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This paper outlines a computational model for the analysis of the piezoelectric behaviour of the vertebral body remodelling process.
Particular attention is paid to the algorithms for the simulation of the stress energy density for each point of the geometry and
the distribution of the density in the bone. In addition, the model takes into account the piezoelectric effect and the anisotropy
(transversal isotropy) of the bone. Amodel for internal anisotropic piezoelectric bone remodelling of a human vertebra is discussed
in detail. The model consists of the implementation of an algorithm which includes the elastic and electric variables in a single
equation using boundary element method. The presented results show a good agreement with biological data and the model does
not include any electric additional charge.

1. Introduction

Biomechanics is the application of mechanics to biology,
trying to characterize the behaviour of living tissues and
organs from a structural point of view. It also studies the
changes due to different aspects and proposes methods for
the modelling of the tensions in biological materials [1].
Living tissues are the most interesting known materials in
terms of their structure and properties. The internal and
external bone structure can be modified by inducing an
electric potential as a result of loads acting on the bones.
The relation between the formation and deformation of bones
and the tension that generates electric potential makes these
bones considered mechanically and electrically deformable,
heterogeneous, and anisotropic [2, 3].

All properties as a whole are complex to study and
model.Themain purpose of the electric response of the bone
during the application of loads or stresses is to show how

the potential could influence the response to physiological
functional forms [4]. Hence, even if the electromechanical
interaction has been experimentally studied on different
materials [5–7], the mathematical model, in biological terms,
presented by many authors generally does not consider both
the piezoelectric effect and transversal isotropic behaviour of
the bone at the same time [8].

In this paper, it is assumed that bone electric properties
influence the internal remodelling process of bones. How
the density of bones grows and changes its form by the
mechanical and electrical stimulus as an anisotropic material
is explained. A three-dimensional (3D) mathematical model
that introduces both mechanical and electric stimulus into
the same equation is proposed. The formulation is based on
the boundary element method (BEM) for homogeneous and
anisotropic material. The piezoelectric 3D model includes
the combination of the electric and mechanical properties
and responses in an efficient computational algorithm. Its
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application to the internal bone remodelling process is
discussed in detail and examples are presented.

2. Materials and Methods

2.1. Boundary Element Formulation. Piezoelectricity is com-
monly described as the constitutive coupling of electrical
and mechanical fields (Coulomb’s law) [11]. The generalized
displacement vector 𝑈𝑘 contains the displacements 𝑢𝑘 and
the electric potential 𝜙. Using effective coefficients (elastic
coefficients 𝐶𝑖𝑗𝑘𝑙, piezoelectric coefficients 𝑒𝑖𝑘𝑙, and dielectric
coefficients 𝜀𝑖𝑗) and average state values (stress Cauchy tensor𝜎𝑖𝑗, strain tensor 𝛾𝑘𝑙, electrical displacements 𝐷𝑖, and electric
fields 𝐸𝑙), the constitutive equations for homogeneous mate-
rial can be expressed as [12–14]

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛾𝑘𝑙 − 𝑒𝑙𝑖𝑗𝐸𝑙, (1)

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝛾𝑘𝑙 − 𝜀𝑖𝑙𝐸𝑙 (2)

For piezoelectric materials, the problem can be formulated
as in the elastic case using an extended displacement and
traction vector with the electric potential and the electric
charge [15]. The elastic and electric variables are combined
in a single constitutive equation by introducing uppercase
subscripts (J, K) which range from 1 to 4 and lowercase
subscripts (i, l) which range from 1 to 3. Consequently, (1)-
(2) become

Σ𝑖𝐽 = 𝐶𝑖𝐽𝐾𝑙𝑍𝐾𝑙 (3)

where Σ𝑖𝐽, 𝑍𝐾𝑙, and 𝐶𝑖𝐽𝐾𝑙 are defined as follows:

