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1 Introduction

Let A ⊆ N0 be an infinite set of positive integers and k1, . . . , kd ∈ N. We are interested in

studying the behaviour of the representation function

rA(n) = rA(n; k1, . . . , kd) = #
{

(a1, . . . , ad) ∈ Ad : k1a1 + · · ·+ kdad = n
}
.

More specifically, Sárközy and Sós [5, Problem 7.1.] asked for which values of k1, . . . , kd one

can find an infinite set A such that the function rA(n; k1, . . . , kd) becomes constant for n large

enough. For the base case, it is clear that rA(n; 1, 1) is odd whenever n = 2a for some a ∈ A
and even otherwise, so that the representation function cannot become constant. For k ≥ 2,

Moser [3] constructed a set A such that rA(n; 1, k) = 1 for all n ∈ N0. The study of bivariate

linear forms was completely settled by Cilleruelo and the first author [1] by showing that the

only cases in which rA(n; k1, k2) may become constant are those considered by Moser.

The multivariate case is less well studied. If gcd(k1, . . . , kd) > 1, then one trivially ob-

serves that r(n; k1, . . . , kd) cannot become constant. The only non-trivial case studied so far

was the following: for m > 1 dividing d, Rué [4] showed that if in the d-tuple of coefficients

(k1, . . . , kd) each element is repeated m times, then there cannot exists an infinite set A such

that rA(n; k1, . . . , kd) becomes constant for n large enough. This for example covers the case

(k1, k2, k3, k4, k5, k6) = (2, 4, 6, 2, 4, 6). Observe that each coefficient in this example is repeated

twice, that is m = 2.

Here we provide a step beyond this result and show that whenever the set of coefficients

is pairwise co-prime, then there does not exists any infinite set A for which r(n; k1, . . . , kd) is

constant for n large enough. This is a particular case of our main theorem, which covers a wide

extension of this situation:
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Theorem 1.1. Let k1, . . . , kd ≥ 2 be given for which there exist pairwise co-prime integers

q1, . . . , qm ≥ 2 and b(i, j) ∈ {0, 1}, such that for each i there exists at least one j such that

bi,j = 1. Let ki = q
b(i,1)
1 · · · qb(i,m)

m for all 1 ≤ i ≤ d. Then, for every infinite set A ⊆ N0

rA(n; k1, . . . , kd) is not a constant function for n large enough.

In particular, if m = d and for each i 6= j (qi, qj) = 1 as well as b(i, j) = 1 if i = j and

b(i, j) = 0 otherwise, then this represents the case where k1, . . . , kd ≥ 2 are pairwise co-prime

numbers. Other new cases covered by this result are for instance (k1, k2, k3) = (2, 3, 2 × 3) as

well as (k1, k2, k3, k4) = (22 × 3, 22 × 5, 3× 5, 22 × 3× 5).

Our method starts with some ideas introduced in [1] dealing with generating functions and

cyclotomic polyomials. The main new idea in this paper is to use an inductive argument in

order to be able to show that a certain multivariate recurrence relation is not possible to be

satisfied unless some initial condition is trivial.

2 Tools

Generating functions. The language in which we will approach this problem goes back

to [2]. Let fA(z) =
∑

a∈A z
a denote the generating function associated with A and observe that

fA defines an analytic function in the complex disc |z| < 1. By a simple argument over the

generating functions, it is easy to verify that the existence of a set A for which rA(n; k1, . . . , kd)

becomes constant would imply that

fA(zk1) · · · fA(zkd) =
P (z)

1− z

for some polynomial P with positive integer coefficients satisfying P (1) 6= 0. To simplify

notation, we will generally consider the d-th power of this equations, that is for F (z) = fdA(z)

we have

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
. (1)

Observe that F (z) also defines an analytic function in the complex disk |z| < 1.

Cyclotomic polynomials. Let us define the cyclotomic polynomial of order n as

Φn(z) =
∏
ξ∈φn

(z − ξ) ∈ Z[z]

where φn = {ξ ∈ C : ξk = 1, k ≡ 0 mod n} denotes the set of primitive roots of order

n ∈ N. Note that Φn(z) ∈ Z[z], that is it has integer coefficients. Cyclotomic polynomials

have the property of being irreducible over Z[z] and therefore it follows that for any polynomial

P (z) ∈ Z[z] and n ∈ N there exists a unique integer sn ∈ N0 such that

Pn(z) := P (z) Φ−snn (z) (2)
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is a polynomial in Z[z] satisfying Pn(ξ) 6= 0 for all ξ ∈ φn.

This factoring out of the roots is not guaranteed to hold for arbitrary functions F , that is

it is possible that for a given n ∈ N there does not exist any rn ∈ R satisfying

lim
z→ξ

F (z) Φ−rnn (z) /∈ {0,±∞}

for all ξ ∈ φn. One can easily verify however, that if such a number does exist, it is uniquely

defined. Now let q1, . . . , qm be fixed co-prime integers. Given some j = (j1, . . . , jm) ∈ Nm0 we

will use the following short-hand notation

Φj(z) := Φ
q
j1
1 ···q

jm
m

(z), φj(z) := φ
q
j1
1 ···q

jm
m

(z), sj := s
q
j1
1 ···q

jm
m

and rj := r
q
j1
1 ···q

jm
m
.

3 Proof Outline

The main strategy of the proof is to show that for a hypothetical function F (z) = fdA(z)

satisfying Equation (1) the exponents rj would have to exist for all j ∈ Nm0 – at least with

respect to some appropriate limit – and fulfil certain relations between them. The goal will

be to find a contradiction in these relations, negating the possibility of such a function and

therefore such a set A existing in the first place.

Recurrence relations We establish the existence and relations of the values rj for any

k1, . . . , kd ∈ N and later derive a contradiction from these relations in the specific case stated

in Theorem 1.1. For any a, b ∈ N0, j = (j1, . . . , jm) ∈ Nm0 and b = (b1, . . . , bm) ∈ Nm0 , we will

use the notation

a	 b = max{a− b, 0} and j	 b = (j1 	 b1, . . . , jm 	 bm).

Furthermore, whenever we write some limit limz→ξ F (z), where ξ is a unit root, we are referring

to limz→1 F (z ξ) where 0 ≤ z < 1 as F will always be analytic in the disc |z| < 1.

Proposition 3.1. Let k1, . . . , kd ∈ N and q1, . . . , qm ≥ 2 pairwise co-prime integers for which

there exist b(i, j) ∈ N0 such that ki = q
b(i,1)
1 · · · qb(i,m)

m for all 1 ≤ i ≤ d. Furthermore, let

P ∈ Z[z] be a polynomial satisfying P (1) 6= 0 and F : C → C a function analytic in the disc

|z| < 1 such that

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
. (3)

Then for all j ∈ Nm0 there exist integers rj ∈ N0 such that

lim
z→ξ

F (z) Φ
−rj
j (z) /∈ {0,±∞} (4)

for any ξ ∈ φj. Writing bi = (b(i, 1), . . . , b(i,m)) for 1 ≤ i ≤ m as well as sj ∈ N0 for the

integer satisfying P (ξ) Φ
−sj
j (ξ) 6= 0 for any ξ ∈ φj, these exponents satisfy the relations

r0 = −1 and rj	b1 + · · ·+ rj	bd = dsj for all j ∈ Nm0 \ {0} (5)

and we have ri ≡ −1 mod d for all i ∈ Nm0 .
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The contradiction We will now use the proposition established in the previous section to

prove Theorem 1.1 by contradiction. We start by introducing some necessary notation and

definitions. We write ci = (c(i, 1), . . . , c(i,m)) and for any 1 ≤ ` ≤ m we use the notation

S` = {1 ≤ i ≤ d : c(i, `) = 0} and S′` = {1, . . . , d} \ S`.

We will also use the following notation: for any i = (i1, . . . , im−1) ∈ Nm−10 and 1 ≤ ` ≤ m let

∆i,` = v(i1,...,i`−1,1,i`,...,im−1) − v(i1,...,i`−1,0,i`,...,im−1).

Finally, for 1 ≤ l ≤ m, we write 1` ∈ Nm0 for the vector whose entries are all equal to 0 except

for the l-th entry, which is equal to 1.

Definition 3.2. For m ≥ 1, we define an m-structure to be any set of values {vj ∈ Q}j∈Nm
0

for

which there exist c1, . . . , cd ∈ Nm0 and {uj ∈ Z}j∈Nm
0 \{0} so that the values satisfy the relation

vj	c1 + · · ·+ vj	cd = uj for all j ∈ Nm0 \ {0}.

Additionally, we define the following:

1. We say that an m-structure is regular if we have that the corresponding vectors c1, . . . , cd ∈
{0, 1}m \ {0} for all 1 ≤ i ≤ d as well as S` 6= ∅ for all 1 ≤ ` ≤ m.

2. We say that an m-structure is homogeneous outside t = (t1, . . . , tm) ∈ Nm0 if the corre-

sponding vectors {uj ∈ Z}j∈Nm
0 \{0} satisfy uj = 0 for all j ∈ Nm0 \ [0, t1]× · · · × [0, tm].

From the established relations one can easily derive the following result.

Lemma 3.3. For any m-structure {vj ∈ Q}j∈Nm
0

that is homogeneous outside t = (t1, . . . , tm) ∈
Nm0 and for which there exists 1 ≤ ` ≤ m such that |S`| 6= 0, the values {∆i,`}i∈Nm−1

0
define an

(m− 1)-structure that is homogeneous outside t` = (t1, . . . , t`−1, t`+1, . . . , tm).

Using the previous lemma we can now inductively prove the following statement.

Lemma 3.4. A regular m-structure that is homogeneous outside t = (t1, . . . , tm) ∈ Nm0 satisfies

vi = 0 for all i ∈ Nm0 \ [0, t1]× · · · × [0, tm].

Using this result, we can proof our main statement.

Proof of Theorem 1.1. We write F (z) = fA(z)d. Recall that the existence of a set A for which

rA(n; k1, . . . , kd) is a constant function for n large enough would imply the existence of some

polynomial P (z) ∈ Z[z] satisfying P (1) 6= 0 such that

F (zk1) · · ·F (zkd) =
P d(z)

(1− z)d
.
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Using Proposition 3.1 we see that if a such a function F (z) were to exist, then the values {ri}i∈Nm
0

together with b1, . . . ,bm and {sj}j∈Nm
0 \{0} would define an m-structure. By the requirements

of the theorem we have bi ∈ {0, 1}m and since k1, . . . , kd ≥ 2 we have bi 6= 0. We may also

assume that S` 6= ∅ for all 1 ≤ ` ≤ d as otherwise there exists some `′ such that q`′ | ki for all

1 ≤ i ≤ d, in which case the representation function clearly cannot become constant, so that

this m-structure would be regular. It would also be homogeneous outside some appropriate

t ∈ Nm0 as P (z) is a polynomial and hence sj 6= 0 only for finitely many j ∈ Nm0 . Finally, since

ri ≡ −1 mod d for all i ∈ Nm0 , this would contradict the statement of Lemma 3.4, proving

Theorem 1.1.

4 Concluding Remarks

We have shown that under very general conditions for the coefficients k1, . . . , kd the represen-

tation function rA(n; k1, . . . , kd) cannot be constant for n sufficiently large. However, there

are cases that our method does not cover. This includes those cases where at least one of the

ki is equal to 1. The first case that we are not able to study is the representation function

rA(n; 1, 1, 2).

On the other side, let us point out that Moser’s construction [3] can be trivially generalized

to the case where ki = ki−1 for some integer value k ≥ 2. In view of our results and this

construction, we state the following conjecture:

Conjecture 4.1. There exists some infinite set of positive integers A such that rA(n; k1, . . . , kd)

is constant for n large enough if and only if, up to permutation of the indices, (k1, . . . , kd) =

(1, k, k2, . . . , kd−1), for some k ≥ 2.
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[5] A. Sárközy and V. Sós. On additive representation functions. In The mathematics of Paul
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