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Abstract—During real-time graphics rendering, objects are processed by the GPU in the order they are submitted by the CPU, and
occluded surfaces are often processed even though they will end up not being part of the final image, thus wasting precious time and
energy. To help discard occluded surfaces, most current GPUs include an Early-Depth test before the fragment processing stage.
However, to be effective it requires that opaque objects are processed in a front-to-back order. Depth sorting and other occlusion
culling techniques at the object level incur overheads that are only offset for applications having substantial depth and/or fragment
shading complexity, which is often not the case in mobile workloads. We propose a novel architectural technique for GPUs, Visibility
Rendering Order (VRO), which reorders objects front-to-back entirely in hardware by exploiting the fact that the objects in graphics
animated applications tend to keep its relative depth order across consecutive frames (temporal coherence). Since order relationships
are already tested by the Depth Test, VRO incurs minimal energy overheads because it just requires adding a small hardware to
capture that information and use it later to guide the rendering of the following frame. Moreover, unlike other approaches, this unit
works in parallel with the graphics pipeline without any performance overhead. We illustrate the benefits of VRO using various
unmodified commercial 3D applications for which VRO achieves 27% speed-up and 15.8% energy reduction on average over a
state-of-the-art mobile GPU.

Index Terms—GPU, Graphics Pipeline, Energy-efficiency, Rasterization, Rendering, Fragment Processing, Pixel Shading, Occlusion
Culling, Visibility, Tile Based Deferred Rendering, Tile Based Rendering, Topological Order.

F

1 INTRODUCTION

IDentifying visible surfaces is a requirement in the graph-
ics pipeline for correct image rendering. The most

widespread method to resolve visibility at pixel granularity
is the Depth Test, which is typically placed at the end of
the pipeline. Figure 1 introduces a simplified conventional
graphics pipeline. The GPU receives vertices and processes
them in the Geometry Pipeline, which generates triangles.
These are then discretized by the Rasterizer, which generates
fragments that correspond to pixel screen positions. Then,
fragments are sent to the Fragment Processing stage, which
performs the required texturing, lighting and other com-
putations to determine their final color. Finally, the Depth
test compares each fragment’s depth against that already
stored in the Depth Buffer to determine if the fragment is in
front of all previous fragments at the same pixel position. If
so, the Depth Buffer is conveniently updated with the new
depth, and the color of the fragment is sent to the blending
stage, which will accordingly update the Color Buffer (the
buffer where the image is stored). Otherwise the fragment
is discarded.

One big advantage of the Depth test is that it ensures
correct scene rendering regardless of the order the opaque
geometry is submitted by the CPU. The main drawback is
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that the color of a given pixel may be written more times
than necessary (a problem known as overdraw), which
wastes a considerable amount of main memory bandwidth
and energy [1]. Moreover, when the GPU realizes that an
object or part of it is not going to be visible, all activity
required to compute its color has already been performed,
with the consequent waste of time and energy (a problem
known as overshading), especially in the Fragment Pro-
cessor, which is the most power consuming component of
the graphics pipeline [2]. Reducing the overshading pro-
duced by non-visible fragments can significantly increase
the energy-efficiency of the GPU.
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Fig. 1. Simplified version of the Graphics Pipeline.

Figure 2 shows the overshading for several applications
(details on the evaluation framework are provided later).
Overshading is presented here as the average number of
fragments processed per pixel. First bar shows that over-
shading is extremely high in some applications with com-
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Fig. 2. Shaded fragments per pixel in a GPU without Early-depth test,
with Early-depth test, and with perfect front-to-back rendering order at
object granularity.

plex 3D geometry such as 300 and Forest 2, for which each
pixel is computed and written around 8.5 and 13 times on
average.

Commercial GPU pipelines include an Early-depth test
stage that checks fragment visibility before the Fragment
Processing, and achieves substantial overshading reductions
(see mid bar of Figure 2). However, the effectiveness of the
Early-depth relies on the software ability to send opaque
primitives in front-to-back order, which is not what the
software does in most of the cases. The third bar of Figure 2
shows the overshading with a perfect front-to-back render-
ing order at object level. As can be seen, there is significant
headroom for improvement, and this is the target of this
paper.

It is well-known that improving the battery life of hand-
held and portable devices is a major concern for hardware
and software developers. Among all the components in
smartphone SoCs, the Graphic Processing Unit (GPU) has
been identified as one of the top energy consumers [3]. In
particular, for graphics applications the GPU has been iden-
tified as the principal energy consumer [4]. Further experi-
mental data with the same SoC shows a peak consumption
of the GPU 50% higher than the peak consumption of the
CPU [5]. The current trend towards more realistic graphics
and therefore, more power hungry applications [6] is just
aggravating this issue, so, improving the energy efficiency of
mobile GPUs is key for future designs [7], [8], [9], [10], [11],
[12], [13], [14], [15]. The development of energy-efficient
solutions is a requirement to make possible a richer user
experience in these platforms.

In this paper, we propose a novel hardware technique
for GPUs, Visibility Rendering Order (VRO), which tries
to render objects in a front-to-back order to maximize the
culling effectiveness of the Early-depth test and minimize
overshading, hence reducing execution time and energy
consumption. Our approach is based on the observation that
consecutive frames do not differ much in order to provide
the feeling of smooth transition in animated applications.
This suggests that the relative order among the objects in
frame N is usually the same as in frame N+1 (or very close).
Since depth-order relationships between objects are already
checked by the Depth Test, VRO incurs minimal energy
overheads because it just requires adding a small hardware

to capture that information and use it later to guide the
rendering of the following frame. This extra activity is
performed in parallel with other stages of the pipeline, so
no performance overheads are incurred.

For the analysis in this paper, we have classified our set
of benchmarks into two different groups according to the
following. If the reduction in overshading between an ideal
front-to-back rendering order at object granularity (third bar
of Figure 2) and the execution using Early-depth (second
bar of Figure 2) is smaller than 0.5%, then the benchmark
is categorized as ”ordered”, otherwise the benchmark is
categorized as ”unordered”. Our technique achieves impres-
sive results for the ”unordered” group of applications, i.e.
those that do not submit objects in front-to-back order to the
GPU. For this group, VRO obtains 27% speed-up and 15.8%
energy reduction on average when compared with a state-
of-the-art mobile GPU presented. For the ”ordered” group
of benchmarks, VRO achieves minor reductions in over-
shading, but it neither produces any performance penalty
nor energy overhead.

