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Abstract  

Direct ink writing (DIW) techniques open up new possibilities for the fabrication of patient-specific bone 

grafts. Self-setting calcium phosphate inks, which harden at low temperature, allow obtaining 

nanostructured scaffolds with biomimetic properties and enhanced bioactivity. However, the slow 

hardening kinetics hampers the translation to the clinics. We explored different hydrothermal treatments 

for the consolidation of DIW scaffolds fabricated with an α-tricalcium phosphate /pluronic F127 ink, 

comparing them with a biomimetic treatment. Three different scaffold architectures were analysed. The 

hardening process, associated to the conversion of α-tricalcium phosphate to hydroxyapatite was drastically 

http://www.upc.edu/cmem/investigacion/Biomateriales%20biomecanica%20e%20ingenieria%20de%20tejidos
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accelerated by the hydrothermal treatments, reducing the time for complete reaction from 7 days to 30 

minutes, while preserving the scaffold architectural integrity and retaining the nanostructured features. β-

tricalcium phosphate was formed as a secondary phase, and a change of morphology from plate-like to 

needle-like crystals in the hydroxyapatite phase was observed. The binder was largely released during the 

treatment. The hydrothermal treatment resulted in a 30% reduction of the compressive strength, associated 

to the residual presence of β-tricalcium phosphate. Biomimetic and hydrothermally treated scaffolds 

supported the adhesion and proliferation of rat mesenchymal stem cells, indicating a good suitability for 

bone tissue engineering applications. 

 

 

 

1 Introduction  

The recent developments in three dimensional (3D) printing technologies have opened vast opportunities 

for the development of patient-specific bone grafts, which is expected to have a particularly high impact on 

dental and maxillofacial surgery as well as in trauma and orthopaedic surgery. Whereas autologous or 

allogenic bone grafts are still the gold standard in the frequent bone grafting surgical procedures 

performed nowadays,[1,2] the possibility to fabricate customised scaffolds based on digitalised medical 

imaging techniques has provided a real boost to the applications of synthetic bone grafts. The novel 

fabrication approaches referred to as 3D printing techniques are based on computer aided design (CAD) 

and computer aided manufacturing (CAM) and result in a patient-specific bone grafting therapy. Such 

technologies allow the design of personalised synthetic bone grafts, matching the specificity of every defect 

in terms of both the metabolic and anatomic characteristics, opening new perspectives in this field.[3] 

Previous works reported the use of such techniques employing polymers, ceramics, or even metal 

alloys.[4,5] In the case of bioceramics, the works revolve around either powder bed printing, which consists 
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in dispensing a liquid binder or reactive fluid onto a powder bed in a layer by layer process,[6] or in 

filament-based direct ink writing (DIW), also referred to as robocasting, microextrusion or three-

dimensional plotting [7] which consists in dispensing layer by layer an ink composed of ceramic particles 

homogenously dispersed in a binder following an in silico designed pattern. The main advantage of 

filament-based direct ink writing over powder bed printing is that there is no need to clean the printed 

object from remaining particles from the bed that can provoke adverse inflammatory responses of the host 

tissue. The design of the inks plays a central part in this technology. They must present a pseudoplastic 

behaviour in order to withstand the weight of the superimposed layers and must be completely injectable, 

allowing a continuous printing.[8] Furthermore, by tailoring the ink composition it is possible to tune the 

physicochemical properties of the scaffolds in terms of chemistry, textural properties and multiscale 

porosity.  

The use of DIW with calcium phosphate (CaP)-based inks for the fabrication of bone implants and scaffolds 

for bone tissue engineering was proposed for the first time in 2005.[9] Several works have reported the 

fabrication and properties of robocasted scaffolds made of hydroxyapatite (HA),[9–11] beta tricalcium 

phosphate (-TCP) [12,13], biphasic combinations of -TCP and HA [11,14–17] and bioactive glasses.[18–

24]  

Nonetheless, in all these pioneer works, after DIW the samples had to be consolidated by sintering at high 

temperature. The effects of sintering conditions on the chemical, structural and mechanical properties of 

those samples have been deeply studied.[11,16,25,26]  

Recently, the possibility to fabricate low-temperature self-setting inks that do not require the sintering step 

has been proposed, using formulations based on beta-calcium silicate (-CaSiO3),[20,27] magnesium 

phosphates[28] or calcium phosphates.[29,30] Most calcium phosphate self-setting inks are based on 

alpha-tricalcium phosphate (-TCP), which can be combined with different binders, like gelatine,[29] type I 

collagen[31] hydroxypropyl methylcellulose (HPMC),[32] Polysorbate 80 (Tween 80) and short-chain 

triglycerides (Miglyol 812),[30,33,34] polyvinyl alcohol[33] and alginic acid.[33] The hardening process of 
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these inks is due to the hydrolysis of -TCP to a calcium deficient hydroxyapatite (CDHA), resulting in 

nano/micro structured crystals that are much closer to the mineral phase of bone than sintered CaPs. In 

this work, we propose to exploit the inverse-thermoresponsive properties of pluronic F127, using it as a 

new binder for an α-TCP self-setting ink. We showed in a previous work that the combination of pluronic 

