
 
 

 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 

 

 

Amato, F.; Moscato, F.; Xhafa, F. Enabling IoT stream management 
in multi-cloud environment by orchestration. 32nd IEEE International 
Conference on Advanced Information Networking and Applications 
Workshops, IEEE WAINA 2018, 16-18 May 2018, Krakow, Poland: 
proceedings, p.687-692. Doi: 10.1109/WAINA.2018.00168 

 

© 2018 IEEE. Es permet l'ús personal d'aquest material. S’ha de 
demanar permís a l’IEEE per a qualsevol altre ús, incloent la 
reimpressió/reedició amb fins publicitaris o promocionals, la creació 
de noves obres col·lectives per a la revenda o redistribució en 
servidors o llistes o la reutilització de parts d’aquest treball amb drets 
d'autor en altres treballs. 

 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185526644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints


 
 
 

 

 

Amato, F.; Moscato, F.; Xhafa, F. Enabling IoT stream management 
in multi-cloud environment by orchestration. 32nd IEEE International 
Conference on Advanced Information Networking and Applications 
Workshops, IEEE WAINA 2018, 16-18 May 2018, Krakow, Poland: 
proceedings, p.687-692. Doi: 10.1109/WAINA.2018.00168 

 

(c) 2018 IEEE. Personal use of this material is permitted. Permission 
from IEEE must be obtained for all other users, including reprinting/ 
republishing this material for advertising or promotional purposes, 
creating new collective works for resale or redistribution to servers or 
lists, or reuse of any copyrighted components of this work in other 
works. 

 



Enabling IoT Stream Management in Multi-Cloud Environment by Orchestration

Flora Amato∗, Francesco Moscato†, Fatos Xhafa‡
∗Univ. of Naples Federico II, Department of Electrical Engineering and Information Technology, Naples, Italy

Email: flora.amato@unina.it
†Univ. of Campania ”Luigi Vanvitelli”, Dept. of Scienze Politiche, Caserta, Italy

Email: francesco.moscato@unicampania.it
‡Universitat Politècnica de Catalunya, Department of Computer Science, Barcelona, Spain

Email: fatos@cs.upc.edu

Abstract—Every-Day lives are becoming increasingly instru-
mented by electronic devices and any kind of computer-based
(distributed) service. As a result, organizations need to analyse
an enormous amounts of data in order to increase their
incomings or to improve their services. Anyway, setting-up a
private infrastructure to execute analytics over Big Data is
still expensive. The exploitation of Cloud infrastructure in IoT
Stream management is appealing because of costs reductions
and potentiality of storage, network and computing resources.
The Cloud can consistently reduce the cost of analysis of data
from different sources, opening analytics to big storages in a
multi-cloud environment. Anyway, creating and executing this
kind of service is very complex since different resources have
to be provisioned and coordinated depending on users’ needs.
Orchestration is a solution to this problem, but it requires
proper languages and methodologies for automatic composition
and execution. In this work we propose a methodology for
composition of services used for analyses of different IoT
Stream and, in general, Big Data sources: in particular an
Orchestration language is reported able to describe composite
services and resources in a multi-cloud environment.

Keywords-Cloud Computing; Orchestration; Formal Seman-
tics; Availability

I. INTRODUCTION AND RELATED WORKS

Originally, framework for Big Data Management, like
Hadoop[1] supported distributed file systems inside clusters
architectures. On the other hand, Cloud Architecture has
emerged as a de facto standard for achieving best per-
formances considerably reducing costs: there are no good
reasons (except the ones related to security and data owner-
ship) to do not use Cloud services in IoT Stream and Big
Data management. In particular, when Big-Data Source is
distributed with different and heterogeneous sources, cloud
infrastructure results very appealing both from performance
and economic points of view.

One of the main problem here is to overcome problems
related to the creation of composite services that uses multi-
cloud resources like several virtual storages containing data
sources.

