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Abstract: This paper proposes a positioning strategy for a fleet of unmanned aerial vehicles (UAVs)
airlifting wireless base stations driven by communication constraints. First, two schedulers that
model the distribution of resources among users within a single cell are analyzed. Then, an UAV
autonomous positioning strategy is developed, based on a fair distribution of the radio resources
among all the users of all the cells in a given scenario, in such a way that the user bitrate is the
same regardless the users’ distribution and spatial density. Moreover, two realistic constraints are
added related to capacity of the backhaul link among the UAVs and the ground station: the bitrate
delivered per UAV and the total backhaul bandwidth shared among all the UAVs. Additionally,
an energy consumption model is considered to evaluate the efficiency and viability of the proposed
strategy. Finally, numerical results in different scenarios are provided to assess both the schedulers
performance and the proposed coordinated positioning strategy for the UAVs.

Keywords: unmanned aerial vehicle; wireless communications; positioning strategies; navigation;
energy consumption; radio resource allocation

1. Introduction

The development of new strategies to enhance the capacity of cellular subscribers has been
an important research field for many years. While many systems have already been developed,
aerial communications based on unmanned aerial vehicles (UAVs) that are used as airborne base
stations (ABBSs), are gaining interest.

UAVs appeared some years ago in tactical applications, mainly to reduce pilot losses in hostile
territories. Since then, their cost, size and autonomy have been continuously improved until becoming
viable for commercial purposes. Nowadays, many types of UAVs with different capabilities and
features are available in the market and allow a huge variety of applications.

In the wireless communication field, UAVs can be used as ABBSs to create non-fixed cellular
networks in an ad-hoc way. A new type of network can be designed, in which each base station (BS) is
moving continuously depending on the time-varying users spatial distribution and traffic requirements.
A possible scenario is, for example, an outdoor sporting event, where a large amount of people is
gathered in a small area, whereas the users density remains low outside the venue. Other relevant
scenarios for ABBSs are those where the fixed ground network is unreachable (e.g., remote regions in
emerging countries) or temporally unavailable (e.g., due to natural disasters). ABBSs have the potential
to improve the versatility and availability of wireless services and, as such, they have motivated recent
research work.

Many existing works have focused on proposing several air-to-ground channel models [1-7],
which are analyzed in Section 2. More recently, deeper research has been carried out by including
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different distributions of users in the scenario. According to this, the scenarios can be classified
depending on the number of UAVs deployed, as explained next.

Previous works [8-11] analyze a single UAV scenario. In [8], the authors developed an algorithm
that finds the 3-D placement of the UAV that allows serving the maximum number of users. The other
three works consider a continuously moving UAV. In [9], beam division multiple access is proposed
using millimeter-wave communication and the UAV is moved to combat the blockage problem and
improve the user discovery. In [10], three different multiple access strategies are studied, where the
UAV moves in response to the users’ activities and positions. Finally, in [11], the moving UAV is
used as a mobile cloud to offer computation offloading opportunities to users with limited local
processing capabilities. Thus, the UAV is moved to minimize the total mobile energy consumption by
also optimizing the bit allocation among users for uplink and downlink communications. In previous
works [10,11], several experiments are carried out but without considering the optimization of the
altitude of the UAV.

In [12-16], the case of multiple UAVs is considered. Specifically, in [12], an algorithm that aims to
serve all users in an specific region with the minimum number of UAVs is developed. The altitudes
of UAVs are constant and the signal level received per user is not considered. Thus, the deployment
of UAVs is formulated as a geometric problem where a given area has to be served by the minimum
number of coverage regions of the same radius with possible overlapping among them. In [13],
a scenario consisting of UAVs belonging to different operators is addressed. The authors developed a
non-cooperative game theory strategy where rational agents compete to maximize their own individual
payoff. Finally, the other three works [14-16] focus on heterogeneous networks, where multiple UAVs
assist the terrestrial network. In [14], the UAVs are deployed randomly to evaluate their impact on the
terrestrial network. In [15], to optimally place the UAVs, the service provided to users is considered.
However, the optimal placement is obtained through exhaustive search. In [16], a more sophisticated
approach is developed. Firstly, the k-means algorithm [17] is used to group the users and, then, taking
into account the service, a subset of centroids are selected to be served by a UAV at a given altitude.

In our paper, a novel ABBS autonomous positioning strategy is proposed for the multiple UAVs
scenario. As opposed to previous works, the decisions concerning the new 3-D positions of the UAVs
are taken under a communication criterion, namely the maximization of the rate delivered to the users
subject to fairness and a maximum backhaul bandwidth to be shared among all the UAVs following a
frequency division multiplexing (FDM) approach. Some other challenges such as the specific payload
and the regulations limiting the altitudes of the ABBSs are deferred to a future work.

The paper is organized as follows. In Section 2, a system overview is given as a background
to understand the whole proposed strategy. In Section 3, two different time division multiple
access (TDMA) schedulers are evaluated to cover the multiple access challenge for the coverage
area corresponding to each individual UAV. Section 4 derives the proposed navigation strategy for
the multiple UAVs as an optimization problem where a fair distribution of the resources in the
entire scenario is subject to limited rate backhaul constraints that have to be fulfilled. In Section 5,
an instantaneous mechanical power consumption model for the UAVs is proposed, and the energy
expenditure is estimated. In Section 6, the proposed strategy is evaluated and compared to other works
of the state of the art to characterize its behavior. Finally, in Section 7, some conclusions are abstracted
and the future work is outlined.

2. System Overview

2.1. Scenario

We elaborate on a scenario composed of multiple UAVs that have to serve a set of users in a
given area. The positions of the users follow a generic spatial density A(x,y) that may be uniform or
not. We assume that the UAVs are initially located at given positions. In the simulations, we consider
that the UAVs are distributed uniformly at the beginning, although this is not required. The UAVs
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have to be able to fly fast to quickly adapt to the static distribution of users but also have to be able to
hover (stay fixed in the air) to maintain their positions when the optimum placement of the fleet of
UAVs is reached. As reported in [18], there are two main types of UAVs: rotary-blade (quadcopters or
hexacopters) and fixed-wing. Thus, according to our requirements, in the sequel, we shall assume the
use of rotary-blades UAVs.

Regarding the users-ABBS association, each user is served by a single UAV and a criterion has
to be defined to select the most appropriate UAV for each user. The proposed criterion is based on
the user-UAV distance dy;, where k and i denote the user and UAV index, respectively. The radiation
pattern of the ith UAV antenna is denoted by Gr; and is deeply analyzed in the following subsection.
Accordingly, the UAV for the kth user is selected using the following expression:

)

U(k) = arg; max (GT’(k)GR> ,

2
diLs

where U (k) is the UAV to be associated to user k, Gr;(k) is the i UAV’s antenna gain in the direction of
the kth user, G is the gain of the receive antenna, dy; is the distance between the kth user and the ith
UAV, and L; is the loss due to slow fading, that is, shadowing. In the previous expression, we have
assumed implicitly that the transmission powers for all ABBSs are equal and constant, which is the
most realistic assumption. Note, however, that, if different powers should be incorporated, this could
be done by just including the transmission power for each ABBS in the numerator of Equation (1).
In this association strategy, we do not include fast fading, as this fading may vary rapidly over time,
whereas the association is usually required to be more stable. Note, however, that, if the association
could be fast enough to follow the fading changes, then this could be formulated just by including
the fading term within expression Equation (1). In the following, and for the sake of simplicity in the
notation, we assume that there are no losses due to shadowing (i.e., L; = 1), although the general
case with shadowing could be considered by just incorporating the term L in Equation (1) and the
expressions of the rates that are presented in the following sections.

Note that distances dy; could be obtained through different ways. For example, they could be
calculated using global positioning system (GPS) (in a scenario such as this one, it is expected that
all the UAVs will be equipped with a GPS unit, and also all user terminals (such as smartphones)
will have one, so the GPS coordinates could be used if they are sent to the central unit controlling the
positions of the UAVs). Alternatively, the distances among the user devices and the ABBSs could be
calculated implicitly using the time-advance mechanisms of the concrete communication standard
being considered. In this case, these distances should be reported to the central unit, too. Finally,
note that these distances are not strictly needed since each user terminal could estimate the term in
Equation (1) for each UAV by just evaluating the equivalent channel gain that encompasses the antenna
gains, the fading gain, and the loss due to distance.

