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Abstract 
 
In operation, some structural members are subjects to bending conditions. Velocity 
variations of guided waves propagating in a stressed specimen are expected due to the 
acoustoelasticity effect. In this work, a numerical study of the fundamental torsional mode 
is performed in a hollow cylinder subjects to bending stress. Bending produces different 
stresses along the horizontal axis of the pipe and through the specimen thickness. 
Therefore, stress magnitudes are dependent on the longitudinal axis distance and the 
radius. Acoustoelasticity predicts change in bulk velocities when the propagation is in a 
stressed waveguide. Thus, the estimation of the phase velocity of a guided wave in a 
bowing specimen is a complex task. 
 
The objective of this study is to assess changes in the wavepacket dynamics due to stress 
variations in a bending environment. In the numerical analysis by using Finite Element 
Modeling (FEM), the stress gradient is imposed on the wave propagation analysis by 
importing the results of the quasi-static simulation (bending) to the explicit solution FEM 
scheme (Wave propagation).  
 
Several bending’s stresses behavior are simulated (variable and constant along the 
waveguide) and implemented to establish a relationship between the bending stress and 
the change in the phase magnitude velocity. Variations in velocity are determined in the 
time domain by comparing the current signals with the wavepacket without bending. 
 
The importance of this study lies on the verification of the effects in the wave field (e.g. 
velocity variations) caused by the bending and determine if they are enough to be used to 
track stresses variations in the waveguide in an SHM system by using a pitch-catch 
configuration. 
 
1.  Introduction 
 
Stresses in structures have great influence in the performance during the operation, 
affecting its strength, expected operational life and dimensional stability. Mechanical 
stresses are present in many real installations which can be subject to monitoring using 
guided waves. Guided waves in plates and cylindrical specimens are used to detect and 
locate material discontinuities in the investigated specimen. This technique has the 
potential to volumetrically explore the material covering long distance having low 
attenuation. The interaction of ultrasonic guided waves with discontinuities in structures 
is a widely studied topic. 
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Although the propagation of guided waves is described as a uniform motion with no 
acceleration, some factors may yield changes in velocities such as the variations in the 
thickness or the presence of stress in the waveguide, as predicted by the Acoustoelasticity 
effect. The study of ultrasonic guided wave propagation in stressed mediums is based 
mainly on the application of the acoustoelasticity principle. Acoustoelasticity is the stress 
influence in the acoustic bulk wave velocities i.e. shear and longitudinal velocities in 
elastic media.  
 
On the other hand, the fundamental torsional mode has special characteristics which 
require attention. This mode is not dispersive, i.e. it preserves its shape as it propagates 
since phase and group velocities of the shear bulk wave do not change. Besides, as it will 
show ahead, the propagation velocity of this mode is the shear bulk velocity of the 
material. This condition unable this particular mode to be used to detect changes in the 
thickness but it offers the possibility to be utilized to track stress. 
 
Most of the research on this topic (analysis of the effect of stress in the propagation of 
guided waves) has been focused mainly on the determination of the dispersion curves, or 
the velocity changes as a frequency function attributed to the acoustoelasticity effect. 
Some works are devoted to determine the load condition or the residual stress of the 
specimen based on the velocity of propagating of the waves (1-5). On the other hand, 
some researchers have studied the variations in the trace of the  dispersion curves or the 
behavior of the different types of guided waves e.g. Rayleight, Stone, Lamb (6) under 
different load settings (7). Some research has been centered on specific engineering 
applications such as bolted structural connections, grouted tendons, and steel stands, 
which have been aimed to monitoring using the acoustoelasticity effect (8-11). 
 
The numerical analysis presented in this paper is aimed to study the influence of the 
bending stress in the propagation of the fundamental torsional mode for a cylindrical 
specimen. The simulation involves two different configurations to generate the bending 
stress: In the first one, the moment is variable along the waveguide (the bending produced 
for a force perpendicular to the beam). In the second one, the moment is constant and it 
is emulated by two bending moments perpendicular to the beam cross section. 
 
 
2.  Stress formulation 
 
Bending stress can be produced in different ways, e.g. (i) by applying a perpendicular 
load to the beam and parallel to its cross-section. (ii) by applying bending moment 
perpendicular to the beam cross section as shown in Figures 1a and 1b respectively. 
 
For the first case (Figure 1a), variations in the bending moment are obtained by changing 
the magnitude of the load located in the middle part of the cylindrical waveguide. Under 
this scenario, the cylinder can be treated as a beam with constant cross-sectional area 
which loads and reactions are applied perpendicular to its axis. It is assumed that loads 
and reactions are located in a simple plane (x,y plane). Due to the applied loadings, beams 
develop stress, internal shear force V and bending moment M that, in general, all of them 
vary from point to point along the axis of the beam and through the cross-section. 
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Figure 1. Moment diagrams in a cylindrical beam produced by a) concentrated force, b) bending 

moments 
 
The maximum bending stress for a specific x coordinate is located in the outer y distance 
(exterior radius for the case of a homogeneous cylinder). In this way, the moment varies 
linearly with the x-coordinate until reaches its maximum value where the load is applied, 
in this case, in the middle of the beam.  
 