F127 hydrogel with alpha-TCP resulted in a paste exhibiting a sequential gelling/hardening behaviour and 

enhanced injectability. Moreover, the presence of pluronic did not hinder the self-hardening reaction of 

alpha-TCP.[35] 

However, while the low-temperature chemical consolidation of these scaffolds allows obtaining a 

biomimetic product, closer to bone mineral than the high-temperature sintered scaffolds, the self-setting 

reaction of the -TCP-based inks is slow, and therefore the hardening process of the 3D-printed scaffolds is 

long. This makes the translation of this technology to the clinic complex, and impairs its application, 

particularly in emergencies where time is valuable and limited. It is therefore necessary to accelerate the 

hardening process. With this objective in mind, in this work we analyse different post-printing treatments 

for DIW scaffolds fabricated with a pluronic F127/α-TCP self-setting ink, and their effect on the 

nano/microstructure, composition and mechanical performance, as well as on the ability to sustain the 

proliferation of mesenchymal stromal cells.   

2 Materials and Methods 

2.1 Preparation of the self-setting Ink 

 

The solid phase of the self-setting ink was composed of α-TCP synthesised as described elsewhere.[36] The 

α-TCP block was milled in an agate planetary ball mill (Fritsch, Pulverisette) during 15 min at 450 rpm with 

10 agate balls (30 mm diameter). The resulting powder was then sieved during 30 min with a 40 µm sieve 

(Filtra, Spain), introducing 145 g of powder together with 200 g of Zirconia balls (1.5 mm diameter; Tosoh, 

Japan). The binder phase of the ink was prepared introducing 30 g of pluronic F127 (Sigma Aldrich P2443) 

together with 50 mL of distilled water in a 150 mL polypropylene (PP) recipient (Dürmann, Germany) and 
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mixed in a dual asymmetric centrifugal mixer (DAC 150, Speedmixer, USA) at 3500 rpm during 1 min. Water 

was then added to a total volume of 100 mL and the mixture was homogenised in the DAC mixer at 3500 

rpm for 5 min. The ceramic ink was finally produced by introducing 6 g of α-TCP powder together with 3 g 

of binder solution (binder to powder ratio of 0.5 g g−1 ) into a PP recipient of 50 mL and mixed for 1 min at 

3500 rpm in the DAC mixer.  

 

2.2 Computer Aided Design and DIW Process 

 

Cylindrical samples (6 mm diameter and 12 mm height) were designed with the help of a CAD software 

(Solidworks, Dassault Systems, France) and exported into a stereo lithography (STL) file. The resulting STL 

file was then transferred to the open source software Slic3r (slic3r.org) in order to adjust the fabrication 

parameters. As described in Figure 1, three patterns with different architectures were fabricated. The 

orthogonal pattern (O) corresponded to a 90 rotation at each layer of a linear parallel grid. The orthogonal 

rotated (OR) pattern corresponded to a 45 rotation at each layer of the linear parallel grid. The 

honeycomb (HC) pattern was composed of hemi-hexagonal segments which were rotated 120 at each 

layer, composing hexagons when the structure was projected onto the XY plane. In all cases the nozzle size 

(theoretical strand diameter) was set to 250 µm, the layer height to 225 µm (corresponding to a layer 

overlapping of 10 % along the Z axis), the filling density was set to 45 % and the deposition speed was set to 

10 mm s-1. This information was saved in a numerical control programming language (G-code).  

Prior to printing the scaffolds, the self-setting ink was introduced into the cartridge (3cc Optimum® Syringe 

Barrels, Nordson EFD, U.S.A.). Then, a tapered dispending tip (Gauge 25 SmoothFlow Tapered Tips, 

Nordson EFD, U.S.A.) was coupled to the cartridge, and the whole assembly was installed into the DIW 

device (Pastecaster, Fundació CIM, Spain). Afterwards, batches of 15 scaffolds were fabricated at room 

temperature in a time span of 1.5 h. 

2.3 Post-printing Hardening Treatments 
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 The fabricated scaffolds were then subjected to three different post-printing processes, as described in 

Figure 2: (a) biomimetic treatment, where the scaffolds were immersed in water at 37°C for up to 6 days, 

using a fixed volume of 100 mL per scaffold. Prior to immersion, the scaffolds were kept in a water vapour 

saturated atmosphere at 37°C for 24 h to ensure good cohesion; (b) hydrothermal-immersed treatment, 

where the specimens were immersed in water (100 mL per scaffold) and autoclaved at 121°C and 2 atm of 

absolute pressure for different time lengths, up to 30 minutes; (c) hydrothermal-vapour treatment, where 

the scaffolds were autoclaved at 121°C and 2 atm of absolute pressure for different time lengths, up to 100 

minutes. Prior to both hydrothermal treatments, the specimens were kept in a vapour saturated 

atmosphere at 100°C and 1 atm for 10 minutes.  