Σ𝑖𝐽 = {{{
𝜎𝑖𝑗, 𝑗 = 𝐽 = 1, 2, 3
𝐷𝑖, 𝐽 = 4

𝑍𝐾𝑙 = {{{
𝛾𝑘𝑙, 𝑘 = 𝐾 = 1, 2, 3
−𝐸𝑙, 𝐾 = 4

(4)

𝐶𝑖𝐽𝐾𝑙 fl
{{{{{{{{{{{{{{{

𝐶𝑖𝑗𝑘𝑙, 𝑗 = 𝐽 = 1, 2, 3, 𝐾 = 1, 2, 3
𝑒𝑙𝑖𝑗, 𝑗 = 𝐽 = 1, 2, 3, 𝐾 = 4
𝑒𝑖𝑘𝑙, 𝐽 = 4, 𝑘 = 𝐾 = 1, 2, 3
−𝜀𝑖𝑙, 𝐽 = 4, 𝐾 = 4

(5)

The corresponding piezoelectric boundary integral equation
for the boundary Γ can be expressed as follows [16, 17]:

𝐶𝐾𝐽 (𝜉) 𝑈𝐽 (𝜉) = ∫
Γ
𝑈∗𝐾𝐽 (𝑥, 𝜉) 𝑇𝐽 (𝑥) 𝑑Γ

− ∫
Γ
𝑇∗𝐾𝐽 (𝑥, 𝜉) 𝑈𝐽 (𝑥) 𝑑Γ,

(6)

where 𝜉 and 𝑥 are the load and field point, respectively,
and 𝐶𝐾𝐽 is the free term coefficient at 𝜉 ∈ Γ. 𝑇𝐽 and 𝑈𝐽
are the generalized traction and displacement vectors. The

fundamental solution for elastic anisotropic piezoelectricity
is given by [18, 19]

𝑈∗𝑀𝐾 = 1
8𝜋2𝑟 ∮2𝜋

0
(𝑀𝑧𝑧𝑀𝐾)−1 (𝑧 (𝜙)) 𝑑𝜙 (7)

where 𝑀𝑎𝑏𝑀𝐾 is a tensor function defined as [16, 20]

𝑀𝑎𝑏𝑀𝐾 = 𝐶𝑖𝑀𝐾𝑙𝑎𝑖𝑏𝑙 (8)

and the fundamental solution for TMJ is

𝑇∗𝑀𝐽 = 𝐶𝑖𝐽𝐾𝑙𝑈∗𝑀𝐾,𝑙𝑛𝑖 (9)

The implementation of the anisotropic piezoelectric solution
using the BEM requires the calculation of the fundamental
solutions of the problem. The fundamental solutions for
this specific problem cannot generally be solved analytically.
Hence, the Radon Transform and the Dual Reciprocity
Method (DRM) are combined in a frameworkwhich includes
elastic and electric effects. This allows effectively solving
the problem by applying the classical equations of elasticity
extended to include the electric variables. It should be noted
that the discretization and the equations of the BEM are
restricted to the boundary of the problem. No volume
discretization is required using this approach. For more
details on the formulation and its implementation the reader
is referred to [17].

2.2. Piezoelectric Anisotropic 3D Model for Bone Remodelling.
Themodel for piezoelectric bone remodelling is based on the
following physical observations of the process:

(i) The bone is a piezoelectric material that is associated
with the presence of oriented fibrous proteins such as
collagen.These show hexagonal symmetry behaviour.

(ii) The piezoelectric material depends on the anisotropy
of the material, which means that the elastic matrix
should be considered in the model.

(iii) The internal and external bone structure can be mod-
ified by an induced electric potential which results
from loads acting on the bones. A corresponding
relationship exists between the formation and defor-
mation of bone and the stress generated potential
(piezoelectric effect).

(iv) Young’s modulus 𝐸, as well as piezoelectric and
dielectric matrices, depends on the bone density,
while Poisson’s ratio ] is constant.