For the second case (Figure 1b), the bending stress is obtained by applying bending 
moments perpendicular to the beam cross section at the ends of the cylindrical waveguide. 
In this case, the stress, internal shear force V and bending moment M developed in the 
beam, are constant along the cylinder. 
 
 
3.  Acoustoelasticity Effect 
 

The acoustoelasticity theory establishes the mathematical relationship between 
ultrasonic bulk velocities and mechanical stresses in the studied material. In (12), it is 
considered uniaxial stress and derived expressions for changes in shear and longitudinal 
wave velocities as a function of applied stress for known material properties. Thus, for 
isotropic materials subject to uniaxial stress, in addition to the two Lamé constants, λ and µ, 
three additional constants, the Third Order Elastic Constants (TOEC), l,m,n are required to 
describe the relation between stress and velocity. The TOEC highly depends on the material 
processing, such as casting, rolling, or drawing. 

  
The Acoustoelastic effect is small, typically of the order 0.001% per MPa of applied 
stress, for metals and it is influenced by the material structure (13). Although 
acoustoelasticity effect establishes the change of ultrasonic bulk velocities, this effect also 
has influence in the guided waves. Therefore, the wave field of guided waves propagating 
under stress not only is affected by the dispersion but also by the stress. In order to determine 
the change of velocity of the wave, the Time of Flight (TOF) have to be determined. 
Experimentally measures of TOF consider also the TOF induced by the elongation effect 
for the applied load. Therefore, in order to isolate acoustoelasticity effect, it is necessary 
to deduce this elongation from the TOF to characterize only the acoustoelastic effect. 
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4.  Symmetric torsional waves propagating in cylindrical waveguides 
 
The torsional modes are characterized by the fact that their displacement is primarily in  
𝜃 direction. Furthermore, the fundamental torsional mode belongs to a uniform twisting 
of the entire cylindrical waveguide. The highest order torsional modes exhibit more 
complicated behavior. However, the angular displacement is not constant through the 
radius of the cylinder. Different locations through the radius of the cylinder can twist in 
different directions and nulls of displacement can exist. In the studied case, we consider 
that the particle vibrations (displacements and velocities) for the torsional modes are 
located in a plane that is cuasi-parallel to the surfaces of the layer. This is depicted in 
Figure 2, where the wave propagates in the z direction and the particle displacements are 
prescribed in 𝜃 direction.  

 

 
 

Figure 2. Schematic representation of the cylindrical waveguide. 
 

The frequency equation for the torsional modes is derivate from the motion equation 
(cylindrical coordinates) when no external stress is present in the boundaries of the 
waveguide. The deduction of this equation is omitted for space concerns but it can be 
consulted in some references such as (14-15). Focusing on the axisymmetric torsional 
guided waves, the frequency equation may be obtained by using the boundary 
condition	𝜏$% = 0, resulting 

 𝐽) 𝛽𝑏 𝑌) 𝛽𝑎 − 𝐽) 𝛽𝑎 𝑌) 𝛽𝑏 = 0, (1) 

 
 
 

𝛽) = /0

100
− 𝑘), (2) 

 
where 𝑎 and b are the inner and outer radius of the cylinder,  𝐽)	and	𝑌) are Bessel functions 
of first and second order respectively, 𝐶)  is the shear bulk velocity and 𝑘 is the 
wavenumber. The lowest axisymmetric torsional mode, 𝑛 = 0, in which involves the 
rotation of each transverse section of the cylinder as a whole about its center is not 
adequately described by the Bessel equations (16). This mode belongs to 𝛽 = 0 and, 
therefore using Equation 2 states: 

 𝜔 = 𝑘𝐶). (3) 

As guided wave phase velocity is the relation between 𝜔 and 𝑘 , Equation 3 clearly shows 
that the fundamental torsional mode propagates at a constant phase velocity, with no 
dispersion, that is equivalent to the bulk shear velocity of the material. 
 

k 

z 
𝜽: 
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5.  FEM approach 
 
In order to investigate the influence of the mechanical bending stress in the propagation 
of T(0,1), a steel pipe of 1 inch schedule 40 (outer diameter of 33.4 mm and wall thickness 
of 3.38 mm) is modelled as a hollow cylinder with an axial length of 0.42 m. Changes in 
the bending stress are configured varying the magnitude of a concentrated force located 
in the middle part of the waveguide.  To generate a constant moment, a couple of bending 
moments are applied at the left and right ends of the cylinder. Simulations are performed 
launching a 50 KHz modulated pulse through of the cylindrical specimen by 
axisymmetric surface loading. The material properties are: Density = 7830 kg/m3, 
Young’s modulus (E) = 210 GPa and Poisson’s ratio = 0.33. To ensure an adequate mesh 
refinement level, the minimum allowed inter-nodal length Lmin is calculated, using as a 
reference the shortest wavelength, which in this case is shear wave speed (𝐶)). The 
meshing criterion proposed by (17) is implemented. Considering the frequency and the 
steel shear wave velocity, Lmin is calculated as follows:  
 

 
2𝜋𝐶)
𝜔𝐿>?@

> 10 (4) 

 
where 𝜔 is the studied circular frequency. Considering a frequency of 50 kHz and a shear 
velocity of around 3200 m/s, the minimum element length results, approximately 6.4 mm. 
Therefore, seeds size of 2 mm can be considered as a sufficient mesh refinement. 
 