This association policy implies a partition of the given area in P regions, each one denoted by
A; (1 <i < P), where P is the number of deployed UAVs and each region contains all the users
associated to each UAV. According to this, the received rate per user depends on the capacity delivered
by its serving UAV, the number of users in the same region and their positions.

Moreover, the scenario also includes the implementation of an out-of-band wireless backhaul to
be shared among all the ABBSs using FDM. Thus, a backhaul link is created for each UAV, which has to
support the service delivered to the subscribers attached to each ABBS. The sum of the bandwidths of
the individual backhaul links is considered to be limited. In the following sections, it is explained how
the proposed iterative algorithm calculates an appropriate distribution of the total backhaul bandwidth
among ABBSs to optimize system performance given an initial generic distribution. Again, in the
simulations, we consider that this bandwidth is equally distributed among ABBSs al the beginning,
although this is not required. Figure 1 represents the scenario.
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Figure 1. Example of a complete scenario: three ABBSs linked through a wireless connection to a
backhaul ground station.

In Figure 1, the red lines represent the backhaul links between the ABBSs and the backhaul ground
station and (x;, y;, ;) is the position of the ith UAV. As previously mentioned, these coordinates are
obtained using the GPS units installed in each UAV and are sent to the central unit controlling the
positions of the UAVs. B! is the bandwidth of the backhaul link between the ith ABBS and the
ground station.

2.2. Channel Model

Several UAV-user channel models have been proposed and analyzed in the literature. The simplest
channel model consists in a direct path between the transmitter and the receiver. It is described by
the well known free space path loss [1] through Friis” equation [19] that depends only on the distance,
the frequency and the gains of the antennas. In the ABBS context, it is commonly expressed by the
altitude of the UAV and by the elevation angle between the user and the UAV [2—4]. Moreover, in [5],
a relation between the coverage and the altitude of the UAV is extracted.

In [2-4,6,7], more realistic channels models are proposed. Specifically, they include the presence
of buildings. This leads to the identification of two different propagation conditions: line-of-sight
(LOS) and non-light-of-sight (NLOS). In the first case, a direct communication link between source and
destination is possible, whereas, in the latter case, it is not, which leads to additional losses. Each of
these cases happens with a given probability of occurrence. In some of these works, the authors also
obtained realistic numerical values for the parameters involved in the model. In some of those works,
four scenarios are analyzed depending on the distribution of the buildings (suburban, urban, dense
urban and high-rise urban) and fading is also taken into account. Finally, another aspect considered
in the literature is the movement of the UAVs, which affects the channel coherence time due to the
Doppler effect [20].

In this paper, the selected model is the one proposed in [4]. It consists in Friis” equation plus a
fading term due to the presence of buildings in a urban environment. According to this, the received

power P, can be expressed as
P = GrGe (47 )2 2P @
drnd ) &
where P; is the transmission power; Gt and Gr are the gains of the transmit and receive antennas,
respectively; A, is the carrier wavelength; d is the transmitter-receiver distance; and ¢ is the loss term
due to fading in linear scale. Among all of these variables, two require deeper analysis: the antenna
gains and the fading.
Regarding the antenna gains, and for the sake of simplicity of the analysis, the user terminal
antenna has been selected as isotropic, although the proposed strategy could be extended easily to any
other radiation pattern. According to this assumption, the user antenna gain is constant regardless
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the relative position of the mobile terminal and the ABBS. However, for the UAV antenna, and to
obtain more realistic results, the following antennas have been evaluated: omnidirectional in azimuth,
half-wave dipole [21,22], Yagi-Uda [21], patch [21] and, finally, a specific antenna used by 3GPP to
simulate macro-cell BSs (annex A.2.1.1.1 of [23]). All these antennas lead to a very similar average rate
per user when applied in the ABBS scenario. Therefore, the omnidirectional antenna in azimuth has
been selected for the UAYV, as it presents the simplest gain expression. Its radiation pattern is:

i

Gr0) =<’ ) = o T T

®)

where (x,y,0) is the position of the user, (x;,y;, h;) is the position of the UAV serving that user (which
is denoted by index i) and € is the elevation angle that can be expressed as

0 =tan"! i . 4
N (\/(x—xi)2+(1/—yi)2> @

In reference to the fading ¢, as it has been said, two fading terms, ;s and ¢{n10s, are possible
depending on whether we are in LOS or NLOS conditions, respectively. To define a single model,
the following probabilities of occurrence are defined:

1
Pros(6) 14 e Bl ©)

Pnros(8) = 1—Pros, (6)

where & and B are parameters that depend on the scenario, in this case the urban one [4]. As it
can be observed in Equation (5), the LOS probability depends on the elevation angle 8. Thus,
Equation (4) has to be applied to obtain Prps(x — x;,y — y;, h;) and Pyros(x — x;,y — yi, h;) as a
function of the coordinates of the positions of the user and the UAV. The parameters ¢;os, EnLos, &, B
and, in general, Equations (5) and (6) are scenario dependent (that is, they will be different in urban,
suburban, rural, etc. deployments). Accordingly, it is expected the network operator controlling the
positions of the UAVs will have some a-priori knowledge (obtained through drive testing) of those
parameters and models.

3. Single Cell User Scheduling

The strategy proposed for the positioning of the UAVs aims at a fair distribution of the resources
among all the users in the scenario subject to backhaul limitations. As it has been explained in the
system overview, the total area is divided in P regions, each one served by a single UAV. According
to this, a two-step strategy is proposed in this paper. First, a fair distribution of resources among
all the users within a single region is performed (which is analyzed in Section 3) and, second, a fair
distribution among users in different regions is addressed by taking also into account the backhaul
limitations (which is analyzed in Section 4).

To evaluate the distribution of resources among all the users in a given region A; corresponding
to the ith UAV, two TDMA schedulers have been analyzed. In both cases, the following expression
provides the average rate per user R in the ith region:

/ /A. o, y)e(x — xi,y — yi)du
. )

R| N;Tp ’

where t(x, y) is the access time assigned by the TDMA scheduler to a user placed at position (x,y) and
c(x — x;,y — y;) is the instantaneous rate per user, which is detailed later in this section. We are
assuming that the resource allocation algorithm is able to track the changes due to fast fading.
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Otherwise, the resource allocation would only be able to adapt to the slow fading and the rate
expressions c(x — x;,y — y;) that are detailed in this section should be replaced by the corresponding
ergodic rate. For the single antenna case and for fast Rayleigh fading, the ergodic rate is equal to the
rate of the Gaussian channel with a signal to noise ratio (SNR) loss equal to the Euler-Mascheroni
constant [24]. In other words, the link SNR budget should consider a fading margin of 2.387 dB.

In the following, du denotes the users differential, N; denotes the number of users to be served in
region A; and Ty denotes the total time needed to serve all the users in the region, which are expressed
as follows:

du = Ax,y)dA = A(x,y)dxdy, 8)
N; = / /A_A(x,y)dxdy, ©)

To = //Ait(x,y)du, (10)

where A(x,y) is the spatial users’ density, which may be non-uniform, and dA is a differential area.
In this paper, we assume a continuous spatial users’ density A(x,y). This allows obtaining expressions
in form of spatial integrals, as is shown below. Note that, if a discrete users’ density is adopted
(corresponding to the exact knowledge of all the individual users’ positions and, accordingly, a density
function A(x,y) composed of Dirac delta functions at the users’ positions), then the integrals would
instead be expressed as summations. Anyway;, all the proposed strategies, results and conclusions
would remain the same.

The boundary of the region served by each ABBS can obtained using Equation (1), where it is
assumed that each user is associated to a single UAV. In other words, the boundary for region A; is the
boundary of the region containing the positions (x, y) for which users are associated to the ith UAV.
Regarding the instantaneous rate per user, assuming for the moment that there is no fading loss (the
impact of fading and LOS/NLOS conditions will be considered in the forthcoming subsections), it can
be calculated by plugging Friis” equation in the Shannon transmission rate:

Pr [ Ac \?
c(x —xi,y —y;) = BWxlog, <1 + 2 (47;1) GTGR) , (11)

~

where BW, is the access bandwidth, which is assumed to be the same for all the ABBSs, Pr is the
transmission power and 032 is the noise power, defined in Equation (12) with k;, being Boltzmann’s
constant, T the temperature and F the noise factor in linear scale:

0> =k, -T-F-BW,. (12)

Thus, by defining the constant k as detailed in Equation (13), ¢(x — x;, ¥ — y;) can be rewritten as
Equation (14) (where it is assumed that different carrier frequencies are allocated to adjacent UAVs to
avoid inter-cell interference):

_ Pr-A2
ko= 16-72 -k, T-F Crs (13)
B | k-Gr
c(x—xi,y—yi) = BWalog, 1+W : (14)

Two TDMA schedulers are analyzed in the sequel (each one formulated in terms of a different
t(x,y) expression), which are the round robin scheduler and the equal rate scheduler. We assume that
the channel is perfectly known, that is, perfect channel state information is available. In practice,
the channel should be estimated. Currently, there are several techniques to support the channel
estimation process based, for example, on the use of orthogonal training sequences as shown,
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for example, in [25] for a similar scenario. All these techniques could be used, although we do
not consider them since this topic does not lie within the focus of this paper.

