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Abstract

Nonlinear optics at the nanoscale is severely limited by the small departure of avail-

able materials from linear behavior. Despite intense efforts placed into overcoming this

problem using multiple strategies for enhancing the near-field light intensity, all-optical

active nanodevices remain a challenge. Here we introduce a material-independent

scheme for quantifying the enhancement of the nonlinear response in nanostructures

assisted by proximal metallic or dielectric nanoresonators. The proposed figures of

merit, which we apply to configurations of current interest incorporating 2D materials

and dielectric cavities, can be generally used to optimize nonlinear nanoscale elements.

Keywords: surface plasmons, nonlinear optics, electromagnetic modeling, integrated

optics, harmonic generation

The control of light by light based on nonlinear optical phenomena has led to significant

technological advances in photonics,1,2 particularly regarding communications,3 biological
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imaging,4–8 light modulation,9–12 and THz sources.13 The challenge of nonlinear optics stems

from the negligible interaction among electromagnetic waves in free space. Substantial efforts

have been devoted to identify materials with sufficient anharmonic response as to enable

optical nonlinearities at low light powers.14–17 Unfortunately, the best currently available

nonlinear materials exhibit only a weak response, which needs to be compensated in practical

devices by for example making light pass through long paths in bulk crystals, a strategy

that demands stringent phase-matching conditions.10,18,19 Additionally, near-field intensity

enhancement through optical resonators has been widely explored to design active photonic

devices operating on subwavelength scales for applications in optical circuitry,20,21 biological

sensing,7,8,22–24 and quantum information.25–27

Nanoscale nonlinear optics has received a recent stimulus with the isolation of graphene28

and other atomically-thin crystals,29–31 which combine a large electro-optical response with

strong intrinsic optical nonlinearities. In particular, the conical electronic dispersion of

graphene boosts its nonlinear response through both intra- and interband transitions,12,32,33

which are predicted to be further increased by coupling to plasmons –the collective oscil-

lations of electrons in conducting media– sustained by highly doped graphene nanostruc-

tures.34–36 Also, transition-metal dichalcogeneides such as MoS2 are observed to produce

efficient harmonic generation.37–42

Despite their large nonlinear optical susceptibilities, the response of 2D materials is lim-

ited by their inherently small volumes. Optical resonances provide a promising way for

circumventing this limitation, as they can enhance the driving electric field, thus boosting

the effective nonlinear response. This idea has been generically pursued with nonlinear mate-

rials using plasmons to concentrate electromagnetic energy down to extremely subwavelength

volumes,43–45 Mie-like resonances in dielectric cavities,46 and lattice resonances in periodic

structures.16,17

In this article we explore the enhancement of the nonlinear optical response that can be

achieved in 2D materials by means of resonant cavities. Specifically, we consider (1) the
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extrinsic near-field enhancement provided by localized nanoparticle plasmons acting on a 2D

material; (2) the extrinsic enhancement in a 2D material produced by Mie-like resonances

in dielectric nanoparticles; (3) the intrinsic enhancement of optical nonlinearity in a dielec-

tric nanoparticle by its supported Mie resonances; (4) the effect of lattice resonances on the

nonlinear response for a periodic 2D array of dielectric nanodisks. This suite of different res-

onant cavities are examples that cover a wide range of possibilities: plasmonic nanoparticles,

represented by silver nanorods (a more detailed analysis could explore the effect of material

and morphology, using for example modal expansions47 or quasi-normal modes48); dielectric

nanocavities, represented by silicon spheres and LiNbO3 disks (other dielectric materials

could be used, as well as engineered geometries49–51); and lattice resonances in LiNbO3 disk

arrays (there is extensive literature on the field enhancement caused by such resonances52).

We focus in particular on the enhancement in second- and third-harmonic generation, as

well as the Kerr nonlinearity, quantifying the yield of these nonlinear processes in each of

the systems studied.