The remainder of this paper is organized as follows:
Section 2 presents the visibility determination problem and
how current GPUs deal with it. Our approach is described
in Section 3. Section 4 discusses the implementation of
our approach on a state-of-the-art GPU, and also describes
the baseline GPU and a Deferred Rendering approach that
will be used for comparison purposes. The experimental
framework is presented in Section 5. Section 6 shows the
main results of this study. The related work is discussed in
Section 7 and Section 8 summarizes the main conclusions of
this work.

2 VISIBILITY DETERMINATION

As outlined in the previous section, the Depth test re-
solves visibility at the expense of significant overshading.
Occlusion culling techniques try to reduce overshading
by discarding objects completely occluded by others at
the application level. Many of these software approaches
require building costly spatial hierarchical data structures
to render the scene from any single viewpoint. They are
only effective on walkthrough applications where the entire
scene is static and only the viewer moves through it, because
the overheads can be amortized along a large number of
frames [16]. Occlusion queries is another software technique
that defines bounding volumes around dynamic objects,
renders them to the GPU to test their visibility and waits
for the results back to the CPU. Unfortunately, using any
kind of feedback from the GPU is quite slow and limits the
achievable frame rate unless the scene complexity is above
a large threshold [17], which is often not the case on mobile
workloads. Moreover, as mobile devices evolve to higher
resolutions, testing for occlusion objects that are not fill-rate
bound (i.e. with simple fragment programs and textures)
may require many more pixels to fill and the GPU will likely
spend more time rendering the object’s bounding volume
than the object itself.

To reduce overshading, most pipelines perform an Early-
depth test to fragments before they are sent to the Frag-
ment Processors. Although the Early-depth can only cull
fragments which are hidden by those already tested, it
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Fig. 3. Graphics pipeline: (a) Sequential DR. (b) Parallel DR.

reduces shading and blending work and brings important
performance and power benefits.

Z-prepass [18] addresses overshading by performing
two separate rendering passes with the GPU. First it renders
the geometry without outputting to the Color Buffer, just
using a null fragment shader, to setup the Depth buffer final
values. On a second pass with the real shaders the Early-
depth test will perform optimal culling, so overshading will
be minimum (just one opaque fragment per pixel will be
shaded and written to the Color Buffer). Unfortunately, this
approach doubles the amount of vertex processing, rasteri-
zation and depth-test work required, which more than offset
its benefits. It is only effective for workloads with enough
depth and/or fragment complexity where these overheads
are compensated by large fragment computation savings,
which is not usually the case on mobile applications.

Like Z-prepass, Deferred Rendering (DR) is a hardware
technique that avoids overshading through computing the
Depth Buffer before starting fragment shading. Currently,
DR has only been implemented on Tile Based Rendering
(TBR) GPUs [19]. TBR pipelines divide the screen space into
tiles and, before rasterization, they assign the geometry of
the scene to the tiles, which are then independently ren-
dered. This allows the GPU to use small on-chip memories
to contain the Depth and the Color buffers for the entire
tile, which dramatically reduces the accesses to main mem-
ory [20]. DR adds a hidden surface removal (HSR) phase
to the pipeline just before the Early-Depth test. During the
HSR phase, all the tile primitives are first rasterized only
for position and depth, and the resultant fragments are
Early-depth tested to setup the Depth Buffer. Once HSR is
complete, the second pass processes the tile primitives as
usual along the raster pipeline (they are read, rasterized and
depth-tested again), except that this time the Early-depth
test performs optimal occlusion culling. Although the exact
details of this technique in commercial systems are not fully
disclosed, we have modeled in our framework an efficient
implementation of it at the microarchitecture level, which
is described in Subsection 4.2. In contrast to Z-prepass, DR
does not perform the geometry processing twice. However,
as can be seen in Figure 3, DR still has a non negligible
cost: either it introduces a barrier in the graphics pipeline,
because the Fragment Processing stage cannot start until
HSR has completely finished the tile (see (a) sequential DR),
or significant extra hardware is required to perform HSR of
tile i+1 and rendering of tile i in parallel (see (b) parallel
DR). Further details are given in Section 4.2.

3 VISIBILITY RENDERING ORDER

To help maximize Early-depth test effectiveness, we propose
to record the visibility order of the objects in a frame, assume
the same order for the next frame, and then use it to influ-
ence the rendering order of the objects in the next frame.
This is expected to work since images of consecutive frames
normally show a significant degree of similarity to result in a
smooth transition among frames, so the ordering of objects
in consecutive frames tends to be the same. To produce a
quantitative evidence of this, we have evaluated sequences
of 50 frames of our benchmarks, and we have observed
that the relative order of the objects in a frame matches the
relative order in the previous frame in more than 99% of
the cases. Unlike other approaches, our technique works for
all kind of scenes, either static or dynamic, it does not cause
CPU-GPU synchronization issues and it has no performance
cost because it works in parallel to other stages of the
pipeline. This section outlines our technique, and the next
section will provide hardware implementation details.

3.1 Overview

Depth
Test

Depth
TestG.P.G.P. Rast.Rast. Early

Depth F.P.F.P.

G.P. = Geometry Processing Rast. = Rasterization
F.P = Fragment Processing

Polygon
List Builder

Polygon
List Builder

Tile
Scheduler

Tile
Scheduler

Parameter
Buffer

Parameter
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Depth
Buffer

Vertex
Cache

Vertex
Cache

BlendingBlending

Color
Buffer

Color
Buffer

Tile Engine

Raster PipelineGeometry
Pipeline

Visibility
Sort

Visibility
Sort

Graph
Buffer
Graph
Buffer

Visibility Order

Edge
Inserter

Edge
Inserter

Graph
Buffer

Graph
Buffer

Edges

Fig. 4. Graphics pipeline including VRO.

Figure 4 shows the changes to the graphics pipeline
introduced by VRO, which will be explained below: the
Edge Inserter, the Visibility Sort Unit and the Graph Buffer.
Basically, VRO has two stages that operate on consecutive
frames:

1) Creation of a Visibility Graph: During the ren-
dering of frame N the Early-depth test reveals
depth precedence relationships between pairs of
fragments covering the same pixel position, hence
among the corresponding objects. These relation-
ships (edges) are used by the Edge Inserter unit to
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build a directed graph where objects are represented
by nodes, and the edges indicate which objects are
in front of others. We will refer to this graph as the
Visibility Graph, which is stored in the Graph Buffer.