In addition, the simulation is executed in two sequentially stages one static and the other 
dynamic. In the static step, two load settings are used, first, a concentrated force produces 
a variable moment along the cylinder, and in the second setting two bending moments are 
applied to generate a constant moment along the waveguide. The stress and strain fields 
resulting are used as predefined fields in the next stage. The first stage is executed using 
a standard step and the next stage by an explicit scheme. Explicit schemes are preferred 
as time marching process to simulate guided waves. In general, simulation accuracy can 
be increased with increasingly smaller integration time steps (DT) but punished by a 
higher computational cost. It is recommended to have at least five to ten time steps in one 
wavelength (14).  A DT of 5 ns satisfy this criterion and it is used to solve the model. 
Meshing is performed by linear eight node brick element (C3D8).  The torsional wave is 
produced by a shear load at the left end face of the cylinder by a 5 cycles Hanning-window 
tone burst of 50 kHz. The model is configured in such way the torsional wave freely 
propagates along the cylinder. The propagated pulse is captured 0.12 m ahead of the 
excitation surface. This distance assures unwanted reflections during the 200 milliseconds 
of the time period of simulation. 
 
 
5.  FEM approach 
 
This section gives the results of a series of simulations conducted under the conditions 
described above. Slightly variations in amplitude are the only consistent and quantifiable 
observation in all torsional waves sensed when they are compared each other. Contrary, 
to the expressed by the acoustoelasticity effect, variations in the bending stress are not 
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enough to produce any significant change in the TOF of the torsional guided wave under 
the simulated conditions. On the other hand, as it is expected, no dispersion is observed 
and the velocity of propagation of the captured wavepacket was around of 1% of the 
material shear velocity. No other modes were detected in the simulations. Different 
moment scenarios are emulated, first, the normal condition is determined considering the 
absence of concentrated force in the middle. Later on, the magnitude of the concentrated 
force is incresed for the rest of stressed scenarios in the gravity direction. The 
concentrated force and the corresponding maximum bending stress are presented as 
follows (Stress in parentheses): 100 N (4.21 MPa), 500 N (21 MPa), 1000 N (42.1 MPa), 
2000 N (84.2 MPa) and finally, 10000 N (421 MPa). In the case of constant moments, the 
stressed scenarios are the following:  5 Nm (2.22 MPa), 10 Nm (4.44 MPa), 20 Nm (8.88 
MPa) and 100 Nm (44.4 MPa). The test is configured in such way that the stresses cover 
the whole elastic region. 
 
In Figure 3, it is presented a zoom view of the highest peak of the captured wavepacket 
by the simulated sensor. As it is noted in the Figure, amplitude changes are observed and 
small lags among the signals are just noticeable. Time trace changes are found by a cross-
correlation analysis between nominal pulse and the simulated signals belonging to the 
stressed scenarios, as shown in Figure 4. In this figure it is indicated the variation of TOF 
of the signals obtained for the different loads with the one obtained from unstressed pipe. 
The velocity resolution obtained for the simulated cases is around 8.5 m/s, which belongs 
to 0.26% change of velocity. This variation is presented for bending stresses above of the 
42.1 MPa (around 20% of yield strength).  

 
Figure 3. Zoom view of the highest peak of the propagated T(0,1) for variable bending moment 

using concentrated loads from 100 N to 10 KN.  
 

 

 
Figure 4. Delay among the different stressed scenarios for variable bending moment 
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In the case of the uniform bending moment along the cylinder, a nonlinear amplitude 
change is observed in the wave field as shown in Figure 5. In the first peak, the higher 
moment, the higher amplitude, but in the second peak, the effect is opposite. In addition, 
the propagated pulse is deformed compared with the as shown in Figure 6. 
 

 

 
Figure 5. Zoom view of the highest peaks of the wavepacket of the simulated scenarios for a 

constant bending moment 
 

 
Figure 6. Distortion of the propagated pulse in presence of a constant bending moment. 

 
Finally, no delays or velocity change are found by the correlation. 
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6.  Conclusions 
 
The effects of bending moment in the propagation of the fundamental torsional mode are 
studied by means of numerical simulations. FEM simulations were conducted for 
different magnitudes of concentrated forces and bending moments. It was observed that 
the influence of bending stress levels is few noticeable in the torsional wave velocity of 
the fundamental mode. On the other hand, notorious changes in the amplitude of the 
propagated wave were detected in all studied scenarios. This observation has more 
relevance in practical applications. 
The above variations in amplitude of the wave could be attributed to the fact that boundary 
conditions influence the magnitude of the simulated torsional guided wave. This effect is 
severe in the case of the uniform bending moment because the presence of stress in the 
boundary condition is present all pathway long of the propagation. 
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