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Abstract

We solve the subgroup intersection problem (SIP) for any RAAG G of Droms type
(i.e., with defining graph not containing induced squares or paths of length 3): there is
an algorithm which, given finite sets of generators for two subgroups H,K 6 G, decides
whether H∩K is finitely generated or not, and, in the affirmative case, it computes a set
of generators for H ∩ K. Taking advantage of the recursive characterization of Droms
groups, the proof consists in separately showing that the solvability of SIP passes through
free products, and through direct products with free-abelian groups. We note that most
of RAAGs are not Howson, and many (e.g. F2 ×F2) even have unsolvable SIP.

1 Introduction

In group theory, the study of intersections of subgroups has been recurrently considered
in the literature. Roughly speaking, the problem is “given subgroups H,K 6 G, find H∩K”.
However, in the context of Geometric Group Theory, where groups may be infinite, or even
non finitely generated, one needs to be more precise about the word find, specially if one is
interested in the computational point of view.

A group is said to satisfy Howson’s property — or to be Howson, for short — if the inter-
section of any two (and so, finitely many) finitely generated subgroups is again finitely
generated.

Classical examples of Howson groups include free-abelian, and free groups. In Zm Howson’s
property is trivial, whereas for free groups it was proved by Howson himself in [15], where
he also gave an algorithm to compute generators for the intersection.

Not far from these groups one can find examples without the Howson property: consider
the group F2 ×Z = 〈a,b | −〉 × 〈t | −〉 and the subgroups H = 〈a,b〉 and K = 〈ta,b〉; both
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are clearly 2-generated but H∩K = {w(a,b) : |w|a = 0 } = 〈〈b〉〉 6 F2 , which is not finitely
generated. In this context, it is natural to consider the following decision problems.

Subgroup intersection problem, SIP(G). Given words u1, . . . ,un, v1, . . . , vm in the generators
of G, decide whether the subgroup intersection 〈u1, . . . ,un〉 ∩ 〈v1, . . . , vm〉 is finitely generated or
not; and, in the affirmative case, compute a generating set for this intersection.

Coset intersection problem, CIP(G). Given a finite set of words w,w ′,u1, . . . ,un, v1, . . . , vm in
the generators of G, decide whether the coset intersection w〈u1, . . . ,un〉 ∩w ′〈v1, . . . , vm〉 is empty
or not; and in the negative case, compute a coset representative.

In [8], Delgado–Ventura prove that direct products of free-abelian and free groups have both
SIP and CIP solvable. The goal of the present paper is to extend the algebraic arguments
given there, in order to achieve similar properties for a much wider family of groups. To
this end it is convenient to consider the following variations for a general finitely presented
group G.

Twofold intersection problem, TIP(G). Solve both SIP(G) and CIP(G).

Extended subgroup intersection problem, ESIP(G). Given a finite set of words u1, . . . ,un,
v1, . . . , vm,w,w ′ in the generators of G, decide whether the intersection of the subgroups H =

〈u1, . . . ,un〉 and K = 〈v1, . . . , vm〉 is finitely generated or not; and in the affirmative case: (i) compute
a generating set for H∩K, and (ii) decide whether the coset intersection wH∩w ′K is empty or not
(denoted by CIPfg), computing a coset representative in case it is not.

The main result in this paper is about finitely generated PC-groups (a.k.a. right-angled Artin
groups, or RAAGs). This prominent class of groups is closely linked to some crucial examples
of groups, notably Bestvina and Brady’s example of a group which is homologically finite
(of type FP) but not geometrically finite (in fact not of type F2), and Mihailova’s example
of a group with unsolvable subgroup membership problem. More recently D.Wise et al.
developed a method of showing that a vast amount of groups are virtual subgroups of
RAAGs. Wise used this method to solve some well-known problems in group theory, like
Baumslag’s conjecture on residual finiteness of one-relator groups with torsion. Furthermore,
building on the work of Wise and Kahn–Markovic, I. Agol proved the famous virtually
fibred conjecture (the last main open problem in 3-manifold theory due to Thurston), by
showing that fundamental groups of closed, irreducible, hyperbolic 3-manifolds are virtual
subgroups of RAAGs.

