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delayed systems from the time series of a scalar variable

C. Quintero-Quiroz, M. C. Torrent, and C. Masoller
Departament de Física, Universitat Politècnica de Catalunya, Rambla St. Nebridi 22, 08222 Terrassa, Barcelona, Spain

(Received 24 January 2018; accepted 17 April 2018; published online 11 July 2018)

The space-time representation of high-dimensional dynamical systems that have a well defined char-
acteristic time scale has proven to be very useful to deepen the understanding of such systems and
to uncover hidden features in their output signals. By using the space-time representation many
analogies between one-dimensional spatially extended systems (1D SESs) and time delayed systems
(TDSs) have been found, including similar pattern formation and propagation of localized structures.
An open question is whether such analogies are limited to the space-time representation, or it is also
possible to recover similar evolutions in a low-dimensional pseudo-space. To address this issue, we
analyze a 1D SES (a bistable reaction-diffusion system), a scalar TDS (a bistable system with delayed
feedback), and a non-scalar TDS (a model of two delay-coupled lasers). In these three examples, we
show that we can reconstruct the dynamics in a three-dimensional phase space, where the evolution
is governed by the same polynomial potential. We also discuss the limitations of the analogy between
1D SESs and TDSs. Published by AIP Publishing. https://doi.org/10.1063/1.5023485

Real-world systems in physics, chemistry, biology, econ-
omy, etc. are typically described by a large number of
equations, involving many variables, and therefore, their
dynamical evolution occurs in a high dimensional phase
space. One of the most exciting discoveries in the field of
dynamical systems in the last decades is that, in spite of
their high dimensionality, these systems can be described
by low-dimensional attractors, which can be reconstructed
even if one can only observe one variable, during a finite
time interval, with finite resolution and with large mea-
surement noise. Examples of such high dimensional sys-
tems are one-dimensional spatially extended systems (1D
SESs), and time delayed systems (TDSs). In a space-
time representation, these systems show similar phenom-
ena (e.g., wave propagation, pattern formation, defects
and dislocations, turbulence, etc.). In this work we study
the state space reconstruction of these systems, from the
time series of one scalar “observed” variable. We ana-
lyze a bistable reaction-diffusion 1D SES and two TDSs: a
bistable scalar system with delayed feedback, and a system
composed by two lasers with delayed mutual cross cou-
pling (the system has several variables and two time-delay
terms). We find that their dynamics can be reconstructed
in a three-dimensional pseudo-space, where the evolution
is governed by the same polynomial potential.

I. INTRODUCTION

The space-time representation of a high-dimensional
dynamical system, by which a characteristic time-scale is
used as a “space-like dimension,” while the evolution during
many characteristic times, occurs in a “temporal dimension,”
first proposed by Arecchi and co-workers in the 1990s,1,2

has proven to be extremely useful to uncover hidden space-
like features, such as wave propagation, pattern formation,
defects and dislocations, turbulent phenomena, etc.3–10 For

example, in semiconductor lasers with time-delayed feedback,
the space-time representation of the intensity time series using
the time interval between zero and the delay time as “space-
like dimension” has uncovered the presence of various types
of space-like structures.11–17

The analogy between time-delayed systems (TDSs) and
one-dimensional spatially extended systems (1D SESs) is
based on well-known properties, like the dimension of the
attractor, which in TDSs grows linearly with the delay time, τ ,
and the Lyapunov spectrum, which rescaled to τ , is indepen-
dent of τ .18 These features correspond to the independence of
the system size found in SESs. It is then natural to ask whether
such analogies also apply to their underlying attractors.

TDSs are infinite-dimensional systems because, in order
to obtain a solution, one needs to specify as initial condition
a function in the interval [−τ , 0].19 However, their dynam-
ical evolution often occurs in low-dimensional attractors. If
the TDS is described by a scalar delay-differential equation of
the form u̇ = f [u, u(t − τ)], in a three-dimensional pseudo-
space spanned by [x = u̇, y = u, z = u(t − τ)], the dynamical
evolution obeys the constrain u̇ − f [u, u(t − τ)] = 0 and thus
occurs in a two-dimensional manifold.20–25

To investigate the analogy between 1D SES and TDS,
we analyze three systems: a 1D SES, a scalar TDS and a
non-scalar TDS. The 1D SES is a reaction-diffusion bistable
system. The scalar TDS is a bistable system with linear
delayed feedback. The non-scalar TDS is a model of two
coupled lasers, with cross-delay terms. We reconstruct their
dynamics in the corresponding 3D pseudo-space: for the two
TDS we use the same [x, y, z] as in Refs. 20 and 21; for the 1D
SES we define appropriated [x, y, z], see Eq. (9).

We show that the evolution of these three systems in
the 3D pseudo-space is well described by the equation z =
F(x, y), where F is the same polynomial function. While this
is expected for the 1D SES and for the scalar TDS (because
of the way x, y, z and F are defined), it is not expected
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FIG. 1. Space-time representation of the dynamics of the SES model, Eqs.
(1) and (2) with parameters α = 0.3 and D = 4. The dashed horizontal line
indicates the time used in Fig. 6.

for the coupled laser system (because of the complex struc-
ture of the model, which includes cross-delay-coupling terms
among complex variables). We end with a discussion of the
limitations that in practice apply to the analogy between the
evolution of 1D SES and TDS in the [x, y, z] pseudo-space.

II. MODELS

A. Spatially extended system (SES)

The equation describing a reaction-diffusion 1D SES
with a state variable u(φ, t) and potential V(u) is

∂tu = F(u)+ D∂2
φu, (1)

where D is the diffusion coefficient and F(u) is the drift force
that we choose as

F(u) = −dV(u)/du = −u(u + 1 + α)(u − 1)

= −u3 − αu2 + u(1 + α). (2)

Here V(u) is a double-well potential and α is the asymmetry
of the potential. The model has steady states at u = [0, u+, u−]
with u+ = 1 and u− = −α − 1.

The model was simulated with spatial, �φ, and tempo-
ral, �t, steps of 0.01 and 0.0001 respectively, and periodic
boundary conditions. A typical evolution of the system in
time is presented in Fig. 1, where the color code represents
the state variable u(φ, t) (the brightest color indicates u+ and
the darkest, u−). Starting from an initial rectangular function
with values u+ and u−, we see that the system evolves in time
towards the lower state of the potential, u−.

B. Time delayed system (TDS)

We consider a scalar TDS that has the same potential as
the 1D SES, and a linear feedback term with delay τ . Such
system with a state variable u(t) is described by

du/dt = F(u)+ γ uτ , (3)

where F is given by Eq. (2), uτ = u(t − τ), and γ and τ

are the strength and the delay of the feedback, respectively.
This system has steady states at (u0, u±) = [0, (−α ±√
(α + 2)2 + 4γ )/2]. In order to integrate Eq. (3), it is nec-

essary to specify an initial function on the interval [−τ , 0]. A
typical solution obtained by using an initial rectangular func-
tion with values u+ and u− is displayed in Fig. 2 (here τ = 5
and the integration step is �t = 0.0001, which gives 50 000
steps bins in the interval 0 − τ ). We can see that as time

FIG. 2. Time series of the TDS, Eq. (3), simulated with parameters α = 2.5,
γ = 25, τ = 5, and an integration step of �t = 0.0001. The horizontal axis
covers the intervals 0–10τ and 80τ–100τ to make more clear the change in
the oscillations. The temporal evolution in the pseudo-space, of the first pulse
in the interval 80τ–100τ , is shown in Fig. 7.

evolves, the time intervals during which the system remains in
the higher state of the potential become gradually smaller until
the system reaches the lower state of the potential. This behav-
ior, characteristic of systems described by delay differential
equations and referred to as metastability,6,19 is the equivalent
to the propagation and annihilation of fronts in SES (leading
eventually to a single phase). The corresponding space-time
representation is displayed in Fig. 3. Here time is expressed as

t = nτ + σ , (4)

where n is an integer number that plays the role of time and σ
in [0, τ) plays the role of the space variable φ in the 1D SES.

The similarity between the space-time representation of
the 1D SES and of the TDS is not obvious when comparing
Figs. 1 and 3, because there is a linear drift in the spatio-
temporal representation of the TSD, which is not present in
the 1D SES. This drift, which is due to the fact that the TDS
oscillation period is slightly larger than τ , can be removed
by defining σ in [0, τ + δ). The value of δ (which is due
to the system’s finite response time to the feedback pertur-
bation) can be estimated numerically: for the parameters in
Fig. 3, δ = 26�t. The resulting TDS space-time representa-
tion is shown in Fig. 4, where now we note that, without
the drift, there is a remarkable similarity with the space-time
representation of the 1D SES, shown in Fig. 1.

C. Coupled lasers system (CLS)

As a more complicated time-delayed system, we consider
two identical lasers, with symmetric, polarization-rotated

FIG. 3. Space-time representation of the time series is shown in Fig. 2: u(t)
with t = nτ + σ is plotted in color code vs. n (the pseudo-time) and σ (the
pseudo-space).
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FIG. 4. Space-time representation of the TDS, after removing the drift, which
is done by adjusting δ such that the pattern is vertically symmetric. Here
δ = 26�t. The dashed horizontal line indicates the value of n used in
Fig. 9(b).

optical coupling.26,27 The model equations are

dEx,i

dt
= k(1 + jψ)(gx,i − 1)Ex,i + √

βspξx,i, (5)

dEy,i

dt
= j�Ey,i + k(i + jαl)(gy,i − 1 − β)Ey,i

+ ηEx,3−i(t − τ)e−jω0τ + √
βspξy,i, (6)

dNi

dt
= εN (μ− Ni − gx,iIx,i − gy,iIy,i), (7)

where i = [1, 2] denote the two lasers, Ex,i and Ey,i are the
orthogonal linearly polarized complex field amplitudes (the
intensities being Ix,i = |Ex,i|2 and Iy,i = |Ey,i|2, respectively),
and Ni is the carrier density of the ith laser. ω0 is the emission
frequency of the lasers, when the lasers are uncoupled the two
frequencies are the same, and are equal to the frequency of the
x polarization that it is taken as the reference frequency. � is
the frequency detuning between the x and y polarizations. gx,i

and gy,i are the gain coefficients that include self- and cross-
saturation. Other parameters are: k is the field decay rate, εN is
the carrier decay rate, αl is the linewidth enhancement factor,
β is the linear loss anisotropy, βsp is the noise strength, ξx,i and
ξy,i are uncorrelated Gaussian white noises, and μ is the pump
current parameter.

The coupling strength is η and the flight time between
the lasers (delay time) is τ = L/c, with L being the distance
between the lasers and c the speed of light. We note that
polarization-rotated coupling means that cross-time-delayed
terms are included in the rate equations of two complex
variables: Ey,1 and Ey,2.

Figure 5 displays the temporal evolution of the intensity
of the y polarization of one of the lasers, where square-wave
oscillations with period 2τ are observed. They are due to
the polarization-rotated coupling and can either be stable or
metastable, depending on the parameters.26,27

III. STATE SPACE RECONSTRUCTION

It is possible to re-write the equation governing the
evolution of the 1D SES, Eq. (1) as

z = F(x, y) = F(x)+ Dy, (8)

where

x = u, y = ∂2
φu, z = ∂tu. (9)

FIG. 5. Time series generated by simulation of the CLS system. The intensity
of the y polarization of laser 1, Iy = |Ey,1|2, is plotted vs. time. The coupling
strength is (a) η = 36 ns−1 and (b) η = 37 ns−1, other model parameters are:
k = 300 ns−1, μ = 2, αl = 3, γN = 0.5 ns−1, β = 0.04, βsp = 105 ns−1, and
τ = 3 ns.

As u is a function of the spatial variable φ and time, the
pseudo-coordinates (x, y, z) are also function of space and
time.

We can write the equation governing the evolution of the
TDS, Eq. (3), in the same form,

z = F(x, y) = F(x)+ γ y, (10)

where now

x = u, y = uτ , z = du/dt. (11)

Using (2), F can be written as

F(x, y) = A0 + A1x + A2x2 + A3x3 + A4y

+ A5xy + A6x2y, (12)

where
A0 = 0,

A1 = 1 + α,

A2 = −α,

A3 = −1,

A4 = D for the SES,

A4 = γ for the TDS,

A5 = A6 = 0.

(13)

Therefore, the dynamics of both, the 1D SES and the TDS, are
described in a 3D pseudo-space, by the equation z = F(x, y),
where F is given in Eq. (12). We hypothesize that the coupled
laser system can also be described in a similar way. Thus, in
order to test this hypothesis, we perform the following steps
to reconstruct the evolution of each system in its own pseudo-
space:

1. First, we simulate the 1D SES and represent the dynam-
ics in the pseudo-space using [x, y, z] = [u, ∂2

φu, ∂tu] as
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FIG. 6. (a) Representation of the SES dynamics (shown in Fig. 1) in the
pseudo-phase space (x = u, y = ∂2

φu, z = ∂tu). The surface in color indicates
the value of F(x, y) with the parameters given in Table I, the red points repre-
sent the trajectory computed from the time series u(t). A 3D representation of
the attractor can be found in Ref. [29]. (b) Comparison between the numeri-
cal time series (along the dashed horizontal line in Fig. 1) and the fitted time
series.

variables. Then, we fit the trajectory to z = F(x, y) and
compare the fitted parameters with the theoretical ones,
Eq. (13).

2. We repeat the procedure for the TDSs, using as variables
[x, y, z] = [u, uτ , du/dt]. For the coupled laser system, the
scalar variable used is the y-intensity of one laser, u = Iy.

Numerically, all derivatives were estimated by the 2nd order
finite difference. The parameters of the function F(x, y) were
estimated by fitting z = F(x, y), with x, y, and z computed
as Eq. (9) for the 1D SES or as Eq. (11) for the TDSs. The
scipy.optimize.curve_fit28 algorithm was used to perform a
non-linear least squares fit of the function F , Eq. (12), to the
data points.

IV. RESULTS

Figure 6 displays the evolution of the 1D SES (that was
shown in Fig. 1), now represented in the pseudo-space [x, y, z].
The fit of the trajectory to z = F(x, y) gives the parameters

FIG. 7. (a) Representation of the TDS in the phase space (x = u, y = uτ ,
z = du/dt). The surface in color indicates the value of F(x, y)with the param-
eters given in Table I, the points represent the trajectory computed from the
time series u(t). A 3D representation of the attractor can be found in Ref.
[29]. (b) Comparison between the numerical and the fitted time series. Here
the right vertical axis displays u(t), the time interval corresponds to the first
pulse in the interval 80τ–100τ shown in Fig. 2.

listed in Table I. These values are in excellent agreement with
the theoretical values given by Eq. (13), which, for α = 0.3
and D = 3 are also listed in Table I. The small error (less than
3%) is attributed to the numerical estimation of the spatial
and temporal derivatives. In Fig. 6(b), the two negative spikes
can be understood as follows: in Fig. 1 at time t = 55, z =
∂u/∂t = 0 except at the two boundaries of the yellow region,
where z < 0 because in both boundaries u decreases (note
that time increases downwards and z measures the “vertical”
variation of u, from u+ to u−).

Figure 7 displays the evolution of the TDS (that was
shown in Fig. 2), now represented in the pseudo-space [x, y, z].
The fit of the trajectory to z = F(x, y) gives the parameters
listed in Table I. We again obtain an excellent agreement with
the theoretical values that correspond to α = 2.5 and γ = 25
(the error is less than 0.5%).

The results presented so far, expected due to the way
x, y, z, and F have been defined, have allowed us test the
accuracy of the fitting program. For the coupled laser system,

TABLE I. Theoretical and fitted parameters obtained for the 1D SES, the TDS, and the coupled laser system. CLS: η = 36 ns−1, CLS2: η = 37 ns−1, TDS2:
the TDS fitted as a SES. “. . . ” indicates that the theoretical values are unknown.

Theoretical | Fitted

System A0 A1 A2 A3 A4 A5 A6

SES 0 −1 × 10−6 1.3 1.29 −0.3 −0.29 −1 −0.99 3 2.99 0 7 × 10−7 0 1 × 10−7

TDS 0 −3.3 × 10−2 3.5 3.5 −2.5 −2.5 −1 −1 25 25 0 9 × 10−3 0 3 × 10−3

CLS . . . −13.7 . . . 92 . . . −19 . . . −124 . . . 36.1 . . . −273 . . . 312
CLS2 . . . 3.8 . . . 8 . . . 36 . . . −61 . . . 10 . . . −93 . . . 105
TDS2 . . . −1.761 . . . 8.1×10−2 . . . 6.96 × 10−2 . . . 2.5 × 10−3 . . . 7 × 10−5 . . . 1 × 10−5 . . . −5 × 10−6

https://scipy.optimize.curve_fit
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FIG. 8. (a) Representation of the evolution of the coupled laser system (CLS,
the time series shown in Fig. 5) in the phase space [x = u, y = uτ , z = du/dt]
with u = Iy, together with the function F(x, y). A 3D representation of the
attractor can be found in Ref. [29]. (b) Comparison between the numerical
and the fitted time series.

because the model structure is more complicated, we did not
expected to obtain a very good fit with the same polynomial
function that fits the scalar TDS. Nevertheless, for the time
series shown in Fig. 5, as shown in Fig. 8, we can fit the trajec-
tory to z = F(x, y)with the parameters given in Table I. In this
case, no relation could be inferred between the fitted param-
eters and the model’s parameters. A possible way to improve
the fitting is to add higher order terms to the function F(x, y),
or to test other functional relationships.

To further test the analogy between the 1D SES and
the TDS, we addressed the following question: can we use

FIG. 9. (a) Representation of the dynamics of the TDS (the time series shown
in Fig. 2), in the phase space [x, y, z], with x, y, and z defined for the 1D SES,
Eq. (9). A 3D representation of the attractor can be found in Ref. [29]. (b)
Comparison between the numerical time series (along the dashed horizontal
line in Fig. 4) and the fitted time series. (c) Normalized fitted parameters (Ai)
for different values of γ .

the [x, y, z] definitions for the 1D SES given in Eq. (9) to
reconstruct the state space of the TDS?

To compute [x, y, z] according to Eq. (9), it is necessary
to calculate the partial derivatives, replacing t with the “time
variable,” n, and φ with the “space variable,” σ + δ, in the
space-time representation of the TDS, after removing the drift
(shown in Fig. 4). Numerically, the calculation of the partial
time derivative can introduce errors because, by definition,
n is an integer number and thus, the smallest time step for
calculating the derivative is �n = 1. Nevertheless, as shown
in Figs. 9(a) and 9(b), it is possible to obtain a reasonably
good fit of the trajectory, with the fitted parameters also listed
in Table I. To investigate if there is a relation between the
fitted parameters and the γ parameter of the TDS, in Fig. 9(c),
we show how the values of the fitted parameters change with
γ . For easy comparison (because the A0 − A6 parameters can
have very different values as seen in Table I), the fitted values
are normalized with respect to the minimum and maximum
values. We observe that all parameters vary with γ : A0 and
A6 increase while the others decrease. While A0 and A6 are
exactly equal zero for the SES and for the scalar TDS, they
can be non-zero for other systems, and as shown in Table I,
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they are not zero for the CLS and also, when the TDS is fit as
a SES. In this case (TDS2 in Table I), some parameters have
very small values and to analyze the significance of the fit-
ted values, we divided the time series in windows of different
lengths and fitted the parameters in each window. The relative
error of the fitted values found was very small (about 1–2%
depending on the window length). To analyze the significance
of each individual parameter Ai, we assumed Ai = 0, fitted all
the other Ajs, and calculated the relative change in Aj when
Ai �= 0. We found that setting A4 or A5 = 0 or A6 = 0 pro-
duced small relative variations in the values of A0 − A3 (less
than 10%) while setting A0 or A1 or A2 or A3 equal to zero
resulted in large variations of the other parameters (larger than
100%). While a more detailed study is need to find the com-
bination of parameters that gives the best fit for the TDS2,
the analysis suggests that a good fit can also be obtained by
setting either A4, A5 or A6 equal to zero.

A conceptual limit of the SES-TDS analogy in the
pseudo-phase space comes from temporal causality: the vari-
able y = u(t − τ) of the TDSs is a function of time, and
therefore, its evolution is constrained by temporal causality; in
contrast, for the 1D SES, y is the second order spatial deriva-
tive, y = ∂2

φu and therefore, its evolution is not restricted by
causality.

V. CONCLUSIONS

We have studied the analogy between a time-delayed sys-
tem (TDS) and a one-dimensional spatially extended system
(1D SES) by considering the particular examples of a 1D
reaction-diffusion SES, and a bistable scalar system with a
linear feedback term (TDS). We have also considered a non-
scalar TDS: a model of two symmetrically coupled lasers,
with cross-delay terms in two complex variables.

We have shown that the evolution of these systems can
be described, in a three dimensional pseudo-phase space, by
z = F(x, y), where F(x, y) is the same polynomial function,
Eq. (12), and the variables x, y, and z are defined as in Eq. (9)
for the 1D SES and Eq. (11) for the scalar TDS and non-scalar
TDS. For the 1D SES and for the scalar TDS, the values of the
fitted parameters of F(x, y) were in excellent with the theoret-
ical values (as expected due to the way x, y, z, and F were
defined); for the non-scalar TDS (i.e., the coupled lasers sys-
tem) a reasonably good fit of the function F was obtained, but
no relation was found between the fitted parameters and the
model parameters.

While this approach could in principle be applied to any
TDS or SES, a main limitation for a successful reconstruc-
tion of the phase space is the estimation of the parameters
of the function F , which, in systems with more complicated
governing equations, will likely not be limited to a low-order
polynomial. Therefore, a main challenge is a reliable estima-
tion of the parameters of F , when many parameters need to
be estimated.
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