2) Creation of a rendering order: At the beginning
of the rendering of frame N+1, in parallel with the
execution of the Geometry Pipeline, the Visibility
Sort unit sorts the Visibility Graph created during
frame N to generate a depth-ordered list of nodes.
We will refer to this list as the Visibility Rendering
Order, and it is used by the Tile Scheduler to guide
the rendering of the frame N+1.

3.2 Sort Algorithm

Once the graph is generated, it is sorted to create the
Visibility Rendering Order (a front-to-back ordered list of
object-ids). Our approach is based on the well known Topo-
logical Sort algorithm, first proposed by Kahn [21], which
guarantees for DAG graphs (acyclic) that an ordered list of
nodes exists and it is generated in linear time. Algorithm 1
outlines the basic algorithm, assuming for convenience that
every node is tagged with its number of incoming edges
(the in-degree). Nodes with no incoming edges are referred
to as roots.

Algorithm 1 Kahn’s algorithm.
1: function KAHN(L,RQ)
2: . L: empty list that will contain the sorted nodes
3: . RQ: queue with all initial root nodes of Graph
4: while RQ is non-empty do
5: remove head node n from RQ
6: insert node n into list L
7: for child m of n do
8: remove the edge from n to m
9: decrease the in-degree of m

10: if m is a root then
11: add m to tail of RQ
12: end if
13: end for
14: remove node n from Graph
15: end while
16: if Graph has nodes then
17: return error . Graph has at least one cycle
18: else
19: return L . a topologically sorted order
20: end if
21: end function

However, if the graph contains a cycle, this algorithm
finishes with an error condition because at some point none
of the graph nodes that remain to be sorted have zero in-
degree. We found that these cycles are quite common, and
actually none of our benchmarks creates a DAG. To cope
with this situation, we distinguish three kinds of cycles and
apply different solutions in each case:

1) Auto occlusions between parts of the same object.
They are removed by discarding their correspond-
ing edges in the process of creation of the graph,
with no effect on VRO, because VRO reorders at

object level and the auto-occlusions just contain
intra-object precedence relations.

2) Pairs of interlaced objects occluding each other.
VRO eliminates the cycles created by pairs of inter-
laced objects by adding to the Visibility Graph only
the first encountered precedence relation between
two objects (A, B). If later on a (B, A) relation is
encountered, it is just ignored and not added to the
graph.

3) Three or more objects alternately occluding one
another. Since these cycles may be extremely costly
to detect, we adopt a cost-effective approach which
does not attempt to eliminate them from the graph,
but it rather extends the Kahn’s algorithm to side-
step a cycle-induced wrong termination: whenever
the RQ is empty and there are still nodes to be sorted
but none of them is a root, our heuristic selects, from
the remaining graph nodes, the next one in program
rendering order with the minimum number of input
edges, removes these edges from the graph, adds
the node to the tail of RQ and iterates again. In
our experiments, the heuristic is executed to select a
node around 13% of the times.

Our main goal is to improve performance while still
reducing energy consumption on a mobile GPU. VRO
achieves both goals by improving the effectiveness of the
Early-depth to cull hidden surfaces before they reach the
Fragment Processing stage, so that the number of shader
instructions executed is reduced. We have tested several
heuristics to handle the cycles of the Visibility Graph that
approximate this goal with different performance/energy
trade-offs. The suitability of one or another heuristic on
a given hardware platform will greatly depend on design
issues that are out of the scope and space of this paper.
Bear in mind however that, regardless of the approximation,
image correctness is guaranteed in any case by the depth
test. Our choice here is a heuristic that implies a cost
effective implementation of VRO and clearly illustrates its
feasibility and effectiveness.

3.3 Partial Order of Objects
The Depth Buffer only stores the depth of one fragment at
every pixel position. Thus, when a new fragment is tested
the comparison is performed between the new fragment
and the one visible so far, so there may be objects whose
fragments are never compared. Therefore, this comparisons
will provide just a partial order of the objects. Hence, one
may wonder whether the missing node relationships may
lead to build a wrong Visibility Graph. To answer this ques-
tion, note that the relative render ordering of two objects is
only relevant for visibility purposes if they overlap at some
region, and that region is visible at least in one pixel.

It is easy to prove that if two nodes are not connected,
then either they do not overlap at all, or their overlapping
region is not visible, i.e., the missing relationship is not
relevant in terms of overshading. Figure 5 illustrates this
property with two examples. In both cases the rendering
order is A, B, C. In case (a), nodes A, C are not connected
and therefore their overlapping area is not visible, so the
different possible rendering orders between A and C do
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Partial ordering of the objects

Since the z-buffer stores only the depths of the closest to the observer fragments seen so far at each 
pixel position, each new fragment depth is only compared to the one that sits in the z-buffer, thus 
not all pair of fragments in a pixel position will have their nodes connected by a corresponding 
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to visibility if they overlap at some region, and that region is visible at least in one pixel. However, 
it is easy to proof that if two nodes are not connected, then either they do not overlap at all, or 
their overlapping region is not visible (see Figure below).
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the overlap between A nd C. After the z-tests of A, B and C in that order, two different graphs are 
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ping between A and C is partially visible, and these nodes get connected in the graph.
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Fig. 5. Two example cases where object B sits in front of A and C. The
shaded region highlights the overlap between A and C.

not produce a different amount of overshading. In case (b),
the overlapping between A and C is partially visible and
therefore these nodes are connected in the graph. That is,
the partial order represented in the Visibility Graph contains
all the precedence relations necessary to create an order
where visible objects are scheduled before the ones that they
occlude.

3.4 Visibility Rendering Order Adjustments

The Visibility Rendering Order that the Tile Scheduler re-
ceives from the Visibility Sort unit contains the object-ids
of the objects rendered in the previous frame, and they
may differ slightly from the objects to be rendered in the
current frame. On the one hand, objects rendered in the
previous frame are present in the Visibility Graph, but they
are not present in the current frame and therefore they
must not be scheduled, so they are simply discarded by
the Tile Scheduler. On the other hand, objects not present
in the Visibility Graph but present in the new frame must
be scheduled, so they are put in the list after the objects in
the graph.