Scaffold Characterisation – Phase Composition and Microstructure: Phase composition was assessed at 

different reaction times by X-ray powder diffraction on the powder obtained for each hardening condition 

after manually crushing the scaffolds in an agate mortar. In the case of scaffolds subjected to the 

biomimetic treatment, samples were immersed in isopropanol during 15 min prior to the analysis to stop 

the hardening reaction at selected times. The diffractometer (D8 Advance, Bruker) equipped with a Cu Kα 

X-ray tube was operated at 40 kV and 40 mA. Data were collected in 0.02 steps over the 2θ range of 10–

80 with a counting time of 2 s per step. Phase quantification was performed using the reference intensity 

ratio method (EVA, Bruker) comparing diffraction patterns of the crystalline structures of -TCP (ICDD PDF 

00-029-0359), CDHA (ICDD PDF 01-086-1201) and β-TCP (ICDD PDF 00-003-0681).  

The microstructure of the scaffolds hardened in different conditions was observed under a field emission 

scanning electron microscope (FIB/SEM, Zeiss Neon 40) at 5 kV, after coating the surface with a thin carbon 

layer. 

2.4 Scaffold Characterisation – Scaffold Architecture, Porosity and Specific Surface Area 

 

 X-ray computed microtomography (μCT) analysis was conducted using the GE phoenix v|tome|x L 240 

system equipped with a 180 kV/20 W maximum power nanofocus X-ray tube and high contrast flat panel 

detector DXR250. The tomographic measurement was performed with an acceleration voltage of 80 kV and 
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an X-ray current of 150 µA. The X-ray spectrum of tungsten target was modified by using a 0.5 mm thick 

aluminium filter. The exposure time per projection was 400 ms and 1800 projections were taken around 

360. The isotropic linear voxel size (voxel resolution) of the obtained volume was 15 µm. The sample 

tomographic reconstruction was performed with GE phoenix datos|x 2.0 software, using the object shifting 

correction and the beam hardening correction in the different material modes. The visualization of the 

samples, as well as the structural parameter quantifications, were performed using VG Studio MAX 2.2 

software. Three scaffolds were scanned at the same time allowing the use of the same threshold values for 

segmentation. Surface determination tool within VG Studio was used to display the sample volume in 

virtual reconstructions.  

In addition, open porosity and pore entrance size distribution were analysed in the range between 0.006 

and 360 m by mercury intrusion porosimetry (MIP, AutoPore IV Micromeritics). The volume of nano-

micropores normalised per unit of mass (Vmicro) was measured from the sum of the incremental mercury 

intrusion in the pores smaller than 10 m. 

The skeletal density of the scaffolds (ρskel) was assessed by helium pycnometry (AccuPyc 1330, 

Micromeritics, USA). 

The apparent density of the scaffolds (ρapp) was calculated as the quotient of the scaffold mass over the 

scaffold equivalent cylinder volume obtained from the measurements of the scaffold diameter and height.  

The value of the total porosity ( PTOT) was calculated with the Eq.1:[37]   

           
      

 

   
 

 
      

 

   
 
 
           (1) 

The nano-microporosity (Pmicro) was calculated with the Eq. 2: 

                  
   

 
        

 

             (2) 

The macroporosity (Pmacro) was calculated as the difference between the total porosity and the nano-micro 

porosity (Eq.3) 

                                  (3) 
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Finally, the specific surface area (SSA) was determined by nitrogen adsorption using the BET (Brunauer-

Emmett-Teller) method (ASAP 2020, Micromeritics). Prior to measurement, samples were outgassed in 

vacuum conditions (10 mmHg) at a holding temperature of 100 °C for 2 h. 

2.5 Scaffold Characterisation – Binder Content Thermogravimetric Analysis and FTIR 

 

 Thermogravimetric analysis (TGA) was performed with the aim to determine the amount of binder 

remaining in the scaffolds after the different consolidation methods. The measurements were performed 

under the heating rate of 10˚C min-1 from 25 to 550˚C in an oxygen saturated atmosphere. The amount of 

polymer contained in the scaffolds was determined by comparing the TGA curves of each sample with 

those of a pluronic-free counterpart, consisting of α-TCP mixed with water with the same L/P ratio and 

subjected to the same treatment as the corresponding sample.   

Fourier-transform infrared (FTIR) spectroscopy analysis was performed in a Nicolet 6700 FTIR spectrometer 

using the KBr pellet method using 2 mg sample/ 300 mg KBr. Spectra were recorded in the 4000 to 400 cm-1 

range, at 128 scans accumulation and 2 cm-1 resolution. 

Scaffold Characterisation – Mechanical Characterization: A universal testing machine (Bionix, MTS) was 

employed to perform uniaxial compressive tests at a rate of 1 mm min-1. The load was applied 

perpendicular to the printing plane (XY plane), i.e. in the Z direction. HC patterned scaffolds subjected to 

different post-printing treatments were tested, as well as scaffolds fabricated with different pattern 

architectures and hardened under biomimetic conditions. Samples were tested in wet state in order to be 

closer to the in vivo situation. A total of 12 scaffolds were tested for each condition. The Weibull modulus 

was calculated applying a Weibull statistical analysis on the ultimate compressive stress values (Eq. 4). 