Definition 1.1. A group G is said to be partially commutative (a PC-group, for short) if it
admits a presentation of the form〈

X
∣∣ [xi, xj] = 1, whenever {xi, xj} ∈ E

〉
, (1)

for some (not necessarily finite) simple graph Γ = (X, E). In this case, we say that G is
presented by the commutation graph Γ and write G = GΓ . Then, we say that (1) is a graphical
presentation for G, and X is a graphical generating set (or basis) for G. In the f.g. case (i.e., when
X is finite) we shall refer to GΓ as a right-angled Artin group (a RAAG, for short).
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A subgraph ∆ of a graph Γ = (X, E) is said to be full if it has exactly the edges that appear
in Γ over its vertex set, say Y ⊆ X; in this case, ∆ is called the full subgraph of Γ spanned by Y
and we write ∆ 6 Γ . When none of the graphs belonging to a certain family F appear as a
full subgraph of Γ , we say that Γ is F-free.

PC-groups can be thought as a family of groups interpolating between two extreme cases:
free-abelian groups (presented by complete graphs), and free groups (presented by edgeless
graphs); having as graphical generating set precisely the standard free-abelian and free bases,
respectively. More generally, the PC-group presented by the disjoint union of graphs Γ t∆ is
the free product GΓ ∗G∆, and the PC-group presented by the join of graphs Γ ∨∆ (obtained
by adding to Γ t∆ every edge joining a vertex in Γ to a vertex in ∆) is the direct product
GΓ ×G∆.

Despite the extreme (free and free-abelian) cases being subgroup-closed, this is not the case
for PC-groups. Droms characterized the finitely generated PC-groups having this property
in the following well known result.

Theorem 1.2 (C. Droms, 1987, [11]). Let Γ be a finite graph. Then, every subgroup of GΓ is again a
(possibly non finitely generated) PC-group if and only if Γ is {P4, C4}-free.

Here, Pn stands for the path graph on n vertices; and Cn stands for the cycle graph on n
vertices. Accordingly, we say that a graph is a Droms graph if it is finite and {P4, C4}-free, and
a PC-group is a Droms group if it is presented by a Droms graph.

Remark 1.3. We note that finite {P4, C4}-free graphs have received diverse denominations
throughout the literature, including comparability graphs of forests (in [29]), transitive forests
(in [26]), trivially perfect graphs (in [4]), and quasi-threshold graphs (in [19]).

1.1 Results

The main result in the present paper is the following theorem.

Theorem 1.4. Every Droms group has solvable ESIP (and, in particular, solvable SIP).

The strategy of the proof arises from the following crucial lemma given by Droms on the
way of proving Theorem 1.2: Every nonempty Droms graph is either disconnected, or it contains a
central vertex (i.e., one vertex adjacent to any other vertex).

This easily provides the following recursive definition of the Droms family (with both the
graphical and the algebraic counterparts):

Corollary 1.5 (Droms, [11]). The family of Droms graphs (resp., Droms groups) can be recursively
defined as the smallest family D (resp., D) satisfying the following rules:

[D1] K0 ∈ D;

[D2] Γ1, Γ2 ∈ D ⇒ Γ1 t Γ2 ∈ D;

[D3] Γ ∈ D ⇒ K1 ∨ Γ ∈ D.

[D1] {1} ∈ D;

[D2] G1,G2 ∈ D ⇒ G1 ∗G2 ∈ D;

[D3] G ∈ D ⇒ Z×G ∈ D.
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Our proof of Theorem 1.4 is based on the following preservability results for the intersection
properties we are interested in.

Theorem 1.6. LetG be a Droms group. IfG has solvable SIP, then Zm×G also has solvable SIP.

Theorem 1.7. Let G be a Droms group. If G has solvable ESIP, then Zm×G also has solvable ESIP.

Theorem 1.8. If two finitely presented groups G1 and G2 have solvable ESIP, then their free product
G1 ∗G2 also has solvable ESIP.

Theorem 1.9. If two finitely presented groups G1 and G2 have solvable TIP, then their free product
G1 ∗G2 also has solvable TIP.