Note that objects with Depth test disabled or with blend-
ing enabled, which are typically translucent objects, cannot
be simply put at the end of the order list because it could
produce erroneous images. These objects, typically rendered
back-to-front after the opaque surface they overlap, must
be scheduled in the same relative order as they appear in
the program rendering order. VRO respects the OpenGL
standard in the sense that the result is the same as if
objects were processed in program rendering order, so these
constrains are taken into account when creating the final
rendering order. Fortunately, objects with blend enabled and
with depth disabled (commonly part of the GUI of the appli-
cations) tend to be the last objects to appear in the program
rendering order so they introduce minor constraints to the
Visibility Rendering Order.

If the relative order among two objects changes in
frame N with respect to frame N-1, VRO may introduce
overshading, but in any case the correctness of the scene
is guaranteed. Furthermore, in frame N+1 this ordering
penalty will be corrected.

4 IMPLEMENTATION

This Section describes the implementation details of our
technique on a contemporary GPU. We first introduce the
baseline GPU. Next, we describe the extensions to the
baseline architecture that are required to support Deferred
Rendering (DR) and our technique (VRO). DR will be used
for comparison purposes in our experiments.

4.1 Baseline TBR GPU
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Through the rest of the paper it is assumed a baseline
TBR GPU architecture that includes one programmable Ver-
tex Processor and four programmable Fragment Processors.
Figure 6 shows a block diagram of the GPU pipeline with
TBR mode. The rendering process is divided into two decou-
pled pipelines, Geometry and Raster, which are connected
through the Tiling Engine.

The Geometry Pipeline performs geometry-related oper-
ations such as model, view and projection transformations
done in the vertex processing, perspective divide, viewport
transformation, clipping, and face culling. The resulting
primitives are sent to the Polygon List Builder of the Tiling
Engine, which assigns the primitives to tiles [20] and stores
them into the Parameter Buffer, a buffer in system memory
that is accessed through the Tile Cache.

Once all the primitives of a frame have been stored in
the Parameter Buffer, the GPU independently processes the
frame tile by tile. For every tile, the Tile Scheduler reads
the primitives in program order and it sends them to the
Raster Pipeline. The first component of the Raster Pipeline
is the Rasterizer. The Rasterizer receives the primitives and
discretizes them creating fragments that are tested in the
Early-depth test (supported by an on-chip Depth Buffer). If
a fragment is visible (not occluded by a previously tested
fragment), it is sent to the following stages of the Raster
Pipeline. Otherwise it is discarded.

The fragment colors computed in the Fragment Pro-
cessors are written to the Color Buffer, which is located
on-chip to reduce the main memory traffic. Once the tile
rendering has been completed, the on-chip Color Buffer is
flushed to the Frame Buffer in main memory. Note that for
TBR pipelines, each pixel color is usually written to main
memory only once regardless of object ordering. Only an
overflow in the Parameter Buffer causes the GPU to render
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the already sorted geometry, thus writing main memory
more than once, but it is highly uncommon. Note that
despite the main memory bandwidth relative to the Color
Buffer and the Depth Buffer are reduced with TBR mode,
the geometry-related memory traffic is increased by the
required communication performed to in first place store
the geometry into the Parameter Buffer, and later recover it
when rendering every tile.

4.2 Deferred Rendering TBR GPU
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Fig. 7. Raster Pipeline of a TBR GPU implementing Deferred Rendering.

Deferred Rendering (DR) is the state-of-the-art regard-
ing overshading reduction, so we decided to model it for
comparison purposes. As outlined in Section 2, DR reduces
overshading by first performing Hidden Surface Removal
(HSR), which in first place computes the final state of the
Depth Buffer for a given tile. Thereafter, it starts an ordinary
rendering of the tile. However, given that the Depth Buffer
contains the depth of the visible objects, the Early-depth
is able to discard all the occluded fragments and achieve
minimum overshading.

A DR technique has been commercially implemented
by Imagination Technologies in their tile-based PowerVR
GPU family [19], which they refer to as a TBDR. However,
since only partial information about this technique has been
disclosed, our Deferred Rendering implementation models
what we believe is the most optimistic interpretation of this
partial information, in order to be used in the comparisons
with our proposal.

As previously shown in Figure 3, we developed different
implementations of DR: sequential DR (a) and parallel DR
(b). Sequential DR is a naı̈ve implementation that stalls
the rest of the Raster Pipeline while performing HSR. The
sequential implementation badly hurts both performance
and energy compared with the baseline GPU. For this
scheme, the execution time increases for every one of the
benchmarks tested, being 23% on average. Regarding en-
ergy consumption, it increases around 6% on average when
compared with the baseline GPU. These huge overheads
are due to the fact that the total time of the HSR stage
(only depth rasterization plus depth test) greatly exceeds
the savings provided by the overshading reduction.

Nevertheless, these huge overheads can be removed by
performing the HSR stage in parallel with the other stages
of the Raster Pipeline (see Figure 7). Thus, in this optimized
scheme (parallel DR), while the HSR is being executed for
tile i+1, the rest of the Raster Pipeline is executed in parallel

to render the tile i. Obviously, this parallel implementation
introduces a hardware cost and some hardware blocks, such
as the Rasterizer, the Early-depth test and the Depth Buffer,
need to be replicated. Furthermore, the Tile Scheduler is
equipped to handle memory requests of two primitives in
parallel: one primitive from the tile being rendered and
the other one from the tile in the HSR stage. This does
not mean that the Tile Cache has now two read ports,
but the Tile Scheduler will arbitrate between both request
queues and only one will be sent to the Tile Cache each
cycle in a Round Robin fashion. Even though this parallel
implementation of DR introduces a non negligible amount
of extra hardware (6% area overhead w.r.t baseline GPU), it
outperforms sequential DR in both performance and energy,
so it is the one we use in the results section to be compared
against our technique, VRO.

4.3 Visibility Rendering Order TBR GPU
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Fig. 8. Raster Pipeline of a TBR GPU implementing VRO.

As Figure 8 shows, our technique includes several new
pieces of hardware: the Edge Insertion unit, the Edge Filter,
the Graph Cache and the Visibility Sort unit. As usual, the
control of the new hardware has been implemented using
FSMs.