      
 

  
                        (4) 

Where: 



  

9 
 

Ps = Probability of survival  

σ = ultimate compressive strength of the sample  

σ0 = constant corresponding to the stress for which 100 % of the samples will not fail  

  = Weibull modulus 

2.6 Scaffold Characterisation – Cell Culture 

 

 The influence of the post-printing treatment on cell response was studied in static 3D culture conditions in 

samples fabricated with O architecture. Scaffolds (discs of 6 mm in diameter and 2 mm in height) were 

placed in 24-well cell culture plates, sterilised with ethanol (70 %, Sigma and Aldrich) during 30 min and 

rinsed 3 times with phosphate buffer saline (PBS, Gibco). Samples were then preconditioned for 2 hours 

with 1 ml of advanced Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, 2 

mM L-glutamine, 50 U mL-1 penicillin, 50 µg mL-1 streptomycin and 20 mM HEPES. Afterwards, the medium 

was removed and 5x105 rat mesenchymal stromal cells (rMSC; extracted from bone marrow of long bones 

of Lewis rats; in passages 3 to 5) were seeded on each scaffold in a 25 µl medium drop. rMSC were allowed 

to attach during 1 h at 37 C and 5 % CO2 and then 1 ml of fresh medium was gently added. After 3 and 7 

days of static cell culture, the scaffolds were moved to a new well plate, rinsed with PBS and the remaining 

cells on the scaffolds were lysed with 500 l of M-PER (mammalian protein extraction reagent, Thermo 

Scientific, Waltham, MA, USA). The cell number was quantified using a commercial lactate dehydrogenase 

(LDH) detection kit (Roche Applied Science, Penzberg, Germany). The LDH activity in the lysates was 

measured spectrophotometrically at a wavelength of 492 nm with PowerWave HT Microplate Reader 

(BioTek Instruments, Inc., Winooski, VT).  A calibration curve with decreasing number of cells was used to 

express the results of LDH activity in cell number. Experiments were performed in triplicates for statistical 

analysis.  

Immunofluorescent staining was used to visualise cell morphology. After 7 days of culture the scaffolds 

were rinsed in PBS–glycine and cells were fixed for 20 min in 4 % paraformaldehyde solution. Cells were 
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permeabilised for 15 min with Triton X-100 (0.05 %) and blocked for 30 min in PBS–bovine serum albumin 

(BSA; 1 %). Actin filaments were stained with TRITC-conjugated phalloidin (Sigma-Aldrich, USA) and nuclei 

were counterstained with DAPI (4',6-diamidino-2-phenylindole, 1 g/ml). Images were acquired with an 

E600 fluorescence microscope (Nikon, Japan) and treated with Cell F software (Olympus, Japan).  

2.7 Statistical analysis 

 

Data were analysed using one-way analysis of variance and Tukey’s multiple-comparison test to determine 

statistical differences between specimens. A confidence interval of 95% (α=0.05) was used and the 

resulting means and standard deviations are shown in Figures 8 and 11. 

 

3 Results and Discussion 

3.1 Effect of the Post-printing Treatment on Composition, Microstructure and Porosity  

The hardening of the scaffolds is associated to the hydrolysis of the α-TCP contained in the ink, which 

transforms to a calcium deficient hydroxyapatite (CDHA) according to the following reaction (Eq. 5): 

3α-Ca3(PO4)2 (s) + H2O (l)  Ca9(HPO4)(PO4)5OH (s)    (5) 

The reaction mechanism involves the dissolution of the -TCP particles followed by the nucleation and 

growth of CDHA crystals. This mechanism has been extensively studied in the field of calcium phosphate 

cements for the development of injectable bone grafting materials. [38,39]  Moreover, in a previous work 

we demonstrated that the addition or pluronic F127 in α-TCP pastes slightly delayed the setting reaction in 

the early stages but did not hinder the full transformation to calcium-deficient hydroxyapatite [35]. The 

results obtained with the robocast scaffolds confirm these results since, as shown in Figure 3(a), under 

biomimetic conditions α-TCP fully transformed to CDHA in 3 to 7 days. 

The hydrolysis of -TCP under hydrothermal-immersed conditions (Figure 3(b)) displayed similarities with 

respect to the biomimetic conditions. However, the time required to yield the maximum conversion into 
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CDHA decreased to 15 minutes. The faster reaction kinetics is in agreement with previous studies which 

report that hydrolysis of α-TCP occurs more rapidly at increased temperatures,[40,41] and must be 

interpreted taking into account  the retrograde solubility of both α-TCP and hydroxyapatite.[42,43] Thus, 

although the solubility of α-TCP is smaller at the higher temperature of the hydrothermal treatment, also 

the solubility of CDHA is reduced, thus fostering the precipitation of this compound and resulting in a 

higher reaction rate. Furthermore, β-TCP appeared as a result of the treatment, indicating that while -TCP 

reacted to form CDHA, -TCP also underwent allotropic phase transformation to form its low-temperature 

beta polymorph. As a result, the yield in CDHA formation was reduced to around 90 %.  