From this initial assumption, the adaptability of bones can
be modelled by the electric and mechanical reactions which
change the apparent density. This is known as internal
bone remodelling process. The constitutive tensor matrix
is composed of an elastic matrix considering a transversal
isotropic material, a piezoelectric matrix, and a dielectric
matrix. In the proposed piezoelectric remodelling model,
spongy and compact bone is considered. The spongy bone
is defined as a homogeneous and isotropic material where 𝐸
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depends on the bone density and ] is constant [21, 22]. It is
assumed that

𝐸 = 𝑀𝜌𝛽
] = 0.3 (10)

where the constant 𝛽= 3 andM = 3790 x109 m8/kg2 s2.
In the following, compact bone is modelled as an

anisotropic material where the constitutive tensor matrix is
aligned with the distribution of the osteons in the compact
bone [23]. The material parameters are

𝐸1 = 𝐸2 = 2314𝜌1.57
𝐸3 = 2065𝜌3.09

𝐺12 = 𝐺12𝑚𝑎𝑥𝜌2𝜌2𝑚𝑎𝑥
𝐺23 = 𝐺23𝑚𝑎𝑥𝜌2𝜌2𝑚𝑎𝑥
𝐺31 = 𝐺31𝑚𝑎𝑥𝜌2𝜌2𝑚𝑎𝑥
]12 = 0.4
]23 = 0.25
]31 = 0.25

(11)

Themaximum values for the shearmoduli𝐺 are𝐺12𝑚𝑎𝑥 = 5.71
MPa, 𝐺23𝑚𝑎𝑥 = 7.11 MPa, and 𝐺31𝑚𝑎𝑥 = 6.58 MPa.

Transversal isotropic behaviour is assumed, i.e., E1 = E2
= Ep, E3 = Et, ]12 = ]21 = ]p, ]31 = ]32 = ]tp, and ]13 = ]23 =
]pt. Hence, the coefficients of the constitutive matrix can be
simplified into the following form:

𝐶11 = C22 = E𝑝 (1 − ]𝑝𝑡]𝑡𝑝) 𝜁
C33 = E𝑡 (1 − ]2𝑝) 𝜁
C12 = E𝑝 (]𝑝 + ]𝑝𝑡]𝑡𝑝) 𝜁
C13 = E𝑝 (]𝑡𝑝 + ]𝑝]𝑡𝑝) 𝜁 = E𝑡 (]𝑝𝑡 − ]𝑝]𝑝𝑡) 𝜁
𝐶44 = 2𝐺12
𝐶55 = 2𝐺31
𝐶66 = 2𝐺23

𝜁 = 1
1 − ]2𝑝 − 2]𝑝𝑡]𝑡𝑝 − 2]𝑝]𝑝𝑡]𝑡𝑝

C21 = C12
C31 = C23 = C32 = C13

(12)

with all other coefficients equal to zero. The variation of
the density is calculated by adapting the equation (Eq. (3))
reported in [22]:

Σ𝑖𝐽 = ( 𝜌
𝜌∗)
𝛽 𝐶𝑖𝐽𝐾𝑙𝑍𝐾𝑙. (13)

where 𝜌∗ is equal to 1 and the variation of 𝜌 is a first-order
equation [24]. In the remodelling theory developed in [25],
the change in the bone density (𝜌) is expressed as a function
of the mechanical stimulus[21], where𝑈(𝜎, 𝜖(𝑢)) is the strain
energy density and 𝜌 is the local density. The corresponding
equation is

𝑑𝜌
𝑑𝑡 = 𝐵(𝑈𝑎𝜌 − 𝑘) − 𝐷(𝑈𝑎𝜌 − 𝑘)2 𝜌𝑡𝑏 < 𝜌 ≤ 𝜌𝑐𝑏 (14)

where B, D, and k are constants obtained from experiments
and their values are 1.0 (gcm-3)2 (MPa per unit time), 60.0
(gcm-3)2 MPa -2 (unit time)-1, and 0.004 Jg-1, respectively, 𝜌 is
the local density, and Ua represents the strain energy density
(SED) modified herein to include the electric component:

𝑈𝑎 (𝜎, 𝜖 (𝑢)) = 1
2𝑍𝑖𝐽Σ𝑖𝐽 (15)

In order to obtain the real apparent density, it is assumed that
the function in (14) is bounded by 𝜌𝑐𝑏 which is the maximum
density of bone (cortical bone) and 𝜌𝑡𝑏 is the minimum
density of bone (spongy bone). Resorption will take place
when 𝑑𝜌/𝑑𝑡 is negative; otherwise bone deposition occurs.

2.3. Algorithm for Piezoelectric Bone Remodelling. The formu-
lation outlined in the previous sectionswas implemented into
a BEM framework. Available BEM codes [20, 26] for static
elasticity problems were adapted by the authors to include
piezoelectricity and dynamics. The DRM is used to provide
accurate results for the simulation of the dynamic piezoelec-
tric bone remodelling process. The density is calculated at
the nodes and projected on all nodes of the model in every
time step. It was observed that the zones with more density
are associated with bone deposition, while the bone loss is
associated with reabsorption.

Figure 1 shows a flowchart of the proposed computational
algorithm. The algorithm begins with the definition of the
3D geometry, i.e., the nodes and boundary elements, and the
boundary conditions for load, electric charge, and density.
Thedensity is used to calculate themost important qualitative
properties of anisotropic piezoelectricity and elastic, piezo-
electric, and dielectric matrix. These properties are changed
according to the density for each element in the geometry.The
fundamental solutions are calculated numerically using the
Radon Transformation [14, 17, 20]. Finally, the density can be
computed from the stress energy density at every point in the
geometry and all values in the system can be updated, until
the end of the simulation time Tsim.

2.4. Application. In the following, the application of the
presented BEM approach to piezoelectric bone remodelling
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Figure 1: Flowchart of the proposed computational algorithm for BEM piezoelectric bone remodelling.
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Figure 3: Boundary conditions of the vertebra.

is shown. The model corresponds to a 3D simulation of
the vertebra (lumbar region) and the visualization of the
numerical results was carried out using the GiD software[27].
The biomechanical model is presented in [28]. The authors
analyzed a two-dimensional model with loads from the
daily activity and represented the initial model conditions
of the bone remodelling postsurgery after an implant. The
example presented in the following considers a vertebra
without apophysis. The bone is simulated with an elastic
isotropic matrix when the density is between 0 and 1.08
g/cm3 (spongy bone (10)) and with a hexagonal symmetry
of a crystal (transversal isotropic) for densities >1.08 g/cm3

(compact bone (11)). The values of the piezoelectric and
dielectric constants are given below:
𝑒
= [

[
0 0 0 17.88215 3.57643 00 0 0 3.57643 −17.88215 01.050765 1.050765 1.87209 0 0 0

]
]

× 109𝐶/𝑚𝑚2

𝜀 = [[
[

88.54 0 0
0 88.54 0
0 0 106.248

]]
]

× 10−12𝐶2/𝑁𝑚𝑚2

(16)

The values of the piezoelectric and dielectric matrices change
according to the density in each element on themesh and fol-
lowing the form presented in [22, 24]. The current approach
also incorporates the anisotropic effect on the remodelling
equation (see (13)). The discretization of the boundary of the
vertebra with quadrilateral boundary elements is shown in
Figure 2. A total of 494 quadrilateral boundary elements are
used to represent the boundary of the vertebra.

Flexion and extension are common in lumbar spine.
Lateral flexion is free at the atlantooccipital joint. Rotation is
smaller at the lumbar region. Hence the boundary conditions
shown in Figure 3 are assumed, where u, v, and w correspond
to the directions of the x-, y-, and z-axis.
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Figure 5: Top view and 3D view of the density on the vertebral body (g/cm3).

The Neumann conditions of the model were taken from
[28, 29] and shown in Figure 4. In the young state, the shape
of the load distribution is a symmetrically concave parabola
with ps max=4.8N/mm2 (two sides) and ps min=1.6 N/mm2
(center) on the top and pi max =4.525 N/mm2 (two sides)
and pi min =1.325 N/mm2 (center) at the bottom.

3. Results and Discussion

The results obtained with the current approach are compared
to results presented in the literature where the bone density
was determined from a tomographic image.

The simulation ended after 85 days of simulation time
in one CPU i5 8GB RAM (i.e., Tsim=85 days) and the initial
density of the bonewas 0.8 g/cm3. Figure 5(a) shows a cortical
bone density in the range of 1.41 to 1.7379 g/cm3 on the left

and right walls which represent cortical bone. On the walls
to the central upper and lower part of the vertebra the range
is between 0.27 and 1.11g/cm3, corresponding to spongy or
trabecular bone of normal vertebral bodies. From Figure 6 it
can also be noticed that the density is higher at the vertebra
boundary and that minor ossification occurs in the middle
of the vertebral body. The simulation results in Figure 5
show a very good agreement between the observations of the
biological images and the simulations. It is interesting to note
that the simulated bone remodelling gives values of cortical
and trabecular bone which are close to the one that can be
observed at the dry bone data. However, it is difficult to make
an objective comparison.

Figure 7 shows the predicted density distribution along
the vertical axis (sagittal plane). The cortical bone can clearly
be seen in the periphery whereas the trabecular bone can be
seen in the middle of the vertebral body. These observations
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(a) Upper view (b) 3D view

Figure 6: Tomographic image of the vertebral body after [9].
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Figure 7: Distribution of the density along the vertical Z axis on the middle vertebral body (g/cm3).

Figure 8: Saggital plane view of the vertebral body from [10].

are in good agreement with those made from the medical
tomographic data shown in Figure 8. However, Figure 5(b)
does not show a strong apophysis. In this area, the bone is
trabecular with a density of 0.27 to 0.92g/cm3.

Although the numerical simulation does not include an
additional electric charge surface, it has been shown that
the algorithm incorporating the electric variables yields the
expected results which are in good agreement with the
typical medical data. Therefore, the algorithm could be used
to simulate the addition of electrical charges and develop

a pacing protocol that can reduce the medical problems
associated with bone loss.

4. Conclusions

A BEM piezoelectric model based on a number of assump-
tions and a density of strain energy equationwith the addition
of the electric conditions has been developed.

The internal remodelling algorithm described in this
paper details the equation and the dynamical processes which
are used in order to simulate the incremental changes in
density. The methodology is valid on a vertebral body, with
similar characteristics based on the physical assumptions of
the daily activity. The piezoelectric bone remodelling model
of the vertebra accurately predicts the anisotropy in the
cortical bone. The mechanical and electric stimuli agree with
how the bone changes, even though an electric surface of the
model was not used.

The numerical model presented could be used to study
the influence of electric stimulation on osteoporosis. Future
studies should analyze the total anisotropic remodelling and
the addition of the surface charge on the vertebral body.These
can bring new findings that contribute to the development
of new therapies or implants which can help in keeping the
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bone’s integral shape and decrease bone loss and fracture
risks.
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[16] L. Gaul, M. Kögl, and M. Wagner, Boundary Element Methods
for Engineers and Scientists, Springer, 2003.

[17] M. Cerrolaza, V. Duarte, and D. Garzón-Alvarado, “Analysis of
Bone Remodeling Under Piezoelectricity Effects Using Bound-
ary Elements,” Journal of Bionic Engineering, vol. 14, no. 4, pp.
659–671, 2017.

[18] N. A. Schclar, Topics in Engineering. Anisotropic Analysis Using
Boundary Elements, vol. 20, ComputationalMechanics Publica-
tions, 1994.

[19] J. A. Sanz, M. P. Ariza, and J. Dominguez, “Three-dimensional
BEM for piezoelectric fracture analysis,” Engineering Analysis
with Boundary Elements, vol. 29, no. 6, pp. 586–596, 2005.

[20] K. Thoeni, Efiziente Berechnung anisotroper Fundamen-
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