On the one hand, the Early-depth unit sends the edges
to the Edge Inserter unit, which is responsible for storing
them in the Graph Buffer, a buffer in main memory accessed
through a Graph Cache and which contains the Visibility
Graph of the currently rendered frame. Edge insertions take
place at fragment granularity using the results of Early-
Depth comparisons. However, since graph edges represent
object pairs there is a large amount of tests that actually
produce the same edges. The Edge Filter is a small and
fast associative on-chip structure that caches the most re-
cently inserted edges and filters out redundant insertions to
the Graph Buffer, thus avoiding unnecessary Graph Cache
accesses. Thanks to this structure, the Edge Insertion unit
accesses the Graph Cache on average much less than once
every thousand fragments.

On the other hand, the Visibility Sort unit, in parallel
with the Geometry Pipeline execution of the following
frame, sorts the Visibility Graph and creates a preliminary
ordered list of nodes, which is sent to the Tile Scheduler.
After the adequate adjustments to satisfy the restrictions
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presented in subsection 3.4, the Tile Scheduler produces the
final Visibility Rendering Order.

Like in the baseline GPU, once the Geometry Pipeline
has been executed, the Raster Pipeline renders the frame
tile by tile. However, instead of reading the primitives
in program rendering order the Tile Scheduler reads the
primitives in Visibility Rendering Order. VRO increases the
culling effectiveness of the Early-depth test and reduces
overshading, which decreases the total number of instruc-
tions executed in the Fragment Processors.

In order to do a fair comparison between VRO and DR,
the Tile Scheduler of VRO is also equipped with hardware
to handle memory requests of two primitives of a tile in
parallel. We have measured that, for the worst case (Forest
2), the total time required to produce a Topological Order
with our version of the Kahns algorithm is almost two
orders of magnitude smaller than the execution time of
the Geometry Pipeline. Furthermore, the Visibility Sort unit
works in parallel with other stages of the Geometry Pipeline,
so negligible overheads in execution time are introduced.

4.3.1 Graph Buffer

The Graph Buffer is a small array in system memory where
the Visibility Graph is stored. Due to the fact that the
Visibility Graph is very sparse, it is represented as a set of
adjacency lists, one per every node. Each adjacency list is
implemented as a linked list of one or more entries. Each
entry contains the object-id of up to W children nodes as
well as other metadata shown in Figure 9.

Node
0

Node
1

... Node
35V InD Length Next

1 b 13 b 6 b 13 b 13 b 13 b 13 b

V = Valid bit   InD = In-degree   Lenght = Size of the sublist
Node

i 
= Element i of sublist  Next = Address of next entry

Fig. 9. Detail of an entry of the Graph Buffer.

VRO performs operations like membership and inser-
tion in one step whenever the adjacency list contains less
than W children nodes. Furthermore, our scheme is not
constrained to a maximum of W outgoing edges per node.
The adjacency lists are extended dynamically to any number
of edges by allocating one or more extra overflow entries of
the Graph Buffer if required. Primary lists are sequentially
allocated from the lowest addresses of the buffer onwards
and overflow lists are allocated from the highest addresses
backwards. A buffer with N entries can store up to N nodes
if none of their lists overflow, but most importantly, it can
contain lists with theoretically unlimited number of edges
per node.

Of course, there is a limitation imposed by the size of
the memory region devoted to the Graph Buffer. However,
we show that the size of the Graph Buffer represent a small
region of main memory. For example, with 8192 entries and
64 B per entry the Graph Buffer is 512 KB. Figure 10 plots
the amount of main memory to be allocated to the Graph
Buffer for different number of maximum objects (nodes) and
different number of children nodes per entry of the buffer
(W). Note that even for a number of objects three orders
of magnitude higher than the average number of objects

observed in our set of benchmarks the memory region
devoted to contain the Graph Buffer would be smaller than
11 MB. Although all our benchmarks have less than 256
nodes (see Top part of Figure 11) we provision for a much
larger number of objects, so the graph has been sized to
8192 entries which is much more than enough to support
common mobile workloads. Note that an object corresponds
with a 3D model composed of different primitives and not
a single one.

There exists a clear trade-off in the implementation of
the structure of the Graph Buffer. The smaller the number
of children nodes in one entry of the buffer, the smaller the
total size of the Graph Buffer, but the higher the number of
cycles to read the whole adjacency list of a node if it contains
more than W children nodes. Figure 11 (Bottom) plots the
75th, 85th and 95th percentiles of the largest adjacency lists
sizes, and it shows that most of them contain a small number
of nodes (objects). For example, in the case of 300, the values
for P75, P85, and P95 mean that the 75%, 85%, and 95%
of the lists contain less than 12, 17, and 27 children nodes
respectively.
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Fig. 10. Size of the Graph Buffer for different number of children nodes
(W) and different number of maximum objects (from 8192 to 131072).

In the worst case, around 95% of adjacency lists of the
Visibility Graph of our benchmarks have 35 or less edges
per node. Hence, we allocate 36 edges per entry (W = 36),
and in this way, the size of one entry is slightly smaller than
64 B and fits into a single cache block. Accounting for 8192
entries and 64 B per entry, the total size of the Graph Buffer
in main memory is 512 KB. However, nothing impedes to
reserve more main memory to provision for a larger number
of objects. In any case, in order to reduce main memory
traffic and latency, the access to the Graph Buffer is done
through the Graph Cache, which is 4 KB 4-way associative.

4.3.2 Edge Inserter
The Edge Inserter is the unit responsible for creating the
Visibility Graph. It works in parallel with the other stages of
the Raster Pipeline. It not only creates the Visibility Graph,
but also computes the in-degree of each node (see the field
InD in Figure 9), which will be used by the Visibility Sort
unit. The Edge Inserter (see Figure 12) receives through a
queue the edges from the Early-depth test which were not
filtered by the Edge Filter. The insertion of an edge (Nsrc,
Ndst) in the Visibility Graph is a three-step process (see
Figure 12):
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Fig. 11. (Top) Nodes per frame, edges per frame, and maximum number
of nodes in an adjacency list. (Bottom) 75th, 85th and 95th percentiles
of the size of the adjacency-lists of the scene graphs analyzed.

1) The primary entry of node Nsrc is read from the
Graph Buffer to the AdjacencyList-Reg.

2) Then the AdjacencyList-Reg is searched to check if
the edge was previously inserted in the Visibility
Graph. If the primary list of node Nsrc has no linked
entries (this can be done in a single clock cycle with
an array of equality comparators), otherwise one or
more overflow entries may be subsequently read
and copied to the AdjacencyList-Reg until the edge
is found or the last entry is read.

a) If the edge already exists, then it is discarded.
b) Otherwise, the Length field is increased and

the edge is added to the adjacency list. How-
ever, if the entry is full, a free overflow entry
is first assigned to node Nsrc and its address
is stored into the Next field and written back
to the Graph Buffer.