The final composition of the scaffolds after the hydrothermal-vapour condition was significantly different 

from the other two treatments (Figure 3(c)). In this case, the final composition of the scaffold consisted in a 

mixture of CDHA (60 %), β-TCP (17 %) and unreacted -TCP (23 %). The reaction time was around 60 min.  

The formation of β-TCP as a second phase in addition to CDHA after the hydrothermal treatment of -TCP 

was reported in previous studies,[44] although longer treatment times were applied. The formation of β-

TCP was surprising since this phase is generally obtained by solid state reaction above 700 °C. The results 

obtained suggest that the pressure applied lowers the transition temperature between the β and α-TCP, 

which is close to 1120 °C, thus favouring the allotropic transformation of α-TCP into β-TCP. This 

transformation coexists with the hydrolysis of α-TCP to CDHA.  

The post-printing treatment affected not only the phase transformation taking place in the scaffolds, but 

also the presence of binder after its consolidation. The nominal amount of binder added in the ink was 

calculated to be 14.3 wt%. The binder remaining in the scaffolds after the different post-printing 

treatments, once the phase transformation was complete (7 days, 30 min and 100 min for the biomimetic, 

hydrothermal-immersed and hydrothermal-vapour respectively), was measured by TGA (Figure 4(a)). The 

decomposition temperature of pluronic F127 was 200C.  Interestingly, a significant weight loss was 

observed in the control samples, that is, the samples prepared without pluronic.  This can be attributed to 

the loss of water associated to the CDHA phase, both the evaporation of surface-adsorbed water, below 
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200C, and further loss of the lattice water at higher temperatures.[45,46] The fact that this was more 

pronounced for the biomimetic sample than for the ones subjected to hydrothermal treatments can be 

associated to the higher amount of CDHA present in the specimens on one hand, and on the other hand to 

a higher water content in the former specimens. In fact, the shape of the curves suggests that specimens 

obtained by the biomimetic treatment had a higher amount of adsorbed water, which is associated to the 

weight loss below 200 C, whereas the amount of lattice water seemed to be similar to the samples 

subjected to the hydrothermal treatment, as reflected by the similar slopes of the curves above 200 C. 

Concerning the DIW scaffolds, the highest weight loss was observed for the hydrothermal vapour 

treatment, whereas the other two treatments, that is biomimetic and hydrothermal immersed, showed 

similar decomposition patterns of the binder, with lower weight loss observed. In Figure 4(b) the calculated 

values of the binder’s amount in the different samples is displayed. As expected, in the hydrothermal 

vapour condition the content of pluronic F127 the treated specimens was the same as for the initial ink 

used (14.3%). In contrast, the amount of binder in the samples treated under biomimetic and hydrothermal 

immersed conditions was reduced to 0.36 and 0.53 %, demonstrating that during the immersion in water, 

either at 37 or 121°C, the binder contained in the scaffolds was almost completely released.  

The FTIR spectra of the different specimens are displayed in Figure 5. The typical bands characteristic of the 

different PO4 vibration modes of (ν1~980, ν2~363, ν3~1082 and ν4~515 cm-1) [47] present in calcium 

phosphates were identified in all samples. Moreover, all samples, regardless of the hardening treatment 

used, presented the absorption bands of HPO2− 4 (~870 cm-1) and OH−(~631 and ~3570 cm-1) which are 

characteristic of calcium deficient hydroxyapatite [48] [49]. Although α-TCP and β-TCP were observed in the 

XRD patterns, these two phases were hardly distinguished in the FTIR spectra due to the overlapping of 

their infrared spectral bands with those of CDHA. 

In addition, in the samples subjected to the hydrothermal-vapour process, C-H stretching bands (~2850 cm-

1 )  corresponding to sp3 carbon hydrogen bonds and C-O stretching bands (~1110 cm-1) corresponding to 

alkoxy bond characteristic of aliphatic ethers, confirming the presence of pluronic F127 in the scaffolds 

[50], in agreement with the TGA results (Figure 4). 
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The microstructure of the scaffold strands after complete reaction for the different treatments (7 days, 30 

min and 100 min for the biomimetic, hydrothermal-immersed and hydrothermal-vapour respectively) is 

shown in Figure 6. The biomimetic treatment resulted in an entangled network of plate-like CDHA crystals 

(Figure 6(a)), which is in agreement with the microstructure developed under biomimetic conditions in 

calcium phosphate cements prepared with coarse particles, similar to the ones used in the self-setting 

ink.[51] In contrast, in the hydrothermal-immersed condition the CDHA crystals exhibited a needle-like 

morphology (Figure 6(b)), as also reported in previous studies.[52] Under hydrothermal-vapour condition, 

the microstructure of the scaffold was consistent with a lower rate of transformation to CDHA, the original 

-TCP particles being still visible, although covered with a layer of CDHA nanometric crystals (Figure 6(c)) 

that, according to XRD, represented 60 % of the composition of the scaffold. The lack of liquid environment 

hindered ionic diffusion and therefore the precipitated crystals were localised in close contact with the 

reactant particles. Although water vapour could be condensed on the surface of the particles, the ions 

produced by the dissolution of the -TCP could not migrate to form an entangled network of CDHA crystals. 

