On a problem of Sárközy and Sós for multivariate linear forms

Juanjo Rué Christoph Spiegel*

Javier Cilleruelo, in Memoriam

1 Introduction

Let $\mathcal{A} \subseteq \mathbb{N}_0$ be an infinite set of positive integers and $k_1, \ldots, k_d \in \mathbb{N}$. We are interested in studying the behaviour of the representation function

$$r_{\mathcal{A}}(n) = r_{\mathcal{A}}(n; k_1, \dots, k_d) = \#\{(a_1, \dots, a_d) \in \mathcal{A}^d : k_1 a_1 + \dots + k_d a_d = n\}.$$

More specifically, Sárközy and Sós [5, Problem 7.1.] asked for which values of k_1, \ldots, k_d one can find an infinite set \mathcal{A} such that the function $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ becomes constant for n large enough. For the base case, it is clear that $r_{\mathcal{A}}(n; 1, 1)$ is odd whenever n = 2a for some $a \in \mathcal{A}$ and even otherwise, so that the representation function cannot become constant. For $k \geq 2$, Moser [3] constructed a set \mathcal{A} such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \in \mathbb{N}_0$. The study of bivariate linear forms was completely settled by Cilleruelo and the first author [1] by showing that the only cases in which $r_{\mathcal{A}}(n; k_1, k_2)$ may become constant are those considered by Moser.

The multivariate case is less well studied. If $gcd(k_1, \ldots, k_d) > 1$, then one trivially observes that $r(n; k_1, \ldots, k_d)$ cannot become constant. The only non-trivial case studied so far was the following: for m > 1 dividing d, Rué [4] showed that if in the d-tuple of coefficients (k_1, \ldots, k_d) each element is repeated m times, then there cannot exists an infinite set \mathcal{A} such that $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ becomes constant for n large enough. This for example covers the case $(k_1, k_2, k_3, k_4, k_5, k_6) = (2, 4, 6, 2, 4, 6)$. Observe that each coefficient in this example is repeated twice, that is m = 2.

Here we provide a step beyond this result and show that whenever the set of coefficients is pairwise co-prime, then there does not exists any infinite set \mathcal{A} for which $r(n; k_1, \ldots, k_d)$ is constant for n large enough. This is a particular case of our main theorem, which covers a wide extension of this situation:

^{*}Universitat Politècnica de Catalunya, Department of Mathematics, Edificio Omega, 08034 Barcelona, Spain, and Barcelona Graduate School of Mathematics. E-mail: juan.jose.rue@upc.edu, christoph.spiegel@upc.edu. Supported by the Spanish Ministerio de Economía y Competitividad projects MTM2014-54745-P, MTM2017-82166-P and the María de Maetzu research grant MDM-2014-0445. C. S. is also supported by an FPI grant under the project projects MTM2014-54745-P.

Theorem 1.1. Let $k_1, \ldots, k_d \geq 2$ be given for which there exist pairwise co-prime integers $q_1, \ldots, q_m \geq 2$ and $b(i, j) \in \{0, 1\}$, such that for each *i* there exists at least one *j* such that $b_{i,j} = 1$. Let $k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)}$ for all $1 \leq i \leq d$. Then, for every infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ is not a constant function for *n* large enough.

In particular, if m = d and for each $i \neq j$ $(q_i, q_j) = 1$ as well as b(i, j) = 1 if i = j and b(i, j) = 0 otherwise, then this represents the case where $k_1, \ldots, k_d \geq 2$ are pairwise co-prime numbers. Other new cases covered by this result are for instance $(k_1, k_2, k_3) = (2, 3, 2 \times 3)$ as well as $(k_1, k_2, k_3, k_4) = (2^2 \times 3, 2^2 \times 5, 3 \times 5, 2^2 \times 3 \times 5)$.

Our method starts with some ideas introduced in [1] dealing with generating functions and cyclotomic polyomials. The main new idea in this paper is to use an inductive argument in order to be able to show that a certain multivariate recurrence relation is not possible to be satisfied unless some initial condition is trivial.