3) Finally, if a new edge has been added to the graph,
the in-degree of the target node Ndst is increased.

4.3.3 Visibility Sort

The Visibility Sort unit is responsible for sorting the Visi-
bility Graph. As outlined above, it implements an extended
version of Kahn’s algorithm able to handle cycles. The unit
works in two phases (see Figure 13):

1) Initial search. The primary entries of all the nodes
in the Visibility Graph are read from the Graph
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Fig. 13. Visibility Sort Hardware. (a) Initial search (b) Iterative procedure

Buffer. If the node is a root (InD = 0), its object-id
is pushed into the Roots Queue.

2) Iterative procedure. The object-ids stored in the
Roots Queue are iteratively processed. For each
node in the queue:

a) The adjacency list of the node is read from
the Graph Buffer into the AdjacencyList-Reg.
At the same time, the object-id is sent to the
Tile Scheduler through the Order Queue.

b) For each child in the AdjacencyList-Reg, the
in-degree is read from the Graph Buffer, and
if it is still a valid node, it is decremented
and written back. If the in-degree of a child
becomes zero (becomes a root), it is pushed
into the Roots Queue. In case of an adjacency
list with overflow entries they are read in
turn and processed in the same way.

c) The node is invalidated.

If the Roots Queue becomes empty and all the graph
nodes have been sorted, the algorithm finishes. Oth-
erwise, a cycle has been found, so the unit selects
the next node in program order with minimum in-
degree, pushes it into the Roots Queue, and then
resumes the iterative procedure. Note that the node
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has incoming edges remaining in the adjacency lists
of its ancestors. However, since the node is invali-
dated after being processed, its in-degree will never
be decremented again.

4.3.4 Identification of Objects
Object identifiers are required by the Visibility hardware
unit to identify the objects across different frames. We need,
therefore, to maintain the object identifier for objects along
the graphics pipeline up to the Early-depth and the VRO
unit.

A simple way to do this is to include an object iden-
tifier in every draw command of an object. This could be
done using the debug marker extension of OpenGL [22],
implemented in OpenGL ES 1.1 and 2.0. This extension
allows the programmer of an application to annotate the
OpenGL command stream with a descriptive text marker.
This extension relies on the driver and the hardware to
maintain the object notion through the rest of the graphics
pipeline. Note that current 3D applications already uniquely
identify the objects of the scene [23], so the requirement here
is to pass this information from the application layer to the
GPU.

5 EXPERIMENTAL FRAMEWORK

In our experiments, we use the Teapot simulation frame-
work [24]. We model not only the baseline GPU architec-
ture, which closely resembles that of the Utgard microar-
chitecture of ARM Mali [25], but also we model Deferred
Rendering and Visibility Rendering Order techniques on
a TBR GPU architecture. ARM Mali Utgard microarchitec-
ture is the most successful mobile GPU till the date, with
around 19.1% of the mobile GPU market share by March
2017 [26], while TBR GPUs represent around 95% of the
mobile GPU market. Despite in this work we employ a
TBR GPU architecture, note that VRO is orthogonal to the
TBR mode, and its implementation on top of an IMR GPU
would also increase the performance and reduce the energy
consumption of the GPU. Regarding our benchmarks set,
it is composed of eight popular Android commercial 3D
applications listed in Table 1.

TABLE 1
Benchmarks Set.

Benchmark Alias Description Downloads (M)
300 300 hack & slash 10-50
Air Attack Air flight arcade 10-50
Captain America Cap beat’em up 1-5
Crazy Snowboard Crazy snowboard arcade 5-10
Forest 2 Forest horror 1-5
Gravity Grav action 1-5
Striker Striker first person shooter 10-50
Temple Run Temple adventure arcade 100-500

5.1 GPU Simulation

Teapot [24] is a mobile GPU simulation infrastructure that
can run unmodified commercial Android applications. It

TABLE 2
GPU Simulation Parameters.

Baseline GPU Parameters

Tech Specs 400 MHz, 1 V, 32 nm
Screen Resolution 1200x768
Tile Size 16x16

Main Memory

Latency 50-100 cycles
Bandwidth 4 bytes/cycle (dual channel)
Size 1 GB

Queues

Vertex (2x) 16 entries, 136 bytes/entry
Triangle, Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry

Caches

Vertex Cache 64 bytes/line, 2-way associative, 4
KB, 1 bank, 1 cycle

Texture Caches (4x) 64 bytes/line, 2-way associative, 8
KB, 1 bank, 1 cycle

Tile Cache 64 bytes/line, 8-way associative,
128 KB, 8 banks, 1 cycle

L2 Cache 64 bytes/line, 8-way associative,
256 KB, 8 banks, 2 cycles

Color Buffer 64 bytes/line, 1-way associative, 1
KB, 1 bank, 1 cycle

Depth Buffer 64 bytes/line, 1-way associative, 1
KB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 4 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1

Depth Buffer

Programmable stages

Vertex Processor 1 vertex processor
Fragment Processor 4 fragment processors

Extra Hardware VRO GPU

Edges Filter 32 elements, LRU, 1 cycle
Graph Cache 64 bytes/line, 4-way associative, 4

KB, 1 bank, 1 cycle
Edge Insertion 1 Edge Inserter unit
Graph Sort 1 Visibility Sort unit
Edges Queue 64 entries, 4 bytes/entry
Order Queue 64 entries, 2 bytes/entry

Extra Hardware DR HSR stage

Tile Queue 16 entries, 388 bytes/entry
Fragment Queue 64 entries, 233 bytes/entry
Rasterizer 4 attributes/cycle
Early Z test 32 in-flight quad-fragments, 1

Depth Buffer
Depth Buffer 64 bytes/line, 1-way associative, 1

KB, 1 bank, 1 cycle

includes an OpenGL commands interceptor, a GPU trace
generator and a cycle-accurate timing simulator. The param-
eters used in the simulations are shown in Table 2.
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While a graphical application is executed in the Android
emulator [27], a trace of OpenGL commands is stored. This
trace is later fed to the GPU trace generator, which creates
the GPU trace through the software renderer (Softpipe)
included in Gallium3D [28]. The generated GPU trace file
includes the Vertex Processor and Fragment Processor in-
structions, the memory addresses of the texture and vertex
data, the primitives generated, and the corresponding frag-
ments as well as other pipeline data required to simulate the
execution. The GPU trace is fed to the cycle-accurate timing
simulator, which accurately models the baseline GPU. This
simulator has been extended to implement both DR and
VRO GPUs as described in Section 4.

