
Software & Systems Modeling manuscript No.
(will be inserted by the editor)

Conformance Checking in UML Artifact-Centric Business
Process Models

Montserrat Estañol · Jorge Munoz-Gama · Josep Carmona · Ernest

Teniente

Accepted: May 2018

Abstract Business artifacts have appeared as a new

paradigm to capture the information required for the

complete execution and reasoning of a business pro-

cess. Likewise, conformance checking is gaining pop-

ularity as a crucial technique that enables evaluating

whether recorded executions of a process match its cor-

responding model. In this paper, conformance check-

ing techniques are incorporated into a general frame-

work to specify business artifacts. By relying on the

expressive power of an artifact-centric specification,

BAUML, which combines UML state and activity di-

agrams (among others), the problem of conformance

checking can be mapped into the Petri Net formalism

and its results be explained in terms of the original

artifact-centric specification. In contrast to most ex-

isting approaches, ours incorporates data constraints

into the Petri nets, thus achieving conformance results

which are more precise. We have also implemented a

plug-in, within the ProM framework, which is able to

translate a BAUML into a Petri net to perform confor-

mance checking. This shows the feasibility of our ap-

proach.

Published article can be downloaded from:
https://doi.org/10.1007/s10270-018-0681-6

M. Estañol (�) · J. Carmona · E. Teniente
Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona Salgado 1-3, 08034 Barcelona (Spain)
Tel.: +34 934 137 896
Fax: +34 934 137 833
E-mail: estanyol@essi.upc.edu (�)
E-mail: jcarmona@cs.upc.edu
E-mail: teniente@essi.upc.edu

J. Munoz-Gama
Pontificia Universidad Católica de Chile (UC)
av/ Vicuña Mackenna 4860, Santiago (Chile)
E-mail: jmun@uc.cl

Keywords Conformance Checking · Artifact-Centric

BPM · BAUML Framework · Process Mining

1 Introduction

Traditional approaches to business process modeling

have mainly focused on representing the tasks that are

part of the process and the order in which they should

take place (i.e. the control flow perspective of the pro-

cess). These tasks will likely require data, but its struc-

ture and how it is actually used by the tasks is not

directly specified in the models. In contrast, the cor-

nerstones of artifact-centric process models are the data

definition and the details of what the tasks involved in

the process do.

When business processes (either process or artifact-

centric) are deployed, it may happen in practice that

there is a gap between their definition and its imple-

mentation, i.e. processes are not exactly being executed

in the way they were envisaged for. This might be due

to errors made during development or deployment of

the business processes, or because the users do not be-

have in the expected way.

Conformance checking is aimed at identifying such

situations by detecting deviations between models and

reality, and measuring the degree in which they dif-

fer [1]. However, current approaches for conformance

checking have focused mainly on the control flow per-

spective [36,5,24]. Although useful, these results may

not be as accurate as if data is taken into considera-

tion, something that can be more naturally achieved

by artifact-centric approaches.

As an example, consider a a city-bicycle rental sys-

tem such as Bicing in Barcelona. Bicing users may take

a bicycle, anchored in one of the many stations through-

2 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

out the city, and return it to another station after the

user reaches his destination. As usual, Bicing records a

log of the different tasks that are performed within a

process execution. Then, given the following log below:

RegisterNewUser, PickUpBicycle, PickUpBicycle,

PickUpBicycle, PickUpBicycle

a traditional conformance checking approach could

detect it as a conformant, as the model - without consid-

ering the data - allows it. However, it may happen that

there is a data constraint stating that a user may never

have more than three bicycles simultaneously. Hence,

the previous trace does not conform to the model, and

the results obtained by traditional conformance check-

ing are not accurate enough in this case.

The main contribution of our work is an approach

to perform conformance checking on an artifact-centric

framework, called BAUML [17,11], which considers not

only the flow of the tasks, but also data constraints

such as the one illustrated above. Unlike other works,

our approach uses a starting framework based on a com-

bination of UML and OCL models (both ISO standard

languages, and well-known notations) which covers all

the dimensions that should be present in artifact-centric

process model [22]. BAUML has been shown to be use-

ful as a specification technique that allows providing

automated reasoning over the models [17] while identi-

fying verifiable conditions about them [11].

To briefly sum BAUML up: data or artifacts are

represented in the UML class diagram; lifecycles of ar-

tifacts are modeled using UML state machine diagram;

each external event in the state machine diagram is fur-

ther defined using a UML activity diagram; and details

of the tasks or activities in the activity diagram are

represented using OCL operation contracts.

In terms of data conditions, our approach for con-

formance checking considers the following:

1. Cardinality constraints that establish a maximum

number of artifacts (i.e. data objects) to which the

current artifact type can be related. For example: a

User cannot have more than three Bicycles simul-

taneously.

2. Conditions over the transitions in the lifecycles,

stating the number of other artifacts to which the

current artifact is related. We can deal with two dif-

ferent types:

(a) When the number of other artifacts is equal to

or greater than 0. For example: a User can only

be unblocked (after being blacklisted) when he

no longer has any Bicycles.

(b) When the number of other artifacts is equal to or

greater than 1. For example, if an Active user has

only one bicycle, after returning it he changes

his state to Idle. However, in this case the tran-

sition must decrease the number of related arti-

facts when it executes. In our previous example,

this would mean that the transition decreases

the number of bicycles to which the user is re-

lated.

We will refer to these data conditions as context-

dependent constraints, and to the behaviors that de-

pend on them as context-dependent behavior.

Bearing this in mind, our problem can be stated as

follows. Given: 1. a lifecycle model of an artifact (i.e.

a data object), an activity diagram for each external

transition in the lifecycle, a set of context-dependent

constraints; 2. an event log over the tasks in the activity

diagrams where each task is associated to an identifier

(i.e. case ID) of the artifact on which the activity is

performed; our approach finds deviations between the

log and model. Note that we assume that the system

registers in the log the IDs of the artifacts involved

in each task or event. We check conformance for each

artifact individually, and we assume that the event logs

have been extracted for each.

We achieve conformance checking by translating the

original BAUML model into a Petri Net, while preserv-

ing context-dependent constraints; and then applying

existing conformance-checking techniques to carry out

the evaluation between a given event log and the gen-

erated Petri Net.

In terms of the contextualization of our contri-

butions within the related work, there are some ap-

proaches [25,27,20,18,19] for conformance checking

that do consider the data. Both [25,27] incorporate the

data and resource perspectives into conformance check-

ing; however, data are merely a set of variables with

values.

On the other hand, the following works [20,18,19]

consider artifacts, like we do. By using proclets (simi-

lar to Petri nets, but including communication ports)

as an initial model, they are able to detect deviations

when the interaction between artifacts is not correct.

This is different from our approach, where we are able

to consider certain data-related conditions, such as the

maximum number of artifacts that may be related to

another artifact, as illustrated before.

As an additional contribution of this paper, we have

implemented a plug-in as part of the ProM framework

to automatically generate the Petri Net from the orig-

inal BAUML model; and applied it to perform confor-

mance checking to an example based on real life. In

this way, we show the feasibility of our approach in a

practical situation.

Finally, we would like to remark that using an

artifact-centric model such as BAUML for specifying

business processes is also a contribution of our approach

Conformance Checking in UML Artifact-Centric BPM 3

since it allows us to bridge the gap between models with

a high level of abstraction, which are usually more in-

tuitive and understandable for business people, and no-

tations which are very formal (such as Petri nets) but

impractical from the point of view of the business.

The remainder of the paper is structured as follows.

Section 2 presents the required preliminaries and Sec-

tion 3 gives a general overview of our approach. Section

4 formalizes the first step of our approach: translating

BAUML models to Petri nets, considering certain data

conditions. Section 5 shows how to apply conformance

checking, how to interpret the results and how they

can be applied back to the original BAUML models. In

Section 6 we explain how the approach has been imple-

mented and we evaluate the tool through some tests.

Afterwards we examine the related work in Section 7.

The last section points out our conclusions and outlines

further work.

2 Preliminaries

This section presents the BALSA framework for model-

ing business processes following an artifact-centric ap-

proach and it gives an overview of the basic concepts

related to conformance checking and Petri nets, which

are necessary to understand this work.

2.1 The BALSA Framework

The BALSA framework [22] establishes four differ-

ent dimensions that should be present in any artifact-

centric business process model:

– Business Artifacts: Business artifacts represent

the data required by the business. For instance, they

may be represented by using an ER model or a UML

class diagram. Both diagrams are able to represent

the business artifacts, their relationships with other

artifacts and to establish constraints on both.

– Lifecycles: Lifecycles are used to represent the evo-

lution of an artifact during its life, from the mo-

ment it is created until it is destroyed or archived.

They can be represented by means of statecharts or

condition-action rules.

– Services: Services (also known as tasks) are atomic

units of work in the business process. As such, they

make changes to artifacts by creating, updating and

deleting them. They may be represented in differ-

ent ways: alternatives range from using natural lan-

guage to logic or through operation contracts.

– Associations: Associations establish the execution

flow for services. They may be represented using a

procedural representation, such as a BPMN or an

activity diagram, or using a declarative representa-

tion, such as condition-action rules.

2.2 Conformance Checking

In this section we present the necessary notation to rep-

resent the event logs, and the Petri nets, the process

modeling notation used in most conformance checking

approaches.

2.2.1 Event Logs

An execution of a process (also known as process in-

stance or case) is represented as a sequence of activ-

ities called trace. An event log is a multiset of traces,

representing the behavior observed in the information

system during the execution of the process.

Definition 1 (Trace, Event Log) Let A ⊆ UA be a

set of activities A over an universe of activities UA. A

trace σ ∈ A∗ is a sequence of activities. An event log

L ∈ B(A∗) is a multiset of traces, where B(X) repre-

sents the set of all multisets over X.

2.2.2 Petri Nets

The Petri net notation is a widely extended process

modeling notation, and the most used notation in con-

formance checking given their formal semantics. Petri

nets are able to capture concurrency in a natural way,

among the other common workflow constructions such

as sequence and choice. In this paper, the most common
Petri net class is extended to include both more than

one token in a place, and the possibility of inhibitor arcs

(special arcs able to express the empty condition)1. The

authors assume the reader is familiar with the concept

and semantics of Petri nets. For a deeper introduction

to Petri nets the reader is referred to [31].

Definition 2 (Petri Net) A Petri net over an alpha-

bet A is a tuple PN = (P, T, F, I, α,Mini) where P and

T represent finite and disjoint set of places and transi-

tions, respectively, and F ⊆ (P × T) ∪ (T × P) is the

flow relation. The initial marking Mini ⊆ P defines the

initial state of the system. I : T → B(P) indicates the

set of inhibitor arcs. Function α : T → A ∪ {τ} maps

transitions to activities in A. Transitions mapped to

the special symbol τ are considered invisible (graphi-

cally represented in color black). The sets of input and

1 To allow for a simple formalization, these extensions will
not be formalized here and only be considered informally
when needed in the next section.