Let us imagine a scenario where an organization wants to
perform some analytics on data from social networks[2], [3],
from weather and other geographical data and from other

economical issues[4]. Obviously, because of their hetero-
geneity, data are distributed and maintained in different data
storage. The goal of the analysis my be the identification of
co-relation among information drilled-up from the different
sources[5]. For example, this can be used by car sellers in
order to optimize their production depending on past weather
conditions, year period, geographic region etc.

If data are stored in different virtual storage, the execution
of proper analyses on data will need the interaction of dif-
ferent Cloud Resources and services, belonging to different
cloud providers (both private or public): this is a multi-
cloud scenario where a complex service (the analysis of the
whole data) needs the execution of component (sub)services
that executes on different and heterogeneous resources. The
execution of the complex service needs both interoperability
among resources and something able to define and execute
a workflow process calling proper sub-service when needed.

The National Institute of Standards and Technology
(NIST) defined this kind of execution Orchestration [6].
Following the NIST definition, orchestration refers to the
composition of system components to support arrangement,
coordination and management of resources in order to pro-
vide (composite) cloud services to cloud consumers.

Some important issues about are: (a) providers are re-
sponsible of the management and enactment of activities
in orchestrated services; (b) orchestration involves services
and resources in all levels of Cloud stack; (c) orchestration
must face Quality of Service (QoS) of both component and
composite services.

In this context, it is clear that a methodology able to
compose cloud Services needs:

• a language like BPEL4WS[7] able to describe not only
services composition at Service-as-a-Service (SaaS)
level, but Cloud Resources too,

• A framework able to orchestrate at all Cloud Layers[6]
services and resources, and also able to analyse and
manage the composite service as whole, answering to
questions like: are results and Input-Output resources
compliant with cloud components services ?

We think that compliance cannot be evaluated only by
means of syntactical checks or by type checking. In fact, en-



abling technologies for automatic composition, Cloud archi-
tects are now going to use Semantics-based methodologies
[8],[9]. Anyway, cloud resources are not like web services
messages: they include some complex elements like virtual
infrastructures. In addition, in order to achieve automatic
Cloud Service composition, resources should carry out a
semantic description of their functionality, as well as a
semantic description of their parameters.

Actually, several semantics-based approaches for simple
web services composition exist (a survey is in [10]). Some of
them ([11], [12], [7], [13]) exploit BPEL4WS orchestration
language and OWL-based ontologies for services descrip-
tion.

In this work we present an architecture and a language
able to define, analyse and manage multi-cloud Orches-
tration and we will show how these can be used for the
analysis of a distributed Big-Data sources[14]. For what
analysis of the semantics and the soundness of the composi-
tion concerns, we do not describe here the Ontology-based
description of resources: it is based on the work described
in [7] and on the Ontology for the Cloud defined in [15] and
[16]. In brief, we use OWL-S with IOPE grounding in order
to analyse interoperability among services, but composition
is managed as a workflow process and formal operational
semantics allow for analysis of composite processes. Sim-
ilarly, the analysis of the Quality of Service of composite
services is out of the scope of this work and it is introduced
in [17].

The paper is organized as follows: Sec. II describes the
overall architecture of our system and its methodology;
Sec.III introduces the workflow-based language. Sec.IV re-
ports an example of the application of the methodology to
a Big-Data analysis scenario.Finally, Sec.V contains some
concluding remarks.

II. METHODOLOGY AND ARCHITECTURE

Fig.1 show the overall architecture of the framework we
propose for the composition and orchestration of Cloud
services.

We work upon the existence of several, eventually het-
erogeneous, Cloud Providers (CloudA,· · · , CloudN). Each
providers is able to instantiate common Cloud Resources
like Computing Nodes, Virtual Storages or Virtual Network
(inter and intra-clouds). In addition, Virtual Storages can of
course maintain different sets of Data.

The architecture of the Orchestrator we are describing
consists of:

• an Execution Scheduler: the scheduler reads the de-
scription of a composite service and executes the proper
services when needed, eventually scheduling data mi-
gration too from a virtual storage to another if needed.

• a Data Dispatcher: It executes physical data migration
and maintains information about data produced during
the execution of the composite service.