The results reported include static and dynamic energy
consumption of the whole GPU, including RTL models of
Edge-Insertion and Visibility-Sort, as well as the full mem-
ory hierarchy including the main memory. Teapot models
the power of the GPU with McPAT [29]. Likewise, the
power of the VRO unit has been modeled using McPAT’s
components, shown between parenthesis in the following
list: Graph Cache (Cache); EQ Comparators (XOR); Muxes
(MUX); Min-Comparator (ALU); Adders (ALU); Subtractors
(ALU); and registers. The area overhead of VRO is less than
1% whereas for DR it is around 6% (w.r.t. baseline TBR in
both cases).

6 EXPERIMENTAL RESULTS

In this section we present the performance and energy
savings of VRO with respect to the baseline TBR GPU.
Furthermore, the benefits of VRO are compared with those
of DR.

6.1 Effectiveness of VRO

Figure 14 shows the normalized speed-up achieved by our
technique (VRO) and by DR relative to the ARM Mali-like
baseline TBR GPU. As it can be observed, VRO achieves
up to 1.42x speed-up (Forest 2), and 1.27x on average, being
the lowest speed-up 1.14x (Captain America). DR achieves up
to 1.25x speed-up (Striker), and 1.17x on average, being the
lowest speed-up 1.13x (Gravity). Regarding system energy
(see Figure 15), the consumption of VRO is reduced up
to 0.76x (Forest 2) and 0.84x on average, being the lowest
reduction 0.91x (Captain America). DR reduces it up to 0.82x
(Forest 2) and 0.88x on average, being the lowest reduction
0.96x (300). Recall that for sequential DR (not included in
the graph), the execution time increases for every one of the
benchmarks tested, 23% on average, while the energy con-
sumption increases around 6% on average when compared
with the baseline GPU.

The performance advantage of VRO with respect to DR
is the result of several factors. On the one hand, DR may
reduce more overshading than VRO because it works at
pixel granularity whereas VRO reorders the geometry at
object granularity. The extra fragments processed by VRO
may induce pipeline stalls and hurt performance only in
case that they fill the queue that feeds the Fragment Proces-
sors. On the other hand, the Tile Scheduler of DR reads in
parallel primitives of tile i+1 for the HSR unit, and prim-
itives of tile i for the conventional Raster Pipeline, which
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Fig. 14. Speed-up of DR and VRO normalized to the baseline TBR GPU.
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Fig. 15. Energy consumption of DR and VRO normalized to the baseline
TBR GPU.

may increase latency and starve the Fragment Processors.
For an equally sized available Tile Cache bandwidth, DR
produces substantially more accesses to the cache (which
may degrade throughput) and has a larger working set
(which may degrade miss rate and latency). To show the
relative importance of these factors, we have measured both
the overshading and the average fetch time to the Tile
Cache.
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Fig. 16. Overshading of the baseline TBR GPU, DR and VRO.

Figure 16 plots the overshading for DR and VRO com-
pared to the overshading of the baseline GPU. As expected,
the overshading with DR (close to 0.7x w.r.t. baseline) is
smaller than the overshading with VRO (close to 0.81x w.r.t.
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baseline). The smaller overshading reduction of VRO is
mainly caused by the fact that DR performs the HSR stage
at pixel level granularity, while VRO performs the sorting
at object-level granularity. Nonetheless, the figure shows
that VRO consistently achieves significant overshading re-
ductions for all the benchmarks, in line with the speedups
reported in Figure 14.

Figure 18 plots the average fetch time per primitive in
cycles for DR and VRO. It shows substantial fetch time
increases for DR with respect to VRO. On average, the fetch
time for DR is 68 cycles while it is only 50 cycles for VRO
(25% less). Furthermore, the number of primary misses of
the Tile Cache is 11% higher for DR than for VRO.

Figure 17, shows the normalized memory-traffic of VRO
and DR w.r.t. baseline GPU. As can be seen the bandwidth of
VRO and DR is 0.98 and 0.96 respectively. On the one hand,
because of its lower overshading, DR saves more texture
traffic than VRO. But on the other hand, DR must read twice
the number of primitives to execute the HSR phase, which
increases main memory traffic. Regarding the extra accesses
of VRO to the Visibility-Graph, they add less than a tiny
0.005% to the total memory traffic.
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Fig. 17. Normalized memory traffic of DR and VRO w.r.t. baseline GPU.

Figure 19 compares the relative importance of the above
two factors and explains why VRO outperforms DR. It
plots the absolute time difference in cycles of DR with
respect to VRO, for different parameters: total number of
cycles to fetch primitives (first bar), total number of pipeline
stall cycles caused by Fragment Processor input queue full
(second bar), and total execution time (third bar). The first
bar shows that DR spends many more cycles than VRO
to fetch primitives, more than 27 Million cycles on aver-
age, which is caused by the higher latencies reported in
Figure 18. The second bar shows that DR experiences less
stall cycles caused by busy Fragment Processors, about 2.85
Million cycles less than VRO. This is related to the better
overshading reduction of DR reported in Figure 16. Note
however that not all the extra fragments of VRO cause a
pipeline stall, only in case that they fill the queue that feeds
the Fragment Processors.

The third bar is not just the sum of the other two
factors. Not all the extra fetch cycles incurred by DR are
ultimately translated to net increases of the execution time,
because the buffers in between the Raster Pipeline stages
partially smooth the effect of the initial fetching overheads.

The increment in fetching time is ultimately translated to
an increment in execution time around 21.6 Million cycles
on average, as expected from the large difference between
the other two bars. It explains the speed-ups reported in
Figure 14.
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Fig. 18. Number of cycles to read a primitive with DR and VRO.
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In benchmarks such as 300, Forest 2 and Gravity the extra
fetching cycles are largely translated into extra execution
time of the Raster Pipeline. This is because these bench-
marks have around one order of magnitude more primitives
than the other ones, which means that the overhead of
reading the geometry relative to the total time of the Raster
Pipeline is greater than in the other benchmarks. Further-
more, these benchmarks have less fragments per primitive
than the others. The smaller the number of fragments per
primitive the faster the queue that feeds the Rasterizer gets
empty.

In the case of Captain America, the initial increment of
the fetching cycles is hardly reflected as an overhead in the
total processing time of the Raster Pipeline. Unlike other
benchmarks (300, Forest 2 and Gravity), Captain America has
a much lower number of primitives and a greater number
of fragments per primitive.

In conclusion, we have shown that even reducing less
overshading than DR, VRO achieves higher speed-up be-
cause the overhead in fetch cycles with DR is much higher
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than the overhead caused by the extra fragment processing
with VRO. Moreover, take into account that the area over-
head of VRO is less than 1% whereas the area overhead
of DR is around 6%. Therefore, some of this area could
be used to implement more complex schemes of VRO in
order to further reduce overshading. The overshading can
be differentiated in two types: intra-object and inter-object
overshading. The former is produced by auto-occlusions of
an object. The latter is the overshading caused by occlusions
between different objects. Given that VRO sorts at object-
level granularity, it is only reducing inter-object overshad-
ing. However, as we show in the related work section below,
there are techniques which are complementary to VRO and
that effectively reduce the intra-object overshading. Hence,
we believe that VRO has still room for improving perfor-
mance and energy savings by combining it with one of those
techniques.

7 RELATED WORK

The impact of overshading has been thoroughly studied in
the past. Olson [1] studies such effect in mobile platforms
for a set of commercial mobile applications and identifies
overshading as a significant source of wasted energy.

Multiple works have analyzed how overshading can be
reduced by culling the geometry at primitive level granu-
larity through the use of occlusion queries [30], [31]. When
using occlusion queries, the application usually sends a
query with a Bounding Volume of the object to the GPU
to be rasterized and depth-tested. Eventually, the result of
the query is sent to the driver and if the Bounding Volume
was occluded, the application will not send the object to the
GPU. Given that at some point the application must know
the result of the queries, they may introduce CPU stalls and
produce GPU starvation. Furthermore, some drivers let the
GPU render several frames behind the CPU by actually
queuing the rendering commands [32], [33], [34], which
exacerbates these problems. Furthermore, like the Early-
depth, occlusion queries require to sort the queries (and
the objects) front-to-back to perform well. On the contrary,
VRO does not suffer by these limitations. On the one hand
VRO is fully integrated into the GPU, so the application
does not need to receive any feedback from VRO. On the
other hand, VRO reuses the results produced in the Depth
test of the actual rendering commands of the application,
instead of introducing extra work (occlusion queries) to
reduce overshading.

Govindaraju et al. [35] sort the primitives of every object
of a scene in a front-to-back order from a given viewpoint.
However, they assume that the objects do not overlap, so the
scheme only avoids intra-object overshading. Furthermore,
they are not able to handle cycles in the sorting process
whereas VRO is able to produce a Visibility Rendering
Order in the presence of cycles, which are highly common
on 3D scenes. There are other approaches focused on reduc-
ing intra-object overshading. Nehab et al. [36] and Sander
et al. [37], propose a pre-processing scheme that sorts the
triangles in a view-independent order to reduce overdraw.
However, they focus on static meshes and produce a single
order per mesh. On the other hand, Han et al. [38] target
animations and produce different view-dependent orders

per object, which are used by the application depending on
the orientation of the objects respect to the camera. These
techniques, focused on reducing intra-object overshading
are complementary to VRO, which reduces inter-object over-
shading.

Like z-prepass, conventional Deferred Rendering [39],
[40] avoids to execute occluded geometry in the Fragment
Processors. Clarberg et al. [41] propose a Deferred Ren-
dering method that is executed in two phases. The first
one rasterizes the geometry of the scene and stores some
intermediate results. The second phase sorts the data into
tiles, and then for each tile repeats the vertex processing for
the visible primitives. The authors only report bandwidth
and Fragment Processor executions and no energy numbers,
which may be high due to the extra activity. Imagination
Technologies implements a Deferred Rendering approach
in its family of GPUs Power VR [19].

Arnau et al. [42] exploit frame coherence to reduce over-
shading. They render two frames in parallel and introduce
a memoization scheme that caches results of the Fragment
Processors to avoid redundant executions, rather than dis-
card hidden fragments. They reduce redundant computa-
tions (visible or not), while VRO culls hidden fragments
(redundant or not). Both techniques are complementary
because they focus on different problems.

Rendering the objects in a front-to-back order effectively
reduces overshading but unfortunately it is not the general
case in commercial applications. Our proposal creates a
view-dependent front-to-back order that effectively reduces
overshading in a transparent manner to the programmer.
VRO does not require neither extra Vertex Processing, Ras-
terization nor Early-depth executions. Furthermore, VRO
can handle both static and animated scenes and is able to
create a rendering order of a scene even in the presence of
cycles between different objects.

8 CONCLUSION

In this paper we have presented VRO, a novel technique
that effectively reduces overshading. VRO is based on the
observation that the relative order among the objects of a
scene tends to be very similar between one frame and the
next. VRO includes a small hardware unit that stores the
order relations among the objects of a scene of the current
frame in a buffer. This information is used in the next
frame, while the GPU is executing in parallel the Geometry
Pipeline, to create a Visibility Rendering Order that guides
the Tile Scheduler. The overhead of this technique is min-
imum, requiring less than 1% of the total area of the GPU
while its latency is hidden by other processes of the graphics
pipeline.

For a set of unmodified commercial applications, VRO
outperforms state-of-the-art techniques in performance and
energy consumption by reducing the overshading without
the need of a expensive HSR stage at fragment granularity.
VRO is especially efficient for geometry-complex applica-
tions, which are expected to be the most common applica-
tions in mobile devices as they already are in desktops. VRO
achieves a speed-up about 1.27x and an energy consumption
around 0.85x compared to an ARM Mali-like GPU. VRO
outperforms DR because the Visibility Rendering Order is
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created out of the critical path while DR introduces signifi-
cant overheads to perform the HSR stage.
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sitat Politècnica de Catalunya (UPC), Barcelona
(Spain), where he received the PhD degree by

2018. His main research interests include techniques to exploit inter-
frame coherency and redundancy of the graphics subsystem for in-
crease the energy-efficiency of GPUs. By January 2017, he joined a
Stealth Mode Startup Company, where he holds an R&D Computer
Architect position with a special focus on RISC-V processors.

Pedro Marcuello received the bachelor’s and
PhD degrees in computer science from the
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