2 Tools

Generating functions. The language in which we will approach this problem goes back to [2]. Let $f_{\mathcal{A}}(z) = \sum_{a \in \mathcal{A}} z^a$ denote the *generating function* associated with \mathcal{A} and observe that $f_{\mathcal{A}}$ defines an analytic function in the complex disc |z| < 1. By a simple argument over the generating functions, it is easy to verify that the existence of a set \mathcal{A} for which $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ becomes constant would imply that

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \frac{P(z)}{1-z}$$

for some polynomial P with positive integer coefficients satisfying $P(1) \neq 0$. To simplify notation, we will generally consider the *d*-th power of this equations, that is for $F(z) = f_{\mathcal{A}}^d(z)$ we have

$$F(z^{k_1})\cdots F(z^{k_d}) = \frac{P^d(z)}{(1-z)^d}.$$
 (1)

Observe that F(z) also defines an analytic function in the complex disk |z| < 1.

Cyclotomic polynomials. Let us define the cyclotomic polynomial of order n as

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \in \mathbb{Z}[z]$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1, k \equiv 0 \mod n\}$ denotes the set of primitive roots of order $n \in \mathbb{N}$. Note that $\Phi_n(z) \in \mathbb{Z}[z]$, that is it has integer coefficients. Cyclotomic polynomials have the property of being irreducible over $\mathbb{Z}[z]$ and therefore it follows that for any polynomial $P(z) \in \mathbb{Z}[z]$ and $n \in \mathbb{N}$ there exists a unique integer $s_n \in \mathbb{N}_0$ such that

$$P_n(z) := P(z) \Phi_n^{-s_n}(z) \tag{2}$$

is a polynomial in $\mathbb{Z}[z]$ satisfying $P_n(\xi) \neq 0$ for all $\xi \in \phi_n$.

This factoring out of the roots is not guaranteed to hold for arbitrary functions F, that is it is possible that for a given $n \in \mathbb{N}$ there does not exist any $r_n \in \mathbb{R}$ satisfying

$$\lim_{z \to \xi} F(z) \, \Phi_n^{-r_n}(z) \notin \{0, \pm \infty\}$$

for all $\xi \in \phi_n$. One can easily verify however, that if such a number does exist, it is uniquely defined. Now let q_1, \ldots, q_m be fixed co-prime integers. Given some $\mathbf{j} = (j_1, \ldots, j_m) \in \mathbb{N}_0^m$ we will use the following short-hand notation

$$\Phi_{\mathbf{j}}(z) := \Phi_{q_1^{j_1} \dots q_m^{j_m}}(z), \ \phi_{\mathbf{j}}(z) := \phi_{q_1^{j_1} \dots q_m^{j_m}}(z), \ s_{\mathbf{j}} := s_{q_1^{j_1} \dots q_m^{j_m}} \ \text{and} \ r_{\mathbf{j}} := r_{q_1^{j_1} \dots q_m^{j_m}}.$$

3 Proof Outline

The main strategy of the proof is to show that for a hypothetical function $F(z) = f_{\mathcal{A}}^d(z)$ satisfying Equation (1) the exponents $r_{\mathbf{j}}$ would have to exist for all $\mathbf{j} \in \mathbb{N}_0^m$ – at least with respect to some appropriate limit – and fulfil certain relations between them. The goal will be to find a contradiction in these relations, negating the possibility of such a function and therefore such a set \mathcal{A} existing in the first place.

Recurrence relations We establish the existence and relations of the values $r_{\mathbf{j}}$ for any $k_1, \ldots, k_d \in \mathbb{N}$ and later derive a contradiction from these relations in the specific case stated in Theorem 1.1. For any $a, b \in \mathbb{N}_0$, $\mathbf{j} = (j_1, \ldots, j_m) \in \mathbb{N}_0^m$ and $\mathbf{b} = (b_1, \ldots, b_m) \in \mathbb{N}_0^m$, we will use the notation

$$a \ominus b = \max\{a - b, 0\}$$
 and $\mathbf{j} \ominus \mathbf{b} = (j_1 \ominus b_1, \dots, j_m \ominus b_m).$

Furthermore, whenever we write some limit $\lim_{z\to\xi} F(z)$, where ξ is a unit root, we are referring to $\lim_{z\to 1} F(z\xi)$ where $0 \le z < 1$ as F will always be analytic in the disc |z| < 1.

Proposition 3.1. Let $k_1, \ldots, k_d \in \mathbb{N}$ and $q_1, \ldots, q_m \geq 2$ pairwise co-prime integers for which there exist $b(i, j) \in \mathbb{N}_0$ such that $k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)}$ for all $1 \leq i \leq d$. Furthermore, let $P \in \mathbb{Z}[z]$ be a polynomial satisfying $P(1) \neq 0$ and $F : \mathbb{C} \to \mathbb{C}$ a function analytic in the disc |z| < 1 such that

$$F(z^{k_1})\cdots F(z^{k_d}) = \frac{P^d(z)}{(1-z)^d}.$$
(3)

Then for all $j \in \mathbb{N}_0^m$ there exist integers $r_j \in \mathbb{N}_0$ such that

$$\lim_{z \to \xi} F(z) \Phi_j^{-r_j}(z) \notin \{0, \pm \infty\}$$
(4)

for any $\xi \in \phi_j$. Writing $\mathbf{b}_i = (b(i, 1), \dots, b(i, m))$ for $1 \leq i \leq m$ as well as $s_j \in \mathbb{N}_0$ for the integer satisfying $P(\xi) \Phi_j^{-s_j}(\xi) \neq 0$ for any $\xi \in \phi_j$, these exponents satisfy the relations

$$r_{\mathbf{0}} = -1 \quad and \quad r_{\mathbf{j} \ominus \mathbf{b}_1} + \dots + r_{\mathbf{j} \ominus \mathbf{b}_d} = ds_{\mathbf{j}} \quad \text{for all } \mathbf{j} \in \mathbb{N}_0^m \setminus \{\mathbf{0}\}$$
(5)

and we have $r_i \equiv -1 \mod d$ for all $i \in \mathbb{N}_0^m$.

The contradiction We will now use the proposition established in the previous section to prove Theorem 1.1 by contradiction. We start by introducing some necessary notation and definitions. We write $\mathbf{c}_i = (c(i, 1), \dots, c(i, m))$ and for any $1 \le \ell \le m$ we use the notation

$$S_{\ell} = \{1 \le i \le d : c(i, \ell) = 0\}$$
 and $S'_{\ell} = \{1, \dots, d\} \setminus S_{\ell}.$

We will also use the following notation: for any $\mathbf{i} = (i_1, \ldots, i_{m-1}) \in \mathbb{N}_0^{m-1}$ and $1 \le \ell \le m$ let

$$\Delta_{\mathbf{i},\ell} = v_{(i_1,\dots,i_{\ell-1},1,i_\ell,\dots,i_{m-1})} - v_{(i_1,\dots,i_{\ell-1},0,i_\ell,\dots,i_{m-1})}$$

Finally, for $1 \leq l \leq m$, we write $\mathbb{1}_{\ell} \in \mathbb{N}_0^m$ for the vector whose entries are all equal to 0 except for the *l*-th entry, which is equal to 1.

Definition 3.2. For $m \ge 1$, we define an m-structure to be any set of values $\{v_j \in \mathbb{Q}\}_{j \in \mathbb{N}_0^m}$ for which there exist $c_1, \ldots, c_d \in \mathbb{N}_0^m$ and $\{u_j \in \mathbb{Z}\}_{j \in \mathbb{N}_0^m \setminus \{\mathbf{0}\}}$ so that the values satisfy the relation

$$v_{\boldsymbol{j}\ominus\boldsymbol{c}_1}+\cdots+v_{\boldsymbol{j}\ominus\boldsymbol{c}_d}=u_{\boldsymbol{j}} \text{ for all } \boldsymbol{j}\in\mathbb{N}_0^m\setminus\{\boldsymbol{0}\}.$$

Additionally, we define the following:

- 1. We say that an *m*-structure is regular if we have that the corresponding vectors $c_1, \ldots, c_d \in \{0, 1\}^m \setminus \{\mathbf{0}\}$ for all $1 \le i \le d$ as well as $S_\ell \ne \emptyset$ for all $1 \le \ell \le m$.
- 2. We say that an *m*-structure is homogeneous outside $\mathbf{t} = (t_1, \ldots, t_m) \in \mathbb{N}_0^m$ if the corresponding vectors $\{u_j \in \mathbb{Z}\}_{j \in \mathbb{N}_0^m \setminus \{\mathbf{0}\}}$ satisfy $u_j = 0$ for all $j \in \mathbb{N}_0^m \setminus [0, t_1] \times \cdots \times [0, t_m]$.

From the established relations one can easily derive the following result.