Instead, the precipitated CDHA formed a compact shell that impaired the dissolution of the remaining -

TCP core.  

The SSA values were 12.345 ± 0.004, 11.664 ± 0.033 and 2.342 ± 0.018 m2 g-1 for the biomimetic, 

hydrothermally-immersed and hydrothermal-vapour samples, respectively, which are in good agreement 

with the microstructural observations. 

The pore entrance size distribution of the scaffolds consolidated under the different methods determined 

by MIP is presented in Figure 7. In general, a bimodal pore entrance size distribution can be observed for 

each consolidation method. The pores larger than 10 m corresponded to the macroporosity between 

strands. All the scaffolds used for the MIP were printed following the HC pattern, which made the entrance 

macropore size distribution overlap in all cases. In contrast, the entrance pore size distribution below 10 

m (nano-microporosity within the strands) presented significant differences between consolidation 

methods, due to the different microstructures obtained. The smallest micropores were observed for the 

scaffolds consolidated with the biomimetic approach, with pore entrance sizes bellow 0.1 m. The 
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hydrothermal-immersed samples presented slightly bigger pore entrance sizes (around 0.2 m). This is 

consistent with previous results obtained with calcium phosphate cements with similar composition, where 

it was shown that plate-like CDHA crystal networks resulted in smaller-size pore interconnections than the 

needle-like crystal networks.[37] Finally, the biggest pore entrance size (2 to 3 m) was observed for the 

hydrothermal-vapour treatment. As it can be observed in Figure 6, the spaces between polyhedral particles 

in this sample are considerably larger than the spaces between plate- or needle-like crystals of the other 

samples.  

The quantification of the nano-microporosity measured by MIP, as well as the total porosity calculated 

according to Eq. (1) and the macroporosity according to Eq. (3) is displayed in Figure 8(a). Remarkable 

differences were found in nano-micro porosity with values of 23.9, 26.7 and 15.3% for the biomimetic, 

hydrothermal-immersed and hydrothermal-vapour respectively. These differences explain the values found 

in the total porosity, which follow the same trend. The macroporosity was very similar for the three post-

printing treatments (44.8, 45.9 and 44.0% for the biomimetic, hydrothermal-immersed and hydrothermal-

vapour respectively) as expected since all the specimens were printed with the HC pattern. 

3.2 Effect of the Post-printing Treatment on the Mechanical Properties 

Figure 8(b) shows the compressive strength and Weibull modulus of scaffolds with HC pattern, after the 

different post-printing treatments. The hydrothermal treatments led to lower compressive strength and 

Weibull modulus compared to the biomimetic condition, with the hydrothermal-vapour presenting the 

lowest values. No correlation was observed between porosity and compressive strength, which suggests 

that the differences in microstructure plays a determinant role. In fact, previous studies on calcium 

phosphate cements revealed that the mechanism responsible for the hardening of these materials was the 

mechanical interlocking between the precipitated crystals, and that the mechanical strength was directly 

related to the amount of precipitated phase formed in the setting reaction.[38,53] This trend is clearly 

maintained in the present study, where the scaffolds under the hydrothermal-vapour treatment presented 

the lowest conversion into CDHA and the microstructure lacked entangled CDHA crystals. In contrast, the 

hydrothermal-immersed and the biomimetic scaffolds presented an increasing conversion into CDHA which 
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resulted in higher compressive strengths, which are within the range of the compressive strength of 

cancellous bone (between 2 and 12 MPa).[54] ] An additional parameter that may contribute to the lower 

compressive strength of the hydrothermal-vapour samples is the plasticising effect of the binder, which 

was retained in much higher amounts (14.55%) than in the other treatments (Figure 4b).  Moreover, the 

Weibull modulus of the biomimetic scaffolds was bigger than that of the hydrothermal-immersed scaffolds, 

which indicates that this last treatment results in less reliable samples (i.e. with a higher variability in the 

compressive strength). Since the mechanical reliability of brittle materials such as the CDHA scaffolds 

depends on the distribution of defects, it can be hypothesised that the presence of some β-TCP in the 

material can result in a more heterogeneous structure, this creating stress concentration sites. It would be 

important, therefore, to find strategies to enhance the reliability and toughness of this kind of structures. 

