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Abstract—The fast evolution of data analytics platforms has resulted in an increasing demand for real-time data stream processing.
From Internet of Things applications to the monitoring of telemetry generated in large data centers, a common demand for currently
emerging scenarios is the need to process vast amounts of data with low latencies, generally performing the analysis process as close
to the data source as possible. Stream processing platforms are required to be malleable and absorb spikes generated by fluctuations
of data generation rates. Data is usually produced as time series that have to be aggregated using multiple operators, being sliding
windows one of the most common abstractions used to process data in real-time. To satisfy the above-mentioned demands, efficient
stream processing techniques that aggregate data with minimal computational cost need to be developed.
In this paper we present the Monoid Tree Aggregator general sliding window aggregation framework, which seamlessly combines the
following features: amortized O(1) time complexity and a worst-case of O(logn) between insertions; it provides both a window
aggregation mechanism and a window slide policy that are user programmable; the enforcement of the window sliding policy exhibits
amortized O(1) computational cost for single evictions and supports bulk evictions with cost O(logn); and it requires a local memory
space of O(logn). The framework can compute aggregations over multiple data dimensions, and has been designed to support
decoupling computation and data storage through the use of distributed Key-Value Stores to keep window elements and partial
aggregations.

Index Terms—Internet-of-things, data analytics, big data, stream processing, real-time
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1 INTRODUCTION

Stream Processing, or processing data on-the-fly, is a crit-
ical demand in many environments requiring low latency
and reduced data movement. Scenarios like telemetry data
analysis in large data centers, or advanced analytics for the
Internet of Things (IoT), often require fast processing and
aggregation of vast amounts of data. Moreover, processing
data close to the source becomes an important factor when
data movement is expensive due to high volume of data
or poor connectivity. Due to these reasons, over the past
five years a number of Stream Processing platforms have
emerged, including Apache Storm [1], Apache Flink [2],
Apache Samza [3] and Twitter Heron [4] as the most note-
worthy open-source solutions. Furthermore, commercial so-
lutions from the most important players in the IT indus-
try are also offered, such as Amazon Kinesis [5], Google
MillWheel [6], IBM Streams [7] and Microsoft Azure Stream
Analytics [8].

Data streams are unbounded sequences of ordered
atomic updates on the same information feature. E.g., a
stream associated to the temperature of a physical device D
contains a sequence of updates of temperature information
coming from device D, each update substituting the pre-
vious one. Given that a stream emits updates indefinitely,
such sequences of updates can not be traversed upstream
as they do not have finite size and lack boundaries. Instead,

selecting a limited window on the updates within a data
stream is commonly considered the most affordable method
for analyzing the data and information coming from a data
source. It is for this kind of processing that projecting data
from streams into sliding windows becomes a convenient
mechanism towards data analysis and aggregation.

More formally, a Sliding Window is an abstraction repre-
senting a projection over a data sequence. Sliding windows
are usually implemented as FIFO structures containing
timestamped data updates, all of the same type. Updates
enter the window when they are received from the data
source, and are evicted according to a Window Slide Policy
(WSP) that defines the criteria that older updates need to
meet to leave in the window. Therefore, sliding windows de-
fine a contiguous sequence of strictly ordered data updates,
whose length is defined by the WSP, and always containing
the most recent updates generated to the moment.

Applications that process data streams usually define a
set of aggregation operations that when computed produce
a result associated to the stream. Due to the unbound nature
of streams, sliding windows are a convenient approach
to processing such aggregations, by defining the subset
of updates to be considered for processing. Therefore, for
their computational purpose, sliding windows are associ-
ated with at least one aggregation function, that will be
computed for the contained values whenever the window
content is updated.
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There are two key aspects of a Sliding Window aggre-
gation framework that define its applicability and efficiency
across different scenarios:
• Firstly, the computational cost associated to the process of

adding and evicting values into the structure through the
WSP, and recomputing the values of the aggregations rep-
resented by the Window. Therefore, the algorithms used
to operate the sliding window and the aggregations must
be as efficient as possible, avoiding the computing time
to grow with the window size. Naive implementations
that recompute all the aggregations for every new update,
thus having linear cost O(n), are not able to keep up with
large window sizes and high arrival rates. The Frame-
work introduced in this paper exhibits amortized constant
O(1) time-complexity between updates, and O(log n) for
bulk eviction, positioning itself ahead of the existing state
of the art.

• The second aspect is the memory footprint of the Window
data structures. Existing time efficient implementations
tend to pre-allocate all the needed memory, with space
cost O(N) from the pre-defined maximum window size
N . While this approach is convenient in terms of com-
putational complexity, it imposes serious limitations in
terms of the applicability of the technique across domains.
For instance, cloud-based deployments may require extra-
large VMs to host them with their associated additional
cost, and Fog-based deployments will struggle to accom-
modate these implementations in memory-constrained
edge devices. Furthermore, resizing the maximum win-
dow capacity results in a O(n) time complexity operation.
The Framework introduced in this paper leverages an
efficient decoupling of the computation and data store
through the use of a Key-Value Store, which results in
a local space allocation of only O(logN) from the pre-
defined maximum window size N , which also improves
on the existing state of the art.
In this paper we introduce the Monoid Tree Aggregator

(MTA) General Window Aggregation Framework, which
advances the state of the art in the following aspects:
• Seamlessly combines amortized constant O(1) time-

complexity between updates and logarithmic O(log n)
cost in the worst-case scenario

• Its data structures only need to statically preallocate space
for O(log n) elements, being n its maximum capacity.

• The window aggregation mechanism and the Window
Slide Policy (WSP) are user-programmable. Aggrega-
tions are described as associative operations, based on
monoids, and they do not need to be invertible. The WSP,
instead, defines the criteria that data to be evicted must
meet.

• The WSP enforcement mechanism exhibits amortized
O(1) computational cost to perform single evictions on
the window and O(log n) for bulk eviction operations.
The mechanism is similar to performing searches on Bi-
nary Search Trees [9]. This aspect is of paramount impor-
tance to implement flexible WSPs, like for instance time
ranges (e.g. data accumulated in the last 5 minutes) for a
source that produces data at variable rates. This situation
leads to windows containing a changing number of ele-

ments over time and mass evictions at certain moments
in time.
The general purpose and efficient Sliding Window ag-

gregation framework leveraged here could be used as an
operator for Stream Processing platforms such as Apache
Storm or Apache Flink. They would additionally benefit
from the fault-tolerance provided by the distributed KVS
based data structure.

The rest of the paper is structured as follows: Section 2
discusses the state of the art in the field of efficient Sliding
Windows for Stream Processing; Section 3 introduces the
main concepts related to Sliding Window frameworks; Sec-
tion 4 discusses the main characteristics of the MTA Window
Framework; Section 5 discusses the implementation details
of the framework proposed in this work and provides the
results of an experimental evaluation of the MTA Window
Framework; Finally Section 6 discusses the conclusions of
the work.

2 RELATED WORK

State of the art works in the literature propose to use a
FIFO structure and incremental operations to reduce the
complexity of the aggregation algorithms to O(log n) and
amortized O(1) for variable-sized windows.

Tangwongsan et al. propose in their prior work two slid-
ing window aggregation frameworks called Reactive Aggre-
gator (RA) [10] and Sliding-Window Aggregation (SWAG) [11].
Having important differences between them, both ap-
proaches follow Boykin et al. [12] method of using associa-
tive operations as programmatic aggregators interface. Both
RA and SWAG benefit from using associative aggregation,
by enabling the computation of partial results and using the
neutral element property to evict elements from their FIFO
structures.

The main claim for RA is that it is O(log n) in all
its operations with constant-sized sliding windows. RA’s
sliding window FIFO structure is a flat fixed-sized binary
and complete tree called FlatFAT. Similarly to Log MTA,
all the leaves are the raw updates to be aggregated, the
root node is the result and the intermediate nodes are
partial computations. Every update insertion and deletion
propagates the aggregation changes from the leaf to the root.
Other work in the literature [13]–[16] use tree-like structures
in order to keep partial computations in the same way,
making use of binary associative operators. They all have
a worst-case O(log n) for all its atomic operations and a
complexity O(n) for windows with bulk evictions.

