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Abstract: Looking at the ever-increasing amount of heterogeneous distributed
applications supported on current data transport networks, it seems evident
that best-effort packet delivery falls short to supply their actual needs. Multiple
approaches to Quality of Service (QoS) differentiation have been proposed over
the years, but their usage has always been hindered by the rigidness of the
TCP/IP-based Internet model, which does not even allow for applications to
express their QoS needs to the underlying network. In this context, the
Recursive InterNetwork Architecture (RINA) has appeared as a clean-slate
network architecture aiming to replace the current Internet based on TCP/IP.
RINA provides a well-defined QoS support across layers, with standard means
for layers to inform of the different QoS guarantees that they can support.
Besides, applications and other processes can express their flow requirements,
including different QoS-related measures, like delay and jitter, drop probability
or average traffic usage. Greedy end-users, however, tend to request the highest
quality for their flows, forcing providers to apply intelligent data rate limitation
procedures at the edge of their networks. In this work, we propose a new rate
limiting policy that, instead of enforcing limits on a per QoS class basis, imposes
limits on several independent QoS dimensions. This offers a flexible traffic
control to RINA network providers, while enabling end-users freely managing
their leased resources. The performance of the proposed policy is assessed in an
experimental RINA network test-bed and its performance compared against
other policies, either RINA-specific or adopted from TCP/IP. Results show that
the proposed policy achieves an effective traffic control for high QoS traffic
classes, while also letting lower QoS classes to take profit of the capacity initially
reserved for the former ones when available.
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1. INTRODUCTION

As networking environments evolve, the inherent limitations of the current TCP/IP protocol
stack to cope with the increasing variety of communication requirements of heterogeneous
distributed applications are clearer than ever [1]. TCP/IP not only lacks true Quality of Service
(QoS) support, but also misses any standard way for applications to express their service
requirements or expectancies. Thus, with unknown application requirements, network
providers cannot differentiate flows traversing their networks effectively, being limited to
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guess application requirements based on manual inputs, port numbers and past information.
In this regard, the Recursive InterNetwork Architecture (RINA) [2,3] provides an enhanced
medium for QoS-based solutions. Unlike most common solutions aiming to enhance the
current TCP/IP model, RINA is a clean-slate recursive Internet architecture based on the idea of
distributed Inter-Process Communication (IPC), which aims to progressively replace the current
TCP/IP Internet model.

In contrast to the well-known TCP/IP and OSI stacks, RINA provides a recursive stack of layers,
called Distributed IPC Facilities (DIFs), where each layer is defined by a networking domain,
rather than a subset of networking functions (e.g., there is no network or transport layer as in
the OSI stack, for example). In fact, all DIFs provide a complete set of networking functions
(forwarding, scheduling, security, etc.), but each one’s operation can be configured via
programmable policies, allowing to deliver the best outcomes in its particular scope. In
addition, by having the same type of layer at each level, RINA provides a consistent Application
Programming Interface (API) across the stack.

In this work, we focus on the RINA’s QoS model. Specifically, RINA bases all QoS-related
functionalities on the definition of QoS Cubes, namely, quality assurances that a DIF can
provide under normal operation. Applications are thus capable of requesting flows with
specific QoS requirements that will then be mapped to the best suited QoS Cube. Moreover,
thanks to the recursive structure and the consistent API, such QoS requirements can easily be
shared among DIFs, while each DIF is responsible for ensuring that those are met for all flows
or, at least, inform when they are unfeasible for a certain one.

In order to provide the best service to a diverse set of distributed applications, a key point to
consider is how resources are shared between flows. In this regard, the information that QoS
Cubes give on flow requirements facilitate the configuration of different scheduling policies in
a RINA DIF. Specifically, QTAMux [4] is a scheduling policy based on the AQ framework [5,6,7]
that takes great advantage of the QoS Cube information in RINA. It is a scheduling policy that
provides differentiated flow treatment without excessively degrading those flows with the
lowest QoS requirements (as opposed to what happens with the well-known weighted-fair
gueuing strategy, for example).