4 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

output nodes (transitions or places) of a node x, are de-

noted by •x and x•, respectively. Finally, since in this

work we need to decorate arcs in the Petri net with ad-

ditional information, we assume that arcs in the Petri

net can be annotated over a set of tags C, i.e., there is

a function η : F → C.

3 Overview of Our Approach

We aim at defining an approach for applying con-

formance checking to artifact-centric business process

models specified in BAUML, which considers not only

the flow of the tasks but also context-dependent con-

straints. This is achieved by translating the origi-

nal BAUML model into a Petri Net, in a way that

incorporates knowledge from the context-dependent

constraints; and then applying existing conformance-

checking techniques to carry out the evaluation between

a given event log and the generated Petri Net.

The overview of these stages, as seen from the point

of view of the tool we have implemented for this pur-

pose, is summarized in Figure 1.

In our environment, users define BAUML models in

Visual Paradigm so that we can automatically obtain

an XML file with its specification. Other tools could be

used as well, provided that they are able to generate

the required XML. The BAUML model is then imple-

mented into a system (how this is done is outside the

scope of this paper), which should be able to generate

the appropriate logs for conformance checking.

Then, at execution time, when processes have been

deployed and the system has already generated event

logs, we use the tools in the ProM framework2 to per-

form conformance checking on the BAUML models.

This framework includes several plug-ins (not shown

in the figure) that allow translating the XML file en-

coding the BAUML model into a Petri Net and then

performing conformance checking from the given event

log and the generated Petri Net. These results can then

be applied back to the original BAUML specification

to update the model or make changes to the deployed

system.

Bearing this in mind, the next section (Section 4)

formalizes BAUML models and presents how they can

be transformed into a Petri net. After this, in Section

5, we explain how to apply conformance checking to

the resulting Petri nets and how these results can be

transferred to the original BAUML model.

2 http://www.promtools.org/

4 Transforming BAUML models to Petri nets

This section begins by formalizing the BAUML models.

It then presents the transformation of these models to

Petri nets in order to apply conformance checking tech-

niques, which will allow us detect deviations between

the models and reality.

4.1 BAUML models

In this paper we adopt the BAUML modeling approach

[11,16], which represents the BALSA dimensions using

UML [23] and OCL [33]. In particular, we use: UML

class diagrams for business artifacts; UML state transi-

tion diagrams for lifecycles; UML activity diagrams for

associations, and OCL operation contracts for services.

This approach also considers objects: data in the system

whose potential states - resulting from their evolution -

are not relevant from the point of view of the business.

More formally, we define a BAUML model B as a

tuple 〈M,S,P, T 〉, where:

Class Diagram: M is a UML class diagram, in which

some classes represent (business) artifacts. We denote

the artifacts as artifacts(M). Intuitively, an artifact

a ∈ artifacts(M) is a class whose evolution results

in relevant states from the point of view of the busi-

ness. We denote the classes in M as classes(M),

and the associations inM as associations(M). When

convenient, we may refer to them as classes(B) and

associations(B).

Figure 2 shows the class diagram for our Bicing

example with its correspoding textual constraints in

OCL. The business artifacts in this case are Bicycle and

User. They can be distinguished from the rest of objects

because they have several subclasses, which will keep

the information that is relevant in each of the states

through which they evolve. In the case of bicycle, it

can be Available, InUse, Lost or Unusable.

On the other hand, we distinguish between Users

who are Idle, Active or Blacklisted. Blacklisted users

will not be allowed to make any new rentals, but may

still have bicycles in their possession. Active users have

at least one current rental while idle users have none.

Note that users may be using up to three bicycles. This

allows families to rent bicycles without having to regis-

ter their children as users.

State Transition Diagrams: S is a set of UML state

transition diagrams, one per artifact in artifacts(M).

More formally, for each artifact A ∈ artifacts(M),

S contains a state transition diagram SA =

〈V, vo, vf , E,X, T 〉, where V is a set of states, vo ∈ V

Conformance Checking in UML Artifact-Centric BPM 5

Users

XML �le

<?xml version = '1.0' encoding = 'UTF-8' ?>
<XMI xmi.version = '1.2' xmlns:UML =
 'org.omg.xmi.namespace.UML' timestamp = 'F
ri Jul 03 10:41:59 CEST 2015'>
 <XMI.header> <XMI.documentation>
 <XMI.exporter>ArgoUML (using Netbeans
 XMI Writer version 1.0)</XMI.exporter>
 <XMI.exporterVersion>0.34(6) revised o
n $Date: 2010-01-11 22:20:14 +0100 (Mon, 1
1 Jan 2010) $ </XMI.exporterVersion>
 </XMI.documentation>
 <XMI.metamodel xmi.name="UML" xm
i.version="1.4"/></XMI.header>
 <XMI.content>
 <UML:Model xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:000000000
0000865'
 name = 'untitledModel' isSpecification =
 'false' isRoot = 'false' isLeaf = 'false'
 isAbstract = 'false'>
 <UML:Namespace.ownedElement>
 <UML:Class xmi.id = '-64--88--59-1--
35501fca:1419c2542c7:-8000:00000000000
00866'
 = 'false'
 isLeaf = 'false' isAbstract = 'false' s

Event log

dfasfd dfadsfsa fdas dffd fasdfadf sdfasd
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasfd dfadsfsa fdas dffd fasdfadf sdfasdfasdff
dfadf dfasdf dfajei dfasdf qwerej dfjksfjasdklf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
werqsdfasdf dsafdsf sdafasdf df asdf dfsdfasdf
werqsdfasdf dsafdsf sdafasdf df asdf dfsdfasdf
dfadf dfasdf dfajei dfasdf qwerej dfjksfjasdklf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
werqsdfasdf dsafdsf sdafasdf df asdf dfsdfasdf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasfd dfadsfsa fdas dffd fasdfadf sdfasdfasdff
35501fca:1419c2542c7:-8000:000000000
dfasfd dfadsfsa fdas dffd fasdfadf sdfasdfasdff
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfadf dfasdf dfajei dfasdf qwerej dfjksfjasdklf
dfasfd dfadsfsa fdas dffd fasdfadf sdfasdfasdff
dfadf dfasdf dfajei dfasdf qwerej dfjksfjasdklf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
werqsdfasdf dsafdsf sdafasdf df asdf dfsdfasdf
dfasdadfs fjkljkl fsdafsd dfasdfafas dfadsfasdf
dfasfd dfadsfsa fdas dffd fasdfadf sdfasdfasdff
dfadf dfasdf dfajei dfasdf qwerej dfjksfjasdklf

ProM Framework

BAUML Model

represents
can be applied to

Conformance Results

System

generates can be applied to

Fig. 1: Overview of the process to apply conformance checking to BAUML models

 id : String
 inServiceSince : Date

Bicycle

 id : String
 name : String

User

 number : Natural
 locked : Boolean

AnchorPoint

 startTime : DateTime
 confirmed : Boolean

BicycleRental

 expectedReturn : Date

InUse

 unsusableSince : Date

Unusable

 date : Date

Lost

 date : Date

Blacklisted

 lastReturn : Date [0..1]

Available

 id : String
 address : String

Station

 lastRental : Date [0..1]

Idle Active

BicycleState

1

0..1

0..1

0..2
0..1

1

1..*

1

1..3

0..11

0..3

responsible

{xor}

is still using

{disjoint,complete}

has lost

belongs to

{xor}

{disjoint, complete}

has

UserState

unusable bike is in is in

1. Station, User and Bicycle are identified by their respective id (only the OCL for Station is shown):

context Station inv: self.id->isUnique()

2. An AnchorPoint is identified by its number and the station it belongs to:

context Station inv: self.anchorPoint.number->isUnique()

3. A Blacklisted user may not have more than 3 Bicycles:

context Blacklisted inv: self.lost->size()+self.inUse->size() <= 3

Fig. 2: Class diagram showing the artifacts and objects in Bicing.

6 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

is the initial state, vf ∈ V is the final state, E is a

set of events (either external or time events), X is

a set of effects (i.e. an atomic task or service), and

T ⊆ V × OCLM × E × C × X × V is a set of transi-

tions between pairs of states, where OCLM is an OCL

condition over M that must be true in order for the

transition to take place and C is a tag on the result

of the execution of the event in E. We will denote the

external events in SA as extEvents(SA).

Each external event is further defined in an activ-

ity diagram. Each effect X corresponds to an atomic

task to be performed when making the transition, and

whose parameters are exactly the artifacts involved in

the transition.

As artifacts cannot evolve from one state to another

randomly, the state machine diagram shows how the

transitions from one state to the next are triggered.

Figures 3 and 4 show the state machine diagrams that

represent the evolution of the artifacts bicycle and user.

When a bicycle is created (Register New Bicycle), it

is in state Available, and ready to be picked up. If a user

does pick up a bicycle (event Pick Up Bicycle), there

are two possibilities: either everything goes smoothly

and he takes it with him (tag success), or the bicy-

cle is in bad shape and the pick-up fails (tag fail). In

the first case, the bicycle is InUse while in the second

case it is Unusable, following our assumptions. While

a bicycle is in state InUse, either the user returns the

bicycle (Return Bicycle) or he keeps it for more than

three days. If the latter, the user must be blacklisted

and the bicycle changes its state to Lost. If a lost bicy-

cle is recovered (Recover Bicycle), then it is Unusable.

A repair of an unusable bicycle (Repair Bicycle) may

be either successful (tag success), making the bicycle

Available again or it may fail causing the deletion of

the bicycle because it is beyond repair.

The evolution of a user is similar to that of a bicycle,

and it shares many of its events. However, notice that

in some cases there are conditions over the transitions.

For instance, if an Active user returns a bicycle (event

Return Bicycle), the final state will depend on whether

there is only one bicycle left to return (#bicycle=1) or

more (#bicycle>1).

This condition #bicycle refers to number of

bicycles the user has and is defined in OCL as

self.oclAsType(Active).inUse->size() (for

transitions with source state Available) or as

self.oclAsType(Blacklisted).inUse -> size()

+ self.oclAsType(Blacklisted).lost -> size()

(for transitions with source state Blacklisted).

Activity Diagrams: P is a set of UML activity dia-

grams, such that for every state transition diagram

S=〈V, vo, vf , E,X, T 〉 ∈ S, and for every event ε ∈
extEvents(S) there exists exactly one activity dia-

gram Pε ∈ P.

Pε is a tuple 〈N,no, nf , F 〉, where N is a set of

nodes, no ∈ N is the initial node, nf ⊂ N is the set

of final nodes and F ⊆ N×G×C×N is a set of transi-

tions between pairs of nodes where C is a tag (success

or fail) denoting the correct or incorrect execution of

the transition, and G a guard condition.

There are four different types of nodes n ∈ N in an

activity diagram Pε: initial nodes (denoted as ini(Pε)),

final nodes (final(Pε)), gateways (gateways(Pε) and

activities (activities(Pε)). Gateways are used to de-

fine the control flow. They may be either a decision

node, a merge node, an inclusive-or node, a fork node

or a join node.

An activity may be an (atomic) task or a material

action. Each task is associated to an operation contract,

which expresses a precondition on the executability of

the task, and a postcondition describing its effect, both

formalized in terms of OCL queries over M. Material

actions represent physical work that is done in the pro-

cess but that does not change the system.

We make the following assumptions over each activ-

ity diagram Pε: decision nodes and fork nodes have one

incoming flow and more than one outgoing flow; merge

nodes and join nodes have more than one incoming flow

and exactly one outgoing flow; and tasks have exactly

one incoming and one outgoing flow.

With a slight abuse of notation, given a state tran-

sition diagram S ∈ S, we denote by PS ⊆ P the set

of activity diagrams referring to all external events ap-

pearing in S.

Returning to our running example, each external

event in the state machine diagrams in Figures 3 and 4

has its corresponding activity diagram. Figure 5 shows

the details for transition Pick Up Bicycle. In this case,

the user requests the bicycle (RequestBicycle) and he

physically gets it (Get Bicycle). If the bicycle is in bad

shape (e.g. it is missing a pedal), then the user places it

again in its anchor point (Return to Anchor Point) and

the return is confirmed (Confirm Return). Otherwise,

he confirms the pick-up. The two tags placed over the

final edges at the end of the activity diagram, succeed

and fail, are used to differentiate between a successful

pick-up and a failed one.

Tasks: T is a set of atomic tasks, each of which has an

OCL operation contract. Its semantics is that the task

can only be executed when the current information base

satisfies its precondition, and that, once executed, the

task brings the information base to a new state that

satisfies its postcondition.

Conformance Checking in UML Artifact-Centric BPM 7

Unusable

Available

Lost

InUse

Recover Bicycle

today() - startTime > day(3) / Blacklist User

Return Bicycle

Repair Bicycle [fail]

Repair Bicycle [success]

Pick Up Bicycle [fail]

Pick Up Bicycle [success]
Register New Bicycle

Fig. 3: State machine diagram showing the evolution of artifact Bicycle.

Blacklisted Active

Idle

Recover Bicycle

[#bicycle = 0] Unblock User [fail]Return Bicycle [#bicycle > 1] Return Bicycle

Pick Up Bicycle

[#bicycle = 1] Return Bicycle

Delete User

[#bicycle = 0] Unblock User [success]

today() - startTime > day(3) / Blacklist User

Pick Up Bicycle [success]

Register New User

Fig. 4: State machine diagram showing the evolution of artifact User.

Register New Bicycle

Return Bicycle

Repair Bicycle

Pick Up Bicycle

Recover Bicycle

Blacklist User

<<material>>
Place Bicycle in

Anchor Point
Confirm Bicycle

Return

<<material>>
Repair Bicycle

Mark Bicycle
as Available

Delete
Bicycle

<<material>>
Dismantle Bicycle

<<material>>
Anchor Bicycle to

Anchor Point

Assign to
AnchorPoint

Create New Bicycle

Request Bicycle <<material>>
Get Bicycle

Confirm
Return

<<material>>
Return to Anchor Point

<<material>>
Bring Bicycle to Warehouse

Mark as
Unusuable

Mark Bicycle
as Lost

Mark User as
Blacklisted

Confirm
Pick-Up

<<fail>>
[impossible to repair]

<<succeed>>
[repaired]

<<fail>>

[bad shape]

[ok] <<succeed>>

Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 5: Activity diagram showing the details of transition Pick Up Bicycle.

Given an artifact A ∈M, we denote by tasks(A) the

set of tasks appearing in the state transition diagram

SA, also considering all activity diagrams related to SA.

We then define tasks(B) =
⋃

A∈artifacts(M) tasks(A).

For instance, the operation contract for task Con-

firm Pick-Up can be seen below:

operation Confirm Pick -Up (u:User , b:Bicycle)

post: BicycleRental.allInstances ()->exists(br

| br.oclIsNew () and br.startTime=now()

and confirmed=true and

br.inUse=b.oclAsType(InUse) and

br.active=u.oclAsType(Active))

Confirm Pick-Up has two input parameters, User

and Bicycle. Note that this task is part of an event (Pick

Up Bicycle) which appears in two different state ma-

chine diagrams, for artifacts User and Bicycle. Hence,

it has the two artifacts as input parameters.

For the purpose of this paper, we assume that the

whole BAUML is coherent and that the various models

conform to each other; e.g. each artifact has its cor-

responding state machine diagram, the external events

are refined in an activity diagram, the tags in the ac-

tivity diagram appear in the corresponding transitions

of the state machine diagram, etc.

4.2 Converting BAUML models to Petri nets

Logs contain information about the events that have

taken place in a system, including when they happened.

In the context of process conformance, an event is a

noteworthy occurrence whose execution is recorded in

a log. In the context of BAUML models, an event may

actually be a set of occurrences.

In order to check conformance of these logs to our

BAUML models, we need to be able to determine which

components of BAUML actually deal with occurrences

that are recorded in the log. According to our repre-

sentation, external events deal with noteworthy occur-

rences. In particular, external events are further refined

by means of activity diagrams showing the units of work

(i.e. the events in the context of process conformance)

and the order in which they should occur.

However, the occurrence of these events and effects

cannot take place randomly at any time. Their exis-

tence is limited by the state of the artifact that they

make changes to. This information is represented in the

state machine diagram, which shows the artifact’s evo-

lution. For this reason, when translating our specifica-

tion into Petri nets with the final goal of checking con-

8 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

formance, we should translate activity diagrams, which

contain the details of external events, and the context

in which events occur, defined by the state machine di-

agram.

This section will present this translation process.

The translation in essence is similar to the one done

in [28] for BPMN extended with data annotations.

At the beginning, given a BAUML model B =

〈M,S,P, T 〉, we have a set artifacts(M) of business

artifacts. For each A ∈ artifacts(M), SA corresponds

to its state machine diagram and PSA
corresponds to

the set of activity diagrams for each external event ε

in (SA). Given an artifact A, we proceed in two steps.

First, the transformation of SA into a Petri net PN A

is performed. In the second step, each transition t in

PN A that contains an external event ε is refined with

the Petri net PN(Pε) representing the corresponding

behavior underlying activity diagram Pε. After refin-

ing these transitions in PN A, the final Petri net PN A

representing artifact A will be obtained.

4.2.1 From SA to PN A

The translation process from SA to PN A will map each

component of the state machine diagram SA to one or

several components of the resulting Petri net PN A.

To begin with, each state v ∈ V in SA =

〈V, vo, vf , E,X, T 〉 will correspond to a place pl ∈ Pl

in PN A = (Pl, Tr,Ar, ∅, α,Mini). The place plo ∈ Pl

derived from the initial state vo of SA will be marked

with one token such that Mini = {plo}.
State transitions in SA are a bit more complex to

translate. Intuitively, and in the general case (i.e. the

transition has no tags associated to its event), given

a transition t in SA, which has vs and vt as source

and target states (respectively), the transformation is

straightforward: a transition tr and two arcs (pls, tr)

and (tr, plt) will be added to the petri net PN A, where

pls and plt are the places that correspond to vs and vt.

More formally, transitions in T will be translated

according to their type as explained below (see section

section 2.1 for their definition). Note that at this point

we do not consider yet conditions OCLM:

1. TimeEvent /X

2. ExternalEvent(a1, ..., an) ([C])

We define two subsets of transitions, Ttime ⊆ T and

Text ⊆ T that correspond to the first and second type

of transitions respectively.

Each transition in SA of the first type will corre-

spond to a transition in the Petri net, labelled with

the name of effect x. Time events are not specifically

translated. More formally, for each t ∈ Ttime such that

t = 〈vi, ∅, e, ∅, x, vt〉, we define a transition tr in the

Petri net labelled x. We add two arcs (pli, tr), (tr, plt)

to the arc set Ar, where pli and plt correspond to the

places of vi and vt.

For the second type of transitions, which denote ex-

ternal events, we first add a transition tr which will

represent a place-holder for all the possible outcomes

of the external event, thus hiding the choices. After-

wards, the actual choices will be refined. We first need

to group in the same set those transitions in SA which

have the same source state and event but a different tag.

The remaining transitions (i.e. the ones which are not

grouped into a set) will be dealt with in a different way.

The reason behind this is that each set of transitions

in SA will map to only one transition in the Petri net
PN A, whereas the remaining ones will each correspond

to a transition.

More formally, for every set of transitions Tcondm =

{t1, ..., tk} ⊆ Text such that t1 = 〈vs, ∅, e, c1, ∅, vt1〉,
..., tk = 〈vs, ∅, e, ck, ∅, vtk〉, where for each i, j such

that i 6= j and 1 ≤ i, j ≤ k, then ci 6= cj , and

e ∈ extEvents(SA) the whole set of transitions will

correspond to one transition tr ∈ Tr in PN A labelled e.

In this case, k+1 arcs are added to Ar: the arc (pls, tr)

and k different arcs (tr, pl1)[c1], . . . , (tr, plk)[ck]. Hence,

these k arcs are annotated with their corresponding tag,

and each pli corresponds to the place representing state

si
3.

Figure 6 shows how the Bicycle artifact is trans-

lated in this first step. Notice for instance transitions

Pick Up Bicycle [success] and Pick Up Bicycle [fail] in

Figure 3. Both transitions have the same state as source

and the same event, so the target state in this case is

determined by the tag associated to the transition. In

the derived Petri net (Figure 6), the two possibilities

are represented as two arcs from the same transition

PickUp.

Strictly speaking, the Petri net PN A that results

from this step is not equivalent to the original SA. The

reason is the way in which we translate transitions

which contain events with tags. An event e in SA leads

to a state sk only if the tag ck is satisfied, whereas

if the traditional Petri net firing rule is considered in

PN A (i.e., leaving out the conditions annotated in the

outgoing arcs of e in PN A), the place connected via the

arc annotated with ck will always be marked. Again,

we stress that the transformation in this first step is

only used to facilitate the incorporation of the Petri

nets that correspond to the activity diagrams into

3 We overload the syntax of the Petri nets to incorporate
in some of the arcs information on the tag used. This is only
to facilitate the translation in the next step, and has no se-
mantics associated.

Conformance Checking in UML Artifact-Centric BPM 9

init Register available P ickUp

inUse
〈success〉

unusuable

〈fail〉

Repair

〈success〉

final
〈fail〉

Return

BlackList

lost

Recover

Fig. 6: The bicing example, representing the artifact shown in Figure 3.

this net, and therefore the problem will be amended

at the end. In the Bicing example, we will see how

the supposed concurrency between places inUse and

unusable in the Petri net of Figure 6 will never happen

after the transformation done in the next step.

4.2.2 From PN A, PSA
to PN A

After the first step has been performed, we need to

redefine some of the transitions in PN A. In particular,

we will redefine those that correspond to an external

event in SA and, for this reason, they have an associated

activity diagram.

Each such transition trε ∈ Tr in PN A labelled with

event ε will be refined with the Petri net obtained by

translating the corresponding activity diagram Pε, de-

noted PN (Pε). For the translation of activity diagrams

into Petri nets, we will base our translation on the work

of [38]. We will restrict the translation to those elements

that are relevant for the specification of associations

within the BAUML framework. These elements are ac-

tions (i.e. tasks), decision, merge, fork and join nodes.

We will also deal, logically, with the initial node and

the activity final node. Figure 7, based on [38], shows

how to translate each of these elements (left column)

to an element in a Petri net (right column).

Also notice that transition tr will only have one out-

going and one incoming arc. There can only be one out-

going arc because after its execution the artifact will

be in a specific state and not in several states at once.

There is only one incoming arc because a transition in

this case corresponds to an arc in SA, which can only

have one source state. Applying this translation to our

activity diagram in Figure 5, we obtain the Petri net in

Figure 8. Note that guard conditions are not specifically

translated.

Without loss of generality, we assume that the

elements in PN (Pε) and PN A are disjoint. In or-

Task

Special cases:

Activity Diagram Petri Net

Fig. 7: Translation of activity diagram’s elements into a
Petri net, adapted from [38].

der to determine how we should refine each tran-

sition trε ∈ Tr in PN A labelled with event ε

such that ε ∈ extEvents(SA) with PN (Pε) =

(Plε, T rε, Arε, Iε, α,Mini,ε), we will consider two dif-

ferent cases:

1. Pε does not have any tags in the edges connected

to the activity final node. In terms of the semantics

of the model, this means that the execution of Pε

will bring the artifact to the state indicated in the

transition system without any conditions. Formally,

given Pε = 〈N,no, nf , F 〉, every f = 〈n, g, c, nf 〉 ∈
F (note that nf is a final node) implies that c = ∅.

2. Pε does have tags in the edges connected to the final

node. This means that the artifact’s final state after

the execution of Pε depends precisely on the result

of this execution. In this case, there will be tags

10 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

RequestBicycle

GetBicycle

Return ConfirmPickUp

ConfirmReturn

〈fail〉
〈succeed〉

Fig. 8: Petri net resulting from the translation of activity
diagram Pick Up Bicycle in Figure 5.

associated to the outgoing arcs from trε in PN A.

Formally, given Pε = 〈N,no, nf , F 〉, at least one

f = 〈n, g, c, nf 〉 (note that nf is a final node) implies

that c 6= ∅.

In the first case, trε will be substituted by PN (Pε)

by adding all the nodes and arcs of PN (Pε) except

the initial and final place (and corresponding arcs).

For these, the place pl ∈ •trε will be connected

to the outgoing arcs of the initial place Mini: let

(Mini, z1), . . . , (Mini, zk) be a set of arcs in PN (Pε);

the set of arcs (pl, z1), . . . , (pl, zk) is inserted into PN A.
The transformation is symmetric for the place pl′ ∈ tr•ε
and the final place of PN (Pε).

In the second case, trε will be substituted by

PN (Pε) by adding all the nodes and arcs of PN (Pε)

except the initial place and the final places (and cor-

responding arcs). Like in the previous case, the place

pl ∈ •trε will inherit the outgoing arcs of the initial

place Mini: let (Mini, z1), . . . , (Mini, zk) be the set of

arcs in PN (Pε); the set of arcs (pl, z1), . . . , (pl, zk) is

inserted into PN A.

For every final place plf ∈ PN (Pε), given the arcs

(tr1, plf)[c1], . . . , (trn, plf)[ck], every place pl′ ∈ tr•ε in

PN A will have them as incoming arcs of the final place

plf . In this way we avoid the supposed concurrency be-

tween places in the Petri net PN A obtained as a result

of the first step.

Figure 9 describes the Petri net obtained from the

complete BAUML description of the artifact Bicycle of

our example in Section 4.1.

4.3 Adding context-dependent behaviour to Petri nets

In the previous section we have shown how to obtain

a Petri net for a state machine diagram and its cor-

responding activity diagrams, but we did not consider

any conditions OCLM in the state machine diagram.

However, in general, the execution of a business ar-

tifact may depend on the execution of other business ar-

tifacts as it happens in our example with artifact User

which depends on the behavior of Bicycle. This kind

of situations can be easily identified from the artifact-

centric specification since the state machine diagram

of those instances of artifacts will contain some transi-

tion conditioned on the number of other instances. The

state diagram of User in Figure 4 contains several such

transitions that depend on the number of bicycles that

the user still has. In this case, the translation from the

state machine diagram into a Petri Net is an extension

of the previous one.

States and transitions in state machine SA =

〈V, vo, vf , E,X, T 〉 are encoded in a Petri net PN A =

(Pl, Tr,Ar, ∅, α,Mini) as explained in Step 1. So, we

need to explain only the different kinds of transitions

whose behaviour is related to the number of other ar-

tifacts. Let tr ∈ Tr be a transition in PN A, such that

pl ∈ •tr and pl′ ∈ tr• and tr is labelled with event e[t]

or e, or effect x (but not both); the following aspects

need to be taken into consideration:

1. The number (i.e. the cardinality) of artifacts to

which the current artifact is related.

2. Whether the event e or the effect x in the transi-

tion tr in SA changes the number of other artifacts

related to the current one.

3. Whether the triggering of the transition tr depends

on a guard condition that checks the number of

other artifacts related to the current instance of the

artifact. This is similar to the work in [18].

The remainder of this subsection is structured ac-

cording to these three points.

4.3.1 Incorporating cardinalities into the Petri net

As Figure 10 shows, for each other artifact B referenced

in SA, we need to incorporate two different counters

(complementary k-bounded places in the Petri net) in
PN A for that purpose: availableB , with as many to-

kens as other artifacts can be taken; and takenB , with

denotes the tokens currently taken (initially it has no

token).

The number of tokens to be added to the place

availableB corresponds to the maximum cardinality be-

tween artifacts A and B; more specifically, to the maxi-

mum number of B that any point in time can be related

Conformance Checking in UML Artifact-Centric BPM 11

Fig. 9: Petri net PNbike describing the Bicycle artifact, highlighting the Pick up Bicycle activity diagram translation part.

to A. This information can be extracted from the class

diagram, see Figure 2.

Intuitively, this can be done by examining all the

associations between the artifacts (both at the super-

class and the subclass level), and keeping the highest

maximum cardinality.

This process is detailed in Algorithm 1. Given two

artifacts, A and B, the algorithm begins by examining

the superclass of A and finding out the highest maxi-

mum cardinality of B in relation to A’s superclass. This

value is stored in a variable. Afterwards, the algorithm

applies the same process to each subclass of A, this time

only keeping the highest maximum cardinality consid-

ering all the subclasses (remember that due to the dis-

joint, complete constraint in the artifact’s hierarchy an

instance of an artifact can only have one of the sub-

classes types at a time). Finally, these two values are

added to obtain the highest maximum cardinality, that

is, the number of B artifacts that can be related at most

to A.

Algorithm 1 calculateHighestMaxCardinality(A,B)

asup is artifact’s A top superclass
A′ is the set of A’s subclasses
int highCardSup = highMaxCardForClass(asup, B);
int highCardSub = 0;
for all a ∈ A′ do

int currHighCardSub = highMaxCardForClass(a,B);
if highCardSub < currHighCardSub then

highCardSub = currHighCardSub;
end if

end for
return highCardSup + highCardSub

Algorithm 2 details how the highest maximum car-

dinality between a certain class a and an artifact B is

obtained. At the start it obtains all the relationships

between a and any class in B’s hierarchy. It then gen-

erates all valid maximum combinations of relationships.

If there are no XOR constraints between a and any class

of B, then there will only be one maxium combination,

containing all the relationships between a and any B.

On the other hand, if there any XOR constraints, there

will be at least two valid maximum combinations that

need to be considered.

In our example, artifact User has no relationships

with Bicycle at the superclass level. On the other hand,

a Blacklisted user may be related to Lost and InUse bi-

cycles. Since there is no XOR constraint between these

two relationships, there will be only one maximum valid

combination, formed by these two relationships.

For each of these valid combinations, it calculates

their maximum cardinality and keeps only the highest.

Algorithm 2 highMaxCardForClass(a,B)

R is the set of associations between a and any b ∈ B

Set〈 Set〈 Relationship〉〉 relComb = getV alidComb(R);
int globalHighCard = 0;
for all relSet ∈ relComb do

int highCard = calculateHighCard(relSet);
if highCard > globalHighCard then

globalHighCard = highCard;
end if

end for

return globalHighCard;

Finally, Algorithm 3 shows how the highest max-

imum cardinality for each of these combinations

is obtained. If there is a relevant OCL constraint

of the form context A inv: self.roleB1->size() + ... +

self.roleBn->size() <= Y , the algorithm will obtain the

maximum cardinality established by the constraint (Y)

and consider all the classes that take part in it as al-

ready processed.

On the other hand, if there aren’t relevant OCL con-

straints as described above, then the highest maximum

cardinality will be obtained by adding up all the maxi-

mum cardinalities at the B end of the relationships.

12 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

Note that we impose a restriction on OCL con-

straints of the form context A inv: self.roleB1->size()

+ ... + self.roleBn->size() <= Y , by stating that a cer-

tain relationship (identified by self.roleBi) may not ap-

pear more than once in such constraints with the same

(context A).

Algorithm 3 calculateHighCard(relSet)

int highestCard = 0;
for all r ∈ relSet do

if r appears in relevant OCL constraint then
int currentMaxCard = getMaxCardOclConstr(r);
Set〈 Relationship〉 relOCL = getRelInOclConstr(r);
relSet.removeSet(relOCL);
highestCard+ = currentMaxCard;

else

int currentMaxCard = getMaxCard(r);
highestCard+ = currentMaxCard;

end if

end for
return highestCard;

Returning to our example, the relationships be-

tween Blacklisted user, and InUse and Lost bi-

cycle do not have any XOR constraint. How-

ever, there is an OCL constraint that follows

the pattern explained above (context Blacklisted inv:

self.lost->size()+self.inUse->size() <= 3). In this case,

Algorithm 3 will determine that the maximum cardi-

nality is 3, as stated in the constraint.

4.3.2 Incorporating cardinality updates to the Petri net

For every transition transition tr in SA we need to do

the following: 1) determine if tr increases or decreases

the number of other artifacts (or does neither), 2) in

case it makes changes, incorporate them into the Petri

net.

Determining changes to the number of artifacts. If the

event e or the effect x in the transition tr in SA changes

the number of other artifacts related to the current one,

two situations need to be considered:

(a) tr increases the number of other artifact instances.

(b) tr decreases the number of other artifact instances.

The knowledge required to determine whether an

event modifies the number of other artifacts can be au-

tomatically drawn from the operation contracts speci-

fying the services in the activity diagrams. We do so by

identifying the structural events in the postcondition

(i.e. elementary changes in the population of an entity

or relationship type [32]). In particular we need to look

for structural events that add or delete instances of the

relationship between the artifacts (including their sub-

classes).

Below, we present some OCL patterns [35] that re-

sult in the structural events that create or delete in-

stances of the relationship between the artifacts. This

also includes the creation and deletion of association

classes, whose existence is tied to the existence of the

relationship between the classes:

– Relationship Creation: An instance of a rela-

tion between classes ci and cj will be created by

any expression of the form ci.role-cj = cj or

ci.role-cj-> includes(cj), where ci and cj re-

fer to classes in the class diagram, while role-cj
refers to the relationship between ci and cj through

role-cj .

– Relationship Deletion: An instance of a relation

between ci and cj will be deleted if it contains

the OCL expression ci.role-cj ->excludes(cj),

or if an instance x of Ci or Cj is deleted. The dele-

tion of an instance x of a class C will contain the

expression Cgen.allInstances()->excludes(x) or

the expression: not x.oclIsTypeOf(Cgen), where

Cgen is either the class C or a superclass of C.

– Association Class Creation: In this case, the

creation would have the form: C.allInstances()->

exists(i| i.oclIsNew() and i.part1=p1
and...and i.partn=pn and i.attr1=a1
and...and i.attrm=am) or the expression:

i.oclIsTypeOf(C) and i.part1=p1 and ...

and i.partn=pn and i.attr1=a1 and...and

i.attrm=am, where pi refers to any class Ci
participating in the relationship, and attrj to any

attribute of C.

– Association Class Deletion: The dele-

tion of an association class i has the form

C.allInstances()-> excludes(i), or: not

i.oclIsTypeOf(C). It will also be deleted if any of

its participants p1,...,pn is deleted.

For example, for the OCL operation contract of task

Confirm Pick-Up (see page 7), we can see that a new

BicycleRental is created (an association class), linking

a Bicycle and a User. Hence, this increases by one the

number of bicycles assigned to the user.

Incorporating these changes to the Petri net. We now

need to include additional arcs/inhibitor arcs in PN A to

be able to model the effect of the events on the counters,

and to ensure for instance that a transition may only

take place when there is not an instance of an artifact

taken. In the following transformations, each time a new

place or transition is created we assume that new names

are created for these elements, so that name clashes

Conformance Checking in UML Artifact-Centric BPM 13

with previouly created elements do not arise. This is

done as follows:

(a) If tr increases the number of instances of B,

a new place plB is added to PN A and the

arc (tr, pl′) is replaced by arc (tr, plB). A

new invisible transition incCounterB is added

to PN A together with arcs: (plB , incCounterB),

(availableB , incCounterB), (incCounterB , takenB)

and (incCounterB , pl
′).

(b) If tr decreases the number of instances of B, a

place plB is added to PN A and the arc (tr, pl′) is

replaced by arc (tr, plB). A new invisible transition

decCounterB is added to PN A together with

arcs: (pl′′, decCounterB),(takenB , decCounterB),

(decCounterB , availableB) and (decCounterB , pl
′).

Note that events/tasks that merely change the sub-

class of an artifact (by deleting the initial subclass and

adding a new different subclass, but keeping the rela-

tionships between artifacts), do not require additional

arcs or inhibitor arcs, as they keep the balance between

available and taken tokens. This results in a simplified,

more streamlined Petri net.

4.3.3 Incorporating guard conditions to the Petri net

The last step incorporates the guard conditions into

the Petri net. More specifically, if the triggering of the

transition tr depends on a condition that checks the

number of other artifacts related to the current instance

of the artifact, we consider two alternatives:

(a) Equality or inequality comparison to 0.

(b) Equality or inequality comparison to 1. In this case,

the event or effect of the transition is assumed to be

decreasing the number of instances that are referred

to by the transition4.

Note that guard conditions referring to the num-

ber of other artifacts related to the current one is rep-

resented with #ArtifactName. In our example, it is

#bicycle.

(a) If tr contains an inequality or equality comparison

to 0 on the number of instances of B:

(i) If it is an inequality comparison, a new place

plB is added to PN A and the arc (pl, tr) in

PN A is replaced by arc (plB , tr). A new invisible

transition continueB is added to PN A together

with arcs: (pl, continueB), (takenB , continueB),

(continueB , takenB) and (continueB , pl
′′).

4 We introduced this possibility due to appearing often in
specifications, but as the Figure 10 suggests, it is a modifica-
tion of the one corresponding to the comparison to 0.

(ii) Using the same place plB , we proceed similarly

in the case of an equality comparison, with a new

invisible transition backB , with arcs (pl, backB)

and (back, plB) and a zero comparison from

takenB to backB , represented by an inhibitor

arc. Intuitively, this construction controls the

evolution of the artifact by making sure that the

cardinality of the relation with other artifacts is

fulfilled.

(b) If tr contains an equality or inequality comparison

to 1 on the number of instances of B:

(i) In the case of an inequality comparison, a

new place plB is added to PN A and the arc

(tr, pl′) in PN A is replaced by arc (tr, plB).

A new invisible transition continueB is added

to PN A together with arcs: (plB , continueB),

(takenB , continueB), (continueB , takenB) and

(continueB , pl
′).

(ii) Using the same place plB , we proceed simi-

larly in the second case, with a new invisi-

ble transition backB , with arcs (plB , backB) and

(backB , pl
′) and a zero comparison from takenB

to backB , represented by an inhibitor arc.

Figure 11 shows PN user. The inclusion in PN user

of the Petri nets that correspond to the activity dia-

grams to obtain the final Petri net PN user is performed

as before, and is not shown due to its complexity.

In summary, the presented transformation rules al-

low to generate a Petri net (possibly with inhibitor arcs)

for each artifact, which apart from describing the arti-

fact lifecycle, it encompasses the interaction cardinality

constraints with other artifacts. The rules presented are

clearly an initial proposal, which in spite of its simplic-

ity, allowed us to deal with artifact-centric specifica-

tions like the one used in this paper.

We have presented the translations in an intuitive

way, focusing on the describing precisely the important

ideas of the translation, but not addressing their oper-

ationalization, an aspect that we leave as future work.

In spite of this, the available tool support can be used

to get more insight on the details not addressed in this

paper.

5 Applying Conformance Checking to BAUML

Up to this point, we have shown how to translate the

state machine diagram S and the activity diagrams P
of a BAUML specification B= 〈M,S,P, T 〉 into a Petri

net PN A. Now, the obtained Petri net must be com-

pared and contrasted with the real execution of the

system LA, where LA is the event log recorded by the

14 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

Fig. 10: Translation rules for artifacts with context-dependent behavior

system projected into the activities involved in the exe-

cution of artifact A, by means of conformance checking

techniques. Then, these results can be mapped to the

original BAUML model.

5.1 Introduction to Conformance Checking

Conformance checking techniques are able to identify

main paths of the model executed by the system, and

assess the quality of the model to describe the reality.

But they also locate where exactly the mismatches be-

tween specification and reality are, in order to correct

them on the specification or the implementation [36,

29]. This section shortly describes the alignment-based

conformance checking. Next section will instantiate it

to the problem of this paper.

Most of the state-of-the-art conformance checking

techniques rely on the alignment of the event log and

the Petri net model as a pre-processing step [5,29,10,

25]. In other words, the activities in a log trace σA
must be linked to transitions of the Petri net PN A

in the best-possible way, resulting on a so-called align-

ment. Figure 12 shows a possible alignment between

the trace CreateNewBicycle, AssigntoAnchorPoint, Re-

questBicycle, GetBicycle, ConfirmPick-Up, PlaceBicy-

cleInAnchorPoint, ConfirmBicycleReturn (i.e, the ordi-

nary bicycle cycle), and the PN bike shown in Figure 9.

Notice that, for the sake of readability the names have

been shortened. The upper row of the alignment rep-

resents the sequence of events, and the middle row the

sequence of Petri net transitions linked to them. As it

can be seen, in this case there is a direct way to align

the log trace into the Petri net, i.e., each event of the

log trace can be mimicked by the net (this is called a

synchronous move).

When all the alignments of a log result in syn-

chronous moves, it indicates that the specification

model captures perfectly the behavior of the system.

Moreover, the model can be enriched with the frequency

of these moves, showing the most frequent paths ex-

ecuted in the system. However, there are other cases

where, given a trace of the log, it is not possible to ob-

tain an alignment with synchronous moves only. Let us

Conformance Checking in UML Artifact-Centric BPM 15

init Register idle P ickUp

〈fail〉

〈success〉

IncCounter

active

P ickUp

〈fail〉

〈success〉

IncCounter

Return

DecCounter

Continue

Back

BlackList

blacklisted

Unblock

〈success〉

〈fail〉

Return

DecCounter

available taken

Fig. 11: The user artifact with counters (without refining activity diagram’s transitions, and without using subscripts for
related artifact instances on the silent transitions inserted).

as req ge pl

0 0 0 0 0

cr

cr as req ge pl

00

cop

cop cbr

cbr

Fig. 12: Alignment illustrating a perfect match between a
typical bicycle picking recorded in the system and the model

derived from the system specification.

consider the log trace CreateNewBicycle, AssigntoAn-

chorPoint, RequestBicycle, GetBicycle, ConfirmPick-

Up, PlaceBicycleInAnchorPoint, RequestBicycle, i.e., a

bicycle is picked up and returned, but the return is

never manually confirmed by the user. A possible align-

ment is shown in Figure 13. In order to be mimicked by

the model, the event ConfirmBicycleReturn is missing

in the trace. This is indicated by the symbol �, call-

ing it a model move. The detection of model moves in

the alignments indicate deviations between the specifi-

cation and the reality. In this example, the user forgets

to manually check the return of the bicycle, an action

advised to check that the system has correctly recorded

the return, avoiding legal problems about lost bicycles.

The last row of the alignment indicates the cost of the

move according to a cost function, e.g., synchronous

moves are preferred having a cost of 0, while the vio-

lation indicated by model move has a cost of 1. The

costs of the alignments are used to assess numerically

the quality of the specification with respect to the log.

But more importantly, they indicate the exact location

of the problems, and its possible causes.

as req ge pl

0 0 0 0 1

cr

cr as req ge pl

00

cop

cop cbr

� req

0

req

Fig. 13: Alignment illustrating a case where the return of
the bicycle is not confirmed by the used and specified.

Aligning techniques are also able to detect log

moves, i.e., events in the trace that do not correspond

with valid actions according to the model. Figure 14

shows an example of alignment with a log move. Given

the trace CreateNewBicycle, AssigntoAnchorPoint, Re-

questBicycle, GetBicycle, ConfirmPick-Up, PlaceBi-

cycleInAnchorPoint, PlaceBicycleInAnchorPoint, Con-

firmBicycleReturn, a log move indicates that the action

PlaceBicycleInAnchorPoint appears twice in the trace,

when it should only appear once according to the spec-

ification. Log moves could indicate violations produced

by errors in our system. For example, the system may

be assigning two anchor points for the same returned

bicycle, reducing the capacity of a station with ghost

bicycles.

When an alignment has the lowest cost possible (i.e.,

there is no other possible alignment between the same

trace and model with lowest cost), it is called optimal.

Optimal alignments are preferred (being 0 the best sce-

16 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

as req ge pl

0 0 0 0 1

cr

cr as req ge pl

00

cop

cop cbr

cbr

�
pl

0

Fig. 14: Alignment illustrating a malfunction of the system,
where a bicycle is recorded twice being place on an anchor

point.

nario possible), as they represent the best-way map-

ping between specification and log. In the literature,

there exist algorithms to compute optimal alignments

between Petri nets and logs in a wide range of sce-

narios (e.g., large models, different cost functions, . . .),

and approaches to assess the conformance from those

alignments [5,29,2]. For more details on the alignment

algorithms we refer the reader to those works.

Finally, Figure 15 shows the alignment for the trace

CreateNewBicycle, AssigntoAnchorPoint, RequestBicy-

cle, GetBicycle, ReturntoAnchorPoint, ConfirmReturn,

RequestBicycle, GetBicycle, ConfirmPick-Up. As the

alignment shows, the bicycle is picked up and re-

turned immediately, indicating a problem in the bicy-

cle. According to the specification, the bicycle should

have been repaired (RepairBicycle), and eventually,

anchored again to a station (AnchorBicycleInAnchor-

Point), and marked as available (MarkBicycleAsAvail-

able). However, as the model moves show, the bicycle

was never removed and repaired, making it possible for

another user to take the broken bicycle again.

as req ge cor � � req geret � cop

0 0 0 0 1 0 0

cr

cr as req ge cor req geret cop

000

rep an ma

1 1

Fig. 15: Alignment illustrating a broken bicycle returned to
the ordinary circuit without the necessary reparation

detailed in the specification.

5.2 Bringing up the results to the BAUML models

The results obtained previously focus into the align-

ment between a Petri net and a trace. However, in this

work the Petri net acts as an intermediate model and,

in order to close the circle, we are interested in project-

ing these results to the original BAUML models. We

distinguish two kind of results to be transferred: those

related to the artifact life-cycles, and those produced by

mismatches in the cardinality relations among artifacts.

Projecting back to BAUML Artifact Life-cycle viola-

tions

There are two elements that need to be taken into con-

sideration:

1. The activity diagram to which the task belongs, and

2. The context in which the task executes.

It is very easy to determine (1). Each labelled, vis-

ible transition in the Petri net corresponds exactly to

a task in the UML activity diagrams. However, this in-

formation is not enough to locate the real problem in

the initial models, as a certain activity diagram may

execute under different circumstances or contexts, e.g.

Return Bicycle in the case of User, which can take place

when the user is Blacklisted or Active.

Therefore, in order to determine (2), it is only neces-

sary to find the closest labelled places that correspond

to states in the state machine diagram. This is quite

straightforward to do as each place in the Petri net

will either map univocally to exactly one state in the

state machine diagram or to none. After performing this

analysis, we will have obtained the context in which the

activity diagram does not execute properly.

For instance, for the alignment in Figure 15, we

know that tasks RepairBicycle, AnchorBicycleInAn-

chorPoint and MarkBicycleAsAvailable should have

been executed. By analyzing the activity diagrams, we

identify that all these tasks belong to the same activity

diagram: RecoverBicycle.

Finding the context in which RecoverBicycle does

not execute is easy in this case, because RecoverBicycle

only appears once in the state machine diagram: the

deviation detected is in the transition between states

Unusable and Available.

This way, by analyzing (1) and (2) above, results

can be projected back to the BAUML specification.

Projecting back to BAUML Artifact Context-

dependency violations

Unlike control-flow violations, violations on the cardi-

nality conditions among artifacts are not so straightfor-

ward to analyze and transfer back to the BAUML spec-

ification. For such cases, the model and log moves of the

alignments need to be analyzed in order to detect pat-

terns that pinpoint context-dependency violations. In

this paper we propose two examples of patterns: correc-

tion patterns and prevention patterns. These patterns

are based on the fact that alignments techniques pro-

vide an optimal (i.e., minimal cost) model-based expla-

nation of the reality, which in some situations may sug-

gests alternative ways of explaining what has happened

Conformance Checking in UML Artifact-Centric BPM 17

in reality. Accordingly, the two patterns considered are

not mutually exclusive: a deviation on the artifact car-

dinalities can sometimes be both explained either as a

correction or prevention pattern.

Correction patterns are meant to provide an alter-

native to the observed trace so that the deviations on

the cardinality relations between artifacts are avoided

in the model explanation. These are based on the

search for particular model moves. In practice, a cor-

rection pattern is a sequence of model moves artifi-

cially inserted in order to amend the cardinality re-

lations between artifacts, e.g., before there is an in-

crease that violates such conditions. For example, let

us consider the trace CreateNewBicycle, AssigntoAn-

chorPoint, RequestBicycle, GetBicycle, ConfirmPick-

Up, RequestBicycle, GetBicycle, ConfirmPick-Up, Re-

questBicycle, GetBicycle, ConfirmPick-Up, RequestBi-

cycle, GetBicycle, ConfirmPick-Up, i.e., the malfun-

tioning system has allowed a user to succesfully pick-

up 4 bikes, when the specification only allows for 3.

Figure 16 shows the alignment resulting of the confor-

mance check. Notice that the moves corresponding to

invisible transitions (e.g., increase/decrease the number

of bikes available) are denoted with a different color

than the log/model moves, and have no cost penalty.

As one could notice, between the third and forth incre-

ment of bikes in use, the alignment denotes a sequence

of model moves PlaceBicycleInAnchorPoint, Confirm-

BicycleReturn, i.e., an artificial return of a bike is per-

formed in order to decrease the number of bikes in use

before the forth bike is succesfully taken. Therefore, a

segment of model moves that affect the corresponding

available place indicate a correction pattern.

Prevention patterns are a symmetric perspective

to correction patterns, focusing instead on log moves:

an increment that violates a cardinality condition is

never performed, and a sequence of log moves appears,

in order to discard the events that must occur af-

ter that increment. For example, let us consider the

same trace as before CreateNewBicycle, AssigntoAn-

chorPoint, RequestBicycle, GetBicycle, ConfirmPick-

Up, RequestBicycle, GetBicycle, ConfirmPick-Up, Re-

questBicycle, GetBicycle, ConfirmPick-Up, RequestBi-

cycle, GetBicycle, ConfirmPick-Up, PlaceBicycleInAn-

chorPoint, i.e., the user has picked-up 4 bikes before

trying to return one of them, when the specification

only allows for 3. The resulting alignment is shown in

Figure 17. In this case, the fourth invisible move to in-

crement the number of bikes in use never occurs, since it

was not an available transition given the lack of tokens

in the corresponding available place. And consequently,

the next PlaceBicycleInAnchorPoint event in the log is

considered a log move. Given the optimal nature of the

alignment algorithm, a correction or prevention pattern

is always determined by the lower penalty cost of the

alignment. An analysis of the model could determine

the less costly alternatives of model moves to appear in

the correction patterns.

Finally, unlike artifact control-flow violations where

conformance results could be used to correct the ac-

tivity or state diagrams, context-dependent violations

can be directly transferred to the class diagram. For in-

stance, Figure 18 shows the more than 3 bikes violation

detected in the previous alignments, highlighted in the

annotation and cardinalities of the class diagram.

6 Implementation and Evaluation

In the previous sections we proposed a three-step ap-

proach to check conformance of BAUML specifications.

These sections showed how a BAUML specification can

be transformed into a Petri net, to then be checked

against an event log execution using state-of-the-art

conformance checking techniques. The ideas presented

have been implemented (Section 6.1) and their poten-

tial has been evaluated using a plausible scenario (Sec-

tion 6.2).

6.1 Implementation

The approach presented in this paper has been imple-

mented and tested in the context of ProM framework 5.

ProM is an open-source Java framework for process

mining and it is the most widely used tool for academia.

Its plug-in architecture makes it possible to develop in-

dependent plug-ins for specific process mining tasks al-

lowing them to interact with the rest of the existing

plug-ins. In the context of the approach presented in

this paper, two new plug-ins have been incorporated

to the open repository of plug-ins of ProM, within the

so-called Specifact package.6 The package contains:

Import plug-in which import BAUML artifact spec-

ifications into ProM.

Conversion plug-in which convert an artifact speci-

fication in BAUML into a Petri net with potentially

inhibitor arcs (cf, Figure 19).

As is it previously mentioned, these plug-ins are

combined with other existing plug-ins to analyze the

conformance of the specification. In particular, the

plug-ins useful for this purpose are:

5 http://www.promtools.org/
6 https://svn.win.tue.nl/trac/prom/browser/Packages/

Specifact

18 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

req ge

0 0 0 0

cu

cu req ge

0

cop

cop

0 1 10 0 0 0 0 0 0 0 0 0 0 0 0

inc inc inc inc

� � � � � � � �req ge

req ge

cop

cop

req ge

req ge

cop

cop

req ge

req ge

cop

copdec conpl cbr

Fig. 16: Alignment illustrating a correction pattern case where a bike is artificially returned using model moves to denote the
violation of the number of bikes in use condition.

req ge

0 0 0 0

cu

cu req ge

0

cop

cop

00 0 0 0 0 0 0

inc inc inc

� � �req ge

req ge

cop

cop

req ge

req ge

cop

cop

0 0 0

req ge

req ge

cop

cop

1

pl

�

Fig. 17: Alignment illustrating a prevention pattern case where the increment of number of bikes in use is prevented by
means of a log move.

 id : String
 inServiceSince : Date

Bicycle

 id : String
 name : String

User

 number : Natural
 locked : Boolean

AnchorPoint

 startTime : DateTime
 confirmed : Boolean

BicycleRental

 expectedReturn : Date
InUse

 unsusableSince : Date
Unusable

 date : Date
Lost

 date : Date
Blacklisted

 lastReturn : Date [0..1]
Available

 id : String
 address : String

Station

 lastRental : Date [0..1]
Idle Active

BicycleState

1

0..1

0..1

0..2
0..1

1

1..*

1

1..3

0..11

0..3

responsible

{xor}

is still using

{disjoint,complete}

has lost

belongs to

{xor}

{disjoint, complete}

has

UserState

unusable bike is in is in

Fig. 18: Context-dependent cardinality violations
highlighted in the Bicing class diagram of Figure 2.

Import plug-ins which import event logs in different

formarts (e.g., XES or MXML) into ProM.

Export plug-ins which allow to export and store the

resulting Petri net in some standard Petri net for-

mat (e.g., PNML).

Conformance plug-ins which implement the differ-

ent conformance techniques, such as the alignments

algorithms over Petri nets (e.g., Replay a Log on

Petri Net for Conformance Analysis plug-in used

in the evaluation).

Visualization plug-ins which graphically visualize

the Petri net, the alignments, and the conformance

results.

Conversion plug-ins which convert the resulting

Petri net to other modelling notations such as Pro-

cess trees or BPMN for further analysis out of the

scope of this paper.

Utils plug-ins that includes a wide range of useful

tools, for example to filter events of a log.

Finally, in order to facilitate the definition of the

BAUML models for the user, we use Visual Paradigm7

to create the various diagrams in the framework. Visual

Paradigm is a commercial CASE tool which offers a

free community edition for non-commercial purposes.

From these diagrams it is possible to export an XML

file which can then be processed and translated into a

Petri net by our plug-ins.

6.2 Evaluation

In the Introduction we presented the need for analyzing

whether a real implementation satisfies its correspond-

ing artifact-centric specification. In this section we il-

lustrate how our approach can indeed fulfill this need,
using conformance checking techniques. In order to do

that, we use the Bicing case used as a running example

in this paper.

Figure 20 shows a screenshot of the activity dia-

grams in our BAUML specification in Visual Paradigm.

The whole model can be exported into an XML file (see

Figure 21).

Figure 22 shows the results of importing the

BAUML specification (in an XML file) into ProM using

the importer designed for such task, and applying the

plug-in Convert Balsa Artifact to Petri net to the bicy-

cle artifact. The result is a Petri net without inhibitor

arcs due to the artifact context-independent behavior,

the same net as the one shown in Figure 9.

On the other hand, Figure 23 partially shows a frag-

ment of the system log. The log used in this evaluation

contains 8031 cases, and 84514 events, over 18 differ-

ent activities. The format used for the log is XES, a

7 https://www.visual-paradigm.com

Conformance Checking in UML Artifact-Centric BPM 19

Fig. 19: A screenshot of ProM showing the plug-ins to convert a BAUML object into a Petri net with inhibitor arcs with its
initial marking. The top plug-in allows for a graphical configuration of the parameters such as the selection of the artifact to

convert, while the bottom one takes all the paremeters by default.

Fig. 20: Screenshot of our BAUML model in Visual
Paradigm

XML-based format for the interchange of event log data

between tools and application domains, approved by

the IEEE as the Standard for eXtensible Event Stream

(XES) for Achieving Interoperability in Event Logs

and Event Streams (1849-2016).8 The log only includes

those events in the system related with the activities in

the artifact bicycle.

The Petri net and the log are used to check the con-

formance between specification and system. Figures 24

and 25 show the conformance results obtained using the

Replay a Log on Petri Net for Conformance Analysis

8 http://www.xes-standard.org/

plug-in. The plug-in performs the alignment between

the log traces and the Petri net, and then the results

are displayed in different interactive views for a deeper

analysis. In Figure 24 the alignment results are used

to enhance the original model. This view allow us to

point out the highroads of our process, i.e., the parts of

our process with more executions are colored in dark

blue, while the more infrequent parts are colored in a

light blue. In this example, we conclude that most of

the executions involve the ordinary pick-up/return cy-

cle of the bicycle, while the repair/destroy/lost parts of

the model are infrequent.

This view also allows us to analyze the alignment

mismatches (move and log moves) in an aggregated way.

On the one hand, places involved in these violations

are colored in yellow. On the other hand, transitions

with model moves display a colored bar indicating the

ratio of model moves aligned with respect to the total

of synchronous moves. Figure 26 shows a zoomed-in

view of the activity ConfirmBicycleReturn, next to the

legend of the colored bar. From the figure we conclude

that, although this is not the general case, the number

of instances where a user does not confirm the return of

the bicycle is not negligible, i.e., 2480 out of 10070 are

not confirmed. This systemic problem may lead to an

increase of wrongly reported lost bicycles, a factor that

can be mitigated including modifications on the system

20 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

Fig. 21: Fragment of the XML which results from exporting our BAUML model

Fig. 22: Net result of converting the artifact-specification
bicycle into a Petri net.

(e.g., a red led indicating a warning until the return is

manually confirmed by the user using the bicing card).

The view shown in Figure 25 presents the results

of the alignment in a more fine-grained level of detail.

Each sequence of triangles represent the alignment for

one case variant. The triangles are colored depending

on the type of move: synchronous moves (green), log

moves (yellow), and model moves (purple). The view

is interactive, and placing the mouse over each triangle

gives you the activity name it represents. The plug-in

also provides quantitative information about the con-

formance, such as metrics and statistics per trace and

per log.

Figure 27 shows a close-up of one alignment. The

alignment indicates a bicycle that is picked up and im-

mediately returned (indicating a problem), but is im-

mediately picked-up and returned several times until

is is finally repaired. The example is similar to the

one shown in Figure 15, where the repair activities are

never performed (i.e., model moves) before the bicycle

is picked-up again. These discrepancies between spec-

ification and system indicate a systemic problem that

Fig. 23: Partial view of the system log, only including the
activities of the artifact bicycle.

needs to be addressed, e.g., the protocols for repair-

ing the bicycles are not being properly followed. It may

also indicate that the specification is not suitable for

the reality and it requires an update, e.g., the bicycle

is available for a certain number of tries until it is re-

ported as broken, or the specification needs to include

an additional activity between the return and the repair

indicating that the bike should be set to unavailable.

Conformance Checking in UML Artifact-Centric BPM 21

Fig. 24: Conformance checking results over the bicycle artifact Petri net, showing the highroads of the system execution.

Fig. 25: Alignment view reflecting the specific moves for each trace of the log.

Fig. 26: Figure showing the non-negligible proportion of
instances where the returning of the bike is not confirmed.

Figure 28 shows a similar case, where the system

records twice that a certain bicycle is being returned,

Fig. 27: Example of alignment showing bicycle picked up
and immediately returned until it is finally repaired.

denoted by a log move of PlaceBicycleInAnchorPoint

just after a synchronous move of the same activity. This

problem denotes an issue with the system implementa-

tion that could lead to an sub-optimal use of the sta-

tions, producing ghosts or duplicate bicycles, difficult

to track.

22 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

Fig. 28: Example of alignment showing a miss-recording on
the system, assigning twice an anchor point for the same

returned bicycle.

Although these results are obtained over the Petri

net, it is easy to transfer them over to the original

model, as each of the places in the Petri net corresponds

to a task. For instance, the issue with a bicycle being

returned twice, shown in Figure 28, reflects in the ac-

tivity diagram of Return Bicycle, shown in Figure 29.

Fig. 29: Example of alignment showing a miss-recording on
the system, assigning twice an anchor point for the same

returned bicycle.

Similarly, the conformance analysis can be per-

formed over the artifacts with context-dependent be-

havior such as the user artifact. Figure 30 shows the

resulting Petri net using the proposed approach. This

net is then aligned with the log to detect possible de-

viations. Figure 31 shows the case where the system

records a user requesting a fourth bicycle while the user

already has three bicycles in use. The fourth consecu-

tive request is represented by a log move, denoting a

problem with the system implementation that should

not allow for the possibility of requesting another bi-

cycle. Notice that, although the detection of misalign-

ment using conformance checking is an automatic task,

the explanation and contextualization of the misalign-

ment requires is a human interpretation. However, con-

formance checking techniques aid on that interpreta-

tion, detecting and highlighting the anomalies and the

elements involved.

7 Related Work

The work we present here is part of two research areas:

conformance checking and artifact-centric business pro-

cess models. For this reason, the first part of this section

gives an overview of the field of conformance check-

ing and the second part analyzes process-centric and

artifact-centric proposals for business process model-

ing. At the end, we deal with conformance checking ap-

plied to artifact-centric business process models, which

is what we do in this work.

Conformance checking emerged as the area of Pro-

cess Mining that compares existing process models with

actual observations of the process execution represented

as an event log in order to assess their quality [1].

The seminal work of [36] presented the conformance

between a model and a log as a multi-dimensional qual-

ity, and proposed best-effort metrics to asses such com-

parison. Recently, more sophisticate conformance def-

initions have been proposed, aligning both executed

and modeled behaviors, and providing an optimal as-

sessment of the conformance [5]. Conformance based

on aligning are considered the state-of-the-art meth-

ods, and have been adapted to specific scenarios, such

as large processes [30,2], genetic algorithms [9], multi-

perspectives [27], and partial order [26]. Most of confor-

mance checking techniques focused on the control flow

perspective of the processes [1]. In spite of this, tech-

niques that take into account further dimensions like

data or resources have appeared recently, which can

represent a first step towards enhancing the expressive

power of conformance checking [25].

In terms of representing the business processes, we

distinguish between process-centric and artifact-centric

approaches. Process-centric approaches focus on the

control-flow of the process, which tend to use languages

such as BPMN, YAWL, UML Activity Diagrams or

Workflow nets [39] for representing the processes. In the

case of BPMN and UML activity diagrams there exist

techniques to translate these models into Petri nets [14,

38]. On the other hand YAWL and WorkFlow nets are

already based on Petri nets [3,4]. However, there are

no specific techniques to consider the data when apply-

ing conformance checking to the equivalent Petri nets

of these models.

Artifact-centric approaches offer a variety of mod-

els to represented the processes and their required data.

Many of the existing alternatives such as [6,12,21], are

grounded on logic which makes them formal and unam-

biguous, but impractical from the point of view of busi-

ness managers and developers. Other alternatives, such

as GSM [13,37], using a combination of models based

on UML and OCL [11,15], or artifact union graphs [8]

provide a more user-friendly representation of the mod-

els.

However, none of these works actually deal with the

problem of conformance between a process model and

its execution logs. In particular [8,37,11,15,6,12,21,28]

deal with different aspects of the verification of these

models before they are put into practice, to ensure that

Conformance Checking in UML Artifact-Centric BPM 23

Fig. 30: Resulting Petri net for the user artifact, highlighting the two places available and taken included to control the
maximum number of bicycles per user.

there are no errors and that they fulfill the business

requirements.

To the best of our knowledge, the approaches in [19,

18] are the only ones in facing the problem of confor-

mance checking for artifact-centric specifications. The

artifact-centric process models considered are proclets,

which are Petri nets enriched with a set of channels that

coordinate the different relations artifacts have on their
corresponding lifecycle. Interestingly, the problem of

conformance for these tailored specifications is mapped

to the classical conformance checking instance so that

available tools for traditional conformance checking can

be used. However, as already commented as one of the

core motivations of this work, it is not yet clear how

proclets can be obtained (initial attemps for this im-

portant step were recently presented in [34]), and their

manual creation may represent a burden for non Petri

net oriented users.

It is also worth mentioning that by using the

BAUML model for specifying business processes we

make a step forward to bridge the gap between mod-

els with a high level of abstraction, which are more

intuitive and understandable for business people, and

notations which are very formal (such as Petri nets)

but usually impractical from the point of view of the

business.

8 Conclusions and further work

In this paper we present a framework for conformance

checking of BAUML artifact-centric specifications. To

do so, we show how the models (i.e. the state ma-

chine and activity diagrams) in the framework can be

translated into a Petri net so that existing conformance

checking techniques can be applied. This is one of the

contributions of the paper.

Secondly, in contrast to most existing works that

perform conformance checking, we are able to incorpo-

rate into the Petri nets some of the data constraints

that appear in the state machine diagram, and which

limit the allowed executions of the tasks that are part

of our models. We do so by considering the creation

and deletion of associations between artifacts, specified

in the tasks themselves, and the conditions restricting

the number of artifacts which can be related to other

artifacts, when carrying out certain transitions in the

state machine diagram.

Finally, we have implemented a plug-in within the

open-source ProM framework. This plug-in is able to

extract the BAUML models from an XML file generated

by Visual Paradigm and translate them into the appro-

priate Petri nets. Then, by using existing conformance

checking plug-ins, we are able to detect the deviations

between the initial BAUML models and the executions.

Moreover, a detailed real-life-like case study is reported.

24 M. Estañol, J. Munoz-Gama, J. Carmona, E. Teniente

Fig. 31: Example of an alignment showing a flaw on the
system, allowing a user to request a fourth bicycle while the

user already has three in use.

To sum up, we believe this work represents an im-

portant step towards bridging the gap between cur-

rent process mining algorithms and their adoption in

settings like software engineering. By extending the

analysis capabilities to other dimensions like the arti-

fact lifecycles, the information provided by conformance

checking techniques can identify important failures hid-

den in a specification. Although our work is based on

the BAUML framework, using a set of UML and OCL

models, any other notation which can be formalized as

BAUML could also be used.

As further work, we plan to apply the proposed ap-

proach on a real case study with specific domain ques-

tions. Notice that this will necessarily require the design

of a system based on BAUML, for its later implementa-

tion, deployment, and the collection of execution data

for the analysis.

Acknowledgements This work is partially supported by
FONDECYT Iniciación 11170092 and CONICYT Apoyo a

la Formación de Redes Internacionales Para Investigadores
en Etapa Inicial REDI170136 ; by the Spanish Ministerio
de Economı́a y Competitividad, under projects TIN2017-
87610-R and TIN2017-86727-C2-1-R; and by the Secreteria
d’Universitats i Recerca de la Generalitat de Catalunya, un-
der 2017-SGR-1749.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Con-
formance and Enhancement of Business Processes (2011)

2. van der Aalst, W.M.P.: Decomposing petri nets for pro-
cess mining: A generic approach. Distributed and Parallel
Databases 31(4), 471–507 (2013)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL:
yet another workflow language. Inf. Syst. 30(4), 245–275
(2005)

4. van der Aalst, W.M.P., et al.: Soundness of workflow nets:
classification, decidability, and analysis. Formal Aspects
of Computing 23(3), 333–363 (2011)

5. Adriansyah, A.: Aligning Observed and Modeled Behav-
ior. Ph.D. thesis, Eindhoven University of Technology
(2014)

6. Bagheri Hariri, B., et al.: Verification of relational data-
centric dynamic systems with external services. In:
PODS, pp. 163–174. ACM (2013)

7. Basu, S., et al. (eds.): Service-Oriented Computing - 11th
International Conference, ICSOC 2013, LNCS, vol. 8274.
Springer (2013)

8. Borrego, D., Gasca, R.M., López, M.T.G.: Automating
correctness verification of artifact-centric business pro-
cess models. Information & Software Technology 62, 187–
197 (2015)

9. Buijs, J.C.A.M.: Flexible Evolutionary Algorithms for
Mining Structured Process Models. Ph.D. thesis, Eind-
hoven University of Technology (2014)

10. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst,
W.M.P.: Quality dimensions in process discovery: The
importance of fitness, precision, generalization and sim-
plicity. Int. J. Cooperative Inf. Syst. 23(1) (2014)

11. Calvanese, D., Montali, M., Estañol, M., Teniente, E.:
Verifiable UML artifact-centric business process models.
In: CIKM 2014, pp. 1289–1298. ACM (2014)

12. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems
with data dependencies and arithmetic. ACM Trans.
Database Syst. 37(3), 22 (2012)

13. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence
of incremental and fixpoint semantics for business arti-
facts with Guard Stage Milestone lifecycles. Inf. Syst.
38(4), 561 – 584 (2013). Special section on BPM 2011
conference

14. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and
analysis of business process models in BPMN. Informa-
tion & Software Technology 50(12), 1281–1294 (2008)

15. Estañol, M., Sancho, M., Teniente, E.: Verification and
validation of UML artifact-centric business process mod-
els. In: J. Zdravkovic, M. Kirikova, P. Johannesson (eds.)
CAiSE 2015, LNCS, vol. 9097, pp. 434–449. Springer
(2015)

16. Estañol, M., Sancho, M.R., Teniente, E.: Reasoning on
UML data-centric business process models. In: Basu et al.
[7], pp. 437–445

17. Estañol, M., Sancho, M.R., Teniente, E.: Ensuring the
semantic correctness of a BAUML artifact-centric BPM.
Information and Software Technology 93, 147–162 (2018)

18. Fahland, D., de Leoni, M., van Dongen, B.F., van der
Aalst, W.M.P.: Conformance checking of interacting pro-
cesses with overlapping instances. In: S. Rinderle-Ma,
F. Toumani, K. Wolf (eds.) BPM 2011. Proceedings,
LNCS, vol. 6896, pp. 345–361. Springer (2011)

19. Fahland, D., Leoni, M.D., van Dongen, B.F., van der
Aalst, W.M.P.: Behavioral conformance of artifact-
centric process models. In: W. Abramowicz (ed.) BIS
2011, LNBIP, vol. 87, pp. 37–49. Springer (2011)

Conformance Checking in UML Artifact-Centric BPM 25

20. Fahland, D., et al.: Checking behavioral conformance of
artifacts. Tech. Rep. BPM-11-07, BPM Center (2011)

21. Gerede, C.E., Su, J.: Specification and verification of
artifact behaviors in business process models. In: B.J.
Krämer, K.J. Lin, P. Narasimhan (eds.) ICSOC, LNCS,
vol. 4749, pp. 181–192. Springer (2007)

22. Hull, R.: Artifact-centric business process models: Brief
survey of research results and challenges. In: R. Meers-
man, Z. Tari (eds.) OTM 2008, LNCS, vol. 5332, pp.
1152–1163. Springer (2008)

23. ISO: ISO/IEC 19505-2:2012 - OMG UML su-
perstructure 2.4.1 (2012). Available at: http:

//www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=52854
24. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An

alignment-based framework to check the conformance of
declarative process models and to preprocess event-log
data. Inf. Syst. 47, 258–277 (2015). DOI 10.1016/j.
is.2013.12.005. URL http://dx.doi.org/10.1016/j.is.

2013.12.005
25. Leoni, M.D., Aalst, W.M.P.V.D., Dongen, B.F.V.: Data-

and Resource-Aware Conformance Checking of Business
Processes. In: Business Information Systems, vol. 87, pp.
48–59. Springer (2012)

26. Lu, X., Fahland, D., van der Aalst, W.M.P.: Confor-
mance checking based on partially ordered event data. In:
F. Fournier, J. Mendling (eds.) Business Process Manage-
ment Workshops - BPM 2014, Revised Papers, LNBIP,
vol. 202, pp. 75–88. Springer (2014)

27. Mannhardt, F., de Leoni, M., Reijers, H.A., van der
Aalst, W.M.P.: Balanced multi-perspective checking of
process conformance. Computing 98(4), 407–437 (2016).
DOI 10.1007/s00607-015-0441-1. URL http://dx.doi.

org/10.1007/s00607-015-0441-1
28. Meyer, A., Weske, M.: Weak conformance between pro-

cess models and synchronized object life cycles. In:
X. Franch, A.K. Ghose, G.A. Lewis, S. Bhiri (eds.)
ICSOC 2014, LNCS, vol. 8831, pp. 359–367. Springer
(2014). DOI 10.1007/978-3-662-45391-9 25. URL https:

//doi.org/10.1007/978-3-662-45391-9_25
29. Munoz-Gama, J.: Conformance Checking and Diagnosis

in Process Mining - Comparing Observed and Modeled
Processes, LNBIP, vol. 270. Springer (2016)

30. Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.:
Single-entry single-exit decomposed conformance check-
ing. Inf. Syst. 46, 102–122 (2014)

31. Murata, T.: Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE 77(4), 541–580 (1989)

32. Olivé, A.: Conceptual Modeling of Information Systems.
Springer, Berlin (2007)

33. OMG: Object Constraint Language - version 2.4 (2014).
Available at: http://www.omg.org/spec/OCL/2.4/PDF

34. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle
discovery. Int. J. Cooperative Inf. Syst. 24(1) (2015)

35. Queralt, A., Teniente, E.: Reasoning on UML conceptual
schemas with operations. In: CAiSE, pp. 47–62 (2009)

36. Rozinat, A., van der Aalst, W.M.P.: Conformance check-
ing of processes based on monitoring real behavior. Inf.
Syst. 33(1), 64–95 (2008)

37. Solomakhin, D., Montali, M., Tessaris, S., Masellis, R.D.:
Verification of artifact-centric systems: Decidability and
modeling issues. In: Basu et al. [7], pp. 252–266

38. Störrle, H.: Semantics of control-flow in UML 2.0 activi-
ties. In: VL/HCC, pp. 235–242. IEEE Computer Society
(2004)

39. Weske, M.: Business Process Management: Concepts,
Languages, Architectures. Springer, Berlin Heidelberg
(2007)