3.1. Round Robin Scheduler

Round robin consists in the assignment of the same period of time ¢ (i.e., t(x,y) = f) to all users in
the same region:

toxk yx) = Hxj,y5) =t VK, j, (15)

where t(x;,y;) is the time allocated to a user located at position (x;,y;) in the region. Therefore,
Equation (15) leads to the following value of Tj:

TO://At'du:t//Av/\(x,y)dxdy:ﬁNi. (16)

Thus, using Equations (7) and (16), the round robin average rate per user is detailed in
Equation (17). This rate expression in Equation (17) comes from the the instantaneous rate in
Equation (14), where the simplest channel model, assuming no fading loss, has been applied to
facilitate the development of the final scheduler expression. However, once the scheduler has been
defined, any other channel model proposed in the system overview could be applied. Thus, according
to this, the gain of the transmit antenna is changed by Equation (3) and the fading produced by
the presence of buildings is introduced, which leads to the more elaborated average rate per user
expression in Equation (18), where {1 os and {n1os are expressed in linear scale.

[y el -y
R|Ai = N2

1

. k-Gr .
S e (HBWA-<<x—xi>2+<y—yi>2+h$>>”"'”d"dy 7

</ /Ai)\(x,y)dxdy>2 ,

/ ‘ BWy - (PLOS(x — X, ¥ — Yi i)

F} L ! 2 |
! (/ ‘/Ai)\(x,y)dxdy) / A
k-hf ) (18)

-lo 1+
82 ( Zros - BWa - ((x — )2 + (y — yi)? + h?)?

k-2
4P —x,y—vy;, k)1 1+ : A(x, y)dxdy.
NLos (X — Xi,y — yi, i) - log, ( Entos - BWa - (x —x)2 + (y — y1)? +h12)2>> (x, y)dxdy

Note that, although the round robin scheduler leads to a simple expression, it has an important
disadvantage. All the users are served with the same fraction of time, whereas the instantaneous
rate per user depends on the distance between the user and the ABBS, on the radiation pattern of the
antenna and on the obstruction of the direct path due to the presence of buildings. Thus, a user placed
far away from the UAV will obtain a lower average transmission rate than a closer user, which entails

an unfair service among the users in the same region. This is the reason the equal rate scheduler is
proposed in the next subsection.

3.2. Equal Rate Scheduler

In the equal rate scheduler, the instantaneous rate per user is also considered to assign the fraction
of time per user in a way such that all the users obtain the same payload:

t(xk yi) - c(xk, yi) = t(xj,y5) - c(xj,y;) = Ko, VK, j, (19)
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where c(x, yx) is the instantaneous rate for a user located at position (x;, y;) in the region. Therefore,
Equation (19) leads to the following value of Tj:

Ko
S R SRR .
0 A C(x_xiry_yi) (X Xi, Y yl) xay ( )

Thus, using Equations (7) and (20), the equal average rate per user is detailed in Equation (21)
assuming no fading losses. Regarding the proposed models in the system overview, the same changes
as in the round robin scheduler can be applied: the transmit antenna gain is changed by Equation (3)
and the fading produced by the presence of buildings is taken into account, which leads to the average
rate per user detailed in Equation (22).

R _J aKodu 1
AT N - T, o Mz,
l i // (x,y) dxdy 21)
Aj . k-Gr
BWa -log, <1 * BWA-<<x—xi)2+<y—yf>2+h%>>
R|Ai =
// AMxy) Pros(x — xi,y — yi, hi) n Pyros(x — %,y — yi bi) dxdy (22)
A; BWjy kh? k-h?
log, <1 + gLOSABWA~((x—x,-)2+(y—y,)2+h,2)2) log, <1 + fNLos‘BWA'((X*Xi)hr(y*%)z*h%)z)

Thanks to this strategy, a fair distribution of the resources is fulfilled: the users closer to the ABBS
and, therefore, with a higher instantaneous rate, will have a smaller fraction of time and vice versa.

4. Positioning and Communication for a Fleet of UAVs

Once the fair distribution of the resources among all the users in the coverage area corresponding
to a single UAV has been addressed (see the previous section), we consider now the fair distribution
among all users in the multi UAV scenario while taking also into account the restrictions imposed by
the backhaul links. To facilitate the notation, in the following, we assume that the intra-cell resource
allocation is based on the equal rate scheduler (Section 3.2), although the proposed algorithm could be
applied to any other intra-cell scheduling approach.

4.1. Problem Formulation

The proposed strategy is based on the maximization of a cost function to achieve a balanced
rate distribution among users in different regions subject to several constraints imposed by the
backhaul implementation. Specifically, the maximization of the cost function is carried out through
the repositioning of the ABBSs and the allocation of bandwidth to the backhaul links. The proposed
strategy consists in identifying the region with the lowest average rate per user (R) and moving the
appropriate UAVs in order to increase it. This procedure is repeated until all regions reach the same
rate, thus achieving fairness among the service provided by different ABBSs.

Regarding the constraints, the first one consists in limiting the total aggregated rate that each UAV
can deliver as, in a real scenario, a BS is limited by the capacity of its backhaul link. The second one
consists in limiting the total shared backhaul bandwidth from UAVs to the ground station. This leads
to the following optimization problem:
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maximize min R|, (23)
{xi,yi,h,‘,BlBH iP:1 1§l§P !
subjectto  R|, -N; <RPH, 1<i<Pp (24)
" )
) B < B, (25)
i=1
where P is the number of deployed UAVs, RPH is the rate supported by the backhaul link corresponding

to the ith UAV, which is detailed later in Section 4.2.2, B IBH is the bandwidth of this link and B%"ﬁ’l is the
total bandwidth that the backhaul ground station supports and that is distributed orthogonally among
the UAVs. This implementation of the backhaul is also analyzed in [25] where, moreover, the tracking
of each UAV is implemented using beamforming, which could be considered as a future work.

Note that the previous optimization problem in Equation (23) is not convex [26]. The main
consequence is that any practical algorithm, such as the one detailed in the following Section 4.2,
will only be able to converge to a local optimum, that is, to a globally sub-optimum solution. Anyway,
in many situations, such solution will provide good performance. In this paper, this performance is
checked by means of simulations in Section 6.

4.2. Derivation of the UAV Trajectories

To derive the proposed positioning strategy including the backhaul constraints, an iterative
optimization strategy based on [27] is applied. Specifically, at each iteration, the constraints defined in
Equations (24) and (25) are evaluated as a first step. If all of them are fulfilled, the cost function defined
in Equation (23) is increased by a gradient search algorithm, which leads to an increase of the lowest R
among all the coverage regions of the UAVs. Otherwise, one of the constraints is randomly chosen
among all the unfulfilled constraints [27]. Then, the optimization variables are updated following
the gradient of the selected constraint function. This procedure is then applied in an iterative way.
Therefore, at each iteration, the implementation is applied through the calculation of the gradient of
either the cost function or one of the constraint functions.

4.2.1. Gradient of the Cost Function

Regarding the increase of the cost function, the region with the lowest average rate per user has
to be identified and then its rate should be increased, which requires, first, to identify which are the
UAUVs to be moved and, second, to calculate the optimum movements of these UAVs.

Regarding the first step, the UAVs that have to be moved are those that affect the lowest R.
Observing Equation (22), it is clear that there are two different ways of modifying it. Let us assume that
the UAV providing the lowest R is iy (i.e., R Ay S R|, , Vi# io). Then, the UAVs whose positions
affect R
antenna, the fading probabilities and the boundary of the region A; ) and the neighboring UAVs (that
only affect the boundary of the region A;)).

As to the second step, the movement of the selected UAVs can be computed through a gradient
ascent optimization:

4. are the ipth UAV (that has an impact on the UAV-user distance, the orientation of the
1]

vin+1] =v[n]+u-Vy (R

Aio) 1], (26)

where y is the step size, n is the iteration index and v is a vector with the positions of all the UAVs and
the bandwidths of their individual backhaul links:

T
V:[xl n ]’ll B?H .. Xp Yp hp BEH:| , (27)

where the superscript T stands for transpose.
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However, as the gradient has non-zero values only in the entries that belong to the positions of
the UAV servicing A;; and its neighbors, the gradients for the other entries of v (that is, the positions
of the other UAVs and all the backhaul bandwidths) do not need to be computed.

One of the issues is that a closed form expression of the gradient cannot be found since the
boundaries between regions cannot be expressed analytically. Thus, a numerical estimation of the
gradient is needed. In this paper, we propose to do it in two stages. First, for each coordinate in vector
v corresponding to a (x;, y;, h;) triplet for which the movement of the ith UAV implies a variation of
the cost function, we assume a virtual movement of that UAV in a given direction. Thus, the UAV is
not physically moved but a subsequent variation of the average rate per user can be computed using
Equation (22) and a UAV test displacement A. Then, to estimate the gradient of the jth component of
vector v, the resulting variation of the average rate per user is divided by A:

( | ‘[)) (4 ( | ‘ ) (4
i n -‘rA 0 i n

A y

Moreover, to obtain realistic results, the displacements per iteration (that is, v;[n + 1] — v;[n]
in Equation (28)) are limited by the maximum velocities that a UAV can achieve. These maximum
velocities are characteristics obtained from the specifications of the UAV manufacturer and they are the
forward (Vlé\/mx ) and the vertical, within positive (V&A‘”‘ ) and negative (V&Ai”), velocities. If we denote
by Tj; the time interval associated to each iteration, then the maximum velocity is translated into a
maximum displacement constraint given by VM@ . T;,. In other words, if the displacement calculated
by the application of the gradient v;[n + 1] — v;[n] exceeds this maximum value, then it is limited to
the maximum value.

vj[n+1] = vj[n] + (28)

4.2.2. Gradient of the Wireless Backhaul Constraint Functions

As mentioned above, the update of vector v following the gradient of the cost function can only
be applied when all the constraints formulated in Equations (24) and (25) are fulfilled. If this does not
happen, we need to identify the unfulfilled constraints. A vector w is defined to store the indexes of
all the unfulfilled constraints. If w is empty, the cost function is increased according to Section 4.2.1.
Otherwise, one of these unfulfilled constraints is randomly selected, which can lead to two different
situations: either the selected constraint is one of the P constraints defined in Equation (24) or the
selected constraint is the one defined in Equation (25). Then, the selected constraint function is used to
update the optimization variables through its gradient, as it is detailed below.

Regarding the P constraints in Equation (24), each one is related to the individual backhaul link
for each UAV whose capacity should be greater than the aggregated rate that is delivered to the users
in its service region. To model these wireless backhaul channels, the free space channel model has
been used as we assume that the UAVs are positioned sufficiently high and the backhaul ground
station is located in an isolated area so that there is no blocking in the backhaul connection (that is,
LOS condition). Thus, the backhaul rate that each UAV can use (Equation (29)) depends on its distance
to the backhaul ground station dpp; and the backhaul bandwidth BZBH assigned to it. The antennas
used for the backhaul are assumed to point towards the ground station. For the sake of simplicity in
the notation, we have assumed that both antennas are isotropic and there is no signal occlusion due
to buildings:

k
RBH — BBH .1og, (1 + S 7 ) , (29)
i BHi

where kppy has a similar definition to k in Equation (13):

Pr,, - AZ

16wk T F CROT (30)

kpu
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Note that the backhaul rate in Equation (29) depends on the distance dgy; such that, if this
distance is very large, the corresponding backhaul rate will tend to zero. Since the adaptive positioning
strategy being described in this section of the paper looks for the optimum positions of the UAVs,
this positioning strategy will prevent the UAVs from going to positions out of the hearing range of the
backhaul ground station.

According to the previous expressions, at each iteration, the aggregated rate that each UAV can
serve (§| A Nj) is compared to the rate that its backhaul link can carry (Rj.BH ), leading to a negative
RPH — R| A Ni difference when the individual constraint is not accomplished. Thus, when one of
the these P constraints is not fulfilled and is randomly selected (namely, that corresponding to the
index ip), a gradient approach similar to the one defined in Equation (26) is applied to update the
optimization variables contained in vector v:

v[n+1] =vin] + upy - Vy (RiH - R|, 'Ni,,> [n], (31)
p

where i, stands for the index corresponding to the selected unfulfilled constraint in Equation (24).

In the computation of the gradient in Equation (31), the entries of v with non-zero values are different
from those in Equation (26). These entries can be separated in two groups. On the one hand, those related
to the positions of the UAV servicing the region associated to the selected constraint, which affect RgH ,
R| A and the boundary of A; , and the positions of its neighboring UAVs, which affect the boundary
of thi: selected region A;,. On the other hand, the second group of entries in v corresponds only to the
backhaul bandwidth of the UAV servicing the selected constraint (B?H), which only affects RiiH .

As per the gradients of the positions, as it happened with the cost function, a closed form
expression cannot be found; thus, a numerical estimation similar to the one formulated in Equation (28)
has to be carried out, which is shown in Equation (32), where j is the index of entries corresponding to
positions with a non-zero gradient:

BH _ R
(RiP N R‘A,‘p 'Ni )

— (RBH R, -N»)
vj[n]+A ( ' }A’P l

A

v;[n]

(32)

vj[n+1] = vj[n] +u -

Moreover, as it happened in Equation (28), the displacements have to be limited again according
to the maximum feasible velocities.

Regarding the case of the backhaul bandwidth, its corresponding gradient can be computed in
closed form using the following expression (note that the expression of RiH in Equation (29) does not

include the region boundaries and R| 4. does not depend on B};H , thus its derivative is zero):
ip

k
d2 - BWgy| 4 +kpr)In(-—BH — +1)—kpy
(d5p; L4, ) (d%Hi-BWBH|Ai )

9 Rl N —
9 BWaH 4, (RBH|A1 R|Ai Nl) [n] In(2)-(dg ;- BWpH| A, +kBr1)

(33)

n

In reference to the last constraint in Equation (25), a limitation on the total shared backhaul
bandwidth is imposed. When this constraint is not fulfilled and it is randomly selected, a small quantity
<y is subtracted from each BZBH , as the sum of all the variables B IBH has to be reduced. This reduction
has to be small enough so that B3 is not led to zero. Note that the reduction of B3 may imply that
some of the P constraints in Equation (24) become unfulfilled, which should be taken into account in
the following iteration of the algorithm.

Finally, to summarize this subsection, Algorithm 1 details the full algorithm with all its steps at

each iteration.
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Algorithm 1 Positioning Strategy.

1: Start iteration [n]

2: fori=1:Pdo

3 if K|Ri -N; > RBH then

4 Add index i to the unfulfilled constraints vector w

5. end if

6: end for

7 if 4 BPF > Biif! then

8¢ AddtheindexP+1tow

9: end if

10: if w is empty then

11:  goto20

12: else

13:  Randomly select one constraint of w

14: end if

15: if selected i < P then

16: goto24

17: else {the selected index is P + 1}

18:  goto27

19: end if

20: Calculate R for each region using Equation (22)

21: Identify the region iy with the lowest R

22: Find the UAVs to be moved

23: Update the positions of the selected UAVs using Equation (28) and taking into account the
restrictions imposed by the maximum feasible velocities. Then, go to 29

24: Find the UAVs to be moved

25: Update the positions of the selected UAVs using Equation (32) and taking into account the
restrictions imposed by the maximum feasible velocities

26: Update BB using Equation (33) and go to 28

27: Subtract a portion from all the bandwidths B?H

28: Empty w

29: End iteration [n]

4.3. Practical Implementation Aspects

Implementation aspects are related to the computational load that each UAV has to support and
to the amount of control information exchanged among the UAVs and the ground station. As reported
in [18], it depends on the network architecture, which can be decentralized (cellular and ad hoc) or
centralized (direct-link and satellite).

The proposed strategy uses a gradient estimation that depends on the position of a certain UAV
i1, the position of its neighbors and the spatial density of users A(x,y). To implement this strategy in a
decentralized fashion, each UAV has to acquire three pieces of information: (i) the selected UAV iy
(it is the UAV corresponding to the lowest rate in case that the constraints are fulfilled, and the UAV
associated to the randomly selected constraint in case that any of the constraints in Equation (24) is
not fulfilled and is selected); (ii) the positions of all its neighboring UAVs; and (iii) the distribution of
the users A(x,y) or the positions of the user terminals (in that case, integrals of previous equations
should be substituted by summations). This distribution can be calculated by each UAV for the users
in its serving region as it is expected that each UAV will know the positions of the users assigned to it.
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Then, this information can be exchanged among UAVs in order to obtain the entire spatial distribution
of users. Thus, a lot of information should be continuously sent among all the UAVs, which is the
focus in [18], where different routing algorithms are analyzed, that is, different ways of making this
information flow among the UAVs in the network. Note that the analysis of the routing strategies is out
of the scope of this paper and, therefore, we just assume that this information is available. According
to all previous comments, we propose a centralized system to implement this strategy to alleviate the
network load at the expenses of less robustness against failures of the central entity.

In a centralized implementation of Algorithm 1, all computation is executed in the backhaul
ground station, where the positions of all the UAVs are known and the positions of the users,
which are computed by each user terminal, are reported through each UAV to the ground station.
Thus, the complete Algorithm 1 is implemented in the backhaul ground station and the new positions
of the UAVs are reported back to each UAV. It is important to take into account that this exchange
of information spends a small fraction of the backhaul bandwidth B? dedicated for each link.
This fraction is so small that it almost does not affect the user transmission rate. Note that, if some
hovering restrictions apply, due to air safety regulations, they could be easily applied by limiting the
value of the gradient associated to the position of the UAV.

5. Energy Consumption

Once the positioning strategy has been detailed, in this section, an energy consumption model is
introduced. According to [10], in the context where the positioning strategy has been implemented
where UAVs are used as ABBSs, two types of energies have to be defined: communication energy
(Ecomm) and mechanical energy (Eech)-

The communication energy is the energy required for a UAV to serve all its associated users and
communicate with the ground station through the corresponding backhaul link, and the mechanical
energy is associated with the flying mechanisms that keep a UAV in the air performing the maneuvers
imposed by the positioning strategy. Each one can be computed as

E(t)= ) P(7) Ty, (34)

T<=t

where E(t) is the total energy spent until the fth iteration, P(7) is the power consumption at the tth
iteration and Tj; is the time interval associated to each iteration. The battery will be completely spent
whenever E(t) exceeds the energy available initially in the battery.

Regarding the communication energy, in the ABBS framework, nano small cells are needed, being
particularly characterized by the fact that the consumed power is almost independent of the radiated
power, as assessed by the model in [28]. However, the purpose of this paper is the development of a
positioning strategy focusing on the movement of the fleet of UAVs. Thus, we neglect in this section
the energy consumption associated to communication, assuming that it is supported by dedicated
airborne batteries.

Regarding the mechanical energy, an instantaneous mechanical power model (P,,.,) is defined
corresponding to the flying maneuvers of a UAV. This power depends on the vertical and forward
components of the UAV movement (Vy, and VE,, respectively):

V@il = v, [n =112+ (03, [n] — 03, [n — 1]2
Vg = T, ’ (35)
0[] — vz [ — 1

Vy = , (36
K Tit )

where v is the vector detailed in Equation (27), and iy, iy and i, denote the x, y and z coordinates of the
ith UAV.
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As stated in Section 2, the required type of UAV is rotary-blade. However, only a few works have
studied an instantaneous mechanical power model of this type of UAVs. Some of them only provide
practical data extracted from real UAV flights but without an analytical model (e.g., [29]), while others
provide models that do not fit our task (e.g., [30]), where the model depends on the instantaneous
angular velocity of each propeller instead of the instantaneous velocity of the UAV. Thus, in this paper,
we have followed the same methodology as in [31], that is, we adapt the well-known instantaneous
mechanical power model of an helicopter (Py,;) using the flight parameters of a rotary-blade UAV.

This adaptation consists in dividing the weight W of the UAV by the number n of propellers,
as a helicopter has a single propeller, and multiplying the obtained power, which belongs to a single
propeller, by # to obtain the total instantaneous mechanical power. Moreover, a figure of merit Fy, is
added to model the efficiency of the engines, which typically takes values between 0.7 and 0.8:

n
Pmech = Fi : Phel(wl)/ (37)
m
with W M
sziz(m+ )-g, (38)
n n

where g is the gravity constant, m is the mass of the UAV and M is the load, which in the ABBS context
is the mass of the transmission equipment.

The mathematical models for the instantaneous power supplied during the flight have been
mainly extracted from [32]. They can be characterized in a different way for the cases of vertical and
forward flights.

5.1. Vertical Flight

A strictly vertical flight (without horizontal displacements) is divided into three different cases
depending on the vertical velocity Vy,. If Vy, is positive, the helicopter is climbing; if Vy, is negative,
the helicopter is descending; and, if Vy;, is zero, the helicopter is hovering.

Regarding the climbing and hovering states, the same expression can be used for the supplied
power Py, which is detailed in Equation (40a), where Vp,, is the induced velocity at the rotor in the

hovering state defined as
[ W
Voo =4/ =——— 9
Hov 2'p'7T'7"2l (3)

where r is the propeller blade radius and p is the density of air, which depends on the altitude and is
detailed later at the end of this section.

In the descending state, the modeling of the power is more difficult as there are different behaviors
depending on Vy.. If Vy, is lower than —2 - V}y,,, we are in the windmill brake state. In this state, the
energy is extracted from the air to maintain the rotation, like in a wind turbine, and its consumption
is negative which means that the batteries are charged, as detailed in Equation (40c). However, as it
is clearly explained in [33], between —2 - V,, and 0 there are two states that have a more complex
behavior. Thus, consequently, they can only be modeled empirically. These states are the vortex ring
state (from —Vp,, to 0) and the turbulent wake state (from —2 - Vi, to —Vp,p). They have been
studied in different works and some models, which we borrow, have been extracted empirically as
in [34]. Specifically, in the vortex ring state, the author of [34] used the same expression as in the
climbing state (note that Equation (40a) starts at —Vpy,, instead of 0) and for the turbulent wake state
the expression detailed in Equation (40b) is adopted. Accordingly, Equation (40) summarizes all the
possible consumption regimes in vertical maneuvers:



Sensors 2018, 18, 3411 15 of 31

1 1
5 Vi W s WAVE 4 VR, Vv, > —Viioo, (40a)

, Vi \2
Py =q Vi, W' (=091 +0373- (o) ), —2 Vitoo < Vi, < —Viion, (40b)
Hov

1 1
5 Vi W o WAVE —4 VR Vi, < =2 Voo (40¢)

5.2. Forward Flight

Regarding the forward flight, it has a single power state that is for positive Vf, as neither the
UAVs nor the helicopters can fly backward. Moreover, the state Vi, = 0 (hovering) is not contemplated
here as it is already done in the vertical flight. As defined in [35], this model has two components,
namely the parasitic power and the induced power:

Pp :Ppur+Pind' (41)

The parasitic power is the power required for overcoming the parasitic drag due to the skin
friction of the UAYV, form drag, etc. Its expression, extracted from [35], is the following;:

1 a
PparZE'P'CD'E'Vg./ (42)
where Cp is the drag coefficient, and 4 is the top area of the UAV, which is divided by the number 7 of
propellers, as it has been done with the weight.

The induced power is the power required to overcome the lift-induced drag and its expression
has been extracted from [32]. It depends on the induced velocity V; at the rotor, whose value in the
forward flight has to be found as the solution to the following non-linear equation that does not admit
a closed-form solution:

V2
Vi= Hoo , (43)
\/(sz. -cos(ap))? 4 (Vg - sin(ap) + Vp)?

where «p is the tilt of the UAV, which, for simplicity, is considered constant and always the same in
the forward flights. Consequently, a solution has to be calculated numerically. To do it, Filippone [32]
introduced the auxiliary variable A, called induced velocity ratio, which is related with the velocity
according to the following expression:

A= VE, -sin(ap) + V;
- Q-r ’

(44)

where () is the angular velocity of the propeller, which, for simplicity, has been assumed constant

and the same for all the propellers. The numerical value of A has also to be calculated numerically

as the solution to the following equation (which is simpler than the equation formulated in terms of

the velocity):

22
H

where up is the advance ratio and Ay is the induced velocity ratio in hover, which are defined

A = up - tan(ap) + (45)

as follows:
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B cos(ap)
llP - VFZ‘ Q .y ’ (46)
VHov
A = 4o 47
H Q.-r (47)

Therefore, to calculate the numerical value of A from Equation (45), Filippone [32] proposed
to apply the Newton-Raphson method. This iterative procedure is carried out at each iteration of
Algorithm 1 to obtain the instantaneous inductive power:

A

A

Therefore, once the models for the vertical and forward flights have been defined, the final
instantaneous supplied power model proposed for the mechanical branch (P, is the one detailed
in Equation (37) with P, = Py + Pr, but taking into account two important points. On the one hand,
Pp is only added for Vi, > 0 to avoid the duplication of the hovering power and, on the other hand,
when Vg, > 0and Vy, = 0, Py has to be neglected as the UAV is doing a forward flight instead of hovering.

There is one last concept that has not been detailed yet, which is the dependence of the model
with the altitude of the UAV. As mentioned above, this dependence is modeled by the air density as it
changes depending on the altitude [36]:

Pind =W VHov . (48)

& Mm

~ My po-( *LT(?) KL

R-(Toy—L-h) '

where M,; is the molar mass of dry air (0.0289644 kg/mol), py is the sea level standard atmospheric

pressure (101325 Pa), L is the temperature lapse rate (0.0065 K/m), Tj is the sea level standard

temperature (288.15 K) and R is the ideal gas constant (8.31447 J/(mol - K)). Therefore, this dependence

is added both in Equations (39) and (42). For simplicity, the altitude is assumed constant during the
iteration (the initial one), as Tj; is low enough to assume that the change of p is negligible.

(49)

6. Evaluation and Results

In this section, some numerical simulations have been carried out to evaluate both the scheduler
and the proposed positioning strategy. Tables 1, 2, and 3 presents all the parameters used in the
simulations. Some of them have been obtained from the literature and others have been adjusted
during the simulations process (i, gy, 2, v, Tjy and grid).

Table 1. General parameters for the communications field.

Parameter Pr Pr,, fe BWj4 Gr GRr ky, T F [
Value ~ 25dBm 28dBm 2GHz 20MHz 3 3 138x108]/K 290K 5dB 9.6

Parameter B ¢ros  ¢NLOS iz HBH A Bigtal v Tit grid
Value 0.28 1dB 20 dB 3 5x10° 52m 180 MHz 14kHz 0.3s 50m/unit

Table 2. General parameters for the power consumption field.

Parameter F,, Cp Q ap M
Value 075 13 20rad/s 10° 2Kg

Table 3. Specific parameters for the UAV model.

Parameter n m r a V}:V[ ax V‘I,VI ax V‘Iy in

Value 6 96Kg 0267m 199m? 18m/s 5m/s —3m/s
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6.1. Scheduling Evaluation

The first experiment consists in the evaluation of the two schedulers presented in Section 3 using
the models presented in Section 2. The simulations evaluate the aggregated rate obtained by each
scheduler in a single cell served by a UAV placed in the center. Thus, in the case of the round robin,
this rate is calculated by multiplying the number of users N; in the region by the average rate per user
detailed in Equation (18). In the case of the equal rate, N; is multiplied by the user rate detailed in
Equation (22).

Although in this experiment only one UAV is considered, the shape of the coverage area has
already been selected taking into account the initial distribution of the fleet of UAVs in the proposed
strategy, which is implemented in the following experiments. Thus, as this distribution is uniform,
the shape of this single region has been selected square. Regarding the distribution of users, a constant
users spatial density (A(x,y) = Ag) has been considered. It is important to take into account that
the value of Ay does not modify the plots, as in both schedulers the product R| A, Nij which is the
aggregated rate, leads to the cancellation of Ag.

Figure 2 shows the resulting aggregated rates. As can be checked, the altitude of the UAV impacts
differently on the aggregated rate. Specifically, in small regions, the higher the altitude of the UAV is,
the lower the aggregated rate is, whereas in big regions the behavior is inverted.

8
352100 . . .

——h=50 m (RR)

— — h=50 m (ER)
— 3 ——h=250 m (RR)[{
0 —+—h=250 m (ER)
= h=450 m (RR)
=2.5] h=450 m (ER)[{
o —2—h=650 m (RR)
= —»—h=650 m (ER)
c 2
5 Le.
o 1.5
o
5 1
(@)]
<Los

0 il S e Nt o . 2 PEIERO0N
0 1000 2000 3000 4000 5000

Cell side(m)

Figure 2. Aggregated rate of the round robin (RR) and the equal rate (ER) schedulers as a function of
the cell side.

This behavior is related to three different factors, whose dependence with the altitude is also
analyzed in [7]: the UAV-user distance, the orientation between the user and the main lobe of the UAV
antenna and, finally, the obstruction of the direct channel produced by the presence of buildings. In the
case of small regions, all the users are under the main lobe of the UAV antenna and have LOS with the
UAV. Thus, the only important factor is the UAV-user distance, which is directly related to the altitude
of the UAV. However, in the case of big regions, the users at the cell edge are not under the main lobe
of the radiation pattern of the antenna and, consequently, their percentage of NLOS is higher as the
elevation angle in the edge is lower. Thus, in big regions, these two factors are more important than
the distance and, as a consequence, the dependence of the aggregated rate and the altitude is inverted.

Regarding the effect of this behavior in the positioning strategy, if the regions at the initial step
have a side of, for instance, 3000 m, then the altitude of the UAV serving the region with the lowest user
rate will increase. However, as the movement of its neighbors tends to reduce the size of the region of
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this UAV, after some iterations, the region will be small enough and, as a consequence, the altitude of
this UAV will start to decrease.

Finally, regarding the comparison between both schedulers, this experiment shows that round
robin achieves higher aggregated rates than the equal rate scheduler regardless the size of the region
and the UAV altitude. However, this difference is not very high, especially in small regions, and,
as mentioned in Section 2, it exhibits a worse user fairness.

6.2. Positioning Strategy Evaluation

The positioning strategy derived in Section 4 is evaluated in this subsection assuming that the
intra-cell resource allocation is based on the equal rate scheduler described in Section 3.2. A squared
scenario with a side of 6100 m and a spatial distribution of users A(x, y) with a Gaussian spatial shape
centered at the point (4500 m, 4500 m) has been considered, which can simulate, for instance, a sporting
event scenario. Moreover, nine UAVs have been uniformly distributed in the scenario as starting
point, the backhaul ground antenna has been placed at the corner (5900 m, 5900 m) and the total
backhaul bandwidth B has been uniformly allocated among all the UAVs as initial distribution
(BBH = Biotal /D). Figure 3 shows the scenario in the first iteration and after 500, 1000, 1500, 2000,
and 3000 iterations. The peak of the users distribution is plotted as a red cross, the backhaul ground
antenna is plotted as an orange circle, the value of the rate for each user at each region R is plotted
from blue to yellow depending on its value (although it is constant within each region as the equal
rate scheduler achieves a fair distribution of the resources) and, finally, UAVs (x,y) coordinates (in
meters) are plotted as letters of different colors to be able to track their movements over the iterations.
Figure 4 shows the evolution along the iterations of the rate per user (R) of each region. The colors are
the ones defined in the letters in Figure 3.

By observing both figures, it can be seen that, after 3000 iterations, which is equivalent to 15 min
(Tt = 0.3 5), the positioning strategy is able to reduce the difference among the average rate per user
of each region by moving almost all the UAVs towards the area with the highest concentration of
users (4500 m, 4500 m), which leads to a more uniform distribution of the resources. Figure 3 shows
qualitatively how, as the iterations go on, the UAVs move so that the rates for users at different regions
tend to be equal. In fact, Figures 3 and 4 show that convergence is almost achieved at iteration 2000.

Moreover, as concluded in the previous experiment, the altitudes of the UAVs serving large
regions have increased, whereas the altitudes of the UAVs serving small regions, which are the ones
closer to the high density of users area, have been reduced.
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Figure 3. Initial UAV positions and service areas (top left); after 500 iterations (top right); after 1000
iterations (center left); after 1500 iterations (center right); after 2000 iterations (bottom left); and after
3000 iterations (bottom right).

Regarding the numerical results of the experiment, we provide two types of results: (1) results
evaluating the fairness of the resources distribution among users of different regions; and (2) results
evaluating the constraints imposition. In the evaluation of the fairness, we use the Jain’s Fairness
index [37], which has the following definition for a vector 1 of length L:

L 2

1[i]
i=1

f=—El (50)
L-Y" (1[i])?

i=1
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Figure 4. Evolution of the rate per user, for all coverage areas. Each color represents one coverage area
using the same colors as the ones assigned to letters in Figure 3.

This index takes values between zero and one. Zero denotes a totally unfair distribution, whereas
one denotes a totally fair distribution corresponding to all the elements in vector 1 being equal.
This index is independent of the scale, the metric and the population size. The index is continuous,
which implies that any slight change modifies the fairness index also slightly. To fit it in the multicell
scenario, Equation (51) has been derived taking into account that at each region A; there are N; users
with the same rate:

P
(xNi ’ F’Ai)Z
f=—"5 - (51)
LN (Rla)

In our simulation, the fairness index has been increased from 0.77006 at the initial step up to
0.99999 in iteration 3000, which was the purpose of the proposed strategy. The rates are 9.29, 9.29, 9.28,
9.28,9.37,9.27,9.27,9.27, and 9.27 kbps and the average user rate in the entire scenario is 9.29 kbps,
which is computed as follows:

=

, A Ni
Rp="24 (52)

N;

P
=1

™~

1

These rates are not very high, but we have to consider that the number of users per cell after 3000
iterations is high, around 10,000. Moreover, in real life, not all the users are transmitting simultaneously.
Thus, assuming that only 10% of users are transmitting simultaneously, the obtained 10,000 active
users per region would correspond to a total number of 100,000 persons in the region, which is a huge
population. This amount of users can easily be found in a large sporting facility (there exists some
stadiums with a capacity of 100,000 people) placed in a city (the population density of a city such as
Barcelona is 15,000 people per km?). In this way, the regions placed outside the stadium still contain a
huge concentration of users due to the population density of the city. However, as this density is lower
than inside the stadium, these regions are larger.

Note that the proposed equal rate scheduler assures equal rate among the set of active users at
a given time. That means that, if either the composition of the group of active users or the traffic
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profiles change, then the achieved rate may change. A possible solution entails elaborating a more
sophisticated resource allocation strategy that forces fairness among all possible sets of active users
and traffic profiles. Note, however, that it is very complicated since the scheduler would have to work
based on predictions and fairness could only be assured with a certain probability. In fact, fairness
should be defined in a different way for each kind of traffic profile. Anyway, the development of this
sophisticated scheduler is out of the scope of this paper, whose main objective is to show a framework
in which it is proved that performance can be improved by considering jointly resource scheduling
and navigation.

Regarding the constraints imposition, although in some iterations there can be unfulfilled
constraints, the most important thing is that all of them are fulfilled on average to ensure a proper
distribution of the resources. After 3000 iterations the links achieve the following average backhaul
capacities RPH: 100.01, 111.87, 124.36, 111.77, 143.38, 155.72, 124.57, 155.99, and 173.29 Mbps, which are

only slightly higher than their average aggregated rate R a, - Ni: 99.31,106.43, 107.31, 106.28, 139.58,
150.30, 106.99, 151.51, and 135.75 Mbps. The average total shared backhaul bandwidth TSBB
(179.94 MHz) is lower than total backhaul bandwidth BtB”I?l (180 MHz). Thus, analyzing the results
after 3000 iterations, it can be concluded that all the constraints are fulfilled in average, even the
constrains in Equation (24), which were not fulfilled in the initialization in the regions far away from
the backhaul ground antenna (6100 m, 6100 m).

6.3. Comparison to Previous Works

In this subsection, the proposed positioning strategy is compared to different works in the
literature where also multiple UAVs are deployed as ABBSs. Specifically, the selected works are by
Lyu et al. [12] and Galkin et al. [16] as they are the only ones that fit our evaluated scenario.

To obtain a fair comparison, some adaptations have been carried as it will be explained later in
this subsection. It is important to remark that these algorithms do not take into account backhaul
constraints considerations. According to this and, in order to evaluate the constraints imposed in
the proposed strategy, two stages are carried out. Firstly, the individual bandwidth (BEH) of each
backhaul link is computed in such a way that Equation (24) is fulfilled using the minimum required
bandwidth. Then, all these bandwidths are added and compared to Bg’f_}’l to evaluate Equation (25).
Therefore, Equation (24) is fulfilled in all the links and the evaluation of Equation (25) defines if the
specific strategy accomplishes the total backhaul bandwidth limitation. Finally, in order to compare
these algorithms in terms of user rate, the average user rate in the entire scenario is also computed.

6.3.1. Spiral Algorithm

The approach proposed in [12] aims to serve all the users in a specific region with the minimum
number of UAVs flying at a fixed altitude. This is formulated as a geometric problem where a given
area has to be served by the minimum number of coverage regions with the same radius and with
possible overlapping. Moreover, it is developed in a scenario where a number of users are deployed
at discrete positions instead of using a continuous spatial distribution of users, which is the case of
our evaluated scenario. Thus, the algorithm has been adapted in order to cover the continuous spatial
distribution of users in the entire scenario.

Figure 5 top shows one possible placement of the UAVs using the spiral algorithm in the scenario
described in the previous subsection. However, this algorithm places the first UAV randomly among a
set of positions that depend on the border users, which has an important effect on the final placement
of all the UAVs. It is important to take it into account as it also implies a variation in the final results of
the algorithm. Therefore, although this variability is not important, the results have been averaged
over 12 different realizations of the algorithm, which are analyzed in Section 6.3.3.
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Figure 5. Position of UAVs and coverage areas using: Spiral Algorithm [12] (top); and k-Means
Algorithm [16] (bottom).

6.3.2. k-Means Algorithm

Regarding the algorithm implemented in [16], it is developed for a scenario where the UAVs
assist an already existing terrestrial network. This strategy is defined by two stages, being the first one
independent from the terrestrial network. This first stage, which is the k-means clustering algorithm,
has been used here in order to compare this algorithm with the proposed positioning strategy. Again,
this algorithm is developed for a set of users placed at discrete positions instead of a continuous spatial
distribution of users. However, in this case, this algorithm cannot be adapted and, as a consequence,
a discretization of the spatial distribution A(x, y) has been carried out.

Figure 5 bottom shows the placement of the UAVs using the k-means algorithm in the scenario
described previously. In this case, as the convergence of the k-means depends on the initialization,
different initializations are carried out and the solution with the lowest within-cluster sums of
point-to-centroid distances is selected. The results are analyzed in the following subsection.

6.3.3. Comparison

In this subsection, the results obtained with the three algorithms are compared. Table 4
shows these results in terms of three relevant aspects: the average user rate in the entire scenario
(Equation (52)), the fairness (Equation (51)) and the total shared backhaul bandwidth (TSBB), which,
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according to Equation (25), should be lower than Bg’ﬁ‘l (180 MHz). If it is not fulfilled, the algorithm
does not fulfill the constraints imposed by the backhaul implementation, which is marked in gray in
the tables.

Table 4. Results of the different algorithms.

. TSBB
Fairness

. Rt
Algorithm (kbps) (MHz)

Proposed 9.29 0.99999  179.94
Spiral 9.40 0.72860 | 200.64
k-Means 9.47 0.86724 | 187.86

Observing the results, it can be concluded that the average rate per user is very similar for the three
algorithms. Note, however, that the proposed algorithm achieves much better fairness, which means
that all users will perceive almost the same quality of service (QoS). This would not be the case for
the other two algorithms, where there can be high differences between the rates assigned to the best
and the worst users, which is a negative effect to be avoided, if possible. The reason the Spiral and
k-Means algorithms do not achieve a fairness as high as our proposal is because they locate the UAVs
using only geometrical criteria but without taking into account the quantity of traffic generated by the
set of users assigned to each single UAV. In addition, the strategy proposed in this paper fulfills the
constraints related to the total bandwidth/capacity of the backhaul link. In other words, the proposed
solution achieves a higher level of QoS while not exceeding the backhaul capacity.

6.4. Non-Static Scenarios

In real life, user terminals can move and the number of UAVs in the fleet can change. Thus,
the positioning strategy has to be able to adapt to these changes. In this subsection, the strategy is
implemented in three different non-static scenarios to evaluate this adaptation. Specifically, in all of
them, the initial scenario is the same as in the previous subsections, but after 2500 iterations, when the
algorithm has converged as shown in Figure 4, the scenario starts to change.

6.4.1. One UAV Decays

The first non-static scenario consists in the loss of one UAV, which means that all other UAVs have
to cover the temporary non-served users with the highest possible fairness. To evaluate this situation,
in this experiment, after 2500 iterations, UAV I (green) is removed.

As can be seen in Figure 6, after 2500 iterations without the decayed UAV, which is equivalent to
12.5 min (T} = 0.3 s), the convergence state is reached again. The bitrate per user has been reduced
(7.47 kbps), as the same number of users have to be shared among one less UAYV, the fairness is
maintained very high (0.99999) and all constraints are still fulfilled on average.

6.4.2. Displacement of the Concentration of Users

In the second non-static scenario, after 2500 iterations, the concentration of users, which in the
initialization is a Gaussian centered at the point (4500 m, 4500 m), is gradually moved (0.25 m/iteration
equivalent to 3 km/h) until the position (1500 m, 4500 m). This scenario could be, for instance,
a demonstration, where a big concentration of users is moving simultaneously.
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Figure 6. Rearrangement of UAVs when one UAV decays: positions and coverage areas (top); and
evolution of the rate per user in each coverage area (bottom). Each color in the bottom figure represents
one coverage area using the same colors as the ones assigned to letters in the top figure.

In Figure 7, this displacement of the Gaussian can be deduced by observing the red cross.
Moreover, in this figure, some UAVs seem to overlap, but it is only due to the fact that they are
at different altitudes and, as a consequence, the upper UAVs serve the far users. Regarding the
performance of the proposed strategy, in this case, a more unstable state is reached, in other words,
the fluctuation of the rate per user at each region is higher. It is produced by these closer UAVs placed
at different altitudes (C, F, E and H), as in this situation a small movement of the UAVs implies a higher
variation of the number of associated users. However, this fluctuation is not very high and does not
affect the final results of the strategy, as both the achieved fairness and the rate per user are still high
(0.99995 and 8.82 kbps, respectively), and all the constraints are still fulfilled on average.
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Figure 7. Rearrangement of UAVs when subscribers move: positions and coverage areas (top);
and evolution of the rate per user in each coverage area (bottom). Each color in the bottom figure
represents one coverage area using the same colors as the ones assigned to letters in the top figure.

6.4.3. Scattering of the Concentration of Users

In this last non-static scenario, after 2500 iterations, the concentration of users is scattered from
a Gaussian to a uniform distribution of users and maintaining the number of users in the scenario.
This modification in the distribution of users is carried out by gradually increasing the standard
deviation of the Gaussian spatial distribution of the users (0.1 units/iteration) and the number of users
in the scenario is controlled with an specific gain that multiplies the Gaussian expression. This scenario
could be, for instance, the end of an sporting event, where all the people leave the sporting venue.

As can be seen in Figure 8, the UAVs tend to distribute uniformly again as in the initial state,
which is the expected behavior as the distribution of users tends to also be uniform. Moreover,
the results are good, as both the achieved fairness and the rate per user are still high (0.99999 and
9.10 kbps, respectively) and all the constraints are still fulfilled in average.
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Figure 8. Rearrangement of UAVs when subscribers density returns to uniform: positions and coverage
areas (top); and evolution of the rate per user in each coverage area (bottom). Each color in the bottom
figure represents one coverage area using the same colors as the ones assigned to letters in the top figure.

Therefore, from the observation of the performance of the proposed strategy in the three non-static
scenarios, it can be concluded that the proposed strategy is also robust to the changes in the scenario,
achieving almost the same results as in the static scenario, which is a very important feature as in real
life almost all scenarios undergo changes.

6.5. Energy Consumption Evaluation

In this last subsection, the energy consumption in the three previous non-static scenarios is
evaluated. As shown in Section 5, some parameters of a real UAV are needed: the number n of
propellers, the mass m, the propeller blade radius r, the top area 2 and the maximum velocities.
Moreover, it is important to take into account the required type of UAV: rotary-blade. According to this,
in this section, a specific UAV has been selected to implement the energy consumption models. It is
the hexacopter DJI Matrice 600 (SZ DJI Technology Co., Ltd., Shenzhen, China) [38], whose parameters
are listed in Tables 2 and 3, equipped with six TB48S batteries, which are able to store 129.96 Wh each
(equivalent to a total energy of 2807.1 kJ) and a maximum payload capacity of 5.5 kg.
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Regarding the communication payload, although the specific transmission equipment has not
been analyzed in this paper, nowadays there exist nano Small Cells that only weights a few kilograms.
It is the case, for instance, of the IPaccess nanoLTE E40 (IPaccess, Cambridge, UK) [39]. This BS only
weights 1.2 kg, supports long term evollution (LTE) cellular communications with a range of 4 km and
is able to radiate the power assumed in this paper, i.e., 25 dBm. Therefore, considering that the BS also
needs external batteries, another radio for the backhaul link, etc. the total mass of the transmission
equipment has been assumed to be 2 kg, which is supported by the selected UAV. This value is an
approximation, but the simulations have proved that in the range going from 1.5 to 2.5 kg, which are
the expected values of the payload M, the variations in the consumptions are very low (£2%).

Once all the parameters of the instantaneous mechanical power model have been detailed, the first
experiment consists in evaluating both the vertical and forward models presented in Section 5 for a
range of velocities.

Figure 9 presents both models using an altitude of 600 m to compute the air density in
Equation (49). It is important to take into account that, to show real UAV powers, the factor £~
detailed in Equation (37) has been added in both models. By observing this figure, two important
points can be extracted. On the one hand, at V = 0, both models lead to the same hovering power,
which was the expected behavior and, on the other hand, for Vi, < —1.63 - Vj4,, the obtained power
is negative, so the energy is extracted from the air through the reverse movement of propellers,
which allows recharging the batteries.

20000 T T T T T

— Vertical flight
— — Forward flight

15000

10000

Power (W)
3
8

-5000 : - : :

20 -15 -10 -5 0 5 10 15 20
V (m/s)

Figure 9. Power consumption models as a function of velocity.

Finally, as the last step of the energy consumption evaluation, the previous models are applied
in the three non-static scenarios presented in the previous section. The energy consumed per UAV
over the iterations is detailed in Figure 10, where the horizontal dashed lines show the multiples of the
energy of the selected UAV (2807.1 kJ).

As can be seen in this figure, each UAV has a different consumption which is related to the
maneuvers that have been carried out. Specifically, the highest consumptions belong to the UAVs
that have moved fastest in forward flight, which is the expected behavior after analyzing the model
shown in Figure 9. In the first non-static scenario, these UAVs are the ones close to the decayed UAV,
which are E (black), F (blue) and H (gray), as the new non-served users are assigned to them. Thus,
these UAVs need fast displacements to redistribute their big amount of associated users. In the second
and the third non-static scenarios, where the users move, the UAVs that have moved fastest in forward
flight are the ones close to the peak density of users, which are E (black), F (blue), H (gray) and I
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(green), as near the peak of users the amount of moving users is higher. Therefore, it implies a higher
impact on their associated UAVs and, as a consequence, higher displacements.
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Figure 10. Evolution of the individual energy consumptions vs the numbers of iterations for: one UAV
decays (top); displacement of users (center); and scattering of users (bottom). Each color in the figures
represents one UAV using the same colors as the ones assigned to letters in the previous figures in
this section.
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Moreover, by comparing the consumptions, two conclusions can be extracted. On the one hand, it
can be concluded that the autonomy of the selected UAVs in the evaluated scenarios is very low. Thus,
either rotary-blade UAVs with a higher autonomy should be selected, which are difficult to find, or a
strategy to replace the UAVs without the loss of rate observed in the first non-static scenario should be
developed. On the other hand, taking into account that the iteration time is 0.3 s, it can be seen that
the duration of the battery of each UAV is approximately between 5 and 20 min depending on the
maneuvers, which agrees with the specifications of the selected UAV [38] taking into account the high
altitudes and the payload (2 kg).

7. Conclusions

The results show that the proposed strategy can reduce the differences in average rate that each
user receives, obtaining a fairness index close to one and fulfilling all the proposed constraints on
average, which outperforms considerably the state of the art. Furthermore, the results show that the
proposed strategy is robust to changes in the scenario. Finally, regarding the energy consumption,
results show that fast forward displacements consumes a lot of energy and that quadcopters and
hexacopters with higher autonomies are needed in the ABBS framework.

As a future work, on the one hand, transmission power control is being considered as a way to
increase the lowest average rate in addition to UAV movement, where the transmission power would
be neither constant over the scenario nor fixed over the iterations. On the other hand, other practical
restrictions are being studied, either to obtain more realistic results (e.g., differentiation between active
and non-active users, minimum bitrate per user, or upper and lower bounds for flying altitude) or
to limit the movement for other benefits (e.g., energy consumption reduction by penalizing the cost
function if the obtained displacement requires a high forward speed). A more realistic simulator will
also be developed as future work including real data (e.g., a detailed geographical and geometric
description of a city, for example, real traffic profiles, etc.).
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