Lemma 3.3. For any *m*-structure $\{v_j \in \mathbb{Q}\}_{j \in \mathbb{N}_0^m}$ that is homogeneous outside $\mathbf{t} = (t_1, \ldots, t_m) \in \mathbb{N}_0^m$ and for which there exists $1 \leq \ell \leq m$ such that $|S_\ell| \neq 0$, the values $\{\Delta_{\mathbf{i},\ell}\}_{\mathbf{i}\in\mathbb{N}_0^{m-1}}$ define an (m-1)-structure that is homogeneous outside $\mathbf{t}_\ell = (t_1, \ldots, t_{\ell-1}, t_{\ell+1}, \ldots, t_m)$.

Using the previous lemma we can now inductively prove the following statement.

Lemma 3.4. A regular *m*-structure that is homogeneous outside $\mathbf{t} = (t_1, \ldots, t_m) \in \mathbb{N}_0^m$ satisfies $v_{\mathbf{i}} = 0$ for all $\mathbf{i} \in \mathbb{N}_0^m \setminus [0, t_1] \times \cdots \times [0, t_m]$.

Using this result, we can proof our main statement.

Proof of Theorem 1.1. We write $F(z) = f_{\mathcal{A}}(z)^d$. Recall that the existence of a set \mathcal{A} for which $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ is a constant function for n large enough would imply the existence of some polynomial $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$ such that

$$F(z^{k_1})\cdots F(z^{k_d}) = \frac{P^d(z)}{(1-z)^d}$$

Using Proposition 3.1 we see that if a such a function F(z) were to exist, then the values $\{r_{\mathbf{i}}\}_{\mathbf{i}\in\mathbb{N}_{0}^{m}}$ together with $\mathbf{b}_{1},\ldots,\mathbf{b}_{m}$ and $\{s_{\mathbf{j}}\}_{\mathbf{j}\in\mathbb{N}_{0}^{m}\setminus\{\mathbf{0}\}}$ would define an *m*-structure. By the requirements of the theorem we have $\mathbf{b}_{i} \in \{0,1\}^{m}$ and since $k_{1},\ldots,k_{d} \geq 2$ we have $\mathbf{b}_{i} \neq \mathbf{0}$. We may also assume that $S_{\ell} \neq \emptyset$ for all $1 \leq \ell \leq d$ as otherwise there exists some ℓ' such that $q_{\ell'} \mid k_{i}$ for all $1 \leq i \leq d$, in which case the representation function clearly cannot become constant, so that this *m*-structure would be regular. It would also be homogeneous outside some appropriate $\mathbf{t} \in \mathbb{N}_{0}^{m}$ as P(z) is a polynomial and hence $s_{\mathbf{j}} \neq 0$ only for finitely many $\mathbf{j} \in \mathbb{N}_{0}^{m}$. Finally, since $r_{\mathbf{i}} \equiv -1 \mod d$ for all $\mathbf{i} \in \mathbb{N}_{0}^{m}$, this would contradict the statement of Lemma 3.4, proving Theorem 1.1.

4 Concluding Remarks

We have shown that under very general conditions for the coefficients k_1, \ldots, k_d the representation function $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ cannot be constant for n sufficiently large. However, there are cases that our method does not cover. This includes those cases where at least one of the k_i is equal to 1. The first case that we are not able to study is the representation function $r_{\mathcal{A}}(n; 1, 1, 2)$.

On the other side, let us point out that Moser's construction [3] can be trivially generalized to the case where $k_i = k^{i-1}$ for some integer value $k \ge 2$. In view of our results and this construction, we state the following conjecture:

Conjecture 4.1. There exists some infinite set of positive integers \mathcal{A} such that $r_{\mathcal{A}}(n; k_1, \ldots, k_d)$ is constant for n large enough if and only if, up to permutation of the indices, $(k_1, \ldots, k_d) = (1, k, k^2, \ldots, k^{d-1})$, for some $k \geq 2$.

References

- J. Cilleruelo and J. Rué. On a question of Sárközy and Sós for bilinear forms. Bulletin of the London Mathematical Society, 41(2):274–280, 2009.
- G. Dirac. Note on a problem in additive number theory. Journal of the London Mathematical Society, 1(4):312–313, 1951.
- [3] L. Moser. An application of generating series. *Mathematics Magazine*, 35(1):37–38, 1962.
- [4] J. Rué. On polynomial representation functions for multilinear forms. European Journal of Combinatorics, 34(8):1429–1435, 2011.
- [5] A. Sárközy and V. Sós. On additive representation functions. In *The mathematics of Paul Erdős I*, pages 129–150. Springer, 1997.