To prove Theorems 1.6 and 1.7 we extend the techniques in [8] from free groups to RAAGs;
and to prove Theorems 1.8 and 1.9 we use Ivanov’s techniques to understand and work with
subgroups of free products (see [16, 17]). Both are relatively long and technical arguments,
each requiring several pages of preliminary considerations. For the sake of clarity, we
decided to include them instead of writing a shorter preprint but harder to read.

Our main result (Theorem 1.4) can be seen as a partial generalization of Theorem 2.7(i) by
Kapovich–Weidmann–Myasnikov in the sense that we prove a stronger thesis than them
(namely, ESIP instead of MP, see Figure 1) for a smaller class of groups (Droms instead of
coherent PC-groups). In this situation, it is interesting to ask the following questions.

Question 1. Does the group GP4 have solvable SIP? Is it true that a RAAG have solvable SIP if and
only if it is Droms?

Particularly suggestive for us is the result from Aalbersberg–Hoogeboom [1] stating that
the intersection problem for a partially commutative monoid is solvable if and only if its
commutation graph is Droms. The situation is intriguingly similar to that for the MP.

The paper is organized as follows. In Section 2 we establish the necessary background
and references about Droms groups and algorithmic issues, and we prove the main result,
Theorem 1.4, modulo Theorems 1.6, 1.7, 1.9, and 1.8. Then, in Section 3, we study the direct
product case, proving Theorems 1.6 and 1.7; and finally, in Section 4, we consider the free
product situation proving Theorems 1.9 and 1.8. See [6, Part III] for a more detailed version
of these results.

2 Preliminaries

Below we present the necessary preliminaries on algorithmicity and PC-groups.

2.1 Algorithmic aspects

Similar preserving properties concerning free and direct products were studied for the
Membership Problem (MP) by K. A. Mikhailova. In [25] she proved that MP is preserved
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under free products; whereas in [24], she showed that F2 ×F2 has unsolvable membership
problem, proving that MP (and thus SIP and CIP) do not pass to direct products.

Several obvious relations among the already introduced algorithmic problems are summa-
rized in the diagram below:

TIP

ESIP SIP

MP WP

CIP CIPfg

(∗)

Figure 1: Some dependencies between algorithmic problems

where the starred implication is true with the extra assumption that the involved group
is torsion-free, and has solvable word problem. We recall that WP and MP stand for the
classical word problem, and the subgroup membership problem stated below.

(Subgroup) membership problem, MP(G). Given a finite set of words w,u1, . . . ,un in the
generators of G, decide whether w represents an element in the subgroup generated by u1, . . . ,un;
and in the affirmative case compute an expression of w as a word in the ui’s.

Lemma 2.1. If a torsion-free group satisfies SIP and WP, then it also satisfies MP.

Proof. Let G = 〈X | R〉. Given words u, v1, . . . , vm in X, apply SIP to H = 〈u〉, and K =

〈v1, . . . , vm〉: since H ∩ K is cyclic (and so, finitely generated), SIP will always answer yes,
and return a finite set of words w1, . . . ,wp in X such that H∩K = 〈w1, . . . ,wp〉 = 〈ur〉, for
some unknown r ∈ Z.

Now, since each wi must be a power of ur (say wi = uri), we can compute the exponents
r1, . . . , rp ∈ Z by brute force enumeration (even without using WP). Once we have obtained
the integers r1, . . . , rp ∈ Z, we can effectively compute the greatest common divisor r =

gcd(r1, . . . , rp) and get H∩K = 〈w1, . . . ,wp〉 = 〈ur〉.

Now, it is clear that u ∈ K if and only if u ∈ H ∩ K = 〈ur〉; i.e., if and only if u = urs, for
some s ∈ Z. To decide whether such an s exists, first apply WP to the input word u in
order to decide whether u = 1 or not. In the affirmative case the answer is obviously yes;
otherwise, u 6= 1 and torsion-freeness of G tells us that u ∈ K (and the answer is yes) if and
only if r = ±1.

