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1. What is Algebraic Statistics?

Algebraic statistics is an interdisciplinary field that uses tools from computational al-
gebra, algebraic geometry, and combinatorics to address problems in statistics and its
applications. A guiding principle in this field is that many statistical models of interest
are semialgebraic sets—a set of points defined by polynomial equalities and inequalities.
Algebraic statistics is not only concerned with understanding the geometry and algebra
of the underlying statistical model, but also with applying this knowledge to improve the
analysis of statistical procedures, and to devise new methods for analyzing data.

A well-known example of this principle is the model of independence of two discrete
random variables. Two discrete random variables X,Y are independent if their joint prob-
ability factors into the product of the marginal probabilities. Equivalently, X and Y are
independent if and only if every 2 × 2-minor of the matrix of their joint probabilities is
zero. These quadratic equations, together with the conditions that the probabilities are
nonnegative and sum to one, define a semialgebraic set.

In 1998, Persi Diaconis and Bernd Sturmfels showed how one can use algorithms from
computational algebraic geometry to sample from conditional distributions. This work is
generally regarded as one of the seminal works of what is now referred to as algebraic
statistics. However, algebraic methods can be traced back to R. A. Fisher, who used
Abelian groups in the study of factorial designs, and Karl Pearson, who used polynomial
algebra to study Gaussian mixture models.

Algebraic statistics is a broad field actively expanding from discrete statistical models,
contingency table analysis, and experimental design to Gaussian models, singular learning
theory, and applications to phylogenetics, machine learning, and biochemical reaction net-
works. In this note, we will address two recent contributions to this field: an extension of
Pearson’s work on Gaussian mixtures and some recent results in phylogenetics.
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2. Algebraic Statistics of Gaussian Mixtures

In 1894 the famous statistician Karl Pearson [5] wanted to explain the asymmetry ob-
served in data measured from a population of Naples’ crabs, believing it was possible that
two subpopulations of crabs were present in the sample. The corresponding statistical
model is known as a Gaussian mixture; in this case a mixture of two univariate Gaussian
distributions, each with its own mean and variance. In order to recover the parameters
from the sample, Pearson introduced the method of moments, matching the density mo-
ments to the sample moments. He obtained the following system of polynomial equations
in the means µ1 and µ2, variances σ2
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After considerable effort and cleverness, Pearson managed to eliminate variables to ob-
tain a ninth degree polynomial relation in the single unknown x = µ1µ2,
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where λ4 = 9m2
2−3m4 and λ5 = 30m2m3−3m5. After substituting his numerical moment

estimates mi, he found the real roots of this nonic and determined if they could correspond
to a solution for the mixture model. We see his approach as one of the first instances of
algebraic statistics. Pearson’s work leads to natural questions:

Problem 1. Can Pearson’s method be generalized for a mixture of k Gaussians? How
many moments are needed to recover the parameters? Is there an analogous polynomial to
(2)? What is its degree? What about Gaussians in higher dimensions?

Recovering the parameters from data drawn from a Gaussian mixture is an important
problem in statistics, computer science, and machine learning. Answers to the above ques-
tions shed light on the computational complexity and the effectiveness of several algorithms
proposed in these areas. The key point is that all the moments of a mixture of Gaussians
are polynomials in the parameters, so they define moment varieties that can be studied
algebraically.

Recent progress with this approach has been made by Améndola et al. [2, 3], with partial
answers. For example, it was shown [3] that considering all the moments up to order 3k−1
will yield generically a finite number of Gaussian mixture densities with the same matching
moments. In other words, the polynomial moment system generalizing (1) will generically
have a finite number of solutions for the 3k unknown parameters µi, σi, αi for 1 ≤ i ≤ k.
For k = 2 this is Pearson’s number 9. For k = 3 it was found [2] that the corresponding
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degree is 225. In contrast, perhaps shockingly, the system of 20 polynomial equations in 20
unknowns corresponding to the moments up to order three of mixtures of two Gaussians
in 3-dimensional space R3 will have generically infinitely many solutions. This means that
one needs to consider higher order moments in order to recover the parameters. A complete
classification of such defective cases is still open.

3. Algebraic Statistical Phylogenetics

Algebraic statistics has been also used in phylogenetics. Phylogenetics seeks to explain
the ancestral relationships among a group of living species. These relationships are usually
represented in a phylogenetic tree as in Figure 1, where the leaves are in bijection with
the living species, the interior nodes represent ancestral species, the root is the common
ancestor to all the species in the tree, and the edges represent an evolutionary process that
led from one ancestral species to the next. Figure 1 shows three possible phylogenetic trees
that could explain the evolution of human, gorilla, lemur, and macaque.

In order to infer the phylogenetic tree that best explains the evolution of the species,
one uses the genome of the living species and models the substitution of nucleotides using
a Markov process on trees, assuming that each position in the genome evolves in the same
way and independently of the others. We denote the set of four nucleotides by {A,C,G, T}.
A discrete random variable taking values in this set is assigned to each node of the tree.
For each edge, the probabilities of substitution of nucleotides between the two species at
the ends of the edge are recorded in a transition matrix (a Markov matrix). The entries
of these matrices, together with the distribution of nucleotides at the root of the tree,
form the parameters of the model. Then, the probability of observing a certain pattern
of nucleotides at the leaves of the tree can be written in terms of these parameters, by
assuming that the evolutionary processes of two edges incident at a node v is independent
given the observations at v.

Figure 1. Three phylogenetic trees representing three possible evolution-
ary histories of human (h), gorilla (g), macaque (m), and lemur (l).

Again, the key point is that for each phylogenetic tree τ , the map ϕτ that sends each set
of parameters to the vector of probabilities of patterns AA . . . A, AA . . . C, . . . , TT . . . T at
the leaves is a polynomial map, and hence its image is (almost) an algebraic variety Vτ .
Different trees (as the ones in Figure 1) lead to different algebraic varieties, and the goal
is to use the equations that define these algebraic varieties in order to decide, given a data
point (that is, a sequence of nucleotides for each species at the leaves), to which variety is
closest (in some sense).
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The idea of using polynomial equations in phylogenetics is not due to mathematicians but
to biologists. Indeed, in the late 1980s, biologists James A. Cavender, Joseph Felsenstein,
and James A. Lake already realized that the equations satisfied by the pattern probabil-
ities on a phylogenetic tree could help in inferring the tree without having to estimate
the parameters of the model. It is precisely this, the fact of not having to estimate the
parameters, that makes algebraic statistics potentially useful in phylogenetics. However,
selecting a set of equations that define the algebraic variety cannot be done in a canonical
way. Moreover, the codimension of these varieties grows exponentially in the number of
leaves, so using them directly may not be a practical choice.

A recent approach to indirectly using these algebraic varieties is based on the following
result due to Elizabeth Allman and John Rhodes: Assume the vector of probabilities
p = (pAA...A, pAA...C , . . . , pTT ...T ) belongs to the image of ϕτ . Any edge of τ splits the set of
leaves into two subsets a and b, giving rise to a matrix Ma,b whose rows (resp. columns) are
labeled by the states at the leaves in a (resp. b) and whose entries are the corresponding
probabilities in p. Then the matrix Ma,b has rank at most 4. This result leads to equations
satisfied by the points of the variety (the 5 × 5 minors must vanish), and it also gives
the possibility to test candidate phylogenetic trees by checking how far certain matrices
are from the set of rank 4 matrices. This distance can be easily computed using singular
value decomposition. This approach has been recently exploited [1, 4] with great success
on both simulated and real data. As a consequence, algebraic tools have finally attracted
the attention of biologists and have been implemented in some widely used packages of
phylogenetic inference.

There are several books and even a journal dedicated to algebraic statistics. The R
package algstat contains many computational algebraic statistics tools including the state
of the art implementation of the Diaconis-Sturmfels sampling method. The upcoming
book Algebraic Statistics by Seth Sullivant is a great resource for graduate students and
researchers interested in learning more about this exciting field.
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