However, when applications are free to inform the network about their QoS needs, greedy
users can hamper the sustainability of the solution [8]. Indeed, the scenario can end either as a
best-effort scenario (all applications request the highest QoS to the network) or, even worse,
as a scenario where respectful users receive poor network service because greedy ones are
exceeding reasonable QoS demands. While RINA allows for a more dynamic and accurate
service assurance than TCP/IP, it cannot deal with such greedy users by itself, unfortunately.
So, limitations have to be imposed on their usage. In this work, we focus on the evaluation of
the effects of outgoing traffic policing with QoS guarantees in overbooked networks, focusing
on a typical Internet home-user scenario, and the limitations that an Internet Service Provider
(ISP) can impose to its clients. We propose a new RINA scheduling policy based on the AQ
framework that, instead of enforcing rigid per-flow or per-QoS class rate limitation, it offers
enhanced flexibility by limiting the outgoing traffic simultaneously in various independent
dimensions (e.g., urgency and cherish). As a result, the proposed policy offers explicit traffic



control to RINA network providers, while allowing users to freely manage their leased
resources.

The rest of the paper is organized as follows. Section 2 introduces the RINA Software
Development Kit (SDK). Section 3 introduces the AQ framework and the existing QTAMux
policy. Section 4 introduces the proposed rate limitation policy and its implementation within
the RINA SDK. Section 5 provides experimental results in a home-user scenario. Finally, section
6 concludes the paper.

2. RINA SDK

RINA is a clean-slate architecture for computer networking based on the idea that networking
is distributed IPC and only IPC [9]. RINA presents a single type of layer, called DIF, which
repeats as many times and levels as needed by the network designer (see Figure 1). This
contrasts with the TCP/IP model, where the different layers are designed to perform different
functions (transport, networking, security, etc.). RINA defines the DIF as a programmable layer,
capable of performing any of the functions needed to provide IPC services to applications or
higher level DIFs, offering also a common API at each level. DIFs are composed of IPC Processes
(IPCPs) running at each node. Those execute layer functions and communicate among them
using the same two protocols: a data transfer protocol called EFCP (Error and Flow Control
Protocol) and an object-oriented application protocol called CDAP (Common Distributed
Application Protocol) that carries all the information exchanged by the DIF management tasks
(usually known as control plane, in TCP/IP terms). Both EFCP and CDAP protocols can be
adapted to the different requirements of each DIF via policies [10], namely, a set of variable
behaviours that can customise the different mechanisms available in the two protocols. This
programmability allows network administrators to configure each DIF with the policies that
best adapt to its scope, operating environment and offered levels of service.
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Figure 1. RINA architecture overview

The implementation of the RINA architecture is in constant development and multiple projects
have been progressively make it a reality (FP7 IRATI [11], FP7 PRISTINE [12], H2020 ACRFIRE
[13], etc.). In this regard, the experimental tests conducted in this paper have employed the
publicly available RINA implementation reported in references [14,15], that is, a free software



implementation of the full RINA stack for Linux systems. An overview of the software
architecture of this implementation is presented in Figure 2. As seen, it spans both kernel and
user spaces, performing those tasks with the highest speed requirements (i.e., data transfer
and part of the data transfer control tasks) in the kernel modules, while running all
management and configuration tasks in user space, thus freeing resources to other tasks and
facilitating their programmability.

As stated before, one of the key points of RINA is the configurability of DIF tasks via
programmable policies. In this regard, the approach taken by the current RINA implementation
is to treat policies as independent modules, compiled and loaded separately from the fixed
part of the stack. The different tasks of the RINA stack and policies communicate among them
by means of specific policy-hooks (i.e., for requesting specific actions from the policy). In
addition, the Resource Information Base (RIB) is a distributed database used to store and share
information between different modules and IPCPs in a DIF. Policies can also use private
information and share it with compatible policies (e.g., scheduling queues are private data-
structures to the scheduling related policies, but are seen as raw pointers to the task itself).
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Figure 2. Software architecture of IRATI’s RINA implementation

3. AQand QTAMux

Applications depend on information to complete computations, and distributed computation
necessarily involves the translocation of information generated by one computational process
to another located elsewhere, which essentially is IPC. Instantaneous and completely loss-less
translocation is physically impossible, even within the same machine, since any translocation
experiences some relative impairment to this ideal. The Degradation of Quality (referred to as
AQ) is a measure of this impairment, having several sources, including the time for signals to



travel between distant points (AQ|G) and the time taken to serialise/de-serialise information
(AQ]S). In packet-based networks, statistical multiplexing is an additional source of
impairment (AQ]|V), in which quality impairment (loss and delay, as measured by AQ) is
conserved. Thus, in packet networks, AQ is an inherently statistical measure of the statistical
properties of independent packets and streams of such packets, capturing both the effects of
the network’s structure and extent and the impairment due to statistical multiplexing.