Remark 2.2. Note that CIPfg ⇒ MP without any further condition, since g ∈ 〈h1, . . . ,hk〉 if
and only if g · {1}∩ 1 · 〈h1, . . . ,hk〉 6= ∅.

Corollary 2.3. For PC-groups, both SIP and CIP imply MP. In particular, SIP and CIP are
unsolvable for F2 ×F2 = GC4 , and hence for any PC-group GΓ with C4 6 Γ .

Remark 2.4. Note that the difference between properties TIP and ESIP is that the second one
says nothing about wH ∩w ′K in the case when H ∩ K is not finitely generated, while TIP
is required to answer about emptiness even in this case; this is a subtlety that will become
important along the paper.
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Finally, note that (Hw)−1 = w−1H and w1Hw2 = w1w2(w
−1
2 Hw2) = w1w2H

w2 . Therefore,
the variants of CIP for right, left, and two-sided cosets are equivalent problems.

2.2 PC-groups

Below, we recall some well-known results about PC-groups we will need throughout the
paper; we refer the reader to [5, 12, 13, 21] for detailed surveys, and further reference.

Theorem 2.5. (i) Let Γ1, Γ2 be simple graphs. Then, the groups GΓ1 , GΓ2 are isomorphic if and
only if the graphs Γ1, Γ2 are isomorphic ([10]). In particular, the isomorphism problem is
solvable within RAAGs.

(ii) The abelianization of the PC-group GΓ is the free-abelian group of rank |VΓ |.

(iii) The word and conjugacy problems are solvable for RAAG’s ([14, 22, 28, 30, 31]).

(iv) PC-groups are torsion-free ([2]).

(v) RAAGs are residually finite; in particular, they are Hopfian ([21]).

(vi) The maximum rank of a free-abelian subgroup of a RAAG GΓ is the size of a largest clique in Γ
([21]).

(vii) Disjoint union and graph join correspond, respectively, to free product and direct product of
groups: GXtY ' GX ∗GY and GX∨Y ' GX ×GY .

(viii) A PC-group GΓ splits as a nontrivial free product if and only if its defining graph Γ is
disconnected.

(ix) A PC-group GΓ splits as a nontrivial direct product if and only if its defining graph Γ is a join.

(x) The center of a PC-group GΓ is the (free-abelian) subgroup generated by the set of central
vertices in Γ .

(xi) Let Γ be an arbitrary simple graph, and Y a subset of vertices of Γ . Then, the subgroup
of GΓ generated by Y is again a PC-group, presented by the corresponding full subgraph,
〈 Y 〉 ' GΓ [Y].

Besides Droms groups, other subfamilies of PC-groups naturally arise as directly related
with the intersection problem. For example, in [7], Delgado characterized the PC-groups
satisfying the Howson property precisely as those being fully residually free (or free products
of free-abelian groups).

Another interesting subfamily of PC-groups is that of chordal groups, that is the PC-groups
presented by a finite chordal graph (i.e., one with no induced cycles of length strictly greater
than three).

Clearly, Droms graphs are chordal and not the other way around. From Theorem 1.2, it is
clear that Droms groups are coherent (every finitely generated subgroup is finitely presented).
However, this last class was proved to be bigger, corresponding precisely to chordal groups,
which turn out to have some nice algorithmic properties as well.
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Theorem 2.6 (Droms, [9]). Let Γ be a finite graph. Then, the RAAG GΓ is coherent if and only if Γ
is chordal.

Theorem 2.7 (Kapovich–Weidmann–Myasnikov, [20]). Let Γ be a finite chordal graph (i.e., GΓ is
a coherent RAAG). Then, (i) GΓ has solvable membership problem; (ii) given a finite subset S ⊆ GΓ ,
we can algorithmically find a presentation for the subgroup 〈S〉 6 GΓ .

We remark the pertinacious absence of GC4 = F2×F2 from any family of algorithmically well
behaved groups. However, the exact boundary of the class of RAAGs having solvable MP
is not known: chordal groups have it, and GC4 does not. Which of the groups GCn , for
n > 5, have solvable MP? Is it possible to find a characterization of the RAAG’s with
solvable MP?

Finally, we recall that for submonoids, the exact border for the corresponding membership
problem is already known: In [23] is proved that the submonoid membership problem is
solvable in a PC-group if and only if it is Droms. Note that this implies, in particular, that
GP4 is a group with solvable subgroup membership problem (it is chordal), but unsolvable
submonoid membership problem (it is not Droms).

2.3 Droms groups

Due to the recursive description in Corollary 1.5, any Droms graph Γ decomposes as
the join of its central part Z (Γ) ' Km, and the full subgraph Γ0 = Γ r Z (Γ) 6 Γ , that is
Γ = Km ∨ Γ0, where m > 0 and Γ0 being either empty or a disconnected Droms graph; this is
called the primary decomposition of Γ . In particular: (i) GΓ is free-abelian ⇔ Γ is complete
⇔ Z (Γ) = Γ ⇔ Γ0 = ∅. (ii) Γ is connected ⇔ Z (Γ) 6= ∅ ⇔ m > 1 ⇔ Γ is a cone. (iii) GΓ

is centerless ⇔ Γ is disconnected ⇔ Z (Γ) = ∅ ⇔ m = 0.

Remark 2.8. However, all subgroups of Droms groups (including the non finitely generated
ones) are again {P4, C4}-free PC-groups. In particular, every finitely generated subgroup of a
Droms group is again a Droms group.

Finally, we need the following algorithmic result for later use.

Proposition 2.9. Let GΓ = 〈X | R〉 be a Droms group. Then, there exists an algorithm which,
given words w1(X), . . . ,wp(X) in the generators of GΓ , (i) computes a basis for the subgroup
H = 〈w1, . . . ,wp〉 6 GΓ ; (ii) writes the basis elements in terms of the original generators, and vice
versa.

Proof. Since Droms graphs are chordal, by Theorem 2.7, we can effectively compute a finite
presentation for H, say H = 〈Y | S〉. Then, one can exhaustively explore the tree of all
possible Tietze transformations applied to 〈Y | S〉 until getting one, say 〈Z | Q〉, in graphical
form (namely, with all relators being commutators of certain pairs of generators); this will be
achieved in finite time because we know in advance that H is indeed a RAAG.
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At this point, we know that H = 〈w1, . . . ,wp〉 ' 〈Y | S〉 ' 〈Z | Q〉, and need to compute
expressions for the basis elements Z = {z1, . . . , zr} in terms of the wi’s and vice versa. We
start a brute force search, using the following two parallel procedures:

(1) enumerate all homomorphisms 〈Z | Q〉 → H = 〈w1, . . . ,wp〉; this can be done
enumerating all possible r-tuples (vj)

r
j=1 of words in {w1, . . . ,wp}±, and checking

whether they determine a well-defined homomorphism.

(2) for each such homomorphism zj 7→ vj, j = 1, . . . , r, analyze whether it is onto H
by enumerating all words in {v1, . . . , vr}±, and checking whether each of w1, . . . ,wp
appear in the list.

Since we know that 〈Z | Q〉 ' H, there exists a surjective homomorphism from 〈Z | Q〉
onto H and so, the above procedure will eventually find and output one of them, zj 7→ vj,
j = 1, . . . , r. Finally, since RAAG’s are Hopfian (see Theorem 2.5(v)), such a surjective
homomorphism is indeed an isomorphism. We then have the zj’s written as words on the
wi’s, and the wi’s as words on the zj’s from the stopping criteria at step (2).

2.4 Proof of the main result

The main result in the present paper easily reduces to Theorems 1.7 and 1.8.

Proof of Theorem 1.4. Let Γ be a Droms graph, and let GΓ be the corresponding Droms PC-
group. We will prove Theorem 1.4 by induction on the number of vertices |VΓ |. If |VΓ | = 0,
then GΓ = 1, and obviously has solvable ESIP.