3.3 Effect of Scaffold Pattern on Mechanical Properties  

Scaffolds with different structures subjected to the biomimetic post-treatment were compared in terms of 

mechanical properties. Representative CT reconstructions of the scaffolds fabricated following different 

patterns are shown in Figure 9, where a representative unit cell for each pattern obtained by CT analysis is 

also displayed. For the O pattern, the macropore size, measured as the distance between adjacent parallel 

strand surfaces was Lx = Ly = 332 ± 18 m in the printing plane projection (XY plane), and LZ= 195 ± 15 m in 

the lateral projection. These distances were the same in the OR scaffolds, but the 45° rotation applied 

every layer created a more complex pore shape. The HC scaffold presented vertical hexagonal channels 

with average diameter of 556 ± 46 m.  

As expected, the different patterns resulted in different macroporosities, as shown in Figure 8(c). The HC 

pattern exhibited the lowest macroporosity (43.8 %), followed by the O pattern (53.5 %) and, finally, the OR 

(55.4%).  Regarding the nano-micro porosity, the three conditions presented similar values (19.9, 19.2 and 

23.0 % for O, OR and HC respectively), as all the samples were subjected to the same biomimetic setting 

treatment.  
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The compressive strength and Weibull modulus for the scaffolds with different patterns, all of them 

subjected to the biomimetic treatment are shown in Figure 8(d).The highest compressive strength and 

Weibull modulus corresponded to the HC scaffold, followed by the O and OR scaffolds.  

No correlation was found between compressive strength and macroporosity. The trends observed can be 

rather explained by the strand architecture in the different scaffolds. Thus, in the HC pattern the strands 

form tubular-like walls aligned in the direction of the applied load, and in the case of the O patterned 

scaffold, the intersection points of the strands in the different layers also form longitudinal pillars (Figure 

10). As previously described,[11,29,55] the failure of the structure is due to the bending of these pillars. The 

higher Weibull modulus of the HC pattern indicates that this structure is mechanically more reliable than 

the O pattern in the direction perpendicular to the printing plane. In the OR structure, the overlapping 

points between strands are shifted every two layers, which results in a drastic reduction of vertical pillars, 

leading to a significantly lower compressive strength. The percentage of area within the XY projection 

where the strands are overlapped in consecutive layers of a repetition unit (Figure 10), that is, the effective 

section, was 22% of the cross-section area for the O pattern, only 11% for the OR and 28% for the HC 

pattern, which is in good agreement with the trends observed for the compressive strengths measured for 

the different structures (Figure 8(d)).   

It is difficult to compare the mechanical properties of the biomimetic scaffolds with analogous ceramic 

scaffolds fabricated by DIW, due to different porosities and architectures. Although in general higher 

compressive strengths were reported for sintered scaffolds, for example 47 and 15 MPa, for hydroxyapatite 

and beta tricalcium phosphate with O structure respectively,[11,16] it has to be considered that pore size 

and strut diameter were different from the ones in the present study, and especially, the total porosity was 

much smaller, around 40 %, whereas the biomimetic O scaffolds exhibited 73 % of total porosity. 

3.4 In Vitro Response of Rat Mesenchymal Stromal Cells. 

In order to assess the effect of the post-printing treatments on the ability of the scaffolds to support cell 

adhesion and growth, rMSC were seeded on O scaffolds subjected to the different conditions. As shown in 
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Figure 11, scaffolds hardened under biomimetic conditions supported cell adhesion, with a stable number 

of cells over time, while the number of cells slightly increased in the case of the scaffolds subjected to the 

hydrothermal-immersed treatment. In contrast, the number of cells on the hydrothermal-vapour treated 

scaffolds was significantly lower and decreased over time. Confocal microscopy images after 7 days of 

culture confirmed the presence of cells covering all the surface of the strands on the biomimetic and 

hydrothermal-immersed scaffolds, whereas for the hydrothermal-vapour condition, spaces free of cells 

were found on the strands (Figure 11(b)). This can be associated to the higher amount of pluronic F127 

present in the hydrothermal-vapour scaffolds, as measured by TGA (Figure 4), since during the vapour 

treatment there is no chance for pluronic to be released prior to the cell culture, which could lead to a 

reduction of cell adhesion and compromise the cytocompatibility of the scaffold.[56] It can be concluded, 

therefore, that the immersion of the scaffold during hydrothermal treatment is a requisite not only to 

enhance the transformation of α-TCP to CDHA, with the consequent improvement of the mechanical 

properties, but also to facilitate the release of the binder and increase the cytocompatibility of the scaffold. 

Indeed, both biomimetic and hydrothermal-immersed treatments allowed cell colonisation. This is a 

promising result that supports the use of these scaffolds in cell-based bone tissue engineering therapies 

and the development of in vitro bone models. 