Whether an application delivers fit-for-purpose outcomes depends entirely on the magnitude
of AQ and the application’s sensitivity to it. What applications require is for the network to
translocate the amount of information that they need to exchange with an impairment no
greater than what they can tolerate. A formal representation of such a requirement is called a
“Quantitative Timeliness Agreement” (QTA), providing a way for an application and a network
to negotiate performance. In RINA, this translates from the QoS Cubes into a contract, in which
the application agrees to limit its load in return for a promise from the network to transport it
with suitably AQ. This idea is embodied in the design of QTAMux (Figure 3).

‘ PDU Storage ‘

I Discard commands} }

‘ Stream queues ‘

Discard commands
o 2
£ a2
Traffic Class requests o
/ Traffic Class (P/S) . references matching
o interface rate
tream \ ]

References
Traffic Class (P/S)

Traffic Class (P/S) =

Figure 3. QTAMux modules and workflow

I\

@ Arriving PDUs
dlassification

|| Stream
Reference

-
C/U Mux

PDU emitter

As some applications are more sensitive to losses than others, and the same can be said for
latency, we can say that some flows are more cherished (require lower losses) or more urgent
(require less latency). Hence, their requirements can be mapped into a Cherish/Urgency (C/U)
matrix, that is, an NxM matrix with relative latency and losses at each edge. An example of 4x3
C/U matrix is shown in Table 1. This has a straightforward implementation, called a
Cherish/Urgency multiplexor (C/U Mux) [16], included within the QTAMux design. Just as the
total delay is conserved under scheduling [17], AQ is conserved in C/U multiplexing. A C/U Mux
provides differential loss probability using a shared buffer with higher thresholds for packets of
more cherished flows, and differential urgency by giving higher precedence service for packets
of more urgent flows. In order to do that, the C/U Mux maintains a priority queue of queue
references (P/S queues), instead of moving PDUs from one queue to another.

Table 1. Example of 4x3 Cherish/Urgency matrix
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While the C/U Mux provides an effective inter-flow contention of resources, this is not enough
to ensure a suitable AQ for any flow, but only a 2-dimensional priority order between flows. In
this regard, in order to provide more precise QoS assurances, the QTAMux employs multiple
Policer/Shaper (P/S) sub-modules to manage intra-flow contention, as well as to decide the
specific cherish and urgency level of each queue reference processed in the C/U Mux. With the
use of P/Ss, the QTAMux is not limited to place each QoS Cube within a fixed cell of the C/U
Matrix, but may vary the placement of the queue references based on the current network
usage or QoS requirements (e.g., two similar QoS Cubes may share the same cell in the C/U
Matrix under low usage, but the less requiring one may see the urgency of half of its
references decremented under high usage). In addition, the P/S sub-modules perform multiple
functions, like rate limitation, over-use notification or spacing of packets, enforcing in these
ways end-users’ QTA.

The QTAMux implementation is part of the Relay and Multiplexing Task (RMT) in the RINA IPC
process. This task, whose workflow is described in Figure 4, is responsible for relaying packets
between the different nodes in a DIF. With respect to the RMT task policies, we find 4 different
policy-hooks in there:

- rmt_g_create_policy and rmt_q_destroy_policy. These policies create and destroy all
internal RMT queues and private data within the RMT N-1 port (being N the level of
the current DIF in the recursive stack, i.e., an N-1 port allows injecting traffic to a DIF
directly below this one).

- rmt_enqueue_policy. In charge of checking against queue overrun, monitoring queues
and inserting in queue. This policy is called whenever a packet arrives and needs to be
forwarded through an N-1 RMT port.

- rmt_next_scheduled_policy_tx. In charge of selecting the next packet to be relayed
from queues, if any. It is called whenever the N-1 port is ready and there are packets
waiting in the queues. If needed, it can delay the serving of PDUs returning a null PDU
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Figure 4. Workflow of RINA RMT task

Given these 4 policy-hooks, the QTAMux implementation tightly follows the workflow
presented in Figure 4. It maintains multiple queues, one per QoS Cube, which store pointers to
the stored packets. Upon arrival of a packet (rmt_enqueue_policy), this one is stored in its
designated queue and, then, one of the P/S sub-modules is informed, depending on the QoS



Cube of the packet. This one will decide whether to drop one of the packets of the queue (not
necessarily the last one) or, otherwise, record the arrival and packet length. Then, when a
departure is expected (rmt_next_scheduled_policy_tx), QTAMux iterates through the different
P/S sub-modules and forward some queue references to the C/U Mux module, accompanied
by a cherish and urgency level. The C/U Mux will then decide if it denies the incoming queue
reference based on its cherish level, deleting a packet from the queue or, otherwise, placing it
into a priority queue based on its urgency level if accepted. Finally, if any, it will serve the first
packet from the first queue stored in the C/U Mux priority queue.

4. Home-user rate-limiting policy

As said before, in order to provide QoS assurances in networks susceptible to congestion, it is
required to have a well-distributed traffic, where the amount of priority traffic does not
represent the majority of traffic. In controlled environments, an administrator can know or
have some control over the traffic from the different users (e.g., as in a datacenter network).
In this way, long-term solutions can be used together with short-term solutions like the
QTAMux policy to ensure the good behaviour of the network. In contrast, when dealing with
wilder scenarios like those closer to home-users, we have little control (or not at all) over what
they can do with their allocated resources.

Focusing on the specific case of an ISP providing services to home-users, QoS requirements
must be met within the network. To achieve this, as already discussed before, the amount of
priority traffic leaving end-users’ networks must be limited to only a small fraction of the total.
In this regard, QoS Cubes allow imposing a maximum data rate and burst size. Therefore, RINA
can provide by itself a fine control of the networking resources used per flow. In addition, the
use of policies like QTAMux can improve that with extended control over the aggregated flows,
as it allows limiting the rate of groups of flows that use certain QoS Cubes. With these ones, or
other similar policies, it is easier for a provider to limit the amount of high priority traffic that
their users insert into the network.

Straightforward solutions dividing the capacity leased by users, thus ensuring that the amount
of incoming priority traffic never exceeds predefined limits, can be acceptable for network
service providers. Nevertheless, such solutions are disadvantageous to end-users that see their
link capacity divided into multiple smaller flows. In Figure 5, we can see an example of how an
ISP could limit incoming traffic from their users using a strict per-QoS rate limiting policy, with
QoS Cubes distributed within a 3x3 C/U Matrix. Note that this example is only one possible
configuration, as QoS requirements are fully scenario-dependent. However, it serves to
illustrate that, as the range of supported QoS classes increases, the effective capacity offered
to end-users becomes more dispersed.



Figure 5. Example of QoS rate limitation in a 3x3 C/U Matrix

Strict per-QoS class rate limitation forces end-users to underuse their leased capacity
eventually, as QoS classes cannot employ the capacity dedicated to others. Still, end-users not
so naive can start attempting to inject multiple flows with different QoS requirements to fill
their entire leased capacity. As a result, even requiring a low priority flow initially, they turn
into injecting higher priority traffic in the network. For example, with the limits in Figure 5, a
flow assigned to QoS Cube B2 with a rate of 20% the capacity is unfeasible. Hence, 3 flows
filling the rates of QoS Cubes A2, B1 and B2 might be used instead.

In order to avoid that, it is important to seek an appropriate solution for both parties. In this
regard, we propose a new rate-limiting scheduling policy that provides the same upper limits
for priority traffic injected into the provider network, while giving end-users the freedom to
decide on how they use their leased resources. With this in mind, we propose a 2-dimensional
rate limiting policy, based on the AQ framework and the C/U Matrix (although easily
extendible to other dimensions if required), that limits the amount of outgoing traffic
depending on its urgency and cherish level independently.

With this policy, instead of imposing limits on a per-QoS Cube basis, providers are able to
impose limits on the aggregated traffic, up to some priority level for each QoS dimension. For
example, in Figure 6 we can see how the previous per-QosS class limits in Figure 5 translate into
such 2-dimensional limits. Recall that, with the strict per-QoS class limitation, we could only
transmit up to 3% of Al traffic (see Figure 5). In contrast, 18% Al can be transmitted with
these new limits (i.e., the sum of capacities initially assigned to Al, B1 and C1 traffic flows).
Moreover, these limits allow us to use more traffic of high priority classes if needed, avoiding
to use more traffic of both A* and *1 QoS Cubes, maintaining in this way the same limits in
both the amount of maximum urgent and maximum cherished traffic as in the strict solution.
In a similar way, the previous problem appearing when having to allocate 20% B2 traffic would
be inexistent here, as end-users could directly request those resources for that QoS Cube (in
this case, even after using 18% for Al traffic), avoiding the need for borrowing additional
capacity from higher priority QoS Cubes, something useful from both end-user and provider
perspective.
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Figure 6. Example of imposed urgency and cherish rate-limits with traffic in a 3x3 C/U Matrix