• a Broker: it enacts common service brokering actions:
if the resource is not yet acquired on a provider, it
provides for acquisition and management. It is also
responsible for the provisioning of the resources and
their configuration.

• a Deployer: this component deploys needed services
at SaaS (from a pool of available services)on proper
resource in the Cloud.

• the Resources Orchestrator Manager interface with
existent resources orchestrators[18]. At the moment this
module supports COPE[19] and OpenStack HEAT[20]
Orchestrators.

The workflow-based language we use for description of
the whole service is called Operational Flow Language
(OFL). The language is complex enough to describe several
patterns, as well as simple enough to be defined by means of
clear operational semantics [21]. Compositional rules enable
patterns description.

OFL is able to describe simple workflow graphs that are
expressive enough to catch many control-flow and data-
flow workflow patterns as explained in the next section. In
addition workflow graphs described in OFL allow for the
creation of analysis models by using Model Transformation
techniques(see [22], [23], [24] for more details).

III. WORKFLOW AND ORCHESTRATION

In this section we briefly introduce the basic elements and
operational semantics of OFL language. Than, we show how
patterns can be defined by using OFL.

OFL is a workflow-based language. According to the
definition provided by the Workflow Management Coalition1

we consider a workflow process definition as a network of
activities and their relationships. Each activity represents
one logical step within a process, i.e. the smallest unit of
work to be performed. The completion of an activity and
the starting of another activity is a Transition point in the
workflow execution. A Transition may be unconditional, but
the sequence of the activity execution may also be decided
at run time according to the value assumed by one or more
logical expressions, in this case the sequence of operations
depends on Transition Conditions that are evaluated after an
activity has started or ended. The activation of an execution
thread may be affected by the evaluation of the associated
Transition Conditions.

Some points are defined within the workflow that allow
the flow of the activities to be controlled: AND-split is a
point in where a single thread of control splits into two or
more threads which are executed in parallel. AND-join is
a point where two or more parallel activities converge into
a single thread of execution. XOR-split is a decision point
where only one of alternative branches is executed. XOR-
join is a point in the workflow where two or more parallel

1http://www.wfmc.org/



Figure 1. System Architecture

activities converge in a single thread of execution without
synchronization. OR-split is a decision point between several
alternative workflow branches. OR-join is a point in which
several alternative branches re-converge into a single thread.
In the following XOR, AND and OR are called split or join
Conditions. Fig. 2 illustrates these elements.

Therefore in the OFL language, workflow processes con-
sist of a network of Activity nodes and edges (Transitions)
identified by a pair od nodes (FromActivity, ToActivity).

Activities represents atomic Cloud Service or resource
invocation, as well as composite activities (i.e. sub workflow
processes).

OFL skeletons are graphs defining preconditions and post-
conditions for cloud services execution and Cloud resources
usage.

Activities definitions include effective information about
Cloud Services to execute. The main components of this part
of the language are:

• Participant: it specifies the Cloud Provider where the
Orchestrator will execute the activity;

• API: this include the description of the service, the
REST API used to invoke the service (with Inputs,
Outputs, name etc.)

• Requirements: the QoS requested by the activity and
eventually the SLAs with the Participant

This describes the SaaS level of the Composite Service. In
addition, the Activity is linked to further description at PaaS
and IaaS levels as depicted in Fig.2. Platform and Resource
elements shares the same main components of SaaS level
(i.e. Participant, API and Requirement description of the

Resource). The only main difference is that at resource level,
the API may refer to an existing resource, or to a Resource
Orchestrator.

In addition, Activities or Transitions may require the
existence of proper virtual-network resources. They connects
other Resources and may be required by transitions in order
to create channel for data routing or by Activities if services
need to exchange data or events with other resources during
their execution.

Proper edges will define the aforementioned dependen-
cies: needsChannel when declaring the need to exchange
data and events; connectedTo in order to state which re-
sources (usually at IaaS level) are connected by the channel.

All this is resumed in Fig.2
OFL is an XML based language, but here we report only

its graphical representation for simplicity’s sake.