On the other hand, SWAG is a sliding window aggre-
gation framework that runs in worst-case O(1) time for
each one of its atomic operations. SWAG’s insert, remove and
query operations perform in constant time with constant-
sized windows. The simplified version of its main algorithm
is based on a data structure with two stacks instead of a
tree-like structure. One stack receives the new updates, each
paired with a partial result generated by aggregating the
update with the previous top partial result in the stack. The
second stack is generated by reversing the order of the up-
dates from the insertion stack and recomputing the partial
results. The reverse operation is O(n) but ends up amortized
to O(1) during the execution of the window. However,
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the reverse operation can be incrementally performed on
insert and remove operations, turning into a worst-case O(1)
process if updates are removed one by one.

The time complexity is better in SWAG than in RA
and similar solutions for non-invertible window aggrega-
tors, while MTA Window Framework extends major im-
provements from it. In first place, the window operations
are logarithmic for RA-like algorithms and constant for
SWAG. However, this is not considering bulk eviction as an
atomic operation, and therefore it works in constant time for
constant-sized windows. Constant-sized windows remove
one update for each one received, keeping always the same
number of aggregated updates. As only one element needs
to be removed, remove operation complies with the O(log n)
time-complexity in RA and O(1) in SWAG. Yet it is a
common situation to work with time-based window over
a stream with an irregular input frequency. This poses a
problem: Variable-sized windows like time-based windows
require bulk evictions, and this operation is worst-case O(n)
lineal for the state of the art.

Aside from the efficiency issue that the previous point
raises, such a situation makes it unfeasible to keep partial
results and updates in remote data stores, as n elements
might need to be retrieved for a single bulk remove opera-
tion. Consequently decoupling the majority of data from the
local computation is not considered.

Moreover, a general mechanism for framework users to
define custom sliding policies is not defined in any of the
state of the art solutions.

Table 1 summarizes the comparison of RA and SWAG,
with the mechanisms introduced in this work: the Log MTA
and the more advanced Amortized MTA. The parameters
compared include the amortized and bulk-eviction worst-
case case computational complexity of the frameworks, the
size of the data structure, the minimum size to be stored
locally for processing the stream in the worst-case scenario,
the ability to enforce user-defined Window Slide Policies,
and the existence of an efficient design that supports de-
coupling of data and computation (e.g through the use of
external key-value stores to keep part of the data).

RA SWAG Log MTA Amortized MTA
Amortized time O(logn) O(1) O(logn) O(1)
Bulk eviction time O(n) O(n) O(logn) O(logn)
Size O(n) O(n) O(n) O(n)
Min. local size O(n) O(n) O(logn) O(logn)
Custom WSP × × X X
Data Decoupling × × X X

TABLE 1
Sliding window frameworks comparison

Alternative approaches to improve efficiency in sliding
windows found in the literature [17]–[21] consist on keeping
in memory partial aggregations from window updates in-
stead of keeping the original updates. The result is an speed
up of the aggregation and removal and also the memory
needed is reduced. However, either there is a percentage of
error in the number of updates evicted each time, or the
algorithm knows the exact number of updates that will be
removed in each iteration in order to avoid the error. The
most relevant case is the Exponential Histogram from Datar
et al. [20], a data structure that maintains an approximation
of the number of 1s in a sliding window with logarithmic

memory and time complexity. The counting is fragmented
over a list, where the number of window updates counted
in each list element grows exponentially from tail to head.
A general purpose approximate computation similar to Ex-
ponential Histogram applied to MTA is a potential subject
for future investigation, which would also improve perfor-
mance and memory consumption.

Bifet & Gavaldà contributed ADWIN [17] and K-
ADWIN [18] mechanisms, which implement a variation of
exponential histograms. ADWIN is a programmable sliding
window framework that automatically adapts its size by
detecting changes on the data. When two subwindows have
very different average values, the oldest one is evicted.
The data kept in the window is considered the currently
relevant data from the stream, and guest algorithms can
perform aggregations from it. K-ADWIN combines ADWIN
with Kalman filter [22], providing better results than both
methods separately. ADWIN base algorithm can be seen
as an adapted MTA WSP that compares the average value
between subwindows, and the monoid aggregator as the
guest algorithm.

Additionally, resource sharing is another methodology
discussed in the literature [15], [23] to enhance performance
among incremental aggregations. Although our solution is
not focused on a resource sharing approach, a basic mecha-
nism to share some resources between aggregations is also
present. In this paper we introduced window aggregation
multi-dimensionality, which consists in performing several
aggregations on different data in the same stream, sharing
resources such as the window data structure and the WSP.
Experiment 4 from Section 5 shows the benefits from this
approach. Tangwongsan et al. [10] already compared RA
with the resource sharing focused solution from Arasu &
Widom [15] positioning RA as a more advanced solution,
and later SWAG [11] [24] as more advanced than RA.

3 BACKGROUND: REAL-TIME SLIDING WINDOWS

3.1 Sliding Windows: Concept
Sliding Windows are an abstraction representing projections
on data sequences, organized as FIFO structures contain-
ing elements of the same type (the data updates), and a
timestamp associated to each element. Data updates enter
the sliding window when they are received from the data
source, and are evicted according to a Window Slide Policy
defining the conditions to be satisfied by data updates for
leaving the projected window. Sliding windows define a
contiguous sequence of strictly ordered values, with a length
depending on the slide policy, and always containing the
most recently generated updates.

Therefore, the three main building blocks used by sliding
windows as mechanisms to aggregate streams of data and
their features are:
FIFO data structure: An update in the window is not

removed until all the older updates are removed too.
Contents are a complete and ordered portion of the stream
being aggregated. Updates are inserted at the end and
removed from the beginning of the structure.

Aggregation algorithm: Aggregations are applied to the
data covered by the window in a specific moment. For
instance, the aggregation could be a total sum and it could
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be executed every time a new update is inserted to the
window. Some sliding window aggregation frameworks
only accept invertible operations as aggregators, with
their inverse functions. This way, the eviction of data is
done in constant-time easily.

Slide policy: Updates leave the FIFO structure according
to a window slide policy (WSP). WSP defines the condi-
tions to be satisfied by the older updates in order to be
evicted from the window. The result after applying the
policy must be a subsequence including the most recent
updates in the window. Traditionally WSP in sliding win-
dow aggregation frameworks are delimited by maximum
window size and time-based windows. Regarding the
number of updates to be removed by the policy, it is
usually determined by three choices: a single update, a
fixed amount of updates and all the window updates.
However, a WSP can be expressed in terms of the window
aggregation itself and become more rich, customizable
and efficient.

3.2 Sliding Windows: Running Example

For the sake of clarity, we include here a running example
of a Sliding Window used to compute the maximum of the
values of the updates that fall within the windows according
to a WSP. The WSP is complex enough to need to be
expressed in terms of the window aggregation. This will
provide an understanding on the need of general purpose
and user-programmable WSP based on the aggregation. The
WSP dictates that the window will contain the updates that
add up to a value which is less or equal than 10, the rest will
be removed. From the resulting window we want to extract
the maximum value. For this purpose two aggregations will
be used over the window: the first one will be max, and
the other one will sum. The former will be used to compute
the result of the operation that needs to be calculated for
the window. The latter will be used to estimate the updates
that have to be removed from the window after an update
insertion, according to the WSP. This is also an example of
multi-dimensionality of the window in terms of aggregation
operations; the window could be used also considering
multiple data dimensions across the window elements.

More formally, let S be a stream of ordered data and
(di)

n
i=1 be the current data updates in S where i is its

timestamp and n is the oldest timestamp in S. Then the
WSP on the window W is:

∀di ∈ S : di ∈W ⇐⇒
n∑

j=i

dj ≤ 10

In this context, consider a window with the values
[2, 2, 3, 3], ordered in ascending order of their timestamp -
that is the leftmost 2 is the oldest update in the window
while the rightmost 3 is the most recent update (correspond-
ing to dn following the notation used above). Therefore,
when a new update with value 4 is inserted to the window,
the policy removes the oldest 2 updates and the result
window becomes [3, 3, 4]. This slide policy is enforced using
the sum aggregation that is calculated over the values in the
stream: 3 + 3 + 4 ≤ 10. The max aggregation value would
have been 3 before the last insertion, and 4 immediately
after.

A naive design of these features can be achieved via the
use of a simple queue that aggregates all its contents every
time it is queried. The WSP enforcement pops updates until
the window contents comply the policy. It clearly entails
O(n) to aggregate the window, n being the number of
updates that are inside; hence it would quickly struggle to
scale with high frequency streams and densely populated
windows.

3.3 Sliding Windows: Monoids for Aggregators
A monoid is an algebraic structure with an associative
binary operation and a neutral element. They are exten-
sively used in the literature for the implementation of data
aggregations, and it is the common choice for state of the art
Sliding Window implementations, as it will be discussed in
Section 2.

More formally, where S is a set and · is a binary op-
eration, it composes a monoid if it obeys the following
principles:
Associativity: ∀a, b, c ∈ S : (a · b) · c = a · (b · c)

For all a, b and c in S, the expression (a · b) · c = a · (b · c)
is true.

Neutral element: ∃e ∈ S : ∀a ∈ S : e · a = a · e = a
Exists a value e in S that for all a the expression e · a =
a · e = a is true.

Closure: ∀a, b ∈ S : a · b ∈ S
For all a and b in S, the result of a · b is in S too.
Aggregators are then programmed in a map → reduce

→ map structure, where the first map transforms the input
value to a member of S, the reduce stage is a monoid, and
the last map converts the monoid result to the desired value
out of S. For example, an average aggregator could have a
monoid with S defined as integer pairs (s, c) where s is the
sum of the values and c is the number of values. The monoid
operation would be (s1, c1) ·(s2, c2) = (s1+s2, c1+c2). The
first map transforms an input value v to the pair (v, 1) in
S, where v is the initial sum and 1 the initial count. (v, 1)
is then operated by the monoid with another mapped value
or a previous monoid result. The last map transforms the
monoid reduced result to s

c which is the final average.

4 FRAMEWORK DESIGN

This section describes the Monoid Tree Aggregator (MTA)
Window Framework, which is the main contribution of this
paper. The MTA Window Framework is an sliding window
framework that aggregates values in amortized constant
time between insertions, on par with the most advanced
existing solutions in the literature. Additionally, it exhibits
logarithmic time complexity in the worst case scenario,
which includes bulk element eviction. Efficient bulk eviction
is an improvement with respect to the state of the art, and it
is of paramount importance for resource-constrained envi-
ronments and real-time situations, like the ones considered
for Edge Computing in emerging IoT scenarios. This time
complexity is achieved regardless of whether the aggrega-
tion function is invertible or not. Furthermore, it provides
programmable aggregation mechanism and Window Slide
Policies. All this combined enables the framework to decou-
ple most of the data aggregated from the local memory in
which it is being computed, delegating this task to another
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(a) Log MTA Tree (b) Log MTA level division

Fig. 1. Log MTA Structure and Element Location Examples

system such as a distributed data store, a local hard drive or
an NVMe. For these reasons, the MTA Window Framework
positions itself as a significant advance with respect to the
existing state of the art solutions.

For the sake of clarity, we present the core algorithms
of the MTA Window Framework in two steps: first, we de-
scribe a set of algorithms (Log MTA in Subsection 4.1), which
create a logarithmic-time window aggregation mechanism,
less efficient than the concluding MTA solution, but much
simpler to explain; later, in Subsection 4.2, we extend the
Log MTA mechanism to reduce the computation complexity
to an amortized constant cost O(1), in the Amortized MTA
mechanism.
4.1 Log MTA
The Log MTA mechanism is a logarithmic-time aggregation
window, used as base for the constant-time solution. It sets
the foundations on the main MTA Window Framework
features which are discussed in detail in this section, being:
general user-programmable aggregation, efficient compu-
tation, general user-programmable WSP mechanism, data
decoupling and efficient bulk element eviction.
4.1.1 Structure
The FIFO data structure in Log MTA is a binary Tree
designed as a list of queues. Each queue is a Tree level,
sorted in the main list from leaves (bottom level) to root (top
level). The levels contain the Tree nodes grouped by pairs.
The elements in the same pair are Tree siblings. A neutral
element (�) in a pair means an empty branch. The lowest
level contains all the window updates in order. The levels
above contain the monoid aggregation results from lower
level pairs. E.g., Figure 1a shows an abstraction of the full
binary Tree of a Log MTA performing a sum aggregation,
with [1, 2, 1, 2, 1, 2] as data updates. Figure 1b shows its
representation as a list of queues. New Tree nodes are
pushed to the level queues and popped when removed,
hence the FIFO behaviour. All the leaves of the Tree will
be found in the first level, as stated by Invariants 1 and
Invariant 2.

Invariant 1. Let T be the Log MTA binary Tree, li the i−essime
level from leaves l1 to root lh, and h being the height of T . Let
(vij)

n
j=1 ∈ li be the nodes of li, n be the number of nodes in li, �

being the monoid neutral element and ∗ any non-neutral element.
Then:

vi,1 = 〈�, ∗〉 ∨ vi,1 = 〈∗, ∗〉
vi,n = 〈∗,�〉 ∨ vi,n = 〈∗,∗〉
∀n−1j=2 vi,j = 〈∗, ∗〉

When n = 1 then only one of the three statements needs to be
satisfied.

Invariant 2. Having h as the height of T , n = |li|, and vij
containing a pair of elements:

∀hi=1∀nj=1vij 6= 〈�,�〉

Theorem 1. Let (eijk)1k=0 be each element in the pair node vij .
Let children(eijk) be a function that returns the children pair of
eijk, ∀hi=2∀nj=1vij :

vi,1 = 〈�, ∗〉 →children(eijk) = v(i−1),(2j+k−1)

vi,1 6= 〈�, ∗〉 →children(eijk) = v(i−1),(2j+k)

The first pair of a level can be 〈�, ∗〉 when the first
element has been removed, so the node does not have left
child. Also, the last pair of a level can be 〈∗,�〉 when its
right child has not been created yet. � can not be found in
any other position in the Tree.

Theorem 1 shows how Tree branches can be traversed,
derived from Invariants 1 and 2. The greater part of the Tree
traversing is performed through the first or last element of
every level only, the Tree side branches. However, for bulk
eviction we will need random branch traversing from root
to leaf in order to find the branches to be removed.
4.1.2 Data Insertion & Aggregation
New updates are inserted to the data structure and ag-
gregated in logarithmic time. Updates in the window are
aggregated by grouping them in ordered pairs and apply-
ing a user defined monoid on each pair. The results are
paired and aggregated again, in a process that is repeated
iteratively until a single result is produced. This process is
performed incrementally for each insertion using the binary
Tree structure, as it can be seen in Algorithm 1.

When an update is inserted to the window, it is pushed
at the end of the first level as a new leaf of the Tree. If the
last pair in the level is 〈∗,�〉, the new value u is placed as
〈∗, u〉, otherwise a new pair is created and added as 〈u,�〉.
When a new pair is added, it will not have a parent yet.

After adding the new leaf, it is aggregated with its
sibling executing the user provided monoid, which Log
MTA is oblivious to. The result element will be the parent of
both siblings and need to be inserted in the level above. If
the pair already had a parent in the level above, the parent’s
value needs to be updated with the new one. Otherwise,
a new pair needs to be added with the aggregation result.
The parent pair now needs to be aggregated, propagating
the process towards the root level. If the root level now has
a pair without �, then a new level will be added that will
become the new root.

This operation has time complexity O(log n), as it exe-
cutes a fixed set of constant-time operations for each level on
the Tree, with logarithmic height with respect to the number
of updates.
4.1.3 Window Slide Policy Definition
Like the aggregation operation, the WSP is a user-
programmable condition that needs to follow some rules.
It has access to the total aggregation of the window after
the last insertion and to the aggregation of a random sub-
sequence from the head of the window. This aggregated
subsequence is the one being checked for removal. If the
condition defined by the WSP using these values is met,
then at least this subsequence needs to be removed from the
window aggregation.
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Algorithm 1 Log MTA insertion & aggregation. Inserts
update u to Tree T

1: L← levels(T ), agg ← u
2: for l = 1, ..., |L| do
3: P ← Ll,|Ll|
4: if agg 6= � then
5: if e1 = � then
6: e1 ← agg
7: agg ← �
8: else
9: Ll(enqueue(〈agg,�〉))

10: end if
11: else
12: Q← Ll−1,|Ll−1|
13: if e1 6= � then e1 ← monoid(Q0, Q1)
14: else e0 ← monoid(Q0, Q1) end if
15: end if
16: end for
17: if agg 6= � then
18: L({〈agg,�〉})
19: end if

For instance, consider a window with updates that
include an ordered timestamp in milliseconds and that
it aggregates them with a max operation. Therefore, the
aggregated result timestamp from a sequence of updates
is the latest timestamp. If the WSP example in Listing 1
is applied to this window, its result aggregation will al-
ways use updates in the last hour. The condition compares
the latest timestamp from the subsequence with the lower
boundary of the WSP time frame (one hour before the last
update). If the subsequence’s latest timestamp is not inside
this boundary, then the condition is met and it needs to be
subtracted from the window aggregation.

This mechanism enables the user to define from the
most basic WSP to complex and dynamic scenarios using
sophisticated aggregations.

Listing 1. Window Slide Policy Example
function wsp(total, old){

return
(total.timestamp - old.timestamp) >= 3_600_000;

}

4.1.4 Efficient Bulk Eviction

After inserting a new update, the WSP needs to be enforced
to find the longest subsequence of updates that need to
be removed from the head of the FIFO structure, so a
single result is produced. This process takes advantage from
the binary Tree based data structure and it is performed
inO(log n). Furthermore, the time complexity is the same for
both removing a single update or performing a bulk update
eviction from the window.

The importance of performing efficient bulk update evic-
tions from a window resides in the concept of variable-sized
windows in contrast with constant-size windows. Constant-
size windows remove one update for each one received,
keeping always the same number of aggregated updates.
However, it is a common situation to work with time-based
window over a stream with an irregular input frequency.
This poses a problem: after inserting k ≥ 1 data updates to
the window, k updates might need to be evicted at once,
triggered by the time based slide policy. In the state of
the art, all the updates need to be traversed and possibly
removed, multiplying by n the time complexity of removing
a single update. Variable-sized windows like time-based
windows make the most of performance improvements on

Algorithm 2 Log MTA WSP enforcement on Tree T with
efficient bulk eviction
1: L← levels(T ), sub← �, rm← 0
2: for l = |L|, ..., 1 do
3: P ← Ll,1

4: if rm > 0 then
5: Ll(remove pairs(rm))
6: rm← 2 · rm
7: if e0 6= � then rm← rm− 1 end if
8: P ← Ll,1

9: end if
10: if e0 6= � then
11: subseq ← monoid(rm subseq, e0)
12: if wsp(subseq, result(T )) then
13: if l = |L| ∧ l 6= 1 then L(remove(l))
14: else if e1 = � then Ll(remove pairs(1))
15: else e0 ← � end if
16: rm subseq ← subseq
17: rm← rm + 1
18: end if
19: end if
20: end for
21: P ← L1,1

22: agg ← monoid(e0, e1)
23: for l = 2, ..., |L| do
24: P ← Ll,1

25: if e0 6= � then e0 ← agg else e1 ← agg end if
26: agg ← monoid(e0, e1)
27: end for

Fig. 2. Log MTA Bulk Eviction. Monoid: max(x, y); WPS: total−old ≥ 4.

bulk evictions, especially on situations in which real-time
aggregation is required.

The WSP enforcement performs a O(log n) root to leaf
search in the binary Tree for the oldest valid update in
the window, while pruning invalid branches guided by the
user-defined WSP. Algorithm 2 is a detailed specification
of this operation. The Tree levels are traversed from root
to leaves executing the WSP with the first level value as
the aggregated value of its leaves subsequence. If removed,
the node’s branches will be evicted from the next levels
before running the WSP on the new first element. As
the remove pairs function in Algorithm 2 only updates the
pointer to the first pair of the level queue, it has constant
time. The elements can be removed in the background by a
garbage collector, minimally affecting the process of getting
a result aggregation. When this process is finished, the
nodes in the leftmost branch might not be consistent and
have aggregated values that have been removed. Therefore,
the leftmost branch is recomputed bottom-up, propagating
the value changes to the root pair and resulting in a valid
aggregation result.

A running example of this process can be found in
Figure 2, where timestamps are inserted to the window
and the WSP only allows a window of 4 time units. When
timestamp 8 is inserted it triggers the WSP enforcement to
evict all the other updates in the window in three steps.
It checks the first valid element of each level from root to
leaves with the WSP. All of them are found out from the
window, leaving only the newest update.

Time complexity is O(log n), as this operation performs
a fixed number of constant-time operations for each level of
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Fig. 3. Log MTA KVS data structure

the Tree, by visiting them twice.
Once the WSP has been enforced, the aggregation result

can be queried to the window. This operation returns the
aggregation of the window contents in constant time, by
returning the monoid result in the root pair. Furthermore, if
we require a reactive behaviour from the window, then the
following pipeline needs to be executed when a new update
arrives: insert update → enforce WSP → query result. Every
time a new update is introduced, it produces the result in
logarithmic time.

4.1.5 Reducing Local Memory Footprint

From inserting a new update to generating a new result, Log
MTA needs to traverse at most O(log n) elements: for each
level queue, the tail element and probably an element near
the head. Therefore, the rest of the data in the window does
not need to be waiting in local memory and the resources
could be used to run other aggregations. In the worst case, a
bulk eviction will need to traverse a Tree branch that is not
currently in local memory, which will require an immediate
memory retrieval of only O(log n) elements.

In the proposed data structure, each level queue has
three sections between two different memory layers, as it
can be seen in Figure 3. The pairs in the tail of the level
queues are in the Tails list in local memory, the central pairs
wait in a shared Key-Value Store (KVS), and the pairs in the
queues’ head can be found in a Cache in local memory again.

The rightmost branch of the Tree is found in the Tails
list. It receives updates as they are being inserted to the
structure, and pushes the replaced pairs to the KVS. The
pairs pushed to be sent to the KVS are first kept into a buffer
in order to reduce the number of interactions with the data
store. When the maximum capacity of the buffer is reached,
all its contents are moved to the KVS. The key in each KVS
document maps its contents to its Tree level and its position
it has inside the queue, so a O(1) single pair retrieval can be
achieved. The store can be anything from a local HDD file to
a remote and dedicated cluster. Finally, the Cache contains at
least the head pair from each level queue, with the exception
of the root level. The Cache is refreshed from the KVS and
the buffer when its size is under an specific threshold or in a
Cache miss situation. Its capacity can be adapted to reduce
the interactions with the KVS.

Having the data stored by an external entity, apart from
the scalability enhancement it provides, makes it easier to
recover aggregation data from a failure.

4.2 Amortized MTA

In this section we present the Amortized MTA (AMTA)
sliding window mechanism. It is an approach aimed to re-
duce Log MTA’s time complexity without having an impact
deteriorating its other benefits in comparison with the state
of the art: space complexity, its user-programmable WSP
mechanism, efficient bulk evictions and the reduced local
memory footprint.

4.2.1 Structure
Amortized MTA is an sliding window mechanism that
inserts, aggregates and removes elements in amortized
constant time, with logarithmic time in the worst case. It
satisfies Log MTA Invariants 1 and 2, and shares the data
structure level division and the memory layers, although
the data structure operates differently. In the new data
structure, the Tree is replaced by a Forest of binary trees
where the rightmost pair of each level is the root of its own
tree, as defined in Invariant 3. Figure 4a is an example of
an Amortized MTA window performing a sum aggregation
with the updates [1, 2, 1, 2, 1, 2, 1, 2]. The lower level con-
tains the values in the window to be aggregated, while the
levels above contain partial aggregations of these values.
Considering Invariant 3 now, Theorem 1 is also valid as a
tree traversing guide.

The data structure also introduces the Stack and the
Result Pair, as it can be seen in Figure 4b example. As an
addition to Tails and Cache, they are the parts of the struc-
ture required to be local memory at all times. E.g., Figure 4c
shows the memory distribution of the data structure.

Result Pair (R = 〈R0, R1〉) maintains the aggregated
result from the leftmost tree in R0 and the aggregated result
from the rest of the Forest in R1. The Stack contains the
aggregated results of the leftmost tree without the first
element from each level. The top value from the Stack is
always R0 minus the update in the head of the window.
In Figure 4b we can see that the Stack top element is 5,
which is R0 minus the head element in the first level:
6 − 1 = 5. Likewise, the next element in the Stack is 3,
which corresponds to R0 minus the head element in the
second level: 6− 3 = 3.

Essentially, AMTA insertions aggregate the new values
in R1, while single update evictions pop values from the
Stack onto R1. For instance, inserting 1 to the data structure
in Figure 4 would result on R1 = 6 + 1 = 7, while evicting
the first element would pop 5 from the Stack and put it
on R0. Aggregating R always produces the final result
value for the window. The Forest is used to keep the Stack
updated, to compute R1 from scratch when necessary and
to perform bulk evictions. Therefore, new updates also need
to be inserted and removed from the Forest structure.

The main goal of AMTA is to improve its time complex-
ity without giving up its other benefits in comparison with
the state of the art: space complexity, its user-programmable
WSP mechanism, efficient bulk evictions and the reduced lo-
cal memory footprint. More details on how this is achieved
using this structure can be found in the following sections.

Invariant 3. Having h as the height of T and l1 the leaf level
for all the binary Forest, n = |li|, and vij containing a pair of
elements, ∀hi=1vi,n is a tree root.
4.2.2 Amortized insertion
Log MTA update insertion is O(log n) because for every
new update, the Tree nodes need to be updated from the
leaf to the root. This can be avoided by only adding a node
to the Tree when its value is definitive. In other words, a
pair will only have a parent if both members in the pair
have been inserted. In AMTA, a pair will only have a parent
if it is not in the tail of its level queue. Figure 4a example
shows that the last 〈1, 2〉 pair in level 0 is not aggregated in
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(a) AMTA Forest (b) AMTA level division (c) AMTA KVS data structure

Fig. 4. Amortized MTA Structure and Element Location Examples

Algorithm 3 AMTA update insertion. Inserts u to data
structure C
1: L← levels(C), R← result pair(C)
2: agg ← u, l← 1, h← max(|L|, 1)
3: R1 ← monoid(R1, u)
4: while l ≤ h ∧ agg 6= � do
5: P ← Ll,|Ll|
6: next agg ← �
7: if e1 6= � then
8: next agg ← monoid(e0, e1)
9: L(〈agg,�〉)

10: else
11: e1 ← agg
12: end if
13: agg ← next agg
14: l← l + 1
15: end while
16: if agg 6= � then
17: L({〈agg,�〉})
18: else if l > h then
19: C(compute left result())
20: C(compute right result())
21: end if

level 1 and there is a � at its tail instead. The consequence
in the shape of the data structure is Invariant 3, the tail pair
on each level is the root of its own binary tree. This process
is amortized O(1) and O(log n) in the worst case.

However, the pair in the upper level does not contain
the full aggregation result, only a part of it. Therefore, every
inserted update is aggregated in R1 (O(1)), which contains
the aggregation of all the trees except the leftmost one. R0

contains the aggregated result of the leftmost tree, so the
aggregation of R is the full window aggregation result.

As the window grows, R1 aggregated trees merge with
the leftmost tree. In this situation, part of the aggregation
moves from R1 to R0. Therefore, R and the Stack need to
be recomputed from scratch, which has an amortized O(1)
time complexity with O(log n) in the worst case.

Algorithm 3 describes the operation more formally. The
new update u is firstly aggregated to R1, overwriting its
value to keep the Result Pair up to date. Then, u is inserted
in the Forest’s first level queue and the aggregation is
propagated up to its tree root. Finally, when an element
is inserted to the already existing highest level, R must
be recomputed from scratch using compute left result for R0

and compute right result for R1, both O(log n).
compute left result places into R0 the aggregation of the

leftmost tree while repopulating the Stack, as described in
Algorithm 4. The head pairs from each level queue are
traversed, from root to leaf. When a pair P is 〈∗, ∗〉, its
element e1 is aggregated with the top of the Stack (or with�
if the stack is empty), and then stacked. Once all levels have
been visited, the older update in the window is aggregated
with the top of the Stack, and placed in R0. The contents in

Algorithm 4 Compute AMTA R0 and Stack S in the data
structure C
1: S ← stack(C), L← levels(C)
2: S(clear()), R← result pair(C)
3: for l = |L|, ..., 1 do
4: P ← ll,1
5: if e0 6= � ∧ e1 6= � then
6: S(push(monoid(e1, S(peek()))))
7: end if
8: end for
9: if e0 6= � then R0 ← monoid(e0, S(peek())))

10: else R0 ← monoid(e1, S(peek()))) end if

Algorithm 5 Compute AMTA R1 in the data structure C

1: L← levels(C), R← result pair(C)
2: for l = 1, ..., |L| do
3: P ← Ll,|Ll|
4: R1 ← monoid(monoid(e0, e1), R1)
5: end for

the Stack will be used to perform eviction of single updates
in amortized constant time.

compute right result operation aggregates into R1 all the
rightmost pairs (except for leftmost tree) in the Forest, as
described in Algorithm 5.

The continuous execution of an update insertion in the
Forest makes each element in the data structure to be visited
once for the bottom-up propagation. As the space used
for the data structure is O(n), the cost of inserting n up-
dates becomes O(n). Then, functions compute left result and
compute right result affect only O(log n) in a whole round
of n elements insertions, complexity remaining O(n) for
inserting n updates. So, the amortized cost for aggregating
1 update to the window becomes O(1).

4.2.3 Single update evictions
In Log MTA, performing a bulk eviction is a O(log n)
operation, and it is the only option to remove any number of
updates from the window aggregation. Removing a single
update from its data structure and propagating the changes
on the head of each level would have the same logarithmic
cost. To amortize this cost, the solution we followed for
AMTA is to find a way to perform amortized constant single
update evictions and to save bulk evictions for when the
number of elements to be removed is equal or greater than
a factor of log n.

The Stack from AMTA’s data structure is the key ele-
ment to achieve an amortized constant time single update
eviction. It contains the future R0 values after removing
the head element from each level, being the oldest update
removal always in the Stack’s top. The rest of the elements
will be used at some point, both for single update evictions
and to maintain the Stack in amortized constant time.
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The single update eviction operation is formally de-
scribed in Algorithm 6. The Results Pair R is updated
by popping an element from S into R0. At this point, R
aggregation already provides the correct aggregation result,
but the Forest and the Stack need some maintenance before
removing the next update.

The first update is removed from the head of the leaves
level in the Forest, and the parent-child relations in the
branch are updated. If a pair is removed from the Forest,
then its parent element must be replaced by�. However, the
tree aggregations will not be updated, leaving inconsistent
values in the data structure. The main implication of only
updating the branch parent-child relations instead of also
updating all the values is that, while it still keeps the tree
consistent with Theorem 1, the amortized cost is constant
and not logarithmic. During this process, all the new head
pairs from each traversed level are pushed in the new heads
stack.

The current Stack top element might not be the next R0.
The Stack needs to be updated with new elements, using
update stack, which can be found in Algorithm 7. Similarly
to compute left result, it updates the stack using values from
new heads. For every pair P popped from new heads, its
element e1 is aggregated with the top of the Stack (or with
� if the stack is empty), and then stacked.

If the number of levels has decreased after this process,
the first tree has been completely removed and the second
one took its place. Therefore R1 needs to be recomputed.

Figure 5 shows an example of this situation. It is a
window performing a sum aggregation on the sequence
[1, 3, 2, 1, 2, 1, 1, 0, 3, 1] with result 15. When the first update
is removed, the top of the Stack (6) is moved to R0 and
the update is replaced by � in the Forest. The result is now
6 + 8 = 14, which corresponds to 15 − 1 = 14. No further
actions are required after this update removal. The same
steps are followed for the second update removal, but in
this case the head pair from the first level is removed and
the head element from the second level is replaced by �.
Also, 〈2, 1〉 is used to update the Stack (1 +� = 1).

The continuous usage of this operation results in each
element being removed, without updating any value. Fur-
thermore, each pair is traversed once to update the Stack
and computation right result affects only O(log n). Therefore,
the amortized cost for a single removal from the window is
O(1).

This process does not make use of the inverse functions
of the aggregation operation to subtract the evicted updates,
which would run in worst-case O(1) time. For example, if
we sum [1, 2, 3] the result would be 6. When evicting 1,
we could use the inverse function with result 6 − 1 = 5
in one step. The problem is that the inverse function does
not always exist or is easy to find. AMTA single eviction
mechanism provides an equivalent computational cost with
a less restrictive aggregation programming interface.

4.2.4 Amortizing Bulk Evictions

Enforcing the WSP, like in Log MTA, removes updates from
oldest to newest while the WSP is satisfied. In this case, the
WSP enforcement starts by checking the head update of the
window. If the WSP condition is met, the update is removed
using the single update eviction operation. For constant-size

Fig. 5. AMTA single update eviction running example

Algorithm 6 AMTA’s single update eviction from the data
structure C
1: S ← stack(C), L← levels(C), l← 1
2: removed pair ← true, new heads← {}
3: R0 = S(pop())
4: while removed pair ∧ l ≤ |L| do
5: P ← Ll,1

6: if removed pair ← (e0 = � ∨ e1 = �) then
7: Ll(remove pairs(1))
8: P ← Ll,1

9: if e0 6= � ∧ e1 6= � then
10: new heads(push(P ))
11: end if
12: else
13: e0 ← �
14: end if
15: l← l + 1
16: end while
17: C(update stack(new heads))
18: if removed pair then
19: C(compute right result())
20: end if

sliding windows, this solution already runs in amortized
constant time with logarithmic time in worst case scenario.

However, the worst time would become linear with
variable-size windows. Our solution is to use the bulk
eviction after the WSP enforcement removed a factor of log n
elements from the Forest using the single update eviction.
Theorem 1 is valid for each tree in the Forest, and each
tree is removed from its root. Therefore, Algorithm 2 can be
applied to each tree in the Forest until reaching the leaves
level and keeping the same cost. The only precondition is to
recompute the values from the leftmost branch, in order to
make them consistent, which is a O(log n) process.

5 EVALUATION

The evaluation is divided into four experiments concerning
different aspects from the MTA Window Framework and
state of the art general sliding window solutions.

The analysed algorithms correspond to implementations
of Amortized MTA, Log MTA, DABA and Naive window
aggregation. DABA is the featured algorithm from the state
of the art SWAG framework [11], discussed in Section 2. All
DABA operations are O(1), but it does not feature a bulk
eviction mechanism. Therefore, performing an eviction of n
elements is O(n), which is amortized with a higher worst-
case than AMTA. On the other hand, the Naive approach
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Algorithm 7 AMTA Stack update. Updates S from
new heads in the data structure C
1: S ← stack(C),
2: while |new heads| 6= 0 do
3: P ← new heads(pop())
4: S(push(monoid(e1, S(peek()))))
5: end while

aggregates all the elements in the window every time a new
result has to be produced.

All algorithms use monoids as the aggregation mecha-
nism, so we are evaluating sliding window algorithms that
do not need to have invertible aggregations. Additionally,
we will use MTA’s WSP mechanism in all the algorithms,
with an adapted WSP enforcement. Both DABA and Naive
will use the head element in the window individually as
the subsequence to compare in the WSP, because they don’t
have efficient bulk eviction mechanisms.

5.1 Implementation
All algorithms are implemented in Java 1.8 and executed as
operators in an Apache Storm based stream processing run-
time called rapids. rapids processes all data units as objects
with a shared class and several data dimensions, meaning
that updates and partial results will be objects with multiple
values rather than single scalar values. The purpose of
running the algorithms in rapids rather than isolated is to
show how they perform in a production environment.

MTA Window Framework will be evaluated in two
different implementations: one where the algorithm’s data
structure resides in pre-allocated local memory, and an-
other with the KVS-based data structure described in the
previous sections. The local memory implementations of
MTA replaces each level’s Cache-based KVS interaction
mechanism by a simple CircularFifoQueue. They compare
on equal terms with DABA and Naive aggregation, as nei-
ther of them have a data structure adapted to work with
remote data stores. For these algorithms, the data structure
is preallocated and never reallocated, to avoid evaluating
the latency added by performing incremental memory al-
location strategies or static resizing. Furthermore, DABA
implementation contains the optimizations described by its
authors regarding caching results (Cached DABA). They have
been evaluated on its most favourable implementation for
the rapids runtime. The MTA local memory implementations
will be referred as Mem. LMTA and Mem. AMTA, while the
memory decoupled versions will be KVS LMTA and KVS
AMTA.

All tested algorithm implementations include a WSP en-
forcement mechanism. For Amortized MTA and Log MTA,
the WSP enforcement algorithms are the ones described in
Section 4, including the O(log n) bulk eviction. DABA and
Naive aggregation WSP enforcement check the first elements
in the window, one by one, as the algorithms themselves do
not have the capability to perform efficient bulk evictions.

KVS LMTA and AMTA buffer up to 512 new elements
from the data structure before storing them to a distributed
data store. Each level have a cache containing up to 512
elements retrieved from the data store. When a level cache
size is less than 256, it synchronizes with the data store
to fill it up if possible, depending on the size of the level.
Moreover, the data store used in the experiments is Couch-
base [25]. Couchbase is a KVS based on memcached [26],

with a distributed LRU cache in RAM. It prioritizes access
in memory over disk for low-latency.

Naive window aggregation consists of a fixed size circu-
lar queue. When an update is inserted or removed to the
window, it is simply inserted or removed from the queue.
Querying the result aggregates all the updates contained in
the queue, if it does not have the result already cached.

5.2 Optimizations
On top of the main algorithms that were previously ex-
plained, some optimizations were used for the evaluation.
Those were not included in the description of the main
algorithms for the sake of simplicity.

Aggregation results are cached for all the algorithms
evaluated. While a cached result value is valid, no computa-
tion needs to be performed to produce a result. After a new
insertion or eviction from the window, the cached result is
flagged as invalid and the aggregation final result will need
to be computed.

In Amortized MTA, both an update insertion and the
WSP enforcement might trigger a full Result Pair recom-
putation. It can happen that the arrival of a new update
triggers a full result pair recomputation twice, if both the
insertion and WSP enforcement require so. In order to avoid
such a situation, result pair recomputations are requested
by each stage, but they are executed only once after the
operations finished.

KVS LMTA and AMTA communication with the data
store is done in the background when it is possible. Storing
the buffered elements is always a background operation.
However, although updating a level cache is also performed
by background threads, a cache miss will always require a
synchronous update.

DABA contains all the optimizations defined in its corre-
sponding papers (Cached DABA).

5.3 Environment
The experiments were run in a cluster with 2-way Xeon
E5-2630 (broadwell) v4 clocked at 2.20GHz nodes. Each
one features 128GB of DDR4-2400 R ECC RAM. All nodes
were interconnected using a non-blocking 10GbE switching
fabric. Although an external NFS folder was mounted on the
systems, it was not used as a backend for the experiments.
Instead, all data was stored locally using four 7.2K rpm 2TB
SATA HDDs per nodes, mounted as four independent vol-
umes. Experiments comprising Naive aggregation, DABA,
Mem. AMTA and LMTA only used a single node. KVS AMTA
and LMTA logic was executed in a single node, but Couch-
base ran as a cluster in three extra nodes. Therefore, the
contents of both algorithms data structures were distributed
between 4 nodes.

Listing 2. Experiments’ monoid
function monoid(left, right){
Element result = new Element();
result.count = left.count + right.count;
result.maxSize = right.maxSize;
return result;

}

Listing 3. Experiments’ WSP
function wsp(total, old){
return total.count - old.count >= total.maxSize;

}
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Fig. 6. Average latency for constant-sized windows

5.4 Experiment 1: Constant-sized window latency

In this experiment we analyze the average latency of insert-
ing a new update and generating a result with a constant-
sized window. Its aim is to demonstrate the effective time
complexity of each algorithm, and how they compare to
each other. Each measurement was performed for different
window sizes by inserting one update to the window, re-
moving the oldest one, and retrieving the total aggregation.
The user defined operations for this experiment are the
monoid in Listing 2 and the WSP in Listing 3. Updates and
partial results contain two dimensions: count and maxSize.
count is always 1 on an update inserted to the window, as
it counts itself. maxSize establishes the size of the window,
and so it is used by the WSP to remove updates from the
window when this size is exceeded. The evaluated window
sizes go from 1 to 225. Each iteration of the experiment starts
by filling the window up to maxSize. Once the window size
is maxSize, update insertions are performed until all the
initial updates from the filling up stage are removed by
the WSP, hence traversing all the window possible states.
The latencies shown in Figure 6 for each window size
correspond to the average latency of the process triggered
by an update insertion, including aggregation, WSP check
and update removal. The chart is drawn in a logarithmic
scale for the x-axis for clarity.

As it can be observed, Naive aggregation initially has
the lowest latency, but it grows linearly with the window
size and rapidly becoming the obvious worst-performant
algorithm in terms of time complexity.

As it was expected, AMTA and DABA show a constant
time complexity behaviour. Being Mem. AMTA the algo-
rithm with the lowest latency with a window size 29 or
greater, its distance with KVS AMTA is relatively low and
affordable given the memory usage benefits. The impact on
storing the majority of the data in a distributed data store
is around 1 microsecond with the greater window sizes and
less than 500 nanoseconds compared to DABA. This is the
result of keeping data store communications asynchronous
when possible. The same difference can also be appreciated
in the Log MTA implementations, which has a the expected
O(log n) behaviour.

This experiment proves that the theoretical complex-
ity for constant-sized window is also shown in practice.
Furthermore, the average AMTA latency for constant-sized

windows goes in line with the state of the art, and the
data-computation decoupling performed in KVS AMTA and
LMTA have marginal a effect for constant-sized windows.

5.5 Experiment 2: Bulk eviction latency

This experiment evaluates the variable-sized windows sce-
nario. In these cases, several updates need to be evicted from
the window triggered by a single new update insertion.
Using the monoid in Listing 2 and the WSP in Listing 3, we
measured the average latency of the enforceWSP operation
for each algorithm. The windows are initialized with the
same initial size: 223 updates. A series of iterations evict
from 1 to 223 − 1 updates per insertion, averaging its
latencies for each removal size. The results can be seen in
Figure 7, divided in two different y-axis crops to visualize
distinct groups of results, one in seconds and the other in
milliseconds. The x-axis have a logarithmic scale.

Figure 7a is the global view and emphasizes DABA and
Naive windows. Naive aggregation bulk eviction latency
is around 2 seconds constantly. All updates in the Naive
window are aggregated when generating a result. On the
one hand, it needs to aggregate all the updates checked by
WSP after an insertion. On the other hand, it also needs to
aggregate the remaining elements to produce a result for the
operation. Therefore, the number of aggregated elements
remains constant. Furthermore, DABA has a clear linear
latency growth behaving worst than Naive when removing
sub-windows with size 220 − 1 or greater, and becoming an
unfitted operation for real-time stream processing.

Figure 7b reduces the y-axis scale by three orders of
magnitude, and Naive window is now out of the scope of the
chart. It focuses on comparing the four MTA solutions and
DABA. Bulk eviction latencies are very similar between the
KVS MTA implementations, growing logarithmically. KVS
LMTA is a almost a millisecond faster for most periods as
its WSP enforcement process has the same complexity but
fewer stages, i.e. trying multiple single update evictions. In
this scenario, they suffer from the greatest impact of having
the majority of the data in a distributed data store. The
consistent latency growth from KVS MTA compared to the
Mem. MTA counterparts is due to the data store query time,
triggered by cache misses. However, the latencies decrease
significantly in the last iteration, because the data can be
found locally in the structure buffer. Maximum latency for
both algorithms is around 5 milliseconds, 400 times less
than Naive window running completely in local memory.
The effect of having most of the data structure in a KVS is
noticeable by comparing them with Mem. AMTA and LMTA.
The Mem. MTA algorithms have the best time performance:
Mem. AMTA has 455 microseconds worst latency and Mem.
LMTA 258 microseconds. Note that Mem. LMTA also per-
forms better for the greater part of the iterations than Mem.
AMTA, like in the KVS scenario.

AMTA Framework shows a significant improvement
compared to the state of the art for bulk window evictions.
For big window bulk evictions, even KVS MTA behaves
faster than the memory allocated DABA, while the Mem.
MTA solutions is faster throughout the execution. The laten-
cy/memory tradeoff offered by KVS MTA is demonstrated
later on.
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Fig. 7. Window bulk eviction average latency, using different y-axis scales to show different details

Naive KVS LMTA Local LMTA DABA KVS AMTA Local AMTA
Sum 3.69 · 108 14 320 10 341 4 288 6 253 4 163

Mean 3.26 · 108 14 027 10 378 4 389 6 111 4 033

G. Mean 2.83 · 108 15 267 11 166 4 795 6 198 4 183

Std. Dev. 3.5 · 108 15 439 12 934 4 880 6 131 3 864
Max 2 554 8 501 6 188 3 500 2 886 1 763
LIS 19 294 22 306 19 794 10 027 7 350 6 476

TABLE 2
Window latencies in nanoseconds with different monoids and WSPs

5.6 Experiment 3: Stream analytics latency

The previous experiments show how the different algo-
rithms behave in terms of latency. In this experiment we
evaluate how different real window aggregations behave
with each algorithm. The analysed stream consists on
62 208 000 updates monitoring computer memory usage,
one reading per second for two years.

This stream has been subjected to different operations
performed by the window monoid: sum, mean, geometric
mean, standard deviation, maximum and longest increasing sub-
sequence (LIS). The particular case of LIS is the most complex
one, since it measures multiple dimensions: initial times-
tamp, final timestamp, interval covered by the subsequence,
and the number of updates in the subsequence.

In terms of WSP, there is a general rule for all the
operations: the window contains at most 220 elements. This
policy alone makes the window static-sized. However, max
and LIS extend the size limit policy: max operation evicts the
older subwindow not containing the maximum value in the
window, and LIS operation evicts the older subwindow not
containing any portion of the LIS. Updates older than a max
value or a LIS are never going to contain a future new result,
it will only be found within newer updates. Therefore, these
updates are not necessary to perform the aggregation and
the memory they are using can be cleared. By doing that,
an efficient bulk eviction mechanism can reduce the total
time of evictions performed during the whole data stream
analysis.

Table 2 shows the mean latency in nanoseconds for each
operation and sliding window algorithm. All operations
run faster in Local AMTA than in the other algorithms.
In DABA they behave slower but similar to Local AMTA,
except for max and LIS, where the difference is more note-
worthy. Both operations clearly benefit from reducing the
number of single evictions in both KVS and Local AMTA,
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Fig. 8. Average window size reached per allocated memory amount, for
a 225 updates capacity.

getting better performance than executed in DABA. These
operations also perform well in the Naive algorithm, being
Naive the second best algorithm to run max. The cost of
an insertion in the Naive algorithm without evicting any
update is as cheap as performing a single monoid execution,
while the evictions cost is very expensive but constant for
evicting any number of updates (Figure 7a).

In this experiment we proved that the performance
and time-complexity exhibited in the previous experiments
has a relevant impact in different stream analytics on real
data. Furthermore, the experiment tests multiple distinctive
monoids and WSPs, analysing their impact rather than
testing only the algorithms with a minimal aggregation. It
shows consistency with the theoretical complexity of each
algorithm and their tested performances.
5.7 Experiment 4: Memory requirements
This experiment evaluates the local memory requirements
in order to run each sliding window algorithm in rapids.
As previously introduced, rapids is a stream processing
platform written in Java. For this experiment, we assigned
different memory heap sizes for the Java Virtual Machine
(JVM), up to 32GB; and for each size, the sliding window
algorithms were executed individually, with capacity for 225

updates.
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There are three possible outcomes for each execution: In
the first one, the window is filled up and older updates start
to be removed, showing a normal behavior. In this case the
window size reached is its capacity and the goal is met. In
the second one, rapids runs out of memory as the window
requires more memory than the heap provides, and the last
window size measured is the reached window size. In the
third one, the computation becomes very slow because of
the lack of memory and the impact of the JVM Garbage
Collector (GC). Given a timeout for update computations set
to 5 seconds, when exceeded, the last window size measured
is the reached window size. This experiment was done using
the same GC (Java 8 G1GC) as in the rest of experiments.

Figure 8 shows the average window sizes for each tested
heap size, for capacities of 225 updates. Not appreciated
in the chart but relevant, is that KVS AMTA was able to
insert 1 281 and 59 276 updates with heap sizes of 128MB
and 256MB respectively, while KVS LMTA was able to insert
1 459 and 66 171 updates. Mem. AMTA, Mem. LMTA and
DABA were able to insert updates from 256MB heap size
and greater, starting with 1 015, 877 and 1 120 updates each.
Naive inserted elements from 512MB heap size and greater,
starting with 171 923 updates.

The reasons why the KVS algorithms AMTA and LMTA
start inserting messages with less memory is their reduced
need of allocated memory for the empty data structure,
being O(log n) compared to O(n) in the other algorithms.
Also notice that KVS AMTA and LMTA reached the window
capacity with 512MB of heap memory behaving normally.
This size is smaller by far compared to the heap sizes
of the other algorithms. Except for Naive that reached the
window capacity with 16GB of memory heap, the rest did
not reached such capacity until memory heaps of 32GB.
This proves the memory-wise benefits of using the AMTA
Framework by decoupling most of the data from the local
memory aggregation. It also shows that KVS LMTA has a
slightly better performance in terms of memory usage than
KVS AMTA, in addition to the capacity to perform fast bulk
evictions.

5.8 Experiment 5: Multi-dimensional aggregation
Finally, we evaluate the impact of operating over multi-
dimensional data, by analyzing how adding dimensions to
data, and making the aggregations on each dimension share
resources like the sliding window data structure and the
WSP), affects the average computation latency.

Streams can contain synchronous dimensions of data,
and the window can aggregate each one individually in
the user defined monoid. E.g. dimensions like wind speed,

humidity, and temperature, coming from the same stream,
might need to be independently averaged with the same
WSP. Here we ran a constant-size KVS AMTA window with
the WSP from Listing 3 and with maxSize = 215, then mea-
sured the latency of update insertions for a different number
of stream dimensions. The dimensions in the stream are
maxSize and a k number of count dimensions (from count1
to countk). We chose dimensions with simple aggregations
in order to quantify the overhead around them. Figure 9
shows: 1) the average latency for k from 1 to 50 as a barplot,
2) the linear regression on the collected results, highlighting
the latency growth, and 3) how the latency would sum if
each dimension was sequentially aggregated in different
windows, repeating operations like data structure manage-
ment or WSP with their corresponding latencies. E.g., the
latency from k = 1 being 4 895 nanoseconds, with k = 2 it
would be 4 895× 2 = 9 790.

We can see that the linear regression grows slower than
the proportional latency, as the monoid computation is a
small fraction of the average latency for k = 1. The latency
of a single count aggregation is quantified in 411 nanosec-
onds and 4, 158 nanoseconds are spent differently and
shared between data dimensions. The latency grows linearly
with the number of dimensions, although the monoid’s
impact would be higher depending on the operators used.

6 CONCLUSIONS

In this paper we have introduced the Monoid Tree Aggre-
gator Window Framework, a new framework for general
sliding window aggregation that advances the state of the
art in several aspects: 1) it exhibits an amortized constant
O(1) time-complexity between updates, and for the worst-
case scenario it exhibits logarithmic cost O(log n) ahead of
the linear cost O(n) of the current existing solutions; 2) it
includes a general aggregation mechanism that uses binary
associative operations, and a general mechanism to enforce
the Window Slide Policy (WSP) with amortized cost O(1),
both programmable by framework users; 3) it provides
a mechanism to automatically enforce the Window Slide
Policy, which enforces efficient bulk data evictions with cost
O(log n) which, to our knowledge, is not supported by any
other existing framework; 4) it provides support for multi-
dimensional data aggregation, that can be also leveraged
to implement the Window Slide Policies; and 5) it was
designed to support a scalable implementation backed by
a distributed key/value store instead of leveraging local
memory only.

The framework has been presented through a detailed
description of the main algorithms involved in the manip-
ulation of the critical data structures of the sliding window.
The framework has been implemented in two flavours:
a local version in which all data is stored in memory
and a remote-store version that leverages a distributed
Key-Value Store to keep most of the data. In both cases,
the algorithms have been implemented on top of Apache
STORM, which has been used as the streaming platform,
providing a multi-tenant environment to build several slid-
ing window aggregations in parallel. A comprehensive eval-
uation has been conducted to proof the efficiency of the
implementation, and results show that the framework can
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manage large windows (up to tens of millions of elements)
efficiently, with a cost in the order of a few microseconds
to insert elements and slide the window. The experiments
on bulk data eviction show that the cost of removing large
amounts of elements from the window is extremely low,
which is a critical requirement for implementing efficient
and reactive Window Slide Policies that drive the criteria to
include or exclude elements in the sliding window.
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“Ibm streams processing language: Analyzing big data in motion,”
IBM Journal of Research and Development, vol. 57, no. 3/4, pp. 7–1,
2013.

[8] S. Klein, “Azure stream analytics,” in IoT Solutions in Microsoft’s
Azure IoT Suite. Springer, 2017, pp. 71–84.

[9] D. E. Knuth, The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1998.

[10] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu, “General
incremental sliding-window aggregation,” Proceedings of the VLDB
Endowment, vol. 8, no. 7, pp. 702–713, 2015.

[11] K. Tangwongsan, M. Hirzel, and S. Schneider, “Constant-time
sliding window aggregation,” IBM, IBM Research Report RC25574
(WAT1511-030), 2015.

[12] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A
framework for integrating batch and online mapreduce compu-
tations,” Proceedings of the VLDB Endowment, vol. 7, no. 13, pp.
1441–1451, 2014.
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