It has to be remarked, though, that it is a policy designed for border routers on the end-user
side. This policy does not consider QoS assurance on an end-to-end basis, but focuses on
enforcing rate limitation based on future flow requirements along its path. Of course, a proper
path selection between each source-destination pair will also be crucial to effectively provide
the QoS assurances specified by QoS cubes across a DIF. It is noteworthy that, although we
focused on two specific dimensions (urgency and cherish) in line with AQ, providers could
define their own QoS dimensions (e.g., cherish, urgency and packet size), requiring then to
provide an appropriate mapping between upper flows and QoS Cubes on flow allocation.

With respect to the implementation of the policy, it shows similar complexity as that of
QTAMux. It uses one queue per cell in the defined C/U Matrix (similarly as using one queue per
P/S). When a packet arrives, it is stored in the queue matching its QoS Cube’s cherish and
urgency levels. When the policy is called, it serves the oldest packet from the most urgent non-
empty queue with available rate for both urgency and cherish levels. In order to know which
gueues have available rate, we maintain a counter that records the amount of sending credit
for each urgency and cherish level. These counters are increased each time the policy is called,
in accordance to the available rate for that level, as well as the time elapsed from the last call,
similarly as with a leaky bucket approach (e.g., with a 100Mb link and the limits in Figure 6, in 1
ms urgency A will gain 18 Kb, B 31Kb and C 51Kb of credit). When selecting the available
queues, we limit those up to the highest urgency and cherish levels with a positive amount of
credits (e.g. if we have [0, -5, 20, 50] credits for cherish levels from 0 to 3 respectively, we can
serve only queues with cherish level 2 or 3). Finally, when serving a packet, we remove the
used credits. If this case, if there are not enough credits in the current level, we take them
from upper levels, only leaving the original level in negative if not enough credits are available
between all upper levels. Given that lower levels can use credits from upper ones, and that we
allow negative credits, in order to avoid complications our credit-based system presents some
peculiarities that makes it different from a typical leaky bucket. Credits are assigned from
lower to higher levels. When encountering a level with negative credits, it will get all new gains
until reaching 0 credits, at which point the gains will be given either to the next level with
negative credits or the level that originally owned them. After all new credits are assigned,
then, from higher to lower, each level with credits exceeding their maximum backlog will pass
its surplus to the next level. Pseudo-codes 1 and 2 describe the process of credit consumption
and gain for both Cherish and Urgency, respectively.



Consume (int Credits [N], int level, int credit)
fori =level .. 0 do
if credit <= Credits][i] then
Credits[i] -= credit;

return;

else
credit -= Credits[i];
Credits[i] = O;

Credits[level] -= credit;

Pseudo-code 1. Credit consumption given current credits, current level and spent credits

Gain (int Credits [N], int Added [N], int MaxCredit [N])

int j = N-1;

intt = 0;

fori=N-1..0
t = Added[i]

while j >iand t > 0 do
if Credits[j] < O then
if t >= Credits][j] then
t += Credits[j];
Credits[j] = 0;
else
Credits[j] +=t;
t=0;
break;
j++;
Credits[i] +=t
fori=0..N-1
Credits[i] +=1t
if Credits[i] > MaxCredits][i] then
t = Credits[i] - MaxCreditsJi]
Credits[i] = MaxCreditsJi]

Pseudo-code 2. Credit gain given current credits, added credits and maximum credits

5. Numerical results

5.1. Experimental scenario
To assess the proposed rate limiting policy, we have conducted an experimental evaluation
using the RINA SDK delivered by the FP7 PRISTINE project [12]. To this goal, we have deployed




the point-to-point RINA network test-bed depicted in Figure 7. In this scenario, two nodes, A
and B, emulate a home router and its ISP gateway. For this, we have used two laptops using
the latest version of the RINA/IRATI stack [14] over a Debian 8 system with kernel 4.9. These
two nodes are connected using a 1Gbps Ethernet link on which a VLAN, with its rate limited to
100Mbps is configured to connect them in the RINA environment (using a VLAN Ethernet
Shim-DIF). Over the shim-DIF, we set a normal DIF (Home2ISP) providing QoS support. In that
DIF, one aggregated flow for each available QoS Cube is allocated, and node A is required to
ensure that the different rate limits are achieved. Finally, we set a conventional DIF (DIF Net)
on top that mimics an Internet-wide DIF providing communication between applications in
both sides of the network.