IV. A CASE STUDY

The example we want describe is inspired by a recent
commercial study2 reporting the importance of performing
analytics over Weather, Geo-referenced data.

The main problem here is that analytics must cope with
proper data about commercial activities in a given field and
all drilled-up results both from weather and commercial
fields, have to be collected and further analysed in order
to achieve good results.

This obviously leads to the need of automatize a com-
posite analytics service by exploiting Cloud platforms and
resources.

2http://advertising.weather.com/big-data-weather-data-enhanced-business-strategy/



Fig.3 resumes this scenario and the OFL representation
of the composite process.

The top and the bottom of the figure depicts the two
Cloud providers (here called CloudWeather and CloudPri-
vate) where some resources (four computational nodes and
a Virtual Storage in CloudWeather; two computational nodes
and a VirtualStorage in CloudPrivate) are deployed. On the
CloudWeather provider, a PaaS Apache Spark Service is
available, while an Hadoop service is available on the other
provider.

The Workflow process describing composition is in the
middle of the figure. It consists in two Activities executing
in parallel after the beginning of the process: the first (W)
requests the execution of analytics on the Spark PaaS,
while the second (BS) enacts the execution of analytics on
Hadoop. When both terminates, the Orchestrator controls
the existence of the Virtual Network VN1. If it is not
allocated, the Broker provides (if necessary resources exist)
the necessary resource. Then, the Collect service is ready to
start. The Deployer deploys the service on CN6: the activity
can execute on proper data that are collected by this very
service. The process can finally terminate leaving results on
CloudPrivate Virtual Storage.

Data routing and some minor details are not reported for
brevity.

V. CONCLUSIONS AND FUTURE WORKS

We have described a language and a framework for
Cloud service composition. The language, OFL, is able to
describe complex composition patterns, navigating all Cloud
architectural layers: SaaS, PaaS, IaaS.

We an example showing how the language and the
framework can be exploited in order to describe Compos-

Figure 2. Workflow elements

ite Big-Data processes based on the use of Multi-Cloud
platforms[25],[26].

Future work will integrate ontology-based reasoning into
the methodology in order to automatically build composite
Cloud Services with given semantics and QoS.

REFERENCES

[1] T. White, Hadoop: The definitive guide. ” O’Reilly Media,
Inc.”, 2012.

[2] W. Balzano and F. Vitale, “Dig-park: a smart parking avail-
ability searching method using v2v/v2i and dgp-class prob-
lem,” in Advanced Information Networking and Applications
Workshops (WAINA), 2017 31st International Conference on.
IEEE, 2017, pp. 698–703.

[3] W. Balzano, A. Murano, and F. Vitale, “Snot-wifi: Sensor
network-optimized training for wireless fingerprinting,” Jour-
nal of High Speed Networks, vol. 24, no. 1, pp. 79–87, 2018.

[4] S. Kwoczek, S. D. Martino, and W. Nejdl, “Predicting
and visualizing traffic congestion in the presence of
planned special events,” J. Vis. Lang. Comput., vol. 25,
no. 6, pp. 973–980, 2014. [Online]. Available: http:
//dx.doi.org/10.1016/j.jvlc.2014.10.028

[5] A. Minutolo, M. Esposito, and G. De Pietro, “Design and val-
idation of a light-weight reasoning system to support remote
health monitoring applications,” Engineering Applications of
Artificial Intelligence, vol. 41, pp. 232–248, 2015.

[6] VV.AA., “Us government cloud computing technology
roadmap release 1.0 (draft),” in Special Publication 500-293.
NIST, 2011, vol. 2, pp. 1–85.

[7] G. D. Lorenzo, N. Mazzocca, F. Moscato, and V. Vittorini,
“Towards semantics driven generation of executable web
services compositions,” International Journal of Software,
JSW, vol. 2, no. 5, pp. 1–15, 2007.

[8] F. Amato, F. Colace, L. Greco, V. Moscato, and A. Picariello,
“Semantic processing of multimedia data for e-government
applications,” Journal of Visual Languages and Computing,
vol. 32, pp. 35–41, 2016.