Now, consider a nonempty Droms graph Γ , and assume that every Droms PC-group with
strictly less than |VΓ | vertices has solvable ESIP. Consider the primary decomposition of Γ ,
say Γ = Km ∨ Γ0. If Γ0 is empty then Γ is complete, GΓ ' Zm is free-abelian and so, it has
solvable ESIP. Otherwise, Γ0 is disconnected, say Γ0 = Γ1 ∨ Γ2 with Γ1 and Γ2 being Droms
again. By induction, both GΓ1 and GΓ2 have solvable ESIP, by Theorem 1.8 GΓ0 = GΓ1 ∗GΓ2

has solvable ESIP, and by Theorem 1.7 GΓ = Zm ×GΓ0 also has solvable ESIP.

3 The direct product case

This section is devoted to proving Theorems 1.6 and 1.7. To this end, we analyze the Droms
groups presented by connected graphs.

3.1 Preparation

For all this subsection, we fix an arbitrary connected non-complete Droms graph Γ and its
primary decomposition Γ = Km ∨ Γ0, where m > 1 and Γ0 is a disconnected Droms graph.
Algebraically, GΓ = Zm ×GΓ0 , Z (GΓ ) = Zm, and GΓ0 is a nontrivial free product. Let
VΓ0 = X = {x1, . . . , xn} and VKm = T = {t1, . . . , tm}.
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Every element in GΓ can be written as a word on {t1, . . . , tm, x1, . . . , xn}, where the ti’s are free
to move to any position. We will systematically write all these ti’s ordered on the left, and we
will abbreviate them as a vectorial power of a formal symbol ‘t’. This way, every element in
GΓ = Zm ×GΓ0 can be written in the form ta1

1 · · · t
am
m u(x1, . . . , xn) = ta u(x1, . . . , xn), where

a = (a1, . . . ,am) ∈ Zm, and u = u(x1, . . . , xn) is a word on the xi’s. Clearly, the product of
elements is then given by the rule (ta u) · (tb v) = ta+b uv.

Quotienting by the center of GΓ gives rise to the short exact sequence

1 −→ Zm −→ GΓ
π0−→ GΓ0 −→ 1 ,

ta u 7−→ u
(2)

where π0 just erases the occurrences of letters in T± = {t1, . . . , tm}±.

Definition 3.1. For a given subgroup H 6 GΓ , and an element u ∈ GΓ0 , we define the
(abelian) completion of u in H (the H-completion of u, for short) to be the set CH(u) =

{ a ∈ Zm | ta u ∈ H } .

Lemma 3.2. The completion CH(u) is either empty (when u /∈ Hπ0), or a coset of Zm ∩ H.
More precisely, if u1, . . . ,un ∈ Hπ0, and ω(u1, . . . ,un) is an arbitrary word on them, then
CH(ω(u1, . . . ,un)) =

∑n
i=1ωi CH(ui), where ωi = |ω|i is the total exponent of the variable

ui in ω.

Lemma 3.3. Let GΓ = Zm ×GΓ0 be the primary decomposition of a connected Droms group. Then,
any subgroup H 6 GΓ splits as H = (Zm ∩H)×Hπ0σ, where π0 : GΓ → GΓ0 is the natural
projection killing the center of GΓ , and σ : Hπ0 → H is a section of π0|H.

Proof. Let X = {x1, . . . , xn} be the (finite) set of vertices of Γ0 (i.e., let GΓ0 = 〈X | R〉, where
R ⊆ [X,X]); and let Zm = 〈t1, . . . , tm | [ti, tj] ∀i, j〉. Now, consider the restriction to
H 6 Zm ×GΓ0 of the natural short exact sequence (2):

1 −→ Zm ' Z (GΓ ) −→ GΓ
π0−→ GΓ0 −→ 1 (3)

6 6 6

1 −→ Zm ∩H −→ H −→ Hπ0 −→ 1 , (4)

Since GΓ0 is Droms, we know that Hπ0 6 GΓ0 is again a PC-group. Thus, there exists a
(not necessarily finite) subset Y = {yj}j ⊆ GΓ0 such that Hπ0 ' 〈Y | S〉, where S is a certain
collection of commutators of the yj’s.

Now, observe that any map σ : Y → H sending each yj ∈ Y back to any of its π0-preimages
in H will necessarily respect the relations in S: indeed, for each commutator [yi,yj] ∈ S,
we have [yiσ,yjσ] = [taiyi, tajyj] = [yi,yj] (for certain abelian completions ai, aj ∈ Zm).
Therefore, any such map σ defines a (injective) section of the restriction π0|H. Thus, the short
exact sequence (4) splits and, for any such section σ, Hπ0 ' Hπ0σ 6 H. Moreover, since the
kernel of the subextension (4) lies in the center of GΓ , the conjugation action is trivial, and
the claimed result follows.
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Corollary 3.4. In the above situation, the subgroup H 6 GΓ is finitely generated if and only if
Hπ0 6 GΓ0 is finitely generated.

Remark 3.5. For any H = 〈tb1 , . . . , tbr , ta1 u1, . . . , tas us〉 6 GΓ = Zm×GΓ0 , where ui 6= 1 for all
i = 1, . . . , s, we have 〈tb1 , . . . , tbr〉 6 Zm ∩H = Z(GΓ )∩H 6 Z(H), but these two inclusions
are, in general, not equalities: for the first one, a nontrivial product of the last s generators
could, in principle, be equal to tc for some element c 6∈ 〈b1, . . . , br〉; and for the second we
could have, for example, u1 = · · · = us 6= 1 so that ta1 u1 belongs to Z(H) but not to Z(GΓ ).

Let us consider now two finitely generated subgroups H1,H2 6 GΓ and analyze when
the intersection H1 ∩H2 is again finitely generated. We will see that the behaviour of the
embedding (H1 ∩H2)π0 6 (H1)π0 ∩ (H2)π0 is crucial to this end.

Lemma 3.6. Let H1,H2 6 GΓ . Then,

(i) (H1 ∩H2)π0 6 H1π0 ∩H2π0, sometimes with strict inclusion;

(ii) (H1 ∩H2)π0 P H1π0 ∩H2π0;

(iii) [(H1)π0 ∩ (H2)π0, (H1)π0 ∩ (H2)π0] 6 (H1 ∩H2)π0.

Proof. (i). This is clear.

(ii). To see normality, consider u ∈ (H1 ∩ H2)π0, and v ∈ (H1)π0 ∩ (H2)π0; then, there
exist elements tau ∈ H1 ∩H2, and tbiv ∈ Hi, for i = 1, 2. Now observe that ta(v−1uv) =

v−1(ta u)v = (tbi v)−1(ta u)(tbi v) ∈ Hi, for i = 1, 2. Thus, ta v−1uv ∈ H1 ∩ H2 and so,
v−1uv ∈ (H1 ∩H2)π0.

(iii). Take u, v ∈ (H1)π0 ∩ (H2)π0; then, there exist elements taiu ∈ Hi, tbiv ∈ Hi, for i = 1, 2.
Now, observe that [u, v] = u−1v−1uv = (tai u)−1(tbi v)−1(tai u)(tbi v) ∈ Hi, for i = 1, 2. Thus,
[u, v] belongs to H1 ∩H2, and to (H1 ∩H2)π0, as claimed.

Lemma 3.7. If (H1 ∩H2)π0 (and so, H1 ∩H2) is finitely generated, then (H1)π0 ∩ (H2)π0 is also
finitely generated.

Proof. Let us assume that H1π0 ∩H2π0 is not finitely generated and find a contradiction.

By Remark 2.8, H1π0 ∩H2π0 is again a PC-group with infinite {P4, C4}-free commutation graph,
say ∆, and (H1 ∩H2)π0 6 G∆ ′ 6 G∆ = H1π0 ∩H2π0, where ∆ ′ is the full subgraph of ∆
determined by the vertices appearing in the reduced expressions of elements in (H1 ∩H2)π0.
Note that the assumption of finite generability for (H1 ∩H2)π0 implies that ∆ ′ is finite. Note
also that, by construction, ∆ ′ is minimal, i.e., for any x ∈ V∆ ′, there exists and element
g ∈ (H1 ∩H2)π0 such that g 6∈ G∆ ′r{x}.

In this situation, (H1)π0 ∩ (H2)π0 cannot be abelian since, if so, we would have a non finitely
generated free-abelian group embedded in the finitely generated PC-group GΓ , which is
not possible (see Theorem 2.5(vi