DIF Net | [T @
(Applications) '@ @ @
e9se

DIF Home2isP @)

e o
" )

O—@

Shim-DIF i
- vlan Ethernet (100Mbps)
Node A Node B
(Home router) (ISP router)

Figure 7. RINA Test-bed for rate-limiting policy evaluation

For the different experiments, we define the seven generic QoS Cubes depicted in Table 2,
based on a 3x3 C/U matrix. Moreover, we define and impose the rate-limits depicted in Table
3, limiting the amount of traffic that node A can inject into the network up to each
cherish/urgency level. As mentioned before, the mapping between upper flows and QoS Cubes
should consider how these flows are routed across the DIF to effectively ensure the QoS
requirements end-to-end. However, for these tests, we considered a straightforward mapping
between application requirements to QoS Cube (i.e., C/U matrix cell), leaving the end-to-end
QoS assurance consideration out of the scope of this paper.

Table 2. Defined QoS Cubes for tests

Al A2 -
Bl B2 B3
= C2 C3

Table 3. Imposed rate-limits for tests



15 Mbps 60 (+45) Mbps 100 (+40) Mbps

15 Mbps 60 (+45) Mbps 100 (+40) Mbps

5.2. Validating the policy

Once the scenario, QoS Cubes and rate limitations are decided, our first goal is to assess the
behaviour of the proposed rate-limiting policy within the specified environment. To avoid
stationary scheduling states, for these tests we use an application that sends packets at
constant intervals, but with their size varying between a minimum and maximum size, always
maintaining an average rate of 1Mbps (including headers). We run multiple experiments were
traffic matrices are configured to reach 100% of the acceptable rates in average with the goal
to assess that rate limits are enforced correctly by the rate-limiting policy.

To check that the policy behaves as expected, we captured the packets received at node B in a
post-execution run with a tcpdump on the incoming port. Then, we used a similar approach as
for the rate limiting policy. Using the recorded arrival time and size of packets, we computed
the gain and expenditure of credits in a discrete way. As expected, the results validated that
the policy maintained the outgoing traffic under the required limits, not reaching negative
credits along the entire test. Even so, it has to be noted that the maximum backlog of credits
considered in the validation process was set slightly higher, as to amount to the internal
gueues of Ethernet ports, managed independently to the CPU and different encoding times
depending on packet size.
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Figure 8. Comparison of average and maximum delay for the different QoS Cubes

In addition, while the policy is not specifically designed to provide QoS guarantees, we aim to
ensure that the priorities defined by the C/U matrix in Table 2 are properly delivered. In this
regard, Figure 8 presents a comparison between the average and maximum delay suffered by
the flows assigned to each QoS Cube. As can be seen, the urgency priority is maintained in
both average and worst cases (i.e., maximum delay). In order to emphasize the effects of the
scheduling policy, we also compare it to the average delay in an uncongested scenario
(baseline delay), where we ensure that queues are always emptied between incoming packets.
In comparison with this baseline scenario, we see that urgent QoS cubes (A1 and A2) incur
almost no additional delay on average, with its maximum growing up mostly due to collisions
of packets with the same priority or small bursts. A similar behaviour can be seen for mid-
urgent flows (B1, B2 and B3), but with slightly higher delays given their lower priority. In
contrast, non-urgent flows suffer from higher delays. This is expected, and works as a measure
to avoid losses due to the small overbooking of the network (e.g., in the most extreme



situations, we can experience bursts at up to 120% of the link rate). While such delays are high,
it has to be noted that we are considering an overbooked low-rate link in these tests. If we
consider the number of preceding packets in queue instead of the time spent there, non-
urgent packets only wait for 25 preceding packets in average, 90 in the worst case. As the drop
threshold was set to 100 packets for non-cherished flows, no losses were experienced in the
tests).