[9] F. Amato, A. Mazzeo, A. Penta, and A. Picariello, “Using nlp
and ontologies for notary document management systems,” in
Database and Expert Systems Application, 2008. DEXA’08.
19th International Workshop on. IEEE, 2008, pp. 67–71.

[10] S. Dustdar and W. Schreiner, “A survey on web services
composition,” International journal of web and grid services,
vol. 1, no. 1, pp. 1–30, 2005.

[11] P. Traverso and M. Pistore, “Automated composition of
semantic web services into executable processes,” in The
Semantic Web–ISWC 2004. Springer, 2004, pp. 380–394.

[12] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic com-
position of web services using semantic descriptions,” in
1st Workshop on Web Services: Modeling, Architecture and
Infrastructure, 2003, pp. 17–24.



Figure 3. Case Study

[13] G. D. Lorenzo, F. Moscato, N. Mazzocca, and V. Vittorini,
“Automatic analysis of control flow in web services compo-
sition processes,” in PDP, 2007, pp. 299–306.

[14] F. Amato, M. Barbareschi, V. Casola, A. Mazzeo, and
S. Romano, “Towards automatic generation of hardware
classifiers,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 8286 LNCS, no. PART 2, pp.
125–132, 2013.

[15] F. Moscato, B. D. Martino, and R. Aversa, “Enabling model
driven engineering of cloud services by using mosaic ontol-
ogy,” Scalable Computing: Practice and Experience, vol. 13,
no. 1, 2012.

[16] F. Moscato, R. Aversa, B. D. Martino, T.-F. Fortis, and
V. I. Munteanu, “An analysis of mosaic ontology for cloud
resources annotation,” in IEEE Proc. of FedCSIS 2011 Con-
ference, 2011, pp. 973–980.

[17] F. Moscato, “Model driven engineering and verification of
composite cloud services in metamorp(h)osy,” in Proc. of
6th, International Conference on Intelligent Networking and
Collaborative Systems INCoS-2014. IEEE, 2014.

[18] R. Ranjan, B. Benatallah, S. Dustdar, and M. P. Papazoglou,
“Cloud resource orchestration programming: Overview, is-
sues, and directions,” Internet Computing, IEEE, vol. 19,
no. 5, pp. 46–56, 2015.

[19] C. Liu, B. T. Loo, and Y. Mao, “Declarative automated
cloud resource orchestration,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 26.

[20] R. Kumar, N. Gupta, S. Charu, K. Jain, and S. K. Jangir,
“Open source solution for cloud computing platform using
openstack,” International Journal of Computer Science and
Mobile Computing, vol. 3, no. 5, pp. 89–98, 2014.

[21] G. D. Plotkin, “A structural approach to operational seman-
tics,” 1981.

[22] “A taxonomy of model transformation,” Electronic Notes in
Theoretical Computer Science, vol. 152, no. 0, pp. 125 – 142,
2006, proceedings of the International Workshop on Graph
and Model Transformation (GraMoT 2005), Graph and Model
Transformation 2005.

[23] F. Moscato, R. Aversa, and A. Amato, “Describing cloud
use case in metamorp(h)osy,” in IEEE Proc. of CISIS 2012
conference, 2012, pp. 793–798.



[24] F. Moscato, F. Amato, A. Amato, and R. Aversa, “Model–
driven engineering of cloud components in metamorp (h)
osy,” International Journal of Grid and Utility Computing,
vol. 5, no. 2, pp. 107–122, 2014.

[25] L. Barolli, X. Chen, and F. Xhafa, “Advances on cloud
services and cloud computing,” Concurrency Computation,
vol. 27, no. 8, pp. 1985–1987, 2015.

[26] F. Pop, C. Dobre, V. Cristea, N. Bessis, F. Xhafa, and
L. Barolli, “Reputation-guided evolutionary scheduling algo-
rithm for independent tasks in inter-clouds environments,”
International Journal of Web and Grid Services, vol. 11, no. 1,
pp. 4–20, 2015.


	caratulaIEEE.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints


