommunity-project.eu/
3https://www.Serfdom.io/docs/internals/simulator.html
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Figure 4.2: GUI of the prototype for the monitoring of Cloudy services, using three
devices interconnected.

From the prototype monitoring platform, we could observe that using a gossip overlay

to disseminate information is as a good option for non-critical analysis of the overall

network. The shared information can be gathered at any of the nodes that are members

of the gossip overlay, within certain conditions such as the time delay for the eventual

consistency of the data, and the amount of data that is updated to each node. Moreover,

the size of the data sent to other nodes appears small enough (in the range of kilobytes)

to not affect significantly the available network bandwidth. However, it is foreseen

that clearing and storing past data is required so that nodes can efficiently exchange

information between each other.

4.1.4 Experimental Results

We conduct an evaluation by emulation of the monitoring platform, as the means

to understand the characteristics and properties relevant to a real deployment. The

simulation of network data gathered gives us insight on the best practices for an efficient

way of dealing with dissemination of data across a wireless mesh network. Whereas,
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the emulation of nodes provides details about the scalability of the monitoring platform

for edge cloud computing. In this way, we can understand the properties and issues

that arise when dealing with higher number of nodes, higher latencies and the use of

low-capacity devices.

The characteristics of the monitoring platform come into evidence when we analyse the

results of data dissemination and convergence, scalability of the platform and the tuning

of Serf properties. Data convergence gives us the amount of data that a node receives

across time, from the total disseminated data. This means that a certain amount of

time passes until a node gathers the total data (or convergence time). The time elapsed

between disseminating and convergence of data is then important to understand how

reliable the system is when using a gossip overlay.

For our evaluation, we emulate nodes and simulate the network, giving us the average

of time for dissemination and convergence data rates, while also being able to tune

certain aspects (such as gossip interval, gossip fan-out) of the overlay created through

Serf. Therefore, we used the Mininet simulator [52], merged with Mininet-Wifi [53]

and Mininet ContainerNet4. Mininet-Wifi adds to Mininet the ability of simulating

wireless links. The capability of simulating wireless links is then more attuned with the

environment created with community network clouds. The ContainerNet project enables

each of the emulated nodes to run as Docker containers, guaranteeing execution isolation

for each of the emulated nodes. Furthermore, we are able to run different executions of

the same applications, such as Serf, without interference among each emulated node.

In the experiments done, we used as network topology a random geo-positioning of the

nodes, where each of the nodes positions itself within a maximum range of 100 meters

of another node. The characteristics of the topology are drawn from the CNs, where

each person connects to their nearest neighbors to join the network. Therefore, each

experiment run uses a randomly created topology, in an attempt to not be influenced by

a given network topology.

4https://github.com/mpeuster/containernet
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Moreover, the positioning of the nodes influence the overall latencies in the network. The

nodes average latencies can be as high as 800 milliseconds. Also noting that the simulated

network shows as a worst case scenario, in fact other experiments done on CNs [50]

tend to experience, on average, lower latencies and higher bandwidth between nodes, on

normal usage of the network. However, our evaluation comprises the worst cases, to infer

on the monitoring activity when high latencies are dominant in the network.

The evaluation is performed with several runs (around 10) and their results are averaged.

The average on these runs are enough to point out the characteristics that determine

the efficiency of the monitoring platform. Each experiment has 40 virtual nodes (Docker

containers), interconnected through a virtual mesh network and randomly positioned in

the network.

For each of the experiments the services are started (Publish action) and terminated

(Unpublish action) within a time-frame of 10 minutes in each of the nodes. The two

actions are propagated to other nodes where each of them will publish the information of

the service and update it afterwards. Noting that the first action happens before the

gossip overlay is fully known (nodes require to know about other nodes in the network to

send data to a subset of known neighbors). The expected time elapsed for each action

across the network is under the time-frame given. Also, the actions monitored are the

same as in the real world situation, where users start sharing their services and terminate

them.

Furthermore, the monitoring process will gather the shared information through the

gossip overlay, over the time-frame. In our results we show the data convergence on nodes

to understand how much time it takes for nodes to have the same view of the shared

data.

For a scalability evaluation, we performed several emulations with different number of

emulated nodes, with the same conditions as previously mentioned. The conditions are

maintained to be similar to the environment created on CNs (high latencies, low-capacity
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nodes). In this way, we can understand the issues on deploying the monitoring platform

across bigger networks, and address the requirements for edge cloud computing.

Furthermore, we extend our findings by tuning the properties of the gossip overlay

to be used under wireless mesh networks. Thus, we changed the profile for the Serf

gossip properties, adjusting the gossip interval, gossip fan-out and overall timeouts, to

gossip less frequently, but to an additional node. These changes are made to improve

the performance of dissemination and convergence of data, therefore enhancing the

monitoring data exchange between wireless nodes.

The reason for the number of nodes used in the experiments, is because a virtual

environment was used to deploy Mininet. Therefore, the virtual machine was constrained

and the deployment of an higher number of nodes would lead to be unable to reflecting

realistic conditions of resource usage.

Figure 4.3: Averaged data convergence in the time elapsed for the actions of publishing
and unpublishing services.

Results: We can observe the rate of data convergence across the simulated network

and infer on the data dissemination that occurs with our solution.
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Figure 4.4: Scalability results, between number of nodes and time elapsed until service is
unpublished.

Fig. 4.3 shows the percentage for average monitoring data convergence for all nodes, after

the services were published (dashed line) and unpublished (continuous line), averaged from

all the experiments done. The actions are not immediately propagated to the network,

therefore the dissemination occurs some time after starting. Also, we can see that the con-

vergence of data in both actions happens within 1 minutes in high latency conditions. In

this figure we observe the convergence is done faster for the unpublish action than for pub-

lish, this is because the nodes already know about others in the network, and thus it only re-

quires to update the current information. The figure also demonstrates for each action the

data convergence on all nodes, on average, is 130 and 80 seconds in each action respectively.

Fig. 4.4 demonstrates the scalability of having the monitoring data exchange with a

gossip overlay. The figure shows the time elapsed of the combined actions for starting and

stopping a service and the fully convergence of information within a node. Furthermore,

we can say that the results obtained imply a linear evolution of the time elapsed when

adding more nodes to the network with high latency connections, taking into account the

overall latency (edge to edge) increase when adding more nodes. The results show that in
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Figure 4.5: Average data convergence in time elapsed for the actions of publish and
unpublish services, using the tuned gossip properties for wireless devices.

the community network scenario and with the high latency conditions, the nodes can still

gather information quickly enough to have the knowledge of the network without issues.

Fig. 4.5 depicts the same actions (Publish and Unpublish of services) as previously,

however the gossip properties (Gossip interval and Gossip fan-out) were adjusted for

wireless environments. The figure shows that the optimization done has an effect on

the data dissemination and convergence on the nodes. Furthermore, the figure also

demonstrates that the convergence of data for the nodes, on average, is 87 and 38 seconds

in each action respectively. Therefore, each of the actions shown, on average, are faster

(around 25%) than with the previous gossip properties.

4.1.5 Discussion

The evaluation provides relevant characteristics of monitoring in community network

clouds. Therefore, we discuss about the usage of a gossip overlay to disseminate in-

formation, and monitoring non-critical information (information that is not necessary

in real-time). However, we can also be assured that the dissemination is done quickly

(within 1 minute under high latency situations), depending on other factors such as
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number of services running, size of shared information, bandwidth to each node, offline

nodes or failures in the network.

The usage of a gossip overlay for communication between nodes can have its own

drawbacks, such as delayed dissemination of data. However, the case of community

network clouds information gathering is an optimal solution, since the system does not

need real-time knowledge of the network. The usage of a non-gossip overlay would require

prior knowledge of the nodes in the network, or when using other techniques (e.g. one to

all nodes) the network could become flooded and unsustainable for communication.

In our work, a real usage evaluation scenario can give us insight on how monitoring should

behave. However with emulated nodes and a simulated network we can understand the

trends that monitoring systems can have on community network clouds, such as the high

number of updates that may occur for the dissemination of data. We can also understand

the properties that gossip-enabled networks have and customize them for wireless mesh

networks, such as varying the number of neighbors to disseminate data and the gossiping

time interval.

We can also say that by tuning the gossip overlay properties (gossiping fan-out, gossiping

interval and overall timeouts) we can improve the data dissemination, and therefore

monitoring data can be exchanged faster between wireless nodes. Thus, gossiping fan-out

and interval can be modified in accordance with the number of nodes there are in the

network, and the characteristics of the network, in order to enhance the performance to

data dissemination for CNs. The gossip overlay properties are then required to be tuned

according to the position of the nodes in the network and its wireless capabilities.

Furthermore, the option to have a centralized monitoring system, while gathering de-

centralized logging is an approach that can be successful within CNs and low-capacity

devices. However, further study on decentralizing the monitoring system (including

processing and storage) is required to pursue an optimal solution in respect to sharing

network knowledge, such as hierarchically, grouped or cluster gathering and storing of

data.
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4.1.6 Summary

This section analyses the monitoring provisioning that is required for edge cloud com-

puting environments and envisions a monitoring platform to be used for edge cloud

computing. Data dissemination was done with the introduction of gossip-enabled net-

work, interconnecting the nodes of the wireless mesh network, as is the case of CNs. The

monitoring data is then gathered through the gossip-enabled network to be shared across

the entire network. This is done to give users knowledge about their services, and the

community cloud environment, while expanding the knowledge on how management of

such clouds is possible.

In our experiments with node emulation and network simulation we show that the

dissemination of data over a gossip-enabled network is done quickly within minutes of

the start, and is optimal for non-critical shared information. We also observe that under

high latency situations and with low-capacity devices the use of a gossip-enabled network

is a best practice to overcome the harsh conditions, while removing the need to flood the

network with information, or to know the structure of the whole infrastructure.

The creation and deployment of a monitoring tool that is tailored for CN micro-clouds,

grants us the knowledge on service performance, usage and quality perceive. Therefore,

we can ask how do services perform within CN micro-clouds? What is the service quality

perceived by the users?

4.2 Analysis and Optimization of Services in CN Micro-
Clouds

In this section we look at the service level, where we asked how the services perform,

what is the service quality perceived by users and how can services be improved without

having to change the entire environment. Therefore, we analyze a type of service (live

video streaming), which gives a broader view of the behavior of the network, and serve

as a representative for other services.
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In this work, we used Cloudy, which fosters the service deployment and automation in CN

micro-clouds. We present two ways provisioned by Cloudy to integrate the services and

improve the users QoS in these clouds. First, we present a distributed service discovery

mechanism that helps users with service quality metrics to choose the best service from

a pool of instances. Second, we experiment with a live video streaming service deployed

in CN environments, using more than 50 real CN nodes across Europe for the evaluation.

Our analysis shows that tuning the vital parameters of this service as neighborhood peer

selection strategies, and source node dispersion strategy, improves the video streaming

QoS in the CNs. Our results indicate that both ways help the user to experience improved

service performance. Automated service selection, needed once the number of micro

service providers becomes larger, is the next step that can be built upon our results.

4.2.1 Overview

The deployment of services in CN micro-clouds allows to offer resources and applications,

which are of value for the users and meet their particular needs and interests. Among

the services that are very appealing, P2P live streaming is an important candidate, as

can be seen by the growing success and usage of commercial systems such as PPLive,

SopCast. P2P live streaming systems allow to watch live streams such as events or

television channels over a network, granting anyone to become a content provider.

To enable these types of services within CN nodes is very challenging, since community

networks are diverse and dynamic networks with limited capacity of wireless links

and often low-resource and cheap devices. Streaming applications, however, have high

demands of bandwidth, they require low and stable latency and only withstand low

packet loss.

Our motivation begins with the integration of a cloud-like system in community networks

which gives users the opportunity to use services (e.g. video streaming) in their constraint

devices (home gateways), without relying on the commercial clouds. Furthermore, we
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extend our motivation towards providing the service ease of usage and optimization of

QoS on the challenging environment of CNs.

The contributions of this section are the following:

• Integration of a P2P live streaming service in the Cloudy distribution, and enable

the automation and provision of this service in CN micro-clouds.

• Implementation of a search service based on SERF that allows the P2P live streaming

service to be published and discovered by users in the community network cloud.

Furthermore, we add a QoS-aware service selection algorithm that allows users to

choose the best service from a pool of instances, according to network metrics.

• Evaluation of the performance of PeerStreamer as a P2P live streaming service

deployed over 55 geographically distributed real community network nodes. Study

the effects of different parameters of PeerStreamer on its performance in the

community network environment, in order to understand how other services can

behave in CN micro-clouds.

4.2.2 Community Networks Micro-Clouds

Our proposition is to deploy the PeerStreamer service on CN micro-clouds. The resources

are therefore heterogeneous, geographically distributed, and often with resource con-

straints. Home gateways located in user homes can become cloud resources and they are

integrated as Community Home Gateways (CHGs). From an administrative perspective,

these CHGs are peer-to-peer infrastructures. The community network cloud we envisioned

consists therefore of user-contributed infrastructures, such as home gateways, connected

to the cloud in a peer-to-peer fashion, used for the collective provision of services that

are of interest for the community.

Our model fits to the general cloud computing deployment categories. Besides public,

private and hybrid models of cloud computing, a community network cloud differs from

the others in that it is designed with a specific community in mind, and where costs and
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responsibilities are shared among the community members. Such community network

cloud model assumes that cloud users can be classified into communities, where each

community of users has specific needs in terms of services. We identify in CN such a

community as a micro-cloud. A micro-cloud has a reduced number of nodes which are

close as in Figure 4.6. This closeness in the context of CNs can be of technical and social

nature. Cloud nodes within a micro-cloud announce their services and discover other

nodes within the micro-cloud they belong to.
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Figure 4.6: Community network cloud nodes, grouped into micro-clouds. The nodes
of micro-clouds are spread on different locations inside the CNs, forming a meta cloud
environment (community network cloud).