5.3. Comparison with other solutions

Once the behaviour of the policy has been validated, we also compare it against the main QoS
scheduling policy in RINA, namely, QTAMux (QTA), configured with limits per C/U cell, as well
as against a DiffServ-based policy (DS) [18,19] with limits per cherish level. In order to do that,
we set a scenario where limits per QoS and limits per quality can be compared, using the same
test-bed described in Figure 7 and QoS Cubes defined in Table 2. For the proposed rate-limiting
policy (configuration R-lim), we consider the same limits for cherish and urgency levels
described in Table 3, and for the QTAMux and DiffServ we consider the limits per QoS Cube
described in Table 4. It has to be noted that those limits are only a possible configuration for
this scenario (ISPs should freely decide or modify the limits they impose to their clients).

Besides, we consider three types of traffic:

e Voice flows: Based on G.722 [20]. Constant interval between packets, but with their
size varying between voice and silence periods. Urgent but admits some losses,
minimum A2.

e Video: Based on YouTube HD and fullHD qualities [21]. MTU size packets with varying
bitrate. Mid urgent, but requires to avoid losses, minimum B1.

e Data: P2P like flows. MTU size packets with a maximum rate of 5Mbps. Non-urgent
and can withstand losses, minimum C3.

Table 4. Rate limits per QoS Cube employing the QTA Mux and DiffServ policies

Al : 5Mbps A2 : 10Mbps -
B1:10Mbps B2 : 15Mbps B3 : 20Mbps
- C2 : 20Mbps C3: 20Mbps

1:15Mbps 2 : 45 Mbps 3 : no-limit

Given these applications and flow constraints, we setup our scenarios in a way that the
maximum number of voice, video and data flows can be supported without exceeding the
imposed limits. With this into consideration, we setup our offered traffic matrices as follows:

R-lim and DS scenarios:

e 150 voice flows with QoS Cube A2
e 3 FullHD with QoS Cube B1

e 4 HD flows with QoS Cube B1

e 12 P2P flows with QoS Cube C3



QTA scenario:

e 25 voice flows with QoS Cube Al and 95 with A2

e 1 FullHD flow with QoS Cube Al and 1 with B1

e 4 HD flows with QoS Cube B1

e 3 P2P flows with QoS Cube B2, 4 with B3, 4 with C2 and 4 more with C3.

Before presenting the results in this scenario, it has to be noted that the same QoS Cube has to
be kept across layers. This is important, as the DS policy does not degrade packets that exceed
the rate-limit, but drop them (otherwise, they would regain their priority when reaching
destination). With this in mind, we can realize from the construction of the scenario itself that
requirements are better translated into QoS Cubes in the R-lim and QTA scenarios, as those
can differentiate not only by cherish, but also by the urgency of flows. In addition, the fewer
restrictions in R-lim removes the need for differentiating traffic with identical requirements,
increasing the amount of flows that can successfully be accepted in the network.

Regarding the network utilization, we can see in Figure 9 a comparison between the amounts
of traffic successfully sent in the network per application, as well as the overall link occupation
in each case. As observed, the amount of successfully sent data belonging to voice and video
flows results slightly higher with R-lim and DS than with QTA. In contrast, data flows are
boosted with QTA. This was expectable, as less voice and video flows can successfully be
accepted with the requirements of the QTA scenario. In addition, we can see in Figure 10 a
comparison between the amounts of traffic assigned to each QoS Cube in each scenario. These
results, mainly describing the assumed traffic matrices, also highlight the need for a fair rate-
limiting policy. In summary, as traffic cannot use the QoS Cube that better adapts to its
requirements in the QTA case, we end in a scenario where 60% of the outgoing traffic ends
assigned to QoS Cube providing a better service than required (denoted as over requiring in
the legends of Figures 9 and 10).
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Figure 9. Comparison of average rate per application (in Mbps)
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Besides the problems that an unfair rate-limiting policy imposes to the ISP, a strict rate
limitation also affects the service that applications eventually receive. Indeed, when imposing
too strict rate limits, we enforce an artificial differentiation among flows with the same
requirements. Figure 11 shows a comparison between the service received per application. In
the QTA scenario, voice flows get more or less the same service (all have the same urgency).
However, we see oscillations in video flows, where FullHD urgent flows experience a smaller
delay than the rest, similarly to that experienced by voice flows. In contrast, mid-urgent flows
get slightly higher average delay and an extra 0.5 ms of maximum delay in comparison. In a
similar way, we can see how Data flows suffer large variations, near to 1 ms, between the
maximum delay of those assigned to QoS Cubes B2/B3 and C2/C3. In comparison, in the R-lim
scenario, we see all flows of each application receiving similar services (as expected), but more
importantly, all suffering lower delays (both average and maximum) than flows sharing the
same QoS Cube in the QTA scenario. In contrast to the two AQ-based policies, when using the
DS policy, flows do not experiment any visible differentiation in terms of delay, resulting in a
best-effort scenario.
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Figure 11. Comparison of average and maximum delay per application and QoS Cube using the proposed
rate limiting policy, QTA Mux and DS

In this second scenario, we did not consider a traffic matrix as tight to the rate limits as when
testing the rate limiting policy. Instead, we considered the use of traffic patterns based on
current applications, each with its own QoS requirement, in a scenario close to congestion.



There, the maximum rate would be that imposed by the rate limits (with high probability),
something that could be policed within RINA’s flow allocation. While, at first sight, working
under the maximum rate would result in a scenario without too many collisions, it has to be
considered that bursts of flows arriving from different applications can be common in this
scenario. This is a similar scenario to that in a usual home nowadays, as the number of
connected devices keeps increasing.

Finally, with respect to this particular test-bed and the obtained results, some particularities
have to be considered. Firstly, the test-bed used a 100Mbps VLAN over a 1Gbps Ethernet [22]
link as shim-DIF. This has some peculiarities with respect to using the Ethernet link directly at
its maximum rate. Firstly, we have to consider the slightly larger headers of the Ethernet frame
due to use of a VLAN. Secondly, given that the VLAN works at 1/10"™ of the Ethernet link
capacity, the inter-frame delay used to separate Ethernet frames does not affect us, as all
packets are served with higher separations. Furthermore, while we are emulating routers, we
are doing it using machines, not only offering networking functionality but also running the
same applications that generate that communication, while at the same time having multiple
active background processes. This affects negatively to all networking processes, as those have
to compete for the CPU time with other non-related processes.

6. Conclusions

Given the increasing number of heterogeneous distributed applications populating the
network, each one with specific QoS requirements, it is evident that future networks must
provide a way to allow an effective QoS differentiation. RINA, with its default QoS support
employing QoS Cubes, together with the incorporated AQ-based scheduling policies, can yield
superior performance to this end compared to the current TCP/IP-based Internet. Even so, in
order to allow home-users to request differentiated QoS treatment for their flows, it is
imperative for Internet Service Providers to upper limit the amount of high priority traffic that
these users can inject in the network. While RINA and the AQ-based QTAMux scheduling policy
already provide ways to impose such limits, they are not end-user friendly and can lead to
undesired end-user behaviours. To solve that, in this work, we have proposed and
experimentally evaluated a RINA rate limiting policy based on the ideas of AQ, which limits
urgent and cherished traffic independently. The proposed policy not only succeeds in avoiding
end-users filling the network with high priority traffic, but also achieves it in an end-user
friendly way, allowing them to use the available capacity in the way most suited for their
needs. While gracefully solving the targeted issue of limiting end-user priority traffic to allow a
global differentiated QoS treatment, there is room for improvement. Although not explained
in depth, the proposed policy bases its internal multiplexing on that of simple AQ scheduling
policies. In this regard, it is left for future work to check the benefits of other multiplexing
options, which could not only consider the urgency of flows, but also if they are taking unused
resources of higher priorities.

While the proposed policy focuses on the priority contention of outgoing flows, something
required for avoiding greedy users, it does not consider the assurance of QoS requirements in
an end-to-end basis. In fact, this policy bases on the inherent recursivity of RINA, capable of
providing means to assure QoS requirements on the end-to-end path in view of the guarantees
provided by lower layers. However, while RINA provides the means to effectively translate



specific end-to-end requirements into the most suited QoS Cubes at any level, in this work we
have taken a more straightforward approach, focused only on the limited scope of the
proposed policy. In this regard, it is left for future work to propose and test the joint work of
RINA’s flow allocation policies and rate-limiting policies.

In addition, in this work we have limited to a scenario centred on the communication between
home router and the ISP, without considering home devices or the interaction with other
policies (congestion control, flow allocation, etc.). In this regard, future work in this area will
aim to expand this scenario, taking into consideration fast congestion control and
retransmission policies, as well as QoS Cube based flow allocation mechanisms. Furthermore,
while the policy manages flow contention on the shim level, it is left for future work the
mechanism for translating QoS requirements of upper level flows into QoS Cubes, something
that would require considering the different sub-networks traversed by them.
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