Enhancement of nonlinear optical phenomena by reso-

nant cavities

The nonlinear response associated with an nth-order process generating harmonic s of the

fundamental frequency ω can be quantified by the associated induced dipole moments p(n)
sω ,

which we write below for second-harmonic generation (SHG, n = s = 2), third-harmonic

generation (THG, n = s = 3), and the Kerr nonlinearity (n = 3, s = 1), respectively. We

consider systems for which emission from the nonlinear dipole moments dominates the re-

sponse in the far field, although in principle multipolar moments can contribute significantly

when the particle size is commensurate with the incident wavelength. The corresponding in-

duced dipoles p(n)
s are related to the self-consistent near electric field E(r, t) = E(r)e−iωt+c.c.
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and the nonlinear susceptibilities χ(n)
s as

p
(2)
2ω,i =

∑
jk

∫
V
d3r χ(2)

2ω,ijkEjEk, (1a)

p
(3)
3ω,i =

∑
jkl

∫
V
d3r χ(3)

3ω,ijklEjEkEl, (1b)

p
(3)
ω,i =

∑
jkl

∫
V
d3r χ(3)

ω,ijklEjEkE
∗
l , (1c)

where the i − l indices denote Cartesian components, and the integration in Eqs. (1) takes

place within the volume V of a nonlinear material. For the sake of generality, we express the

nonlinear susceptibility tensors in the form χ
(2)
2ω,ijk = χ

(2)
2ω ∆(2)

ijk for SHG, and χ(3)
sω,ijkl = χ(3)

sω ∆(3)
ijkl

for third-order processes. In this manner the frequency-dependent properties of a material

are contained in the scalar quantities χ(n)
sω , while the crystal symmetries are encoded in the

∆(n)
ijk tensors that determine the dependence of p(n)

sω on the driving electric field within this

perturbative description. Then, from Eqs. (1), we define the normalized nonlinear dipole

strength, which we use as a figure of merit (FoM) to quantify the enhancement of nonlinear

processes:

F (n)
sω ≡

1
V |Einc|n

∥∥∥∥∥p(n)
sω

χ
(n)
sω

∥∥∥∥∥ . (2)

Here the double bars indicate the norm of the vector quantity therein and Einc is the ampli-

tude of the impinging electric field, which is assumed to be a plane wave. By normalizing to

the scalar part of the nonlinear susceptibility along with the electric field, the FoM provides

a material-independent (note that p(n)
sω ∝ χ(n)

sω ) quantitative analysis of the enhancement

in the nonlinear response relative to that of the system interacting only with the driving

external field. Other FoMs have been defined for nonlinear processes,45,53,54 but the above

definition is particularly simple and generally suitable for different orders.

Note that while Eqs. (1) and (2) are given for 3D media, they can be used to describe

nonlinear enhancement in 2D media by making the following two changes in Eqs. (1) and

4



(2): d3r → d2R, where R = (x, y) denotes the position vector in the z = 0 plane that

the 2D material occupies; and V → A, where A denotes the integration area occupied by

the material. The integration area is determined by the extension of both the 2D material

and the optical modes of the resonant cavity, which can be problematic because in open

systems the latter extend over the entire space. For convenience, we adopt here simple

prescriptions consisting in restricting the integration area to either the projected area of the

resonating particle or a multiple of it (see below), where the dominant near-field contribution

is expected to occur, although a more rigorous prescription could be formulated in terms

of the well-established quasi-normal modes.48 In contrast, for nonlinear 3D particles, the

volume is simply restricted by that of the cavity.

In what follows, we study the second- and third-order nonlinear response of 2D materials

exposed to optical resonances. Keeping in mind that second-order effects are prohibited

in centrosymmetric media, we address them by focusing on a particular case of materials

without inversion symmetry: we adopt the second-order tensor corresponding to the D3h

point symmetry group10 (i.e., ∆(2)
xxx = −∆(2)

xyy = −∆(2)
yyx = −∆(2)

yxy), which describes for

example transition-metal dichalcogeneides of the form MX2 with M=Mo or W and X=S,

Se, or Te. Conversely, third-order phenomena can be realized in isotropic 2D media such as

graphene, characterized by the tensor ∆(3)
ijkl = δijδkl+δikδjl+δilδjk.10 From this consideration,

we find that in the 2D material structures under study enhancement in the nonlinear response

occurs when F (2)
2ω > 4

√
2 or F (3)

sω > 6
√

2 for second- and third-order processes, respectively,

while in isotropic 3D materials, F (n)
sω > 1 suffices.

RESULTS AND DISCUSSION

Plasmonically-enhanced nonlinear response in 2D materials. We first investigate the

enhancement of the nonlinear response produced in a 2D material by the near-field associated

with localized plasmons excited in a neighboring noble metal nanoparticle. This subject
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Figure 1: Extrinsic plasmonic enhancement of nonlinear optical phenomena in 2D
materials by noble metal nanostructures. (a) Plasmons in a silver nanowire placed
1 nm above a 2D material (color map plane) are excited by a normally-incident light plane
wave (wave vector k) of electric field Einc parallel to the nanowire, producing strong local
electric fields, as shown in the color map, where the 2D material is assumed to be placed.
A dashed curve shows the profile of the wire projected on the 2D material plane, while a
solid curve indicates the integration area. (b) Energy of the lowest-order dipolar plasmon as
a function of the nanowire length-to-diameter ratio L/D for different D’s. The inset shows
an absorption spectrum for L/D = 10 and D = 20 nm. (c,d) Nonlinear FoM (see Eq. (2))
for SHG (c), as well as THG and the Kerr nonlinearity (d), for the wires of (b).
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has been extensively discussed in the literature,43–45 with particular emphasis on glasses

incorporatig metallic inclusions,10 so we only present an illustrative example consisting of a

silver nanowire (i.e., a combination of a good plasmonic metal and a resonating geometry)

deposited on the 2D material surface (1 nm surface-to-surface separation), as shown in Fig.

1a. We simulate the extinction and near field in this system using the boundary-element

method (BEM),55 with the measured permittivity of silver as input.56 In particular, we study

the dependence on the length L and diameter D of the wire when the system is illuminated

by light tuned to the lowest-order dipole plasmon. The intensity distribution of the induced

electric field in the plane of the 2D material is indicated by the color map, showing intensity

levels exceeding the incident intensity by four orders of magnitude for a wire length of 200 nm

and a width of 20 nm, which are realistic parameters achievable through colloid chemistry.57

The plasmon resonance, which manifests as a prominent peak in the extinction cross-section

σext (see Fig. 1b inset), can be tuned within a broad range of photon energies by changing

the wire geometry, as we show in Fig. 1(b) for a selection of particle diameters. The plasmon

resonance is observed to redshift in general as either the length or the width of the nanowire

is increased.58

Using Eq. (2), we quantify the plasmon-enhanced nonlinear response of the 2D material

in the presence of the Ag nanowire by taking the effective area A as twice that projected

by the particle onto the 2D material plane (i.e., the area contained within the solid curve of

Fig. 1a, which is obtained by scaling the projected profile proportionally). Note that we are

neglecting the modification produced in the plasmonically-enhanced electric field as a result

of the interaction with the 2D material, which is a reasonable assumption for nonresonant

atomically-thin layers. We plot the nonlinear FoM in Fig. 1c for SHG and in Fig. 1d for

THG and the Kerr nonlinearity. Remarkably, we observe plasmon-enhancement factors

of the order of 104 and 106 for second- and third-order processes, respectively. As a rule of

thumb, we find that higher aspect ratios L/D produce larger overall nonlinear enhancements

when normalized to the projected wire area.
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Figure 2: Nonlinear optical enhancement by Mie resonances. (a) We show the
extinction cross-section of a Si sphere normalized to its projected area as a function of light
wavelength normalized to the sphere radius R (solid curve) compared with the average of the
in-plane electric field intensity over the circle projected by the sphere (area inside the dashed
curve of the inset). Various resonances are identified as magnetic (λ1 and λ3) and electric
(λ2). (b) Tabulated nonlinear FoM for several nonlinear processes using the resonances
identified in (a) over the projected area (see Eq. (2)).

Enhancement of 2D-material nonlinearities by Mie resonances. Mie resonances

emerge as a result of optical confinement in dielectric structures, essentially driven by the

affinity of the electromagnetic field for regions with higher permittivity.59 These types of

modes require the size of the structure to be commensurate with the light wavelength inside

the material. A dielectric sphere is a prototypical example of this phenomenon, admitting

an analytical solution.60 Following the procedure outlined in the previous section to quantify

the enhancement of the nonlinear response by plasmonic nanostructures, we investigate the

enhancement in a 2D material by a contacting Si sphere of radius R. Note that for the

wavelengths considered, Si has a relatively uniform and high refractive index ≈ 3.4, so
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the Mie resonances are well-characterized, particularly for low-order magnetic modes.61 We

present the extinction cross-section σext and the linear field-intensity enhancement of the Si

sphere in Fig. 2a, where the resonances are indicated by vertical dashed lines, along with a

schematic illustration of the system under consideration. The indicated peaks correspond to

magnetic (λ1 and λ3) and electric (λ2) resonances. The values of the FoM associated with

each resonance for the various nonlinear optical processes under consideration are tabulated

in Fig. 2b, taking the effective area A as that projected by the sphere onto the 2D material

plane (dashed curve in inset of Fig. 2a). We find that magnetic resonances (λ1 and λ3)

generate large enhancement factors compared with the electric one (λ2). Interestingly, the

FoM increases with multipolar order (dipolar in λ1 and quadrupolar in λ3), presumably as a

result of the lower radiative broadening, and we note that this effect cannot be anticipated by

only examining the associated cross-section. An interesting possibility consists in engineering

the geometry to overlap a magnetic and an electric resonance in frequency as a way to further

enhance the field.

Intrinsic nonlinear enhancement in a dielectric nanodisk. We now consider the

effect of geometrical resonances in a dielectric nanostructure on its intrinsic nonlinear optical

response, which has been previously studied for THG.50 Instead, we concentrate on SHG. As

illustrated schematically in Fig. 3a (inset), we study a nanodisk of diameter D and thickness

t illuminated by linearly-polarized light impinging under normal incidence with respect to

the plane of the disk. The nanodisk is made of LiNbO3 , which offers a comparatively

high second-order response.62,63 We simulate the linear response using the BEM, adopting

a refractive index of 2.25 for the material, as appropriate within the near-infrared spectral

range. The extinction cross-section σext, normalized to the projected area A = πD2/4, is

presented in Fig. 3a as a function of light wavelength λ (normalized to D) for three different

aspect ratios: D/t = 1, 2, and 5 (color-coded curves). The cross section is found to exceed

the disk area by a moderate factor, which actually decreases with increasing aspect ratio D/t

(i.e., for thinner disks); this result is expected, as the mode confinement is reduced when
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Figure 3: Linear and SHG response of a LiNbO3 disk. (a) We consider the system
schematically illustrated in the inset, consisting of a LiNbO3 disk of diameterD and thickness
t. The main panel shows the extinction cross-section normalized to the disk cross-sectional
area as a function of λ/D for different values of the aspect ratio D/t. (b,c) Linear polariz-
ability α(1)

ω normalized to D3 (b) and nonlinear SHG figure of merit (c) for the color-coded
aspect ratios considered in (a).
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the disk is thinned, thus increasing radiative damping, and therefore producing broader

resonances. Similar conclusions are obtained by studying the disk polarizability αω (Fig.

3b), yielding the induced dipole p(1)
ω = αω Einc in response to an incident field Einc as a

function of incidence frequency ω. In practice, we calculate αω by simulating the forward

far-field amplitude fω = (ω/c)2αω Einc. Incidentally, from the optical theorem we know that

the extinction cross-section (Fig. 3a) is simply given by σext = (4πω/c)Im{αω}. We make

further use of αω below to simulate disk arrays.

In LiNbO3 the SHG susceptibility χ(2)
2ω contains a dominant independent element around

ten times larger than the rest of the components (e.g., χ(2)
2ω,333 = −83.4 pm/V reported in

Ref.64 at 1058 nm wavelength, although the precise value depends on the exact concentra-

tion of Li and Nb). We consider this direction to be parallel to the incident electric field

(i.e., perpendicular to the disk rotational axis). Then, we simplify the computation of the

nonlinear FoM for SHG (F (2)
2ω ) by only including this field component. As we show in Fig.

3c, prominent features associated with the resonances in the linear absorption/polarizability

spectra also appear in the FoM for SHG, although the resonance enhancement is rather low.

Nonlinear enhancement driven by lattice resonances in 2D particle arrays.

Apart from plasmons and dielectric cavities, lattice resonances provide an efficient way of

reaching high-field enhancements, producing for example full reflection even when arbitrarily

weak scatterers are considered,65 a result that is only made possible by the divergent field

enhancement that accompanies the constructive interference among elements of the array.66

Here, we investigate the enhancement of optical nonlinearities that can be achieved by ar-

ranging individual resonators into a 2D array. As a concrete example, we consider SHG from

LiNbO3 nanodisks such as those studied in the previous section, organized in a square array

of period a and illuminated by light of intensity Iω impinging at normal incidence on the

plane of the array, as illustrated schematically in Fig. 4a.

For simplicity, we represent the disks through their linear polarizabilities α(1)
ω and α

(1)
2ω

at frequencies ω and 2ω, which is a good approximation for D � a. Then, through a
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Figure 4: Intrinsic SHG enhancement produced by lattice resonances. (a) We
consider a 2D periodic square-lattice array of LiNbO3 disks (period a), for which we simulate
the SHG intensity I2ω in resonse to normally-incident light of intensity Iω. (b-d) SHG figure
of merit for disks with the same three different aspect ratios D/t as considered in Fig. 3, as a
function of incident light wavelength and light period, both normalized to the disk diameter
D.
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straightforward extension of the methods presented in Refs.,52,67 we can express the FoM for

SHG in the 2D array as

F (2),array
2ω = F (2)

2ω∣∣∣(1− α(1)
2ωG2ω)(1− α(1)

ω Gω)2
∣∣∣ , (3)

where F (2)
2ω is the FoM calculated above in for individual disks. In Eq. (4), Gω = ∑

R 6=0(ω2/c2+

∂2
xx)eiωR/c/R is a sum over lattice vectors R that accounts for the dipole-dipole interactions

between the nanodisks at frequency ω. This sum corresponds to dipoles of the same magni-

tude, as imposed by the condition of normal incidence. Unfortunately, it is poorly convergent

in real space, so it needs to be performed using Ewald’s method, which we have implemented

following the approach developed by Kambe for 2D arrays.68

The FoM for SHG in the 2D array is presented in Fig. 4b-d as calculated from Eq. (4),

with each contour plot corresponding to a specific nanodisk aspect ratio D/t. For the sake

of clarity, the color scales are saturated to 10, although in each case the maximum value is

indicated on the contour plot. We observe regions of increased effective nonlinear response

indicated by several linear features, which correspond to the conditions Re{1/α(1)
ω −Gω} = 0

and Re{1/α(1)
2ω − G2ω} = 0 (see Eq. (4)) . Given the small values of the polarizability in

units of D3 (see Fig. 3b), these conditions can only be met near the divergences of the lattice

sum, which arise when the period-to-wavelength ratio satisfies a/λ =
√
m2 + n2 (dashed

lines in Fig. 4b-d), where (m,n) run over diffraction orders; these are the so called Wood

anomalies.69 We note that the actual maxima are slightly displaced with respect to the Wood

anomalies as a result of the finite value of the polarizability.

In contrast to the isolated disks, higher aspect ratios (i.e., thinner disks) offer larger

enhancements in the array, an effect that can be attributed to the noted increase in resonant

field enhancement with decreasing particle size.65 The observed enhancement in SHG with

respect to individual disks is significant, reaching values comparable to those obtained with

wire plasmons. In principle, the SHG enhancement can reach arbitrarily large values for
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increasingly smaller disks,52 only limited by fabrication imperfections, and ultimately by

absorption in the material, although in practice the resonances also become narrower, as

already observed in the series of plots shown in Fig. 4b-d.

An analytical estimate of the enhancement due to the array can be obtained through a

direct extension of the theory in Ref.52 for the (1,0) resonance, assuming small disks (D � λ):

considering Eq. (4), we first note that Re{Gω} exhibits a divergence that is perfectly canceled

by Re{1/α(1)
ω } (regardless how small the polarizability becomes); additionally, we note the

exact analytical result Im{Gω} = 2πω/ca2 − 2ω3/3c3, in which the second term is also

perfectly cancelled by Im{1/α(1)
ω } = −2ω3/3c3, valid in the absence of inelastic losses with

D � λ; finally, under these conditions there is a divergence of G2ω due to the (2,0) diffraction

order, although it does not necessarily lead to a resonance, as this would imply a coincidental

cancellation of the real part of G2ω with Re{1/α(1)
2ω }. Putting these elements together, we

quantify the enhancement near the (1,0) resonance as

F (2),array
2ω

F (2)
2ω

= 1
16π4

λ6∣∣∣α(1)
ω

∣∣∣2 . (4)

Although this argument implies that it is in principle possible to obtain arbitrarily large SHG

enhancement through lattice resonances, this effect is associated with a strong lineshape

narrowing that renders them extremely sensitive to defects and inelastic absorption.

Interestingly, the second-harmonic signal at frequency 2ω can also resonate with the

lattice, an effect that is clearly visible in Fig. 4d through the two intense bands below the

(1,0) lattice resonance at frequency ω (therefore labeled by semi-integer numbers (m,n)).

Actually, these bands fulfill the condition 2a/λ =
√
m2 + n2 for (m,n) = (1, 0) and (1,1),

and therefore, they are resonant at the SHG frequency, but not at the fundamental one.
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Conclusions

By employing a general, material- and geometry-independent definition of the FoM for the

enhancement of optical nonlinearities that can be achieved using resonant cavities, we have

been able to compare the nonlinear yield for various structures. From a general perspective,

we need enhanced fields, for which we can think of complex hybrid structures combining

plasmonic, dielectric, and lattice resonances (e.g., cascaded resonances,70 nanoparticles cou-

pled to tapered waveguide focusers71 and electronic transitions in semiconductor quantum

wells,72 plasmons and lattice resonances coupled to Fabry-Perot cavities,73 light trapped in

the continuum74). The present work provides an assessment of common types of simple

cavities and a methodology for comparing their efficiency that can be readily extended to

complex hybrid scenarios. Specifically, we have studied the enhancement offered by localized

plasmons in Ag nanorods, Mie resonances in dielectric spheres and nanodisks, and lattice

resonances in 2D arrays, which are experimentally feasible geometries. Based on our quan-

tification of the nonlinear response, we have shown that Ag nanorods can dramatically boost

the nonlinear response in 2D materials, while Mie resonances in dielectric spheres provide

more modest enhancements. Additionally, compared to an isolated nanoparticle, we pre-

dict that 2D arrays of dielectric nanoparticles produce order-of-magnitude increases in the

nonlinear response. The used FoM provides an efficient tool to explore the dependence of

the nonlinear response enhancement by optical resonances on the size-to-wavelength ratio,

composition, and geometry, thus facilitating the design of structures with optimal nonlinear

yields.
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