
On Deletions in Open Addressing Hashing?

Rosa M. Jiménez1 and Conrado Martı́nez1

Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain.
{jimenez,conrado}@lsi.upc.edu

Abstract. Deletions in open addressing tables have often been seen as problematic. The usual solution is to use
a special mark ’deleted’ so that probe sequences continue past deleted slots, as if there was an element still
sitting there. Such a solution, notwithstanding is wide applicability, may involve serious performance degradation.
In the first part of this paper we review a practical implementation of the often overlooked deletion algorithm for
linear probing hash tables, analyze its properties and performance, and provide several strong arguments in favor
of the Robin Hood variant. In particular, we show how a small variation can yield substantial improvements for
unsuccesful search. In the second part we propose an algorithm for true deletion in open addressing hashing with
secondary clustering, like quadratic hashing. As far as we know, this is the first time that such an algorithm appears
in the literature. Although it involves some extra memory for bookkeeping, the algorithm is comparatively easy and
efficient, and might be of practical value, besides its theoretical interest.

1 Introduction

In open addressing hashing, a collection of n items is stored in an array t of M entries (also called slots), say t[0]
to t[M− 1], and collisions—that is, when two or more items should go into the same slot—are resolved by finding
alternative locations within the table for the colliding items. In particular, given some item x, a sequence of slots at
locations i0 = h(x), i1, i2, . . . is examined (probed) until the item x or an empty1 slot t[i j] is found. In the former case
the search is successful; in the later, the search is unsuccessful and the empty slot may be used to store x into the table.
Here, h : U → [0..M− 1] denotes the hash function, mapping the universe U from which the items are drawn to the
locations of the hash table t. Different open addressing schemes differ in the way the probe sequences are defined.
Furthermore, for any open addressing scheme, different variants can be obtained by changing the rule that specifies
how to resolve a collision for a given slot, in particular, which item remains and which one continues with the probe
sequence during an insertion. When collisions are always resolved in favor of the item that occupies the table and it
is the new item the one that continues with the probe sequence, we have the standard variant, often nicknamed FCFS
(First-Come-First-Served). When the collisions are resolved in favor of the newcomer, we have LCFS (Last-Come-
First-Served), a variant introduced by Poblete and Munro [14]. In the Robin Hood variant, collisions are resolved
in favor of the item which is further away from its hash address [4, 2], whereas in ordered hashing [1], the smaller
item—according to some prespecified total order—remains and the greater continues with the probe sequence. Along
the paper we will usually consider all these possible strategies, but special emphasis will be given to FCFS and to
Robin Hood.

Deletions in open addressing hash tables have been seen as problematic by many authors. Indeed, we cannot
remove an item x by simply marking the slot that contains it as empty. If we do that, later operations could be wrong.
For instance, a search for an item y might report failure because the emptied slot appears in the probe sequence, even
though the item y is present in the table, occurring somewhere later in the probe sequence.

Some authors thus argue that open addressing schemes are not suitable if deletions must be supported. A possible
solution, often proposed in data structures textbooks, is to have three possible states for every slot: occupied, free or
deleted. When a probe sequence passes through a deleted slot its contents are not checked, but the probes continue.
If we want to insert a new element, we can use any deleted slot that we might have seen while searching for the item
or a free slot (the search only stops if the item or a free slot is found). This scheme is usually called lazy deletion. It
is certainly lacking elegance and, worst of all, the performance of the hash table might substantially degrade if many
deletions take place. Additionally, a precise mathematical analysis of the performance in the presence of insertions
and lazy deletions is quite complex [3, 15].

? This research was supported by project TIN2010-17254 (FRADA) from the Spanish Ministry of Science and Innovation.
1 For simplicity, we will assume that there is always at least one empty slot, n < M.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185527183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Some variants of lazy deletion such as those proposed in [7] and [13] improve the overall performance of the hash
table—as compared to using standard lazy deletion. But they still exhibit the main drawbacks of lazy deletion, even
though in a lesser degree.