4.2.3 Live Streaming Service

PeerStreamer is an open source live P2P video streaming service, and mainly used in

our Cloudy distribution as the live streaming service example. This service is built on a

chunk-based stream diffusion, where peers offer a selection of the chunks that they own

to some peers in their neighbourhood. The receiving peer acknowledges the chunks it



85

is interested in, thus minimizing multiple transmissions of the same chunk to the same

peer. Chunks consists of parts of the video to be streamed (by default, this is one frame

of the video). At the beginning of the streaming process, these chunks are all from the

same peer (since only one peer is the source), then the source sends m copies of the

chunks to random peers (m = 3 by default), creating an overlay topology with all peers

[54] in order to exchange chunks between them. The whole architecture and vision of

PeerStreamer is described in detail in [7].

4.2.3.1 PeerStreamer Assumptions and Notation

We call the community network the underlay to distinguish it from the overlay network

which is built by PeerStreamer. The underlay network is supposed to be connected and

we assume each node knows whether other nodes can be reached (next hop is known).

We can model the underlay graph as:

Gug = (S,Lug) (4.1)

where S is the set of super nodes present in community network and Lug is the set of

wireless links that connect them. This is the global level.

In the micro-cloud level we have a set of outdoor routers (OR) that are connected to

each other in the same micro-cloud as shown in Figure 4.6,

Gum = (OR,Lum) (4.2)

where OR is the set of outdoor routers present in the micro-clouds of the CNs and Lum

is the set of wireless links that connects them.

The nodes of the underlay (connected to super nodes through outdoor routers) run an

instance of the PeerStreamer and are called peers. Each peer Pi at time t chooses a subset

of the other peers as a set of neighbours that are called Ni(t). The peer Pi exchange
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video frames (chunks) only with peers in Ni(t), and the union of all the Ni(t) and the

related links defines the network topology of the application, also represented as graph

and called overlay. The overlay built by PeerStreamer is a directed graph:

Gog(t) = (Pset, L
og(t)) (4.3)

where Pset is the set of peers and

Log(t) = (Pi, Pj) : Pj ∈ Ni(t) (4.4)

is the set of edges that connect a peer to its neighbours. The main difference between the

overlay and the underlay is that the underlay is determined by the network topology, on

which PeerStreamer does not have control, while the overlay is generated by PeerStreamer.

4.2.3.2 PeerStreamer integration in Cloudy

The version of PeerStreamer that is bundled with Cloudy, only features UDP streaming

for video input, which is an acceptable transport protocol for video streaming. Therefore,

we need to consider this fact in our stream provision. Either an online stream can be

used (with the help of other applications) or a local video streamed to a local port is used.

However, most of the video streams in the Internet do not use directly the network-level

UDP protocol, instead it is more common to use an application-level protocol, such as

RTSP/RTP5. In order to include PeerStreamer in Cloudy we choose the lightweight

PeerStreamer version since we have low-resource machines in our community cloud

deployment.

4.2.4 Service Discovery

Cloud services in the context of CNs are built and operated in a decentralized way,

and need a common place for both providers and users respectively, to publish their

services and learn about their availability. In Guifi.net, the available network services

5http://www.ietf.org/rfc/rfc2326.txt
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are normally declared on the web page, by manually submitting the details (type of

service and specific characteristics, location, IP address, terms of usage, etc.). The lack of

automated methods for publishing services, and also for conveniently finding out which

are the ones closest to the user, has led to a couple of drawbacks: not all the services are

declared on the website (although they are announced by other means, like users mailing

lists) and when a service is temporarily or permanently unavailable, it still appears on

the website as online until it is manually removed from the list. In this section we show

how we implement and use the automatic service discovery based on Serf to discover

services such as PeerStreamer in Cloudy instances.

4.2.4.1 Serf Implementation

The distributed announcement and discovery of services (DADS) operates in parallel

at both the global community network cloud level and at the micro-cloud level. On

each of these two levels a different technological approach is used. Cloudy includes a

tool to announce and discover services in the CN clouds based on Serf, a decentralized

solution for cluster membership, failure detection, and orchestration. Serf relies on an

efficient and lightweight gossip protocol to communicate with other nodes that periodically

exchange messages between each other. This protocol is, in practice, a very fast and

extremely efficient way to share small pieces of information. An additional byproduct is

the possibility of evaluating the quality of the point-to-point connection between different

Cloudy instances. This way, Cloudy users can decide which service provider to choose

based on network metrics like RTT, number of hops or packet loss (Algorithm 1). The

second level of DADS occurs in the micro-cloud, where a number of Cloudy instances

are federated and share a common, private Layer 2 over Layer 3 network built with

Getinconf6. At that level, Avahi7 is used for announcement and discovery. Originally

this solution was to be applied to the whole CN but as more Cloudy instances started to

appear it became clear that the solution would not scale further than the tens of nodes

as we explain in [55]. However, in the context of an orchestrated micro-cloud, it can be

6https://github.com/Clommunity/getinconf/
7https://avahi.org
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used not only for publishing cloud services but also other resources like network folder

shares, etc.

When Serf finds different services (including services of the same type) we need to provide

a QoS-aware service selection approach that will help users to choose the best quality

of service among all instances. It is worth noting that a service with consistently good

QoS performance is typically more desirable than a service with a large variance on its

QoS performance. This would allow users to choose the best service available ranked

according to some important community network parameters.

When a Cloudy client issues a find service request, Serf obtains the service list available

and related service availability degree. Service availability may include many aspects to

service i as Si, we denote as Ai1, Ai2, Ai3,...Aij ,..., Aim, where m is the attribute number

of each service. The services can have attributes as RTT, packet loss, throughput etc.

We use Wij to denote the importance weight of every attribute of service i, where j=1,

2, 3 ...,m and ε as a preference weight of the user for a given type of service. Taking into

account this, the service availability can be described as Ai, in Equation 4.5. We specify

also a service availability threshold λ, which denotes that if a service with Ai is greater

than specified λ, then the service is available and it is added to the available service list

set.

Ai =
∑

j=1..m

(WijAij)− λ (4.5)

By default, Serf is used in Cloudy in order to simplify the process of service discovery for

the users by utilizing the QoS-aware service selection algorithm (Algorithm 1).

4.2.5 Experiment Setup

For the experimental research, our main configuration includes geographically distributed

CN nodes from Guifi.net in Spain, AWMN in Greece and Ninux in Italy. These nodes

are co-located in either users homes (as home gateways, set-top-boxes etc) or within
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Algorithm 1 ServiceSelection(Si, Wij , Aij)

1: // Si ← service in the cloud, Aij ← the jth attribute value of service i, Wij ←
the weight of importance degree, ε ← user preference weight, λ ← the availability
threshold;

2: procedure S–Selection
3: AvSet={};
4: for each Si in the Community Cloud do
5: if Si is in Micro-Cloud then
6: Wi = Wi * ε where ε > 0 ;
7: end if
8: calculate Ai with equation (4.5);
9: if Ai ≥ 0 then AvSet = AvSet U {(Si,Ai)}

10: end for
11: sort(AvSet) order by descending;
12: end procedure

other infrastructures around each city. Nodes are deployed to use the wireless links of

each community network that operate in the ISM frequency bands at 2.4 GHz and 5

GHz. The connectivity between CN nodes varies significantly. Two CNs (Guifi.net and

AWMN) are connected on the IP layer via the FEDERICA8 (Federated E-infrastructure

Dedicated to European Researchers) infrastructure, enabling network federation. The

nodes of Ninux CN in Italy are not connected to FEDERICA, therefore we experiment

with them separately (without including other CN nodes). In our experiments the nodes

from UPC (Technical University of Catalonia) are a subset of Guifi.net CN nodes which

are distributed in our UPC campus in Barcelona. We use these nodes as a baseline in

order to be able to better understand the effects of the network given by the statistical

data gathered from the community networks.

In order to deploy the PeerStreamer application in a realistic community network cloud

setting, we use the Community-Lab [17] infrastructure which is a distributed infrastructure

provided by the CONFINE project, where researchers can deploy experimental services

and perform experiments in a real and production CN.

8http://www.fp7-federica.eu/



90

Our experimental evaluation is comprised of 55 physical nodes distributed across Europe,

among the working nodes available from the three CNs. Most of the nodes are built with

an Intel Jetway device equipped with an Intel Atom N2600 CPU (2 cores), 4GB of RAM

and 120GB SSD and running a custom Linux OS (based on OpenWRT), which makes

them resource constrained devices at the edges of the network. Table 4.1 shows the

number of nodes used in three community networks, their location and type of devices

deployed.

In our experiments we connect a live streaming camera (maximum 512 kbps bitrate, 30

fps) to a local PeerStreamer instance which acts as the source for the P2P streaming. We

choose as a source a stable node with good connectivity and bandwidth to the camera

in order to minimize the video frame loss from the networked camera. The source is

responsible for converting the video stream into chunk data that is sent to the peers. In

the default configurations of PeerStreamer a single chunk is comprised of one frame of

the streaming video. Also, the source PeerStreamer node sends three copies (m = 3) of

the same chunk to the peers, meaning that only three peers receive the chunks directly

from the source at a given time. Thus, each peer that receives the chunks exchange with

other peers in order to form the P2P exchange network.

The evaluation metrics presented were chosen in order to understand the network behavior,

quality of service and quality of experience. Thus, for network behavior section 4.2.6.1

explains in details the network measurements obtained. On the quality of service side, we

measure the number of chunks that are received by peers and the chunk loss percentage

in order to understand the impact of the network on the reliable operation of this type of

service. On the quality of experience, we gather statistical data from the chunks that are

played out locally by each of the peers to understand the quality of the images that the

edges show to the users. These metrics, show the impact of such networks when using

streaming services while also guaranteeing the image quality that each node can display

on average. Regarding the network interference issues of other users’ concurrent activity

which can impact the results of the experiments, we reference to [56] and is out of the

scope of this work.
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Table 4.1: Nodes in the cluster and their location

Nr. of nodes Cat. Location Type

23 UPC Barcelona, Spain Physical nodes and VMs

8 Guifi.net Catalonia, Spain Physical nodes

12 AWMN Athens, Greece Physical nodes

12 Ninux Rome, Italy Physical nodes

4.2.5.1 Scenarios

To assess the applicability of PeerStreamer in CNs, the following describes a chosen

scenario that reflects a use case of live video streaming in CNs. Also, we augment our

findings with a scenario reflecting different parameters of PeerStreamer usage, in order

to understand possible improvements of the service level created by the PeerStreamer

instances. The parameters used in the scenarios are summarized in Table 4.2.

Table 4.2: Summary of our Scenario Parameters

Scenario 1 and 2

Total number of nodes 55

Groups of nodes UPC, Guifi.net, AWMN, Ninux

Tests time-frame T1 = 30m — T2 = 1h — T3 = 2h

Source 1 Send Rate (chps) T1 = 31 — T2 = 32 — T3 = 31

Source 2 Send Rate (chps) T1 = 55 — T2 = 55 — T3 = 49

Metrics
Peer Receive Ratio, Chunk Loss

Chunk Playout, Neighborhood Size

For the first scenario we choose the default parameters of PeerStreamer and run in the

challenging environment of CNs. One of the nodes, which has the best connectivity to

the camera stream is chosen to be the source peer, while the rest of the available nodes

will initially contact the source in order to enter the P2P network for chunk exchange.

Since the Ninux group of nodes do not have connectivity in IPv4 to other CNs (they

are not part of FEDERICA), we deliberately executed the experiment apart from the
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other CNs, in order to understand different CNs network behaviors. The experiment

ran on this group was different because of the non-connectivity to the camera stream,

therefore another solution was devised. We introduced a live TV streaming channel as

the streaming source, transcoded to 512 kbps bitrate, 30 fps on average similar to the

camera stream. However, this stream also included audio, which made the exchange of

data between peers higher than the peers of other CNs. Each experiment is composed

of 20 runs, where each run has 10 repetitions, and averaged over all the successful runs

(90% of the runs were successful). In the 10% of the runs the source was not able to get

the stream from the camera, so peers did not receive the data. The measurements we

present consists of 3 weeks of experiments, with roughly 300 hours of actual live video

distribution and several MBytes of logged data.

We then establish three experiments shown for 30 minutes, 1 hour and 2 hours of

continuous live streaming from the PeerStreamer source. This was done in order to gather

statistical information within different time-frames and to use as initial step towards

live events coverage on CNs. Other nodes were started at the same moment in time, 10

seconds after the source started, in order for the source to gather enough data to be

able to exchange with the peers. This also allows the randomization of the nodes that

the source PeerStreamer will first push the chunks to, and thus on all experiments the

peers that begin receiving chunks from the source will be different (PeerStreamer overlay

topology changes in every run of experiments). In all experiments we try to guarantee the

number of nodes to remain constant. However, since we are dealing with a very dynamic

and challenging environment, there is an issue of churn rate of nodes. This happens in the

CNs because most of the nodes are connected wirelessly and their connectivity depends

on many factors (such as weather, electric failures, router connectivity, among others).

PeerStreamer for its own overlay performs operations to manage the peer churn rate by

constantly updating each peer neighborhood, an important feature for the potentially

unstable and dynamic nodes that we find in community networks.

For our second scenario, the evaluation performed includes the findings of different

configuration parameters of PeerStreamer, which results in better quality streaming. This
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Figure 4.7: Average throughput and RTT to the gateway/Internet and number of hops
to the gateway.

was done in order to understand the different behavior of the PeerStreamer algorithms

which helps to optimize its instances. The different parameters chosen include sending

different amount of copies of the chunks from the PeerStreamer source (m = 5, m = 1);

keeping the best peers in the neighborhood in between topology updates of the overlay

that PeerStreamer creates (TopoKeepBest); and the addition of the peers that can be

selected to the neighborhood by extending the default RTT (10 ms) of the peer selection

metric [7] to 20 ms .
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4.2.6 Results

4.2.6.1 Characterizing the Network Performance

Typically, CN users have an outdoor router (OR) with a Wi-Fi interface on the roof,

connected through Ethernet to an indoor AP (access point) as a premises network. In

Guifi.net where nodes are located, OSPF, BGP, BMX6 [57] or combination of them is

used as a routing protocol. In AWMN and Ninux BGP and OSPF are mainly used

between outdoor routers. Most of the super nodes (the ones routing the traffic between

the different zones) are working in AP mode. The nodes (home gateways) where the

PeerStreamer application is running are connected to these super nodes through their

outdoor routers. A few super nodes are placed strategically on third party locations, e.g.

telecommunication installations of municipalities, to improve the community network’s

backbone. In order to gain insight for network behavior in community networks we

monitored the network for a period of 30 days.

Figure 4.7 shows the average throughput and RTT to the gateway (proxy) and the

Internet, and the number of hops to the gateway obtained for every OR. The values are

sorted by the throughput to the gateway. Standard deviation error bars are also given.

Internet values are measured using a server located outside of Guifi.net. The figure also

reveals that the throughput to the Internet and the gateway are not linearly correlated.

The average throughput to gateway is 17.4 Mbps and to the Internet 6.3 Mbps. This

is because one of the gateways in CNs has a better connection to the Internet. Thus,

even if the throughput to the gateway is high, those nodes using the second gateway

in other parts of the network have a low throughput to the Internet. Furthermore, it

demonstrates that the RTT has a stronger correlation with the number of hops than the

throughput (average RTT to the gateway is 9.26 ms and to the Internet 56.3 ms). Error

bars reveals that some nodes have an average number of hops with noticeable deviations.

This variability has two causes: change in the routes, and selection of a different gateway.
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4.2.6.2 Scenario Results

Figure 4.8 depicts the amount of chunks on average the peers receive. Knowing that

Source 1, sends out to the peers around 31 chunks per second (chps), we notice that the

distant groups (Guifi.net and AWMN) in relation to the source, receive less chunks than

the closer group (UPC), in relation to the source. This is because of the network impact

on the delivery time of the chunks. Thus, more chunks arrive out of the time allotted,

the farther the chunks have to travel. We also notice that the number of chunks received

on average increases with longer time-frames, this occurs because the peers can gather

more statistical information about each other and therefore update their neighboring

peers accordingly, while securing a subset of peers in which they can rely on to receive

the chunks in the time allotted to be displayed. We also show that on Ninux side the

Figure 4.8: Average Peer Receive Ratio

amount of chunks received tends to be higher that of the other CNs. This is due to the

fact that we use a different stream (Live TV channel stream), in which Source 2 sends

around 55 chps instead (accounting with the added audio part of the stream). We also

notice a drop of receiving chunks for longer times, because of the inherited instability of

this group of nodes, where the loss of data is more constant/visible when dealing with

longer times.
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Figure 4.9 shows the average chunk loss for each group of peers. We can see that the loss

is greater for shorter time-frames (loss in UPC 7%, Guifi.net 9% and AWMN 13%) and

are amortized for longer time-frames (loss in UPC 2%, Guifi.net 3% and AWMN 7%).

We also notice that distant groups (distant from the source stream) are more affected by

the diminished rate of chunks received, which demonstrates the influence the network

has to the amount of data that is lost (either by losses on the network or by not arriving

on time to be displayed). As for the Ninux group, as previously mentioned, the network

behavior is more volatile since there is a higher packet loss. Therefore, we notice that

since Source 2 sends more chunks per second (around 55) than Source 1, the loss of

chunks in the peers is greater than in other groups and in longer time-frames the network

instability has a higher impact on the data exchanged (34% loss).

Figure 4.9: Average Chunk Loss

Figure 4.10 illustrates the quality (chunks played) of video offered on the peers side. The

closer groups display more chunks, because the loss between farther nodes is greater

than closer nodes and since the network plays a big role on the delivery of chunks. We

also notice that the longer time-frames have on average a better chunk playout because

more chunks arrive on time to be displayed (UPC 98%, Guifi.net 98%, AWMN 92%).

For the Ninux group we see a more stable chunk playout for each of the time-frames,

which means that since the network instability occurs during the whole evaluation the
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same amount of chunks (on average 71%) arrive to be displayed, also meaning that the

network bandwidth/throughput between nodes (on average) is lower than on other CNs

and remains constant over time.

Figure 4.11 demonstrates the chunk loss gathered during 30 minutes experiment, with

different parameters given to the PeerStreamer. The parameters shown (TopoKeepBest,

RTT = 20ms and m = 5) have been selected in order to predict the behavior and

improvements that PeerStreamer can have when executed in CNs. We notice that

Figure 4.10: Average Chunk Playout

increasing the RTT for the overlay topology gives the peers higher probability to receive

chunks in time and therefore decreasing the chunk loss in each of the groups. The other

parameters have a higher impact on losing chunks, especially when the source only sends

one copy (m = 1) of the chunks to peers (not shown in the figure). We also notice that

keeping the best neighbors on topology overlay updates, lowers groups loss chunks (as

in UPC case) that have nodes closer to each other, in which the selection of peers for

exchanging chunks will have higher probability to choose the best nodes from previous

topology updates. For the Ninux group we notice that when keeping the best nodes on

topology updates there is a greater improvement (23% in loss, comparing with default

parameters where we got 32% loss), because the probability of choosing the best nodes

will be higher, since the nodes on this CN have worst connectivity. Also for Ninux, giving
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a RTT of 20 ms has mostly the same average as the previous experiments (with default

parameters) since the nodes are farther apart (in RTT terms), meaning that there will

be no significant changes in the neighborhood created for these peers. We also show that

there is improvement when changing the number of chunk copies Source 2 sends to peers

(m = 5). This is because of the resources that Source 2 has at its disposal, which makes

it able to send more copies without losing bandwidth and computation time (against

Source 1 as a low-power device); and also, since the network has more packet loss than in

other CNs, flooding the network with more copies makes a higher probability for peers

to be able to receive more chunks on time.

Figure 4.11: Average Chunk Loss with different parameters

4.2.7 Discussion

We started our evaluation by demonstrating the performance PeerStreamer has on CNs,

with the default parameters, in order to understand what improvements can be achieved

in CNs. We found that PeerStreamer neighborhood selection lacks accountability for

network instability and therefore PeerStreamer can perform poorly in CNs. The metric

for randomly selecting a subset of peers for the neighborhood reduces the probability to

receive chunks in time, since peers can select the worst neighbors. This metric can be

good for reducing time spent on initial costs however over time the CN selected peers

need to be within either the best or with a greater range in RTT , as shown with different
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parameters scenario in Figure 4.11. We also found that while modifying the number of

chunk copies that the source sends, can have beneficial results, guaranteeing that the

chunks will travel to more nodes and be available to be traded in the P2P network over

more peers. However, since the wireless links of CNs have a high diversity in bandwidth,

this issue can arise and should be studied more thoroughly. Regarding the amount of

data exchanged between peers we consider that in current wireless CNs and using P2P

networks the high quality video streams (i.e., 1080p) are affected by the performance of

the network links since more data or sizable data needs to pass through the network to

the peers, and may even congest it. While using standard quality video streams, as shown

in our evaluation the amount of loss is lower and more efficiently exchanged between

peers in CNs.

Furthermore, by enhancing the performance of live video streaming, with the opportunity

for users to choose the preferable services for them (based on the services’ attributes such

as RTT) can augment the probability for optimizing the QoE/S in these environments

and therefore the combination of our contributions can achieve higher quality of service

than an ad-hoc solution.

4.2.8 Summary

An important aspect for the ease of usage of CN micro-clouds is the automatic announce-

ment of services, such as PeerStreamer, and their discovery by other cloud nodes. A

service announcement mechanism based on Serf was used to allow end users to discover

active PeerStreamer instances in the cloud and join a live streaming event. Furthermore,

we design an algorithm to help users choose the service with the better QoS available

to them. This was our contribution done on the users perspective, which improves

the underlay network. The service discovery and the ease of usage that the Cloudy

environment provides for end users, is considered an important element that envisages

the users to participate in the streaming service.
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On the service level our goal was to have a feasible system that can utilize the resources

scattered on CNs in order to achieve a live video streaming service. The part of

PeerStreamer that can be modified is the communication between different instances.

Our evaluation shows that using PeerStreamer with the default settings can achieve lower

rating in terms of QoS in the CN environment where the network instability is prominent.

We show that in different CNs the results obtained in terms of loss of data between peers

is distinctive. For this reason, we augment our findings by running PeerStreamer with

different configuration of parameters so that we can understand the best behaviour that

PeerStreamer can provide to its users. Our evaluation shows that modifying the number

of chunk copies that the source sends to peers and modifying the neighbourhood selection

policies such as metrics for peer selection as RTT and keep best peers (TopoKeepBest)

can have beneficial results for live video streaming in the high diversity environment of a

CN.

4.3 Conclusion

In this section we approach a monitoring capability for services in micro-clouds in order

to gather information that can be applied to optimize the services. The approach for

monitoring under CN micro-clouds can be applied to services in order to understand their

behavior, and make necessary changes enhancing such services. However, do services

have different behavior from data centers or data center cloud infrastructure?

In review, services such as Peerstreamer, can be modified to operate within CN micro-

clouds and wireless edge cloud environments, by introducing different configurations.

The services deployed in CN micro-clouds also behave differently than in data centers.

Thus, their configuration is a necessary step in order to have cloud services running in

CN environments.

However, can modifications made on the middleware level, such as the overlay networks,

further enhance services in the global network? Does the introduction of social information

be an asset to the already gathered information from resources and services?



Chapter 5
Socially-enhanced Overlay Networks in

CN Micro-Clouds

In this chapter we investigate the middleware layer, and introduce into overlay networks,

as the main communication system, social information. The impact on the routing and

message dissemination can be enhanced for services that rely on user interaction, because

the knowledge introduced in the overlay network creation aggregates nodes that have

more in common, in this case nodes that require the same messages (or data).

In section 5.1 we begin by introducing a publish/subscribe system and reflect the

utilization of social information into the positioning of nodes within the overlay network.

Moreover, the use of a socially-enhanced overlay network enhances communication

and message dissemination, although we exclusively build upon a publish/subscribe

system, such a technique can be used for CN micro-cloud services, since services require

communication between instances and use overlay networks to achieve its own message

routing. In fact, in chapter 4 we discuss about service discovery using SERF, which

builds an overlay network to disseminate information about services that are operating

within the micro-clouds.

In section 5.2, we introduce the approach for gathering social information in Community

networks, and use to build an overlay network that optimizes services message dissem-

ination. The community network does not have a social network such as Facebook,

101
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Twitter, therefore the use of community of practices can be made to be similar to social

networks. The fact that CoPs share similarities with social networks, indicate that social

information can be obtain in a similar way towards understanding the relations of the

users, which can be centered in the user cooperation relationship instead of friendship as

with Facebook and other social networks.

The use of overlay networks to empower services is a well known technique to optimize

service communication, however the use of social information to guarantee nodes or peers

that share common interest (i.e. friendship, relationships, proximity to the content) is

still an open topic.

5.1 Socially-enhanced Overlay Networks

Publish/subscribe (pub/sub) mechanisms constitute an attractive communication paradigm

in the design of large-scale notification systems for Online Social Networks (OSNs). To

accommodate the large-scale workloads of notifications produced by OSNs, pub/sub

mechanisms require thousands of servers distributed on different data centers all over the

world, incurring large overheads. To eliminate the pub/sub resources used, we propose

SELECT - a distributed pub/sub social notification system over peer-to-peer (P2P)

networks. SELECT organizes the peers on a ring topology and provides an adaptive P2P

connection establishment algorithm where each peer identifies the number of connections

required, based on the social structure and user availability. This allows to propagate

messages to the social friends of the users using a reduced number of hops. The presented

algorithm is an efficient heuristic to an NP-hard problem which maps workload graphs

to structured P2P overlays inducing overall, close to theoretical, minimal number of

messages. Experiments show that SELECT reduces the number of relay nodes up to 89%

versus the state-of-the-art pub/sub notification systems. Additionally, we demonstrate

the advantage of SELECT against socially-aware P2P overlay networks and show that

the communication between two socially connected peers is reduced on average by at

least 64% hops, while achieving 100% communication availability even under high churn.
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5.1.1 Overview

One of the fundamental services for Online Social Networks (OSNs) is the real-time

delivery of notifications due to users’ social interactions. Notifications constitute one of

the primary ways social users first learn about the activity of their social friends or their

preferable sources (e.g. groups, pages). Twitter users generate on average 8,000 tweets

per second1 which amounts to 500 million of notifications per day from more than 300

million of active users. Thus, large-scale notification systems require to be scalable.

In the case of scalable pub/sub systems, such as Google Cloud Pub/Sub2, typically

massive corporate resources are required to accommodate large-scale workloads of social

notifications. Likewise, IBM deploys over a thousand servers on geographically distributed

data centers [40] to provide a high-quality pub/sub system. Moreover, with the advent

of the Internet of Things (IoT) the number of devices is estimated to reach 20 billion3

by 2020 [58]. Also, the integration of the IoT with social networks [59, 60] will increase

the required computational resources, further motivating research for more advanced

pub/sub overlay designs.

The above motivations attracted the attention of both academia [12, 11] and industry

[61] to decentralized OSNs (DOSNs) [62] and provide pub/sub systems for OSNs [40]

using Peer-to-Peer (P2P) networks [63, 64]. In DOSNs, social users are connected in a

P2P network and interact with their social friends using the P2P routing mechanism.

However, designing a scalable P2P pub/sub notification system for DOSNs requires four

main challenges to be addressed, as follows:

• Relay Nodes: A key characteristic of P2P pub/sub systems [38, 12] is that they

leverage a generic overlay network (e.g. DHT, tree, full-mesh) without projecting

the social graph in the P2P overlay network. Since social users are not always

directly connected in the P2P overlay network, the message dissemination in P2P

1http://www.statista.com/
2https://cloud.google.com/pubsub
3https://gartner.com/newsroom/id/3598917

http://www.statista.com/
https://cloud.google.com/pubsub
https://gartner.com/newsroom/id/3598917
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pub/sub systems relies on peers (also known as relay nodes) that may or may not

be interested for the message.

• High Traffic: Recent pub/sub systems [40] try to simplify the design of the

routing tree and focus on the construction of the P2P overlay network in order to

improve the efficiency of message dissemination. Each peer has a bounded number of

connections that can be maintained, the selection of which is accomplished without

leveraging the social graph and the social interactions. Hence, the generated P2P

overlay network presents load balancing problems, where a portion of the peers has

high traffic overhead against the rest of the peers, due to the high social interactions

and the absence of social integration to the design of the overlay.

• Dissemination Latency : Each peer in the P2P overlay network presents different

upload and download bandwidth characteristics. Since each peer has a bounded

number of connections, retaining a P2P connection with a poor bandwidth rate

increases the dissemination latency that affects the overall performance of the P2P

pub/sub system.

• Dynamic environment : It is essential for the success of the OSN to provide a

failure resilient P2P pub/sub system with minimum disruption to the communication

between social friends. The design of a churn-resistant P2P pub/sub system has

been studied in OMen [11]; however, OMen falls short of identifying the online

activity of each social user, which poses an additional latency overhead as the

establishment of a P2P connection requires a Multi-Path TCP connection [65].

In synopsis, the major issue that arises from current pub/sub implementations is that

they are oblivious to specific workloads which result from specific social structure and

interactions, as well as, connectivity restrictions (NATs, firewalls, and others).

To address the above challenges, we introduce a fully decentralized pub/sub system for

DOSNs, called SELECT. The proposed system organizes peers on a ring topology and

exploits both the social graph and the online activity of each social user to establish
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connections between peers. The intuition behind this is the construction of a P2P

overlay network that acts as a substrate for the pub/sub system with the minimum

number of relay nodes and the minimum communication interruption between social

users. Therefore, by harnessing the social network graph we are able to build an overlay

in which messages propagate towards the subscribers with minimum relay nodes in

between (while relay nodes may also be subscribers). SELECT is the first approach which

exploits the small-world properties by embedding it into the overlay networks’ ID space.

Thus, peers are placed in the same area based on their social proximity, establishing a

bounded and adaptive number of connections to peers. We consider our approach as

solving an NP-hard problem, where a P2P overlay is induced from a workload social

graph embedded into the identifier (ID) space. Thus, decentralized greedy routing is not

only possible but also very efficient and equivalent to routing in navigable small-world

networks [66]. In summary, we define the contributions this section as:

• A proposal for a full decentralization of a pub/sub system for DOSNs that exploits

both social graphs and online activities of the users. We use Locality Sensitive

Hashing (LSH) [67] and Cumulative Moving Average (CMA)4 to identify which

connections allow message propagation with minimum hops, as well as, which peers

potentially present better online behaviour over time.

• The description and evaluation of an ID re-assignment process which projects the

social graph on a P2P overlay network, minimizing the distance on the overlay

networks’ ID space.

• The SELECT algorithm, which creates a global overlay network that allows for

message propagation with minimum number of hops, taking advantage of peers

that present better online behaviour over time instead of relying on random peers.

SELECT is adaptive to dynamic environments with the use of novel recovery

mechanisms, applying re-routing when it is required.

4https://en.wikipedia.org/wiki/Moving_average

https://en.wikipedia.org/wiki/Moving_average
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• An evaluation and analysis by means of simulation and experimentation with

real-world data sets, in order to understand the value of each step of the proposed

approach and the performance gain in the pub/sub system.

To prove the efficiency of SELECT on pub/sub systems we designed and developed a

browser-based P2P pub/sub system5 using the free and open-source W3C standardized

protocol, WebRTC6. Based on our implementation we emulated the social behaviour

using real-world data sets of Facebook [68], Slashdot [69] and Google Plus [69]. To prove

the scalability of our proposed system, we also conducted simulations on a large-scale

data set with millions of users collected by Twitter [69]. We show experimentally that this

social graph exploitation reduces the number of hops required for dissemination over 64%

and the number of relay nodes over 89% against state-of-the-art approaches. Moreover,

SELECT maintains 100% communication availability by establishing connections on

peers that present better online behavior than other peers. Finally, the peers in the

proposed overlay network converge to a stable state in 75% fewer iterations than the

state-of-the-art approaches.

5.1.2 Background and Problem Statement

In this subsection, we provide an analysis of P2P networks and overlay construction,

relating to the node relay minimization problem and dissemination of information.

5.1.2.1 Peer-to-Peer Networks

A P2P overlay network consists of a set of N peers P(|P| = N). The identifiers of the

peers are assigned from an ID space I, on the unit interval I ∈ [0 . . . 1), using a uniform

mapping function (SHA-1). There exists a distance function dI(u, v) which indicates

the distance between peer u ∈ P and peer v ∈ P in the ID space I. Each peer p ∈ P
maintains short-range links Rs

p ⊂ P, that are peers with the minimum distance dI(u, v)

in the ID space I, and long-range links Rl
p ⊂ P have been established with a probability

5https://github.com/stefanosantaris/SelectDemo
6https://webrtc.org/

https://github.com/stefanosantaris/SelectDemo
https://webrtc.org/
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inversely proportional to the distance between the peers. The short-range links Rs
p and

long-range links Rl
p of each peer p form its routing table Rp = Rs

p +Rl
p, where |Rp| � N

(usually |Rp| = logN); this is the case in latest P2P models [70] where the optimization

stands in minimizing connections instead of establishing new connections to peers.

The lookup query from a peer p to a peer u is routed in a greedy fashion, i.e. peer p

selects the neighbor w ∈ Rp, that minimizes the distance dI(w,u) in the ID space I, to

forward the query. The lookup process forms an h-hop path p→+u with h = |p→+u| ≥ 1.

Based on the selection process of the links Rp, P2P overlay networks can guarantee that

the h-hop path is bounded in O(logN).

Moreover, peers are heterogeneous in terms of their connectivity characteristics. Different

peers present different bandwidth capabilities reflecting in different latency l between

peers, and affecting the rate at which a peer can send or receive packets. Therefore, the

propagation of messages from peer p to peer u can be given by l(p, u) =
∑h

i=1 li.

5.1.2.2 Publish/Subscribe for OSNs

A pub/sub system for OSNs consists of four basic entities: i) a social graph G = (V, E),

where V is the set of social users and E is the set of social connections; ii) a Publisher

set B ⊆ V of social users that produces the data; iii) a Subscriber set S ⊆ V that

comprises the publishers’ social friends and consumes the data; and iv) an interest

function f : S × B → {true, false}. A subscriber s ∈ S expresses his interest only on

the messages that a user b ∈ B produces if f(b, s) = true ∧ (b, s) ∈ E . When a publisher

b ∈ B posts a new message, this message needs to be delivered only to the interested

subscribers Sb = {s ∈ S|f(s, b) = true}.

A routing tree RTb is constructed in order to disseminate the message to all the subscribers

Sb. Thus, the edges of the routing tree connect social friends’ peers that receive and

forward the message until all subscribers receive it. However, an edge in the routing tree

RTb does not necessarily correspond to an existing connection in the P2P overlay network.
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Therefore, the dissemination path latency from a publisher b to all his subscribers Sb is

calculated as follows:

l(b,Sb) = max
s∈Sb

l(b, s) (5.1)

Furthermore, the relay nodes r ∈ RTb are viewed as the edges of the routing tree RTb in

the path between a publisher and its subscribers. Therefore, depending on the social

graph, relay nodes can be subscribers themselves.

5.1.2.3 Problem Definition

The focus of our work is to minimize the number of relay nodes used to disseminate

messages on pub/sub systems, as well as to reduce the dissemination latency, even under

node churn.

Although the routing tree RT guarantees the dissemination of messages to all the social

friends, it suffers from high number of relay nodes. This happens because social users

that are connected in the routing tree RT are not necessarily directly connected in the

P2P overlay network. Hence, each edge in the routing tree consists of O(logN) relay

nodes. Replacing the connections of the routing table Rp with the subscribers s ∈ Sp
does not provide guarantees that the h-hop path would be bounded in O(logN), while

also not guaranteeing communication between any two arbitrary peers in the P2P overlay

network. We need to ensure that the propagated messages will be reached by all the

social user’s friends regardless of the structure of the social network.

Therefore, a P2P substrate that minimizes the number of relay nodes in the routing tree

RT is required. We define the problem of relay nodes minimization as follows:

Given a publisher b and a set of subscribers Sb, each peer p ∈ P aims to establish links in its

routing table Rp such that the routing tree among the publisher b and the subscriber s ∈ Sb
contains the minimum number of relay nodes Sb = {s ∈ S|f(s, b) = false}, granting a

near theoretical optima minimal solution.
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Table 5.1: A peer’s p local state, listing of local variables for a given peer.

Dp the peer’s p identifier

Rp a set of peers’ identifiers that the peer p is connected

Cp a set of identifiers of the peers that host the peer’s p social friends

Lp a set of connections that the peer v ∈ Rp maintains

5.1.3 The SELECT System

SELECT aims to construct a global P2P overlay network that establishes connections

between peers that host social friends. Moreover, SELECT seeks to organize socially-

connected peers in close distance in the overlay network, in order to reduce the number

of hops required for the routing process. The intuition behind this is to provide a P2P

substrate that reduces the number of hops between two socially-connected peers as well

as to maintain the minimum number of relay nodes of the routing tree RTb for each

publisher b ∈ B. Finally, the goal of SELECT is to provide a pub/sub service that has a

low latency impact.

5.1.3.1 System Model

Our system model consists of a set of peers P and a set of social users V. Social users

join the social network either by invitation or they subscribe independently. Each social

user u ∈ V is mapped onto only one peer p ∈ P. We assume that peers communicate

with each other over reliable channels (e.g. TCP connections) that bound the number of

connections each peer maintains.

Each peer maintains a set of four local variables listed in Table 5.1. The first variable,

Dp is the identifier of the peer p and defines the position of the peer p in the ID space

I ∈ [0 . . . 1). SELECT seeks to organize the socially-connected peers in close distance in

the overlay network. Thus, each peer p modifies its identifier Dp in order to minimize the

distance dI(p,u) to its most important peer u. We measure the importance between two

peers and use it as a distance factor between social users, the strength of ties between

two users in the social graph, by using the number of common friends that the two
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Figure 5.1: Evaluation of the strength of ties between individuals using different centrality
measures.

nodes share in the social graph. In Fig. 5.1 we compared how the effect of different

centrality measures affect the results of SELECT, however these results can depend on

the social network, nevertheless the use of mutual friendship is chosen in respect to the

lower estimation (from other centrality measures) for the number of hops between nodes.

Therefore, we define the social strength between two peers p and u as follows:

s(p, u) =
|Cp ∩ Cu|
Cp

where p,u ∈ V (5.2)

The second variable, set Rp, constitutes the routing table of the peer p. The third

variable, set Cp, comprises the identifiers of the peers that host its friends in the social

graph. The number of connections that each peer establishes is usually lower than the

number of friends that each social user maintains in the social network. This is due

to the fact that most of the social friends peers have either equal connections to the

same friends or a lower number of friends. Thus, in most cases, |Rp| � |Cp|, given that
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in social networks the number of friends is much higher than the connections that are

required. Also, the set Cp contains only the identifiers of the peers which enhance the

lookup process without establishing direct connections to all the peers of the set Cp. The

main goal of SELECT is to establish connections with the maximum number of each

social users’ neighborhood, while minimizing communication with the rest of the social

friends by maintaining a minimum number of hops.

Figure 5.2: The three-layer architecture of SELECT.

The fourth variable, set Lp, contains the identifiers of the peers that each peer u ∈ Rp

maintains. The existence of this variable is similar to the lookahead process of Symphony

[64]. This lookahead set enhances the routing process as it forwards the message to the

neighbor that affirms the connection with the targeted peer.

In our model, each peer establishes its own connections to other peers, according to the

social networks’ friendship mapping. In overall, all peers will lay in a ring topology shared



112

to all peers in order to gain routing performance across the whole network, by minimizing

the relay nodes and establishing social routing instead of plain network routing.

5.1.3.2 SELECT System Overview

We implement SELECT using a three-layer architecture, as shown in Figure 5.2, where

the bottom layer provides the social network; the middle layer provides a topology

construction mechanism, based on each peer’s position and its social neighbourhood, that

creates the global overlay network; and the top layer refers to the topology construction

protocol where pub/sub mechanism is executed.

The SELECT system consists of three main processes:

– Projection : SELECT associates the position of each peer that hosts a social user

in the overlay network (Step 1 in Figure 5.2). The position of each peer is used to

define the distance between two socially connected peers in the ID space I. When a

peer joins the overlay network, the local variables of Table 5.1 are initialized (Step

1’).

– Identifiers Reassignment : SELECT evaluates the peers position in the ID space

and reassigns the identifiers on a round-based basis. Specifically, each peer leverages

the social neighborhood information and modifies its identifier in order to reduce

its distance in the overlay network with its social friends (Step 2).

– Peer Connections Establishment and Reassignment :

While SELECT organizes the socially connected peers in the same area in the ID

space I, each peer establishes direct connections to peers that are also connected

in the social network (Step 3). A link reassignment process is performed (Step

3’) to ensure that each social user communicates with the maximum number of

his social friends in the minimum required hops, as well as with the minimum

dissemination latency.
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Both peers’ identifier and connection reassignment processes use a gossip-based peer-

sampling methodology to evaluate the topology defined. When the overlay network is

constructed, SELECT applies the pub/sub mechanism to construct the routing tree RTb

for the publisher b ∈ B.

5.1.3.3 Projection and Identifier Reassignment

The projection process (Step 1 in Figure 5.2) determines the peer’s initial position that

is perceived by the underlying overlay network. Since social users join the social network

either by invitation or by subscription, this directly impacts the peer’s initial position

(Step 1’ in Figure 5.2).

As shown in Algorithm 2, the projection of the social user in the overlay network is

specified based on the subscription type in the overlay network (line 1). When a social

user is subscribed by invitation, his assigned identifier Dp reduces the distance (line

3) between the peer u and the peer p that hosts the invited social user. Otherwise, a

random identifier is assigned to the peer p using a uniform hash function (line 5).

As the social network grows, social users create new friendships and the social strength

in Equation 5.2 between two users is modified. SELECT strives to reduce the distance in

the ID space I between social friends. In particular, each peer modifies its identifier in

order to minimize the distance in the overlay network, to be near the peer’s ID which

hosts the social friend that has the highest social strength (Step 2 in Figure 5.2).

The new position choice is the centroid of all its social friends position. However, this

does not work in social users with high degree, in which the social strength between

friends may significantly differ. Thus, social friends can be located in a totally different

position in the ID space I. To address this, we use the centroid between the two social

friends that maintain the highest social strength value, as presented in Algorithm 3.

The social strength of each user is calculated using a gossip-based peer-sampling protocol,

as shown in Algorithm 4 and Algorithm 5. Every peer p periodically (e.g. every 10

seconds) selects a random social friend u and sends its social neighborhood set Cp (line
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3 in Algorithm 4). The peer u compares the received neighborhood set Cp with its

neighborhood set Cu (line 4 in Algorithm 5) and returns the number of mutual friends to

the peer p (line 6 in Algorithm 5).

Complexity Analysis : For each peer p ∈ P , the initial position in the overlay network

is calculated in O(1), since the identifier is assigned either uniformly or based on the

invited peer’s identifier. Thus, the initial projection of the social graph in the P2P

topology requires O(N) complexity. The reassignment of the peers’ identifiers based on

the peer-sampling protocol requires a O(|Cp|) complexity for each peer, where |Cp| � N .

In modern social networks usually |Cp| is on the range of hundreds of social friends, while

the size of the network N is billions of users [69]. The total complexity of the Projection

and Identifier Reassignment algorithm is

O(N · |Cp|) (5.3)

Procedure 2 Peer Identifier Assignment

Input: v ∈ V newly registered social user
Output: Dp peer’s identifier
1: if Cv 6= ∅ then
2: u ← the peer of the social user that invited v
3: Dp ← minDdI(u, v)
4: else
5: Dp ← uniformHash(v)
6: end if
7: Return Dp

Procedure 3 Peer Identifier Reassignment

1: Procedure evaluatePosition()
2: u← peer with the highest social strength in Cp;
3: v ← peer with the second highest social strength in Cp;
4: Dp ←

|dI(u,v)|
2 ;

5: end Procedure
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Procedure 4 Peer-sampling - Active Thread

1: Procedure ExchangeRT()
2: socialFriend ← getRandomSocialFriendPeer();
3: Send < Cp,Rp > to socialFriend;
4: Receive < nMutual,M > from socialFriend;
5: socialFriend.nMutual = nMutual;
6: socialFriend.M = M;
7: Dp ← evaluatePosition();
8: Rp ← createLinks();
9: end Procedure

Procedure 5 Peer-sampling - Passive Thread

1: Procedure ResponseExchangeRT()
2: Receive < Cu,Ru > from socialFriend;
3: nMutual ← |Cu.merge(Cp)|;
4: socialFriend.nMutual ← nMutual;
5: M ← Cu.constructFriendshipBitmap(Rp);
6: Send < nMutual,M > to socialFriend;
7: M ′ ← Cp.constructFriendshipBitmap(Ru);
8: socialFriend.bitMap = M ′;
9: Dp ← evaluatePosition();

10: Rp ← createLinks();
11: end Procedure

5.1.3.4 Peer Connections Establishment and Reassignment

SELECT utilizes a gossip-based peer-sampling service to construct the topology in the

overlay network. Each peer periodically acquires its social neighbor’s connections in the

overlay network and evaluate its current established connections (Step 3 in Figure 5.2).

Specifically, each peer p seeks to establish direct connections with the maximum number

of its social neighborhood Cp.

Each peer is allowed to accept only K incoming links, while maintaining two short

range outgoing links Rs
p with his successor and predecessor in the overlay network in

order to create a ring topology and K long range outgoing links Rl
p with its social

friends. The intuition behind the K incoming links is to avoid having peers that have
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too many connections, because other peers seek to connect to them, and consequently

present more traffic than others. When the K incoming links are established, the peer

accepts a new incoming connection if the new connection has better bandwidth capability

than the already existing connections. The K outgoing long range links are selected

by applying the Locality Sensitive Hashing (LSH) technique to the social neighbor’s

connections retrieved from the peer-sampling service (lines 3-6 and 2-8 in Algorithms

4 and 5, respectively). The LSH technique is used to choose the long range links from

different zones of the overlay and avoid link overlap in the overlay network. We consider

that the LSH family technique to be reliable in maintaining long range connectivity for

the overlay network.

The connection establishment mechanism is shown in Algorithm 6. We begin by indexing

the bitmaps of the social neighborhood in H buckets in the LSH index (lines 2 - 4). In our

algorithm, we consider that the number of buckets is equal to the number of long range

links defined (|H| = K). The reason for selecting |H| = K buckets in the LSH index is

to simplify the selection process of the direct connections. Peers, whose connections are

similar, will be indexed in the same bucket. This results in selecting only one peer in

each bucket, establishing at most K long range links.

The bitmap of u ∈ Cp is an array of size |Cp|, the values of which define the link existence

in Ru between two socially connected peers u ∈ Cp and v ∈ Cp, where u 6= v, as follows:

bitmap(u, v) =

1 if (u, v) ∈ Ru

0 if (u, v) /∈ Ru

While the bitmaps are indexed in the H buckets of LSH, in lines 5 - 18, we aim to select

one peer of each bucket h ∈ H to establish connection. However, not all buckets may

contain only one peer, as social friends tend to converge to similar connections. In order

to establish connections with the maximum number of the peer’s p social neighborhood Cp,

but also the minimum dissemination latency, we select the peer that attempts to establish

a connection using a picker (line 8), as shown in Algorithm 7. In doing so, we select
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the peer that achieves the maximum number of social connections and presents better

bandwidth capability in order to propagate the message with higher rate. Moreover, we

drop an already established connection (p, u) ∈ Rp with a peer u that presents similar

connections with newly established connection (p, v) ∈ Rp (lines 12-16) in Algorithm 5.

Procedure 6 Peer Links Reassignment

1: Procedure createLinks()
2: for u ∈ Cp do
3: LSHIndex(u.bitMap);
4: end for
5: for h ∈ H do
6: Ph ← peers assigned in the same bucket h;
7: if Ph 6= ∅ then
8: u← picker(Ph);
9: if (p, u) /∈ Rp then

10: Rp ← (p, u)
11: end if
12: for v ∈ Ph, v 6= u do
13: if (v, p) ∈ Rp then
14: Rp.remove(v);
15: end if
16: end for
17: end if
18: end for
19: end Procedure

Procedure 7 Picker Peer Connection
1: Procedure picker(Ph)
2: PSh ← sortPeers(Ph)
3: if (|PSh| > 0) && (PSh(0).bw < PSh(1).bw) then
4: return PSh(1)
5: end if
6: return PSh(0)
7: end Procedure

Complexity Analysis : The complexity analysis of the Connections Establishment and

Reassignment algorithm is analogous to the number of social friends |Cp| that each user
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maintains and the number of buckets |H| assigned on the LSH index. The peer-sampling

protocol aggregates the bitmaps in O(|Cp|) complexity. The index of the bitmaps in

|H| = K buckets requires O(|Cp| · log(|Cp|) ·K) complexity. The selection of the K long

range links using the LSH index is performed in O(K) cost. Summarizing, the total

complexity of the Connections Establishment and Reassignment algorithm for each peer

p ∈ P is

O(|Cp|2 · log(|Cp|) ·K2) (5.4)

5.1.3.5 Pub/Sub system

The pub/sub system utilizes the generated overlay network to create the routing tree

RTb for each social user b ∈ B and guarantees the delivery of the published messages to

all of his social friends Sb.

Following the lookahead technique of [64], each peer p maintains a lookahead set Lp of

connections that each peer u ∈ Cp maintains. Peer p uses the lookahead set Lp to create

the routing tree RTb and forward the message during the routing process. Each peer

monitors its routing table RTb and the lookahead set Lp and forwards the message to the

peer that guarantees the delivery of the message within 1 or 2 hops. If the peer u ∈ Sb
is not included in the routing table Rp and the lookahead set Lp, the peer v ∈ Rp that

minimizes the distance dI(v, u) is selected.

5.1.3.6 Recovery Mechanism

Peers join and depart the overlay network at unexpected rate (churn). Also, to maintain

the pub/sub reliability property for message delivery, we need to manage a routing table

that efficiently recovers from peers departure. In doing so, peers periodically request each

social friend of their routing table for their state. The availability of each peer is recorded

and their online behavior is calculated using the Cumulative Moving Average (CMA).

The intuition of using CMA is to identify the average online behavior of a social user

during the period of the last few days and ensure that the social user is a good candidate

for establishing a connection. Thus, the peer identifies if a connection is unresponsive
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Table 5.2: Four real-world data sets of social networks that include users information,
such as social connections and average degree.

Data Set Users Connections Average Degree

Facebook 63,731 817,090 25.642

Twitter 3,990,418 294,865,207 73.89

Slashdot 82,168 948,463 11.543

GooglePlus 107,614 13,673,453 127

because a social user is mostly offline or if it is a temporal connection failure. In doing

so, a peer p decides to keep an unresponsive connection to the peer u in order not to

create a chain of connections reassignment to the peers that are connected to the peer

p. In contrast, when a peer is unresponsive and its CMA value is low, we replace the

unresponsive peer with another peer from the same bucket of the LSH index (see Section

5.1.3.4). Using this approach, SELECT maintains direct connections with peers that

host social friends and publish a message on non-relay nodes while also being adaptive

to dynamic environments.

5.1.4 Evaluation

For our evaluation, we considered two types of experiments, one as a simulation and

another as a realistic environment. For the simulation experiments, we used the Gelly

Graph API7 which runs over the Apache Flink8 distributed data processing framework.

We ran our experiments on a Flink cluster with 20 nodes in order to provide a distributed

discrete event simulator suitable to conduct large-scale experiments with millions of peers.

For the realistic experiments, we used WebRTC to create the peers as browser-dependent

and deployed on a cloud infrastructure several VMs (in total 18 VMs are used). The VMs

contained several peers spread among each, hosting all the users in each data set. The

communication between peers was done through the network interface, which allowed to

emulate the latency between nodes and achieve a realistic environment.

7https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/gelly/index.html
8http://flink.apache.org/

https://ci.apache.org/projects/flink/flink-docs-master/dev/libs/gelly/index.html
http://flink.apache.org/
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The implementation of SELECT is performed using the vertex-centric iterative model

[71]. Specifically, in synchronized iteration steps, each peer produces messages to other

peers and updates their identifiers and their connections in the overlay network using the

SELECT algorithms.

Experiments are performed in evolving networks, where users join the overlay network

at different phases. We initiate our experiments by selecting a social user u ∈ V from

the data set at random. Thereafter, we insert into the social network a portion of the

user u’s social friends, following the model of [72]. Based on [72], social users establish

friendship connections at high rate in the beginning of the join process, and this rate

decreases exponentially over time. Therefore, at each iteration step, we select a registered

social user and insert into the social graph a number of her social friends that preserves

the exponentially decreasing rate of the model.

Additionally, we introduced the churn rate of each peer in the overlay network, following

the model of [73]. Specifically, at each iteration step, we select a number of peers based

on a log-normal distribution to be excluded from the overlay network. When the iteration

step is completed, the removed peers are recovered in the overlay network.

When the overlay network is constructed, we perform simulations of the pub/sub mecha-

nism to measure the number of relay nodes that exist on each routing tree. In order to

realistically simulate a real-time notification system in the social network, each publisher

posts messages at exponential rate following the model of [74].

The realistic experiments follow the same pattern as the simulation experiments, however

since each node has different bandwidth capabilities, different latency is applied for each

node and accounted in the analysis. Also, in the pub/sub system, packets of 1.2MB are

sent from the publishers to the subscribers.

5.1.4.1 Data sets

Our evaluation is performed with four real-world data sets, listed in Table 5.2. These

data sets cover a wide range of social graph features, from less connected graphs (Slashdot
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[69], Facebook [68]) to highly connected graphs (Twitter, Google Plus [69]), that enhance

the evaluation of our proposed approach on several graph types. Moreover, we conduct

experiments on the large-scale data set of Twitter in order to demonstrate the scalability

of our algorithm. The characteristics of the data sets are presented in Table 5.2.

5.1.4.2 Metrics

In order to measure the efficiency of SELECT, we use the following metrics:

• Number of Hops: The average number of overlay hops within the path between

two peers.

• Number of relay nodes: The average number of relay nodes that exists in the

pub/sub routing tree.

• Number of iterations: The average number of iterations required to organize

the peers in the overlay network.

• Percentage of messages: The percentage of messages that each peer forwards

in the dissemination tree.

• Latency: The average latency of communication between peers in the overlay

network, counting the latency between intermediate peers in a given path. Only

used for the realistic experiments, since simulations do not account with latency.

To validate our analysis, for each metric we report the average result out of 100 inde-

pendent trials to decrease the risk of statistical error. We consider these metrics to be

important to understand the behaviour of SELECT and the pub/sub system. Thus, be

able to compare the end results with other works while also giving feedback on the use of

SELECT for the domain of pub/sub systems.



122

5.1.4.3 Simulation Experiments

We compared SELECT with several existing pub/sub systems of different categories: i) a

pub/sub system over the Symphony P2P overlay network without any further modification

on the P2P topology; ii) Bayeux, a pub/sub system that organizes peers into a DHT in

a P2P overlay and builds a spanning tree for each topic to propagate the messages; iii)

Vitis, a gossip-based pub/sub system that organizes the subscribers into clusters; and iv)

OMen, that constructs TCOs to disseminate information on each topic.

As the number of direct connections increases, we observe a substantial reduction, over

90%, on the average number of hops required for the communication between two socially-

connected peers. However, as the number of links used overcomes the logarithmic number

of peers in the overlay network, no further improvement is performed. Based on the

above observation, for the rest of the experiments, we assign log2N direct connections on

each peer in order to construct a P2P topology.

Figure 5.3 presents the average number of hops required for a publisher to propagate

information to each one of his subscribers. As the network grows, the average number of

hops increases logarithmically. However, SELECT performs with 76%, 83%, 75% and 85%

fewer hops compared to the pub/sub mechanism built over the Symphony overlay network

and for the Facebook, Twitter, Google Plus and Slashdot data sets, respectively. This

occurs due to the fact that Symphony’s construction of long range links is completely

oblivious to the social graph and the publication workload. In contrast, SELECT

establishes connections between socially-connected peers, and as such subscribers are 1 or

2 hops away from the publisher. Compared to the state-of-the-art pub/sub approaches,

SELECT achieves more than 43%, 61%, 41% and 65% reduction for the Facebook,

Twitter, Google Plus and Slashdot data sets, respectively. This happens because peer

identifiers on SELECT are mutable and socially-connected peers are clustered in the

same region in the ID space. Hence, a small-world network is accomplished on SELECT,

in contrast to the presented approaches where an immutable identifier policy is applied.
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Figure 5.3: Number of hops per social lookup for the (a) Facebook, (b) Twitter, (c)
Google Plus and (d) Slashdot data sets.

Figure 5.4 presents the impact of SELECT on the number of relay nodes that exist in the

routing path between publisher and subscriber. SELECT presents over 98% reduction

on the number of relay nodes for all data sets, in comparison to the Symphony, Bayeux,

Vitis and OMen approaches. This happens because in Symphony, Bayeux, Vitis and

OMen the probability of two socially-connected users to be also connected in the overlay

network is extremely low. In contrast, SELECT leverages the social graph and establishes

connections between socially-connected peers that reduces the number of relay nodes in

the routing path between publisher and subscriber.
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Figure 5.4: Number of relay nodes per pub/sub routing path for the (a) Facebook, (b)
Twitter, (c) Google Plus and (d) Slashdot data sets.

In Figure 5.5, we investigate the balance of the load that each peer presents, by measuring

the percentage of messages that each peer forwards in the routing tree against the degree

of the peer. Figure 5.5 indicates that SELECT provides better load balancing than

Symphony, Bayeux, Vitis and OMen approaches. This happens because Symphony and

Bayeux are agnostic to the social network dynamics, and thus information propagation

converges to the peers that present high social degree. In contrast, Vitis and OMen

leverage the social network dynamics but the peer connection strategy that they follow

emphasize on connecting peers with high social degree. SELECT presents more than
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Figure 5.5: Messages forwarded per social degree in a pub/sub routing tree for the (a)
Facebook, (b) Twitter, (c) Google Plus and (d) Slashdot data sets.

60%, 73%, 56% and 46% improvement against Symphony, Bayeux, Vitis and OMen

approaches for the Facebook, Twitter, Google Plus and Slashdot data sets, respectively.

The total number of iterations required to establish the connections between peers, are

presented in Figure 5.6. Symphony and Bayeux are excluded from this set of experiments

as they provide no iterative algorithms. Based on the reporting results in Figure 5.6 we

observe that SELECT converges in significantly lower number of iterations than Vitis

and OMen. This observation is due to the fact that Vitis and OMen initially organize

the peers following a standard DHT-based overlay network and optimise the connections
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Figure 5.6: Number of iterations required to construct the overlay. Symphony and Bayeux
approaches are excluded as they provide no iterative connection establishment process.

when the overlay network is formed. Thus, connections are established between non

socially-connected peers and the gossip algorithm applied requires more iterations in order

to identify the socially-connected peers. In contrast, SELECT establishes immediately

the connections between peers that are socially-connected and thereafter optimises the

connections in order to improve the information propagation. This results in a lower

number of iterations to organize the peers since most of the peers’ connections are already

to a socially-connected peer.

Finally, in Figure 5.7, we present the impact of the unexpected join and leave of peers

in the relay nodes between two socially-connected peers. In this set of experiments we

ran a simulation for over ten hours, where in each second a random number of peers

depart or join the network. The total number of peers that are available in the P2P
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Figure 5.7: The impact of churn in the data availability during the information propaga-
tion. Dash line represents the node churn and continuous line the availability.

overlay network cannot be less than half of the overall social network. Based on this

experiment, we observe that each peer efficiently replaces the unresponsive connection

with another peer that presents similar connections based on the LSH index. Thus, the

routing process maintains 100% data availability in all data sets.

5.1.4.4 Realistic Experiments

In the realistic experiments, we perform the comparison with other pub/sub systems, as

Symphony, Bayeux, Vitis and Omen, as described in the previous experiments.

Towards understanding the behaviour of our algorithm when latency is applied, we start

by introducing an initial experiment on simultaneous connectivity. The peers join a

network and connect to a central peer, without applying any selection algorithm. Thus,

the central peer is connected to all others. Afterwards, the central peer creates a data

fragment of 1.2MB (average image size) and sends to all its connections simultaneously.

In our findings when increasing the number of connections there is a linear increase in
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Figure 5.8: Average latency of data dissemination in the pub/sub routing tree for the (a)
Facebook, (b) Twitter, (c) Google Plus and (d) Slashdot data sets.

the total time for transfers. Therefore, we can establish that an issue is not the number

of connections to be established, but the simultaneous transfers to peers.

Figure 5.8 presents the latency for message dissemination between the publishers and

their subscribers. At first, without selection algorithm (random), for each of the data

sets we find that the peers connectivity can grow exponentially making the dissemination

process costly in terms of timing. When applying SELECT, the overlay becomes latency

aware and therefore the dissemination latency has a small *linear growth* accommodating

more peers in the overlay without sacrificing dissemination time.

Figure 5.9 presents the distribution of the identifiers after applying SELECT, for each of

the data sets. We determine that SELECT rearranges the overlay in such a way that
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Figure 5.9: Identifiers distribution among the network for the (a) Facebook, (b) Twitter,
(c) Google Plus and (d) Slashdot data sets.

the nodes distances are maintained as low as possible while still being able to reach

all of the network. In fact, we can observe that small groups of nodes are within the

same regions, which aggregate the socially-connected nodes without losing connectivity

between regions.

5.1.5 Discussion

Our approach to disseminate data in pub/sub systems relies on the social network

connections. Due to the fact that state-of-the-art approaches rely on different aspects of

the network for their optimization, it is hard to provide a fair cost comparison between
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them and the SELECT algorithm. We clearly see from our experimental results that the

actual costs come from the added social information which is necessary to create the

friendship graph in order to augment the global overlay.

We assure the correctness of our approach by grounding it in a ring topology, since it

gives us the ability to continue sending messages to all peers and guarantee that all

nodes are able to receive them. Other topologies, such as mesh, tend to create isolated

communities of nodes. Therefore, the use of other topologies may not guarantee the same

results when applying different social networks.

We also show that the issue of simultaneous data transfers may degrade the performance

of a peer when disseminating concurrent messages. This issue can be optimized by having

more than one paths to the subscribers in order to guarantee the transmission; however,

it is unlikely to find paths of the same length and latency stability.

Finally, we can observe that SELECT achieves its uni-dimensional network construction in

real world environments very successfully and without compromising any of the required

large-scale pub/sub properties. This proves that SELECT is fully applicable on OSNs

in real world settings, although a geographically distribution study would augment our

findings.

5.1.6 Summary

In this section, we address the problem of relay nodes in a pub/sub system for social

notifications and our solution comprises the creation of SELECT - a distributed pub/sub

system. We design a P2P overlay network that exploits the social graph to organize

the peers in an overlay network and establish connections between socially-connected

peers. Using a gossip-based peer sampling service, SELECT reduces the number of hops

required to communicate two socially-connected peers.

Additionally, the constructed routing trees in the pub/sub system exhibit the minimum

number of relay nodes. We evaluate SELECT in simulated and realistic environments

using four real-world data sets and highlight the performance of SELECT against state-
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of-the-art approaches. Modern social networks, such as Facebook, Twitter and Spotify,

have to propagate a vast amount of notifications. Consequently, to account for the fact

that such notification systems need to offload processing from their dedicated resources

it is worth to consider the implementation of SELECT that reduces the number of relay

nodes, while maintaining 100% communication availability.

However, how can we integrate SELECT in CN micro-clouds? Are there explicit relations

between people that allows to have the same information as with social networks?

5.2 Socially-aware Micro-Cloud Services in Community Net-
works

Community networks are a growing network cooperation effort by citizens to build and

maintain an Internet infrastructure in regions that are not available. Adding that, to

bring cloud services towards community networks, micro-clouds were started as an edge

cloud computing model where members cooperate with resources. Therefore, enhancing

routing for service communication in CNs is an attractive paradigm which benefits the

infrastructure. The problem faced is a growing consumption of resources for dissemination

of messages in the community network environments. This is due to the fact that services

build their overlay networks oblivious to the underlying workload patterns which arise

from social cooperation in community networks. Furthermore, CNs do not have an explicit

social network or social interactions. Therefore, the use of Community of Practice (CoPs)

as the social information would grant the required social information to understand the

cooperation that exists within CN micro-clouds.

In this section we induce SELECT with the information that comes from CoPs which

enhances the creation of overlay networks for CN micro-cloud services. Social information

is based on the cooperation within community networks, by exploiting the community of

practice social aspects.

Our work, organizes the peers in a ring topology and provide an adaptive P2P connection

establishment algorithm where each peer identifies the number of connection needed, based
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on the social structure and user availability. Experiments show that SELECT reduces

the number of relay nodes up to 89% using the CoP information versus state-of-the-art

pub/sub notification systems given as baseline, using social networks information.

5.2.1 Overview

Community networks can be viewed as community of practice (CoPs), where users

collaborate to fulfill common goals. In large networks, such as Guifi.net with more than

35.000 nodes, collaboration is done mostly within areas, or groups of people instead of

the entire network. Also, these networks present challenges to the members, in which

members contribute towards collaborative goals, such as adding new devices (antennas,

routers) to increase network capacity, or by adding new services to the network (Internet

proxies, FTP, camera videos)9.

Community of practice (CoP) is a common form of people gathering and completing

tasks towards a common goal [75]. The perspective of collaboration is an important step

in developing ideas or infrastructures that support said goals. In this respect, community

networks are then viewed as CoP applications when it comes to setup network devices,

augmenting the network abilities or even supporting new cloud services at micro-cloud

levels. CoP can also give a perspective of social interaction between members of the

network, which can help towards optimizing the network routing and infrastructure built

by the members.

The idea of edge cloud computing brings forward the micro-clouds in community networks,

in such that, each area of the network collaborate to minimize services requirement to

outside resources. To further attempt to optimize such solutions, we see an adaptation

for service deployment according to network properties [76].

To complement the CN micro-clouds, we need to take into account the social behaviour

of the members, in which the CoP takes its role as the compulsory environment towards

understanding how people behave in the network and the expected behaviour of the

9http://guifi.net/node/3671/view/services

http://guifi.net/node/3671/view/services
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services in respect to the social properties provided. The level of interaction, and

collaboration between people need to be respected and transpose towards the service

behaviour in order to have a fair system and to motivate further interest in the services.

We find that building CN micro-clouds can be a solution to minimize the dependency to

the outside network (Internet) within CNs, which is the majority of the traffic. In fact,

with the broader use of micro-clouds such networks can minimize the Internet interaction,

favouring services that are already inside, diminishing the traffic towards the Internet.

Issues also arise as the CN micro-cloud services come into focus, such as their performance

with constrained devices; the communication latency in both networks; or the motivation

towards using newly created services over well-established Internet services. We can also

establish that service routing is an important step towards optimizing services, while

making them attractive to members. However, such routing is only made by looking

towards the network itself, disregarding the social interactions.

This work comes to aid in the optimization of overlays within CN micro-clouds, by

utilizing CoP information to build and optimize the relay nodes when dissemination

of information is done. Services within the CNs micro-clouds are mainly focus on a

P2P dissemination and run with constrained devices [77, 21]. Therefore, with the use of

CoP information as the social support we aim to build overlay networks that prioritizes

information according to how users contribute in the network. Nevertheless, all nodes

should be guaranteed that they can receive their fair share of the services. The resulting

overlay created through SELECT in CN makes the dissemination of data through the

nodes that contribute more, without losing those that contribute less.

By applying SELECT in CN on services in micro-clouds, we need to consider that each

node (or user) contributes to the community in varied ways, such as, with network links,

devices, or capital to construct area antennas or faster links. However, we see that

each user may not be concerned in utilizing all services available in the micro-clouds

in the same way, therefore, we can establish contribution as a proponent towards data

dissemination of each service.
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In summary, we define our contributions as:

• A proposal for an optimization of service overlays within CN micro-clouds, that

exploits both social graphs and cooperation between members, by making use of

community of practice information as the main source for relationships between

users.

• The description and evaluation of the SELECT algorithm, that projects the social

graph on P2P overlay network, minimizing the distance on the overlay networks’

ID space, when using CoP information as alternative to social networks.

• An evaluation and analysis by means of simulation environment, in order to

understand the value and viability of using CoP information for enhancing the

service overlays in micro-clouds.

To prove the viability and scalability of our proposed system, we used as baseline

the results from large-scale data sets with thousands to millions of users collected by

Facebook and Twitter used in section 5.1.4. We show experimentally that this social

graph exploitation reduces the number of hops required for dissemination over 64% and

the number of relay nodes over 89% against state-of-the-art approaches. Moreover, we

compare our previous results with experiments with CoP information gathered from CNs,

where we see that the results are in the same range as with social network information,

and thus adding its viability to use within CN micro-clouds.

5.2.2 SELECT in CN System

SELECT in CN aims to construct a global P2P overlay network that establishes con-

nections between peers that host social connections, to be used within CN micro-clouds.

Moreover, SELECT in CN seeks to organize socially-connected peers in close distance

in the overlay network, in order to reduce the number of hops required for the routing

process. The intuition behind this is to provide a P2P substrate that reduces the number

of hops between two socially-connected peers as well as to maintain the minimum number
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of relay nodes of the routing tree RTb for dissemination of data. Finally, we aim to

improve service overlays networks within CN micro-clouds while having a low latency

impact.

5.2.2.1 Community of practice

The information gathered from CoP differs from usual social networks in which instead

of relationships between users (as friends, friends of friends) it is used the concept of

interactions between people (cooperation between members). We exploit the mailing

lists (as the alternative to social networks) to establish interactions between people

and understand how people cooperate. Therefore, by establishing the relations as the

cooperation of the users, it is an easier process to identify main users, users that cooperate

more or less with others.

The mailing list information was gathered from the Guifi.net mailing lists10. We assume

that the mailing lists are used exclusively for cooperation within the network and network

enhancement. Thus, users interact with each other in a variety of cooperation projects,

in examples we find the installation of new routers/devices, and services to be used by

the community as topics on the mailing lists. From such lists we identified the users (by

email) and crossed referenced all the posts in order to establish common links between

users. Therefore, establishing the strength of cooperation for each user, when they appear

in different threads. Also, the lists are mainly separated for geographically separate

locations, and thus we can add users that collaborate between different locations, and

those that only cooperate within the same region. Other types of CoP should be usable

as long as relations can be established between members, such is the case of real-life

meetings, in which members come together to discuss and even deploy devices in the

field.

The number of users found are a small percentage of the total users of the network, since

only some of the people cooperate with others by using mailing lists. We find that most

10https://llistes.guifi.net/sympa

https://llistes.guifi.net/sympa
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people tend to install their devices without much guidance and let the network itself

automatically configure routing and cooperation with other devices. Parts of the network

also use real life meetings for cooperation between members.

However, we can say that CoP over CNs follow the small world properties, where clustering

coeficient is not small while the distance between nodes grows logarithmically.

The detailed explanation of the Select algorithm is in subsection 5.1.3. The modifications

made on the system were exclusively in the social information gathered. Thus, instead of

using the strength of ties between users, we focus on the cooperation between members

of the CNs.

By using the mailing lists of community networks, we gather each pair of members

that communicates with each other, strengthening their relation when found in multiple

threads Nt. Therefore, we define the social strength between two peers p and u as follows:

s(p, u) =
|Cp ∩ Cu| ∗ Nt

Cp
, p, u ∈ V (5.5)

As CoP grows, social users interact more often and the social strength in Equation 5.5

between two users is modified. The goal is to reduce the distance in the ID space I
between social users. As such each peer modifies its identifier and moves closer to the

peer that hosts a collaboration (social peer) with higher social strength.

5.2.3 Evaluation

For our evaluation, we consider previous experiments done with SELECT and social

networks data sets, such as Facebook and Twitter, as baseline and the experiments

with Guifi.net mailing lists as the community of practice information. The simulation

experiments, were done with the use of Gelly Graph API11 running over the Apache

Flink12 distributed data processing framework. The experiments were run on a Flink

11https://ci.apache.org/projects/flink/flink-docs-master/libs/gelly_guide.html
12http://flink.apache.org/

https://ci.apache.org/projects/flink/flink-docs-master/libs/gelly_guide.html
http://flink.apache.org/
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Table 5.3: Four real-world data sets of social networks, that includes users information
such as social connections and average social degree.

Data Set Users Connections Average Degree
Facebook 63,731 817,090 25.642
Twitter 3,990,418 294,865,207 73.89

CoP Guifi 3016 16,471 10.9

cluster with 20 nodes in order to provide a distributed discrete event simulator suitable

to conduct large-scale experiments with thousands to millions of peers.

Experiments are performed in evolving networks, where users join the overlay network at

different phases. We initiate our experiments by selecting a social peer u ∈ V from the

data set at random. Thereafter, we insert into the social network a portion of the user

u’s relationships, following the model of [72]. Therefore, at each iteration step, we select

a registered social user and insert into the social graph a number of her social peers that

preserves the exponentially decreasing rate of the model. The use of CoP graph, is done

in the same manner as with social networks, in which relationships are added to the users

with each iteration.

5.2.3.1 Datasets

Our evaluation is performed with three real-world data sets, listed in Table 5.3. These

data sets cover a wide range of social graph features, from less connected graphs as

Facebook [68] to high connected graphs as Twitter[69], which enhance the evaluation of

our proposed approach on several graph types. Moreover, we conduct experiments on

CoP-Guifi data set, based on the mailing lists information gathered. The characteristics

of the data sets are presented in Table 5.3.

5.2.3.2 Metrics

In order to measure the efficiency of SELECT in CN, we use the following metrics:
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• Number of Hops: The average number of overlay hops within the path between

two peers.

• Number of relay nodes: The average number of relay nodes that exists in the

pub/sub routing tree.

To validate our analysis, for each metric we report the average result out of 100 inde-

pendent trials to decrease the risk of statistical error. We consider these metrics to

be important to understand the behaviour of SELECT in CN when different social

information is used, and be able to compare the end results with other works while also

giving feedback on the use of SELECT in CN for the domain of community networks.

The metrics reflect the efficiency of the overlay network, however it does not account

with the underlay network effect.

5.2.3.3 Simulation Experiments

We compared our results with several existing pub/sub systems of different categories:

i) a pub/sub system over the Symphony P2P overlay network without any further

modification on the P2P topology; ii) Bayeux, a pub/sub system that organizes peers into

a DHT P2P overlay and build a spanning tree for each topic to propagate the messages;

iii) Vitis, a gossip-based pub/sub system that organizes the subscribers into clusters; and

iv) OMen, that constructs TCOs to disseminate information on each topic.

As the number of direct connections increases, we observe a substantial reduction, over

90%, on the average number of hops required for the communication between two socially-

connected peers. However, as the number of links used overcomes the logarithmic number

of peers in the overlay network, no further improvement is performed. Based on the

above observation, for the rest of experimentation, we assign log2N direct connections

on each peer in order to construct a P2P topology.

The results taken as baseline in Figure 5.3(a) and (b), explained in more detail in

subsection 5.1.4 presents the average number of hops required for a publisher to propagate
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Figure 5.10: Comparison of Number of hops per social lookup obtained with the use of
Facebook, Twitter data sets and CoP-Guifi information.

Figure 5.11: Comparison of Number of relay nodes per pub/sub routing path obtained
with the use of Facebook, Twitter data sets and CoP-Guifi information.

information to each one of his subscribers. As the network grows, the average number
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of hops increases logarithmically and we see a decrease of 76% and 83% less hops

compared to the pub/sub mechanism built over the Symphony overlay network and

for the Facebook and Twitter data sets, respectively. This occurs due to the fact that

Symphony’s construction of long range links is completely oblivious to the social graph

and the publication workload.

In contrast, SELECT establishes connections between socially connected peers, and as

such subscribers are 1 or 2 hops away from the publisher. Compared to the state-of-the-

art pub/sub approaches, SELECT achieves more than 43% and 61% reduction for the

Facebook and Twitter data sets, respectively. This happens because peer identifiers on

SELECT are mutable and socially connected peers are clustered in the same region in

the ID space. Hence, a small-world network is accomplished on SELECT, in contrast to

the presented approaches where an immutable identifier policy is applied.

Figure 5.10 presents the use of CoP information against using social networks, and the

we show that the average number of hops is within the same values as in social networks.

The use of CoP information as an alternative to social network information, does not

impact the construction of the overlay network, in respect to using cooperation as the

relation between users. Furthermore, although the number of users within the data set

is smaller in comparison with larger social networks, the tendency of the results is very

close (within a 1 hop on average) to previous results using social network data sets.

The results taken as baseline in Figure 5.4(a) and (b), explained in more detail in

subsection 5.1.4 presents the impact of SELECT on the number of relay nodes that exist

in the routing path between publisher and subscriber, and we see a reduction of over

98% on the number of relay nodes for all data sets, in comparison to the Symphony,

Bayeux, Vitis and OMen approaches. This happens because in Symphony, Bayeux, Vitis

and OMen the probability of two socially connected users to be also connected in the

overlay network is extremely low. In contrast, SELECT leverages the social graph and

establishes connections between socially-connected peers that reduces the number of relay

nodes in the routing path between publisher and subscriber.
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Figure 5.11 presents the comparison between Facebook and Twitter against using the

CoP information, and in the results obtained we see that the average number of relay

nodes in the overlay network maintains within the same values as our baseline using

social networks. Thus, using CoP information can be used with the same results as with

social networks, however, the users that are not connected through the CoP are not

represented within the information which can make the number of relays and hops higher

on average.

5.2.4 Discussion

Our approach to P2P overlay optimization in community networks relies on the CoP

connections provided by SELECT algorithm. Although it is not possible to provide a

fair cost comparison between state-of-the-art approaches and SELECT algorithm due

to the fact that all of them rely on different aspects of the network, we however clearly

see from our experimental results that the actual costs are the added social information

necessary to create the relationship graph in order to augment the global overlay.

In respect to community of practice information, the difference of number of users is

because of the network itself having less members than Online Social networks. Therefore,

in our experiments the comparison is as close as possible to the maximum amount of users

in CoP graph. However, we can definitely say that our approach has growth potential

even when using CoP information. Furthermore, an extended study on different types of

collaborative users is necessary when including all members of community networks, in

such that all social peers can minimize their own routing towards other peers, without

being randomized within the overlay.

The use of SELECT, with micro-cloud services in community networks is an approach

that should be further studied, since our experiments were to understand the viability

to apply CoP information on overlays. Also, the social peers maintain their underlying

network connectivity, even though an overlay may optimize the path to which peers

should data flow. Therefore, the network connectivity should be included as a metric
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on the creation of the overlay, in order to account for network status and social status.

Although the algorithm was design with pub/sub systems in mind, it can work towards

micro-clouds services, since these services use pub/sub methods for disseminating data.

Thus, we can say that applying SELECT in micro-clouds environments would guarantee

optimization for dissemination of data, when coupled with network information such

as latency, bandwidth capacity and resources. Moreover, by adding network and social

information in an evolving environment we can enhance data dissemination for services.

We assure the correctness of our approach by grounding it in the ring topology, since

it gives us the ability to continue sending messages to all peers and guarantee that all

nodes are able to receive it. Other topologies, such as mesh, tend to create isolated

communities of nodes. Therefore, the use of other topologies may not guarantee the same

results when applying different social networks or CoP. Also, since in CoP there are users

that do not communicate by mailing lists or forum as in our experiments, pockets of

users without connections would be a possibility with other topologies and thus avoided

when using a ring topology.

A more extensive study on CoP would be necessary to include other members, and

information that is not available through the mailing lists and forums, such as meetings

(where members meet face-to-face without the use of emails). Also, CoP information and

relationships need to be explored in order to account the over time aspect of collaboration.

5.2.5 Summary

In this work, we approach an optimization for service overlays within CN micro-clouds by

proposing the use of SELECT induced with the information from community of practices.

We design a P2P overlay network that exploits the social graph of community of practice

in CNs to organize the peers in an overlay network and establish connections between

socially-connected peers. Using a gossip-based peer sampling service, SELECT reduces

the number of hops required to communicate two socially-connected peers. Additionally,

the constructed routing trees exhibit the minimum number of relay nodes even when using
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different types of relationships. We evaluate SELECT in a simulated environment using

three real-world data sets and highlight the performance of SELECT with state-of-the-art

approaches as baseline against the use of CoP information.

In respect to our evaluation, we posit that using CoP information is a way to handle social

information in community networks to reduce the number of relay nodes in the overlay

network, which will be beneficial to enhance service performance in CN micro-clouds.

5.3 Conclusion

The work presented in this chapter accounts with the relationships that can be exploited

from social networks, such as Facebook, Twitter. We explain how enhancing overlay

networks with social information can be beneficial towards minimizing relay nodes,

which in return will optimize communication by routing messages through nodes that

are related to the content or the users. However, in community networks one of the

main relationships is cooperation among users, therefore can social information be

extracted from community networks and used to optimize overlay network as before?

Does enhancing overlay networks optimize services in CN micro-clouds?

In this chapter, we present an approach to include social information in overlay networks

to optimize services in CN micro-clouds. The use of social information can minimize

the relay nodes in the message dissemination process. Services use communication

between instances, in order to provide the content to the users, e.g. live video streaming,

distributed storage or service discovery. Thus, the optimization within the middleware

level, can further benefit services communication. However a question arises, can overlay

networks be further optimized by combining different properties from each perspective

(resource, service and user information)? Does near-optimal routing solutions be enough

in order to bring cloud services into micro-cloud environments?





Chapter 6
Discussion

In this thesis we presented the work brought forth by the required infrastructure of CN

micro-clouds. The opportunity to migrate certain services from data centers closer to

the users, and utilizing resources within the community networks, is very attractive. In

fact, such a solution can minimize the dependency on data center cloud services and the

excessive Internet connectivity in CNs. However, cloud services are not prepared for an

heterogeneous environment with varying connectivity, thus, optimization on different

levels, such as resources, middleware and services, should be applied.

In this work we broke down our problem in three levels, in order to improve service

performance/quality in each level and gather information that would help the other levels

succeed.

In the resource level, we constructed tools to augment the capacity of low-resource

devices, thus utilizing virtualization in order to guarantee a fair use of resources between

community and owners. Further motivating the community to share their devices, in order

to enhance the computation power of the micro-clouds. The utilization of virtualization

techniques does depend on the devices and resources available, i.e. shared devices in CNs

may not have the capabilities to house virtualization. Therefore, the current solution of

deploying services in bare-metal, would have a better performance/quality than using

virtualization technologies.
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The study done with virtualization technologies also did not account with the individual

use of memory, CPU and storage. In our studies, we compared our results with other

works as an aggregated result instead of individually for each property, and our deployment

was in an attempt to have excessive use of resources. However, CN micro-clouds are

built with an heterogeneous environment, therefore individual use of particular resources

may lead to a different service deployment, which is dealt by the CN micro-cloud system,

when users deploy their services towards specific devices. Thus, our results were to reflect

the excessive use of the resources.

In the service level, we gather information on how the services are composed, their

ability to be configured for other environments and their optimization (performance,

quality perceived) in CN micro-clouds. Services can be configured to withstand adverse

conditions to what it was expected on data centers, e.g. in live video streaming the

manipulation of data transmission rate towards different adjacent nodes, can have an

immediate impact on the video quality.

The use of gossip-enabled networks, in order to understand and enhance service per-

formance is also an option to consider. In such networks, where the environment is

heterogeneous and varies its infrastructure, the gossip technique gives stability to nodes

data dissemination, by relying in different dissemination paths that are according to

node’s neighborhood. Moreover, by applying the gossip technique, the network can adapt

to node churn without losing data.

In the deployment of the monitoring tool, we do not address the fact that information

may be required for long periods of time, and therefore requires to be saved, or to be

re-introduced in the network when is necessary. The impact on such solution would

depend on the utilization of the monitoring tool and information gathered. Solutions to

this impact can range from saving information on a shared data base (potentially using

the distributed storage service in CN micro-clouds), or sending older data upon request

by any node. Therefore, monitoring can still be achieved with minimum interference to

the services, and be available to all members of the CN micro-clouds.
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The study done with actual CN micro-cloud services demonstrate how they can run

in CN environments. In our results, there was no explicit methods that analyze the

interference that other users or services may have had in the results obtained. However,

in our service deployment we implicitly account with the network interference, meaning

that the adaptation of the services to the environment accounts with what can potentially

happen in the network, i.e. download/uploads by other services or users which has an

impact on the bandwidth/latency of the network or the use of the devices.

In the middleware level, we look into the creation of the overlay networks that serve

as communication system. Services use the overlay networks to communicate between

instances and users and therefore improving this level guarantees an enhanced service

communication, performance and overall quality.

The use of social information, to construct overlay networks in which we optimize paths

according to the social pattern of each user, is an improved solution for publish/subscribe

systems. In fact, such solution minimizes the relay nodes that are required to transfer

messages. The same practice can be used on services in CN micro-clouds, in order to

minimize dissemination towards only the nodes that require such information. However,

in this case several issues are to be addressed, the fact that the network infrastructure is

heterogeneous and latency varies along different paths, and each service can have specific

properties for data, computation or network.

In our solution we do not account with the impact in the underlay network, however

such a case would only be necessary for production systems. In our experiments, the use

of fewer relay nodes translates into the use of less resources in the underlay, and thus our

latency results would account with the underlay system. However, the CN infrastructure

is more complex, in terms of latency, bandwidth and resources, therefore an adaptation

(that includes information of the underlay) is necessary for production systems.

Furthermore, the use of CoPs information as an alternative to social networks, when

creating overlay networks for CN micro-clouds, is an approach that utilizes the cooperation

as the social relationship within CNs. CoPs may not be applicable to all the CNs, or
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specific zones of the network. Other types of relations can be applied as an alternative,

which will benefit the services from what happens with their usage or infrastructure.

Also, the information provided by the mailing lists may not reflect a global usage of the

services, rather as a local or to specific groups. Therefore, the implementation of our

solution for CN micro-clouds could start at a local level, and grow towards the entire

CNs when social information would become available.

The use of a global overlay network that includes each level (resources, services and

users), is in respect to the quality of services, an optimal solution to minimize resource

usage, optimizing data dissemination through the micro-clouds. How the combination of

different factors (resources, services and social) can be applied to the overlay network

and their impacts on the micro-cloud services and resources? The use of socially aware

networks, coupled with information of the infrastructure can determine the optimal paths

for services to disseminate data towards nodes that require such data, while using the

minimal resources of the micro-cloud.

Different properties of the network such as resources, services and social, can be combined

in overlay networks separately. However, each property can be required for different

aspects when using the services. Therefore, a global overlay network that includes each

aspect can be beneficial, optimizing each aspect of the services. In that respect, by

including information of resources, services and social properties into overlay networks it is

possible to find near-optimal paths for message dissemination without loosing conditions,

e.g. latency, bandwidth, trust, time consumption, high computational resources. The

introduction of each property into the overlay networks can be done by differentiating

each property in their own levels and giving it as input towards the best candidates for

routing, as relay nodes.

Moreover, in this thesis we consider the optimization of CN micro-cloud services in each

level, in order to reach for an aggregated solution that encompass each improvement,

within the overlay network for data dissemination. However, does our solution improve

enough the CN micro-clouds to become optimal? Our intent in this thesis is to provide
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a path for improvement of service performance and quality, which would provide CN

members an alternative to Internet services that would be perceived with the same

performance/quality as in data centers. However, with the advancements of technology

it is possible that further study and improvements would be necessary to match the

future of data center cloud services. Nonetheless, by breaking our problem into three

levels we are able to provide improvement on service performance/quality that takes into

consideration the nature (heterogeneous devices, latency, bandwidth, service deployment,

service usage) of current CN micro-clouds.





Chapter 7
Conclusion

The work in this thesis demonstrates the feasibility to enhance services in micro-clouds

within community networks. The use of services in micro-clouds is dependent on the users’

perceived quality of service and experience according to how they perceive cloud services

in the Internet. Thus, by optimizing services in the community networks environment it

is possible that more users in the community choose to use the services available within

the micro-clouds instead of going to the Internet.

The optimization solution provided in this thesis comprises three levels: at the resource

level, we began by introducing virtualization techniques and a multi-purpose environment

that empowers owners to share their devices to the community and prepare CN micro-

clouds environments which potentially fosters more services in CNs. At the service level,

we created a monitoring tool tailored for CN micro-clouds, that helps with understanding

of how services behave within CN micro-clouds. The analysis done on services then granted

us the knowledge to adapt service configuration in order to improve its performance

and quality within CN micro-cloud environments. Finally, at the middleware level, the

use of overlay networks that serve as the communication system, brings services a tool

for message dissemination that is close to optimal, in respect to message route/path.

By adding social information in the construction of overlay networks, we contributed

to reduce the number of relay nodes in the overlay network and enhanced message

dissemination concerning the impact social behaviour has on the services. Since CNs do
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not have an explicit social network, we used community of practices as an alternative to

social networks, where the predominant relation between users is cooperation within the

network. This allows us to bring the concept into the CN micro-clouds, and provide an

improvement to the communication system of CN micro-clouds.

7.1 Future Work

The organization of community networks allows the use of a combined factor of resources,

service and user information to infer which routing paths can become more prevalent

for optimization of service performance across the CN micro-clouds. Therefore, the

combination of each factor within overlay networks is an option to consider when dealing

with wireless and heterogeneous environments. The next steps on such a solution are the

automation of the system and the ability to periodically evolve the overlay network in

order to be aware of the ever changing nature of community networks.
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[56] Llorenç Cerdà-Alabern, Axel Neumann, and Pau Escrich. Experimental evaluation

of a wireless community mesh network. In Proceedings of the 16th ACM International

Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems

(MSWiM ’13), pages 23–30, New York, NY, USA, 2013. ACM. 90

[57] A. Neumann, E. Lopez, and L. Navarro. An evaluation of bmx6 for community

wireless networks. In IEEE 8th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), pages 651–658, Oct 2012.

94

[58] Roy Want, Bill N Schilit, and Scott Jenson. Enabling the internet of things. IEEE

Computer, 48(1):28–35, 2015. 103

[59] M. Nitti, R. Girau, and L. Atzori. Trustworthiness management in the social internet

of things. IEEE Transactions on Knowledge and Data Engineering, 26(5):1253–1266,

May 2014. 103

[60] A.M. Ortiz, D. Hussein, Soochang Park, S.N. Han, and N. Crespi. The cluster

between internet of things and social networks: Review and research challenges.

IEEE Internet of Things Journal, 1(3):206–215, June 2014. 103

[61] Vinay Setty et al. The hidden pub/sub of spotify: (industry article). In Proceedings

of the ACM International Conference on Distributed Event-based Systems, 2013. 103

[62] Anwitaman Datta, Sonja Buchegger, Le-Hung Vu, Thorsten Strufe, and Krzysztof

Rzadca. Decentralized Online Social Networks, pages 349–378. Springer, 2010. 103



161

[63] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. T-man: Gossip-based fast

overlay topology construction. Computer Networks, 53(13):2321–2339, August 2009.

103

[64] Gurmeet Singh Manku, Mayank Bawa, and Prabhakar Raghavan. Symphony:

Distributed hashing in a small world. In Proceedings of the Conference on USENIX

Symposium on Internet Technologies and Systems, 2003. 103, 111, 118

[65] Benjamin Hesmans and Olivier Bonaventure. Tracing multipath tcp connections. In

Proceedings of the 2014 ACM Conference on SIGCOMM, 2014. 104

[66] Sarunas Girdzijauskas. Designing peer-to-peer overlays: a small-world perspective.

EPFL thesis no. 4327, advisor: Karl Aberer, 154, 2009. 105

[67] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high

dimensions via hashing. In VLDB, 1999. 105

[68] Bimal Viswanath et al. On the evolution of user interaction in facebook. In

Proceedings of the ACM Workshop on Online Social Networks, 2009. 106, 121, 137

[69] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset

collection. http://snap.stanford.edu/data, June 2014. 106, 114, 121, 137

[70] Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu. Overview of Structured

Peer-to-Peer Overlay Algorithms, pages 223–256. Springer US, Boston, MA, 2010.

107

[71] Robert Ryan McCune, Tim Weninger, and Greg Madey. Thinking like a vertex:

A survey of vertex-centric frameworks for large-scale distributed graph processing.

ACM Comput. Surv., 48(2), 2015. 120

[72] Konglin Zhu, Wenzhong Li, and Xiaoming Fu. Modeling population growth in online

social networks. Complex Adaptive Systems Modeling, 1(1), 2013. 120, 137

http://snap.stanford.edu/data


162

[73] A. Berta, V. Bilicki, and M. Jelasity. Defining and understanding smartphone churn

over the internet: A measurement study. In IEEE International Conference on

Peer-to-Peer Computing, 2014. 120

[74] Jing Jiang et al. Understanding latent interactions in online social networks. In

Proceedings of the ACM SIGCOMM Conference on Internet Measurement, 2010.

120

[75] Olivier Serrat. Building Communities of Practice, pages 581–588. Springer Singapore,

Singapore, 2017. 132
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