4 Conclusion 

In this study, we developed a hydrothermal method that allows a significant reduction in the consolidation 

time of DIW α-TCP scaffolds, without losing the biomimetic features. The hydrothermal treatment of DIW 

scaffolds immersed in water significantly accelerated the hydrolysis of α-TCP into CDHA, reducing the 

hardening time to 30 minutes. This offers the possibility to fabricate scaffolds on-demand in a very short 

lapse of time (e.g. few hours), including the time for patient imaging, scaffold architecture selection, DIW 

and consolidation. This can represent a paramount advantage, in particular to treat clinical emergencies 

such as car, labour or sport accidents, in a patient-specific way. The hydrothermal treatment of the 

scaffolds resulted in a change in microstructure and promoted the allotropic transformation of α-TCP into 

its β polymorph, which reduced the yield in CDHA formation and resulted in a slight decrease of strength 
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and reliability. Both the biomimetic and hydrothermal-immersed treatments resulted in scaffolds with 

compressive strengths similar to trabecular bone. Whereas a compressive strength of 5.51 MPa was 

obtained in HC scaffolds with 68.7% porosity with the biomimetic treatment, the hydrothermal-immersed 

treatment resulted in a compressive strength of 4.09 MPa for HC scaffolds with 72.6% porosity. The Weibull 

modulus was higher in the biomimetic treatment than in the hydrothermal-immersed treatment (8.79 vs. 

5.62 respectively), indicating higher reliability. In addition, both treatments allowed the scaffold 

colonization by rMSC, suggesting that the two treatments are suitable to produce synthetic patient-specific 

bone grafts. However, due to the intrinsic brittleness of these materials, the use of such scaffolds in load 

bearing applications would require a further enhancement of their mechanical properties or the 

combination with additional mechanical fixation systems.     
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Figure Legends 
Figure 1. Different patterns employed for the scaffolds. 

Figure 2. Schematic representation of the different post-printing treatments tested in this study: (a) 

Biomimetic treatment, (b) Hydrothermal-immersed treatment, and (c) Hydrothermal-vapour treatment.  

Figure 3. Phase transformation kinetics determined by XRD analysis for the different hardening conditions. 

Figure 4. (a) Thermogravimetric mass loss of the samples subjected to the different post-printing 

treatments, where the continuous and the dashed lines correspond to the studied scaffolds and their 

pluronic-free counterparts respectively. The mass loss for the pure pluronic F127 is represented in the 

inset; (b) amount of pluronic F127 calculated from the TGA data, where the dashed line indicates the 

binder nominal concentration in the ink. 

Figure 5. KBr-Fourier Transformed Infrared spectroscopy diagrams of the scaffolds subjected to the 

different post-printing treatments. 

Figure 6. Representative Field Emission-Scanning Electron Microscopy images of the microstructures 

obtained at two different magnifications after the different post-printing treatments: (a) Biomimetic, 7 

days; (b) Hydrothermal-immersed, 30 minutes; and (c) Hydrothermal-vapour, 100 minutes.  

Figure 7. Pore entrance size distribution obtained by mercury intrusion porosimetry (MIP) for HC pattern 

scaffolds subjected to the different post-printing treatments. 

Figure 8. (a) Porosity and (b) compressive strength and Weibull modulus of the scaffolds printed with HC 

pattern and subjected to the different post-printing treatments. (c) Porosity and (d) compressive strength 

and Weibull modulus of the scaffolds set by the biomimetic treatment printed with different patterns. 

Statistically significant differences between treatments (b) and between patterns (d) are marked with 

different letters.  

Figure 9. Virtual reconstructions from µ-CT data of scaffolds printed with different patterns. Top: vertical 

view from the printing plane; middle: unit cells representing the solid part of the cell (light grey) and 

rendered porosity (red); bottom: centro-lateral view showing the pillars that transfer the mechanical load 

during compression strength test, blue arrows show the continuity of the pillars in the direction of loading. 

Figure 10. Top: Overlapped axial view of the repetition units for each pattern. Bottom: Regions of the cross 

sections that are common in all the layers. This pattern renders immediate comprehension of the scaffold 

pillars morphology. The image is a result of a Boolean AND operation with the binarised images of the cross 

sections constituting the repetition unit. 

Figure 11. Results of the cell culture study: (a) Number of rMSC determined by LDH assay after 3 and 7 days 

of 3D static cell culture on O scaffolds subjected to the different post-printing treatments where different 

letters indicate statistically significant differences; and (b-d) confocal microscope images of cells attached 

to these scaffolds after 7 days of 3D static cell culture. Actin cytoskeleton is shown in red and nuclei in blue.  
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Statement of significance 

3D plotting has opened up new perspectives in the bone regeneration field allowing the 

customization of synthetic bone grafts able to fit patient-specific bone defects. Moreover, this 

technique allows the control of the scaffolds’ architecture and porosity. The present work 

introduces a new method to harden biomimetic hydroxyapatite 3D-plotted scaffolds which avoids 

high-temperature sintering. It has two main advantages: i) it is fast and simple, reducing the whole 

fabrication process from the several days required for the biomimetic processing to few hours; 

and ii) it retains the nanostructured character of biomimetic hydroxyapatite and allows controlling 

the porosity from the nano- to the macroscale. Moreover, the good in vitro cytocompatibility 

results support its suitability for cell-based bone regeneration therapies. 
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