Yet, in the case of the simplest open addressing scheme, linear probing, deletions can be supported rather easily
and efficiently. In linear probing hashing, the sequence of probes is defined by

i j = (i0 + j) mod M,

that is, after probing the hash location i0 = h(x), we examine the succesive positions i0+1, i0+2, . . . in a cyclic fashion,
until x or an empty slot is found. For simplicity, we will use for the rest of the paper the notation x⊕y := (x+y) mod M
and x	 y := (x− y) mod M.

Our contribution in this paper is two-fold. First, we review the often overlooked deletion algorithm for linear
probing hashing, its properties, and carry out a detailed analysis of its expected performance for several variants of
linear probing. Such analysis, as far as we know, was only partial (for standard FCFS linear probing) or missing (for
variants such as LCFS or Robin Hood). We discuss then a few implementation issues of this deletion algorithm. In
particular, we argue strongly in favour of the Robin Hood variant of linear probing; among other reasons we introduce
a new simple algorithm that improves significantly unsuccesful search cost and analyze its expected cost as a function
of the load factor α = n/M, as is usual for hashing schemes.

Secondly, we propose a new algorithm for deletions in more general open addressing schemes. The new algorithm
performs actual deletion in any hashing table using open addressing with secondary clustering (here we follow the
terminology introduced in [6]). This family of open addressing schemes is characterized by probing one slot using
a hash function, and the remaining probes determined by the first one. A particular important instance is quadratic
hashing [11]. Linear probing is also a special case of open addressing with secondary clustering; it is often said to
exhibit primary clustering. Note, however, that other well know open addressing schemes, such as double hashing, do
not fall into this category. In particular, double hashing uses an additional hash function to compute the increments in
the probe sequence and thus it belongs to the class of open addressing schemes with tertiary clustering.

2 Deletions in linear probing hash tables

In this section we consider deletions in linear probing hashing. To delete an item x at t[i], it suffices to scan the
non-empty locations following t[i], left to right, and whenever the element y at t[j] hashes to a position i′ = h(y) that
precedes i and j in the cyclic order, y and the empty slot can be swapped; then the process continues from position j⊕1
to see if an element can be swapped with the empty slot at t[j], and so on. This algorithm was described in Knuth [8]
(Algorithm R), and we do not know of any previous appearance on the literature. It has also been described by several
other authors, for instance, Mehlhorn and Sanders [12], but as we have already discussed in the introduction, it has
often been overlooked; surprisingly enough, in many well known textbooks on data structures.

A more “extreme” approach, yet simpler and essentially equivalent, is adopted by Sedgewick [16]: each element
after the removed one is reinserted into the table. Sedgewick’s algorithm is equivalent to Knuth’s R algorithm on
FCFS, Robin Hood and ordered hashing tables. However, Sedgewick’s method is not equivalent for LCFS. Indeed,
items with the same hash address appear in reverse order of insertion in the table, and if they are visited in that order
and reinserted they’ll end up in the order they were inserted.

More recently, Kolosovskiy [9] has proposed the algorithm for deletion sketched above—he seems unaware that
the algorithm has been known for a long time—with a new twist. Rather than computing the hash location for each of
the items following the removed item to see if they can be reallocated, he proposes to store for each slot the number
of probes between that location and the hash location of the item that occupies the slot, if any. Thus, if t[i] has been
emptied and t[j] is occupied by an item whose number of probes is larger or equal to the number of probes between i
and j, then t[j] can be reallocated to t[i] (see Algorithm 1).

We start reviewing the deletion algorithm for linear probing hash (Algorithm 1), in the form (almost) given by
Kolosovskiy [9]. As we have mentioned before, the deletion algorithm for linear probing hashing might be imple-
mented by recomputing hash addresses to know if a given item can be moved to some previous emptied location or
not. But we can store additional information at each slot to avoid recomputing hash addresses. For the latter, during a
lookup for insertion we need to keep track of the number of probes made so far; when the new item is inserted at, say,
t[i], the number of probes needed to reach the slot is stored in t[i].probes. This is the variant proposed by Kolosovskiy.

Whether we use Knuth’s or Kolosovskiy’s variant, Algorithm 1 preserves randomness in a strong sense for all
variants mentioned in this paper: FCFS, LCFS, Robin Hood and ordered hashing. For FCFS linear probing, Knuth [8]
proves that removing an item with Algorithm 1 yields the same table that we would have obtained if we never had
inserted that item. This is also true for the other variants, in particular for last-come-first-served (LCFS) [14] and
Robin Hood [2, 4]. Take for instance LCFS and let x be the item to be removed. Let i the location of x in the table.
Suppose that the test t[j].probes > p does not succeed as j takes the values i⊕1, i⊕2, etc. (and we increment p). That
means that i is not in the probe sequence of any of these elements, and the algorithm just leaves t[i] empty, as it should.
Suppose now that j is the closest location to i on the cyclic order such that t[j].probes > p. That element can occupy
t[i] and indeed, the algorihm puts t[j] at t[i] and empties t[j]. The question is: is that the element that should be moved
to t[i]? If so, the rest of the argument simply follows by induction. In a LCFS table, the elements of the table such that
i belongs to their probe sequence (in the sense that a search for any of these elements will probe location i) satisfy the
property that they appear in reverse order of insertion in the table, when scanning the table from left to right in the
cyclic order. Therefore the element at t[j] is, among the elements that probe location i and were inserted before x, the
newest one. Therefore to maintain the LCFS invariant, t[j] is the element that must be moved to t[i]. Similarly, for a
Robin Hood (RH) table, the element t[j] that is moved to t[i] (if such thing happens) is, among all elements probing
location i different from x, the one with the smallest displacement (in case of ties, it is the element that is minimum
according to that criterium), so the invariant of the RH table is preserved: namely, for any location i, the elements that
probe to i appear in consecutive locations and in increasing order of displacement.

As a consequence, all analytical results on linear probing for insertion-only-tables (see, for example, [8, 5] and the
references therein) do apply if Algorithm 1 is used for deletions.

Algorithm 1 Removal in a linear probing hash table.
procedure REMOVE(k)

. k: key of the item to remove; t: the hash table

. M: size of the hash table; n: number of items, n < M
i← LOOKUP(k)

. t[i].key = k∨ t[i].probes = 0
if t[i].probes 6= 0 then

t[i].probes← 0
COMPRESS(i)
n← n−1

procedure COMPRESS(i)
f ree← i; i← i⊕1; p← 1
while t[i].probes 6= 0 do

if t[i].probes > p then
. Item at t[i] can be moved to t[f ree]

t[f ree]← t[i]
t[f ree].probes← t[i].probes− p
t[i].probes← 0
f ree← i; p← 0

i← i⊕1; p← p+1

The required extra information per slot is not a big disadvantage since we need only to store a short integer per slot.
In practice, this extra space will not occupy more memory than the Boolean flag per slot which would be necessary
to know whether the slot is empty or not, anyway. On the contrary, keeping the displacement or number of probes of
each item is useful to implement the RH variant [2, 4]. Robin Hood hashing has the virtue of significantly reducing
the variance of successful searches. And, of course, we are trading time for space, as we avoid recomputing the hash
locations of all the items right after the one to be removed; such recomputation of hash address should take significantly
more time than the time for bookkeeping of the distances (during both insertions and deletions) and for checking if
a key might be reallocated using the probes attribute of each slot. Furthermore, the performance of unsuccesful
searches and deletions can be greatly improved for RH tables, as we discuss in Subsection 2.2.

2.1 The expected cost of deletions in linear probing

The performance of linear probing hash has been throughly examined and analyzed by several authors. The first
analysis is due to Knuth [8]. We give here a brief summary of the most relevant results for our purpose.

Consider a linear probing hash table with M slots and n items, n < M. Denote Sn,i the number of probes needed to
successfully locate the ith item inserted into the table. Denote Un, j the number of probes—including the probe of the
empty slot that signals the end of the search—made by an unsucessful search that starts at location j, 0≤ j < M.

The total successful search path length (tSSPL) is the sum of all Sn,i, and the average successful search path length
Sn is the tSSPL divided by n; we take S0 = 0 by convention. Another interesting random variable is Sn := Sn,Zn , with
Zn ∼ Uniform(1..n), that is, the successful search path length for a random element. While E{Sn} = E{Sn}, both
random variable are distinct. Similarly, the total unsuccessful search path length (tUSPL) is the sum of all Un, j, and
the average unsuccessful search path length Un is the tUSPL divided by M. On the other hand, Un := Un,ZM , with
ZM ∼ Uniform(0..M− 1) is the number of probes when we make an unsuccessful search starting from a random
location. Because of symmetry, all Un, j are identically distributed and Un too; however, they are not independent. On
the other hand, E{Un}= E{Un}.

The variable Un gives also the number of probes In to insert a new item in a table that contains n items, when the
hash address of the new item is uniformly distributed in 0..M−1. Since Sn,i is the number of probes that was necessary
to insert the ith item when the table contained i−1 elements it easily follows that

E{Sn}= E{Sn}=
1
n ∑

1≤i≤n
E{Sn,i}=

1
n ∑

0≤i<n
E{Ui}.

Since the deletion algorithm preserves randomness, given a table with M slots and n items, we can forget about
the particular “history” that produced the table, and analyze it just as if the table had been produced using insertions
alone. Now, let Dn,i be the number of probes that we need to delete the ith element from such table. This number will
consist of two contributions: the Sn,i probes made from the item’s home location until we reach it at location j, and
then the Un, j probes that we must make until we reach the end of the cluster where the item sits. As before, we call
the total deletion path length (tDPL) the sum of all Dn,i, the average deletion path length Dn is the tDPL divided by n,
with D0 = 0, and Dn is the cost of the deletion of a random element.

Theorem 1. For any linear probing hash table T ,

tDPL = tUSPL+ tSSPL−M.

As a consequence, E{Dn}= E{Dn}= E{Sn}+ M
n (E{Un}−1), for 0 < n < M.

The proof of the theorem is immediate from the observation that if the ith element hashes at position j (with equal
probability for the M slots) then Dn,i = Sn,i +Un, j+Sn,i−1−1. Summing over all i, 1≤ i≤ n, yields the statement of the
theorem, since the index j′ = j+Sn,i−1 will span all the indices of the occupied slots in the table. Using well-known
results for E{Sn} and E{Un} [8] we can conclude with the following theorem.

Theorem 2. The expected cost of deletion of a random element in a linear probing hash table storing of capacity M
and storing n items, 0 < n < M is

E{Dn}=
1
2 ∑

k≥1

(n−1)k

Mk

(
k+2+

n−1− k
M

)
+

1
2

(
3− M

n

)
=

1
2
(2−α)2

(1−α)2 −
1
2

4−α

(1−α)4M
+O(M−2),

where α = n/M ∈ [0,1) is the so-called load factor and xk = x(x−1) · · ·(x− k+1).

For instance, a deletion in a table with α = 0.5 needs 4.5 probes on average, while 12.5 probes are necessary if
α = 0.75. The performance of deletions substantially degrades as α→ 1, just as for all other operations (insertions,
successful and unsuccesful searches).

2.2 Improving unsuccessful search performance

Unsuccessful search in linear probing tables with Robin Hood can be improved by observing that the search can be
stopped if we probe a location such that the number of probes there is strictly smaller than the number of probes that
we have made to arrive from the starting hashing location. Thus we can replace the main search loop

while t[i].probes 6= 0∧ k 6= t[i].key do . . .

by the more efficient
while t[i].probes≥ p∧ k 6= t[i].key do . . . ; p← p⊕1

Let Uopt
n, j denote the cost of an unsuccessful search that starts at location j using this optimized search loop, and

tOPTUSPL the total optimized unsucessful search path length. We use Uopt
n for the cost of an optimized unsuccessful

search starting at a random location, and Uopt
n = tOPTUSPL/M.

The following lemma gives us the fundamental performance of this optimized unsuccessful search.

Lemma 1.
tSSPL+M = tOPTUSPL.

Proof. Assume we start a probe sequence at location j. Then we stop at location j⊕ k if and only if t[j⊕ k].probes <
k + 1 and t[j⊕ k′].probes ≥ k′+ 1 for all 1 ≤ k′ < k. Now, if we insert an element with hash address j but that is
“greater” than any other according to the rule choosen to decide ties in RH, it would be finally be inserted at location
j⊕k (eventually displacing the element that sitted there). Hence Uopt

n, j = Sn,i +1 with i corresponding to the element at
location j⊕ (k−1). Indeed, the ith inserted element must have hash address ≤ j for otherwise, the optimized search
algorithm have stopped before. Summing over all possible j we get

tOPTUSPL = ∑
0≤ j<M

Uopt
n, j = ∑

t[j].probes=0
1+ ∑

t[j].probes6=0
Uopt

n, j

= M−n+ ∑
1≤i≤n

(Sn,i +1) = M−n+n+ tSSPL = M+ tSSPL.

From there and well known results on the performance of successful search, it is easy to derive the following
theorem.

Theorem 3.

E{Uopt
n }= 1+

n
M
E{Sn}= 1+

n
2M

(Q0(n−1,M)+1)

= 1+
n

2M

(
1+ ∑

k≥0

(n−1)k

Mk

)
∼ 1+

α

2

(
1+

1
1−α

)
+o(1).

If the order of keys is used to resolve ties in RH then the search loop can be further optimized:
while t[i].probes≥ p∧ k > t[i].key do . . .

For this new optimized unsucessful search, the performance varies depending on the key we were looking for. Call
tOPTUSPL′ the cumulated cost for this new search loop, then

tSSPL+M−n = tOPTUSPL−n≤ tOPTUSPL′ ≤ tOPTUSPL = tSSPL+M,

the range corresponding to unsucessful search of a key smaller than any other, and to unsuccessful search of a key
large than any other. When the order of keys is not taken into account we are effectively doing the same steps as if
the sought key were larger than any other and thus attaining the upper bound. For an average case analysis, we should
assume that if there are n j keys that hash to position j then the sought key fails with identical probability in any of the
n j +1 intervals that they define. Thus,

E{Uopt’
n, j }=

n j

∑
k=0

1
n j +1

(E{Uopt
n, j }− k) = E{Uopt

n, j }−
1

n j +1

n j

∑
k=0

k = E{Uopt
n, j }−

n j

2
,

and asymptotically

E{Uopt’
n }= E{Uopt

n }−
n

2M
= 1− α

2
+αE{Sn}=

1
2

2−α

1−α
,

with α = n/M, as usual.

3 Deletions in other open addressing hash tables

In this section we develop a deletion algorithm that applies to many other open addressing schemes, in particular, to
any scheme where the jth probe location is given by

i j = i0⊕ f (j), j > 0,

for some function f depending only on j and such that the equation (i+ f (j)) mod M = (i′+ f (j)) mod M, with
i, i′ ∈ [0..M − 1] and 0 < j < M, does only admit the solution i = i′. This is the case, for instance, of quadratic
hashing [11] with carefully choosen values for the mulipliers and/or the table size. Linear probing falls in this category
too, but the deletion algorithm studied in Section 2 must be used in that case. Our algorithm does not apply to open
addressing schemes like double hashing [8], where a second hash function is applied to the item to compute the
increments, namely i j = i0⊕ f (j,x). In the sequel, we will use ∆(j) := f (j)− f (j−1), so that i j = i j−1⊕∆(j).

In our deletion algorithm we assume that each entry in the table has two additional attributes: t[i].probes, indi-
cates the number of probes made from the initial hash location of the item at t[i] until the current location i; t[i].next
is a bit vector, such that its jth bit is 1 if and only if i is the (j+1)th probe location for some item in the table (other
than the item at t[i]).

If a FCFS scheme is used for insertions, then we can say that t[i].next[j] = 1 if and only if i is the (j+1)th
probe location for some item in the table which was inserted after the item at t[i]. Although the deletion algorithm in
this section can be easily adapted to other reordering schemes, we will describe the algorithm for the case of FCFS
insertions, since it makes that description easier.

To begin with, the number of bits in the next bit vectors imposes a restriction in the hash table. If that length is
w, say w = 32, then special measures must be adopted if some probe sequence exceeded that length. We assume that
in that case all the elements would be rehashed into a larger table, just as we would do if the load factor α = n/M
had reached some threshold. Since the longest probe sequence has expected length O(logn) in many open addressing
schemes, we don’t need a large number of bits w unless we need to store an extremely large number of items.

Now, suppose we want to delete item x. First, we use the standard search algorithm to locate x, probing locations
i0 = h(x), i1, . . . , ip−1. Assume that x is present at location i = ip−1, so we have found it after p probes. We must
have thus t[i].probes = p. If t[i].next[j] = 0 for all 0 ≤ j < w then no element follows x in the hash table, and we
can safely remove it—setting t[i].probes = 0 indicates that the slot is empty. Furthermore, the bit vectors next at
locations nip−1, ip−2, . . . , i0 must be updated to reflect the deletion of t[i]. This task is accomplished by the procedure
FIXBITSBACKWARDS, which we describe later.

If t[i].next[j] = 1 for at least some j then we cannot simply mark the slot as empty and update the bit vectors
of the preceding probe locations. But the bit vector t[i].next tells us exactly which probe sequences have passed
through t[i]. Namely, if t[i].next[p−1] = 1 then there is some element that has probed the same locations as x and we
must “compress” the sequence at locations ip−1, ip, ip+1, . . . much in the spirit of the compression that we did in linear
hashing. The compression is carried out by the procedure COMPRESS(i). The compression of the sequence ends at
the first slot t[iq] in the sequence such that t[iq].next[q] = 0. Each time that some t[ik] satisfies t[ik].probes= k+1
we conclude that such element can be swapped with the emptied slot, the argument being similar to that underlying
the linear probing deletions. Because of the invariant of our representation, the slot at ik must contain a synonym of x,
because t[ik].probes= k+1. As we have already done when emptying the slot with x, once the compression of the
sequence ending at iq is finished, we must traverse the sequence backwards to update the bit vectors ’next’. More
specifically, every element preceding iq in the probe sequence but that has not been moved from its location and that
comes after the last reallocated item by COMPRESS(i) loses the item at iq as a successor, and that must be reflected by
its ’next’ bit vector. Again, it is FIXBITSBACKWARDS the procedure that takes care.

By definition, t[iq].next[q] = 0; however, some other bit t[iq].next might be 1, and thus the corresponding se-
quence must be compressed, now starting from iq. By the way, the procedure COMPRESS returns the location where the
compression finished, iq in our discussion. In the case, that there were more than one probe sequence passing through
iq we must choose some. We propose to choose the sequence with the largest number of probes when reaching iq, in
other words, the largest j such that t[iq].next[j] = 1. The idea is here trying to compress the probe sequence for which
the number of probes to reach iq is largest. The choice of a sequence to compress, when there is more than one choice,
shows that Algorithm 2 does not preserve randomness, in the strong sense, unlike Algorithm 1. After deletion of x, the
table might not be the same as if x were never inserted. To achieve that property we should “record” information not
about probe sequences passing through every location, but the “time” as well. For instance in an FCFS table we should

compress the oldest probe sequence passing through the location. But for a RH the choice is exactly the one of our
algorithm: the probe sequence with the largest displacement must be compressed. Despite we have not completed a
proof that our deletion algorithm has this strong randomness preservation property, we conjecture that this is the case.
On the other hand, it can be true that there is some weak randomness preservation in all variants, despite the table
obtained after a deletion is not the same as if the item wasn’t inserted at all. By weak randomness preservation we
mean that the probability of obtaining a certain hash table with random insertions alone is the same as the probability
of obtaining it with random insertions and random deletions, in any arbitrary order. Establishing such strong or weak
randomness preservation is crucial for the subsequent analysis.

0 1 2 3 4 5 6 ...

2280

0

70 236131

1 1 2 3 2 3

0001 0001 0000 0000 00000011 0011

0 1 2 3 4 5 6 ...

0

236131

1 1 2 2

0001 0000 0000

70 22

(1) (2) (3) (4)

0000 0001 0001

2

0000

0

(3’) = t[0] t[3]
(4’) = t[3] t[5]

a) S = [80, 31, 70, 23, 61, 22] h(x) = x mod 10

b) Delete x = 80

Fig. 1. Example of an execution of the deletion algorithm for quadratic hashing.

Fig. 1 shows an example of the execution of Algorithm 2. We use the probe sequence i0, i0 +1, i0 +3, i0 +6, . . . ;
in general, i j = i0⊕ j(j+1)/2, that is, ∆(j) = j. The first part (a) shows the result of inserting the items in S, in the
indicated order, with the hash function h(x) = x mod 10 (which is obviously a bad choice in practice). The bottom part
of each slot shows the number of probes needed to locate the corresponding item, as well as the bit vector ’next’, for
w = 4. The second part (b) of the figure shows the result of removing item x = 80 from the previous table. The main
loop of the call COMPRESS(0) makes 2 probes, and moves item 70 to slot t[0]. The procedure FIXBITSBACKWARDS
updates t[1].next, containing item 31, as there is no element probing i = 1 during its second probe. On exit from the
call COMPRESS(0), the main loop of the deletion will make the call COMPRESS(3) to compress the probe sequence
of the elements that passed through location i = 3 on their second probe. Such probe sequence contains one element
only, 22, which moves to slot t[3]. Thus the second call to COMPRESS makes a single probe. There are 4 probes in
total, three probes needed by the two calls to COMPRESS plus an additional probe to locate the element that we wish
to remove.

As a by-product of storing the ’next’ bits, we can optimize the searching procedure; if we reach a location i after
p probes and t[i].next[p− 1] = 0 then either x = t[i] or x is not in the table. Note that t[i].next[p− 1] = 0 does not
imply that the next location in the probe sequence is empty: it might be occupied. But neither that position nor those
further away in the probe sequence can contain x since no element with the same porbe sequence as x was inserted
past location i. So, the ordinary loop that looks for x or an empty slot is necessary for insertions, but an optimized
search loop can be used for both search and deletions. This type of optimization, but using only a single bit per slot to
flag whether there was any item that probed that location and had to be inserted further away, has been proposed by
Furukawa (as cited by Gunji and Goto [7]) and by Amble and Knuth [1] in the context of ordered hashing. Lyon [10]
proposes to keep the length of the longest successful search path length; any search can be stopped as soon as that
number of probes has been made. The ordinary loop is necessary for insertions, but the optimization described above

can be used both for search and for deletions (to locate the item to be removed). It is interesting to note that the cost
of unsuccesful searches is then no longer related to that of insertions (and vice-versa), contrary to what happens if we
use the ordinary loop for search.

Algorithm 2 Removal in a open addressing hash table.
procedure REMOVE(k)

. k: key of the item to remove; t: the hash table

. M: size of the hash table; n: number of items, n < M
i← LOOKUP(k)

. t[i].key = k∨ t[i].probes = 0
if t[i].probes 6= 0 then

while t[i].probes 6= 0 do
i← COMPRESS(i) . compress the chain from i onwards
t[i].probes← 1+ the largest j such that t[i].next[j] = 1 or -1 if not such j exists

n← n−1
procedure COMPRESS(i)

p← t[i].probes
f ree← i; f reep← p
while t[i].next[p−1] 6= 0 do

i← i⊕∆(p); p← p+1;
. Check if the current item at i can be moved to the free slot

if t[i].probes = p then
t[f ree].key← t[i].key
t[f ree].probes← f reep
f ree← i; f reep← p

FIXBITSBACKWARDS(i, p)
return i

procedure FIXBITSBACKWARDS(i, p)
p← p−1; i← i	∆(p);
while p > 0∧ t[i].probes 6= p do

t[i].next[p−1]← 0
p← p−1; i← i	∆(p);

if p > 0 then
t[i].next[p−1]← 0

4 Conclusions

Let us put it blunty: there is a good deletion algorithm for linear probing hash tables. It has been around for a long
time. It’s simple. It’s elegant. It’s practical. It leaves the table just as if it the removed item was never there. We should
stop teaching CS undergraduates that the only way to delete in an open addressing hash table is using lazy deletions.
We may teach them lazy deletions as a general solution that works for any open addressing hash table. But we should
avoid the message that lazy deletions are the only way to perform deletions that we have—that’s only true for some
open addressing schemes. In particular, lazy deletions shouldn’t be the method of choice for linear probing hash.

Linear probing hashing is virtually explained in every textbook as an example of open addressing hashing; often
other schemes are only described in passing and very briefly, or not explained at all. Algorithm 1 (in a way or an-
other) should be always explained, not only because of its simplicity and good properties; it also gives the student a
deeper understanding of the inner workings of linear probing hashing, and it opens the door for introducing interesting
variations such as Robin Hood hashing.

Understanding Algorithms 1 and 2 also helps appreciate the difficulty of deletions in general open addressing hash
tables. The case for lazy deletion is very strong when considering open addressing hashing schemes other than linear
probing, as multiple, nonoverlapping probe sequences pass along any given position of the table. However, we have
shown here that true deletions are possible, neither too complex nor totally unpractical, for some more general open
addressing hash tables, including the important particular case of quadratic hash tables. A throughly experimental study

of quadratic hash tables with our deletion algorithm, as compared to other simple and practical hashing schemes (e.g.,
separate chaining, linear probing, cuckoo hashing) would be very useful to have a proper perspective of the usefulness,
in practical terms, of the deletion algorithm that we propose. Moreover, a detailed analysis of the probabilistic behavior
of our deletion algorithm would be desirable and interesting, and it would undoubtedly imply a deep understanding of
the structure of clusters in open addressing hash schemes with secondary clustering. As we have already mentioned, the
analysis of insertions and searches in such tables is often approximated with the idealized model of random hashing,
and the analysis of the deletion algorithm will likely need such simplifying assumptions, as well. On an intuitive basis,
once the element to be removed is located, the typical scenario for moderate values of the load factor should be that
we need only a small number of calls to the “compression” routine, each dealing with a short probe sequence. If that’s
the case then the overall performance of the deletion algorithm would be quite reasonable on practical grounds. In any
case, whether our deletion algorithm is more or less competitive in practice, we feel it is of independent theoretical
interest and it can also help us to understand better how open addressing hash tables work.

References

1. O. Amble and D.E. Knuth. Ordered hash tables. The Computer Journal, 17(2):135–142, 1974.
2. P. Celis. Robin Hood Hashing. PhD thesis, Computer Science Department, University of Waterloo, 1986. Technical Report

CS-86-14.
3. P. Celis and J. Franco. The analysis of hashing with lazy deletions. Information Sciences: an International Journal, 62(1–

2):13–26, 1992.
4. P. Celis, P.-A. Larson, and J. I. Munro. Robin Hood hashing. In Proc. of the 26th Annual Symposium on the Foundations of

Computer Science (FOCS), pages 281–288, 1985.
5. Ph. Flajolet, P. V. Poblete, and A. Viola. On the analysis of linear probing hashing. Algorithmica, 22(4):490–515, 1998.
6. L. J. Guibas. The analysis of hashing techniques that exhibit k-ary clustering. J. Assoc. Comput. Mach., 25(4):544–555, 1978.
7. T. Gunji and E. Goto. Studies on hashing part-1: A comparison of hashing algorithms with key deletion. J. Information

Processing, 3(1):1–12, 1980.
8. D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-Wesley, Reading, Mass., 2nd

edition, 1998.
9. M. Kolosovskiy. Simple implementation of deletion from open-address hash table. Preprint arXiv:0909.2547v1, September

2009. Available from http://arxiv.org/abs/0909.2547.
10. G. Lyon. Packed scatter tables. Comm. ACM, 21(10):857–865, 1978.
11. W.D. Maurer. An improved hash code for scatter storage. Comm. ACM, 11(1):35–38, 1968.
12. K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The Basic Toolbox. Springer-Verlag, 2008.
13. J.I. Munro and P. Celis. Techniques for collision resolution in hash tables with open addressing. In Proc. of the 1986 ACM Fall

Joint Computer Conference, pages 601–610. IEEE Computer Society Press, 1986.
14. P. Poblete and J.I. Munro. Last-come-first-served hashing. J. Algorithms, 10:228–248, 1989.
15. P. V. Poblete and A. Viola. The effect of deletions on different insertion disciplines for hash tables (extended abstract).

Electronic Notes in Discrete Mathematics, 7:146–149, 2001.
16. R. Sedgewick. Algorithms in C, volume 1. Addison-Wesley, 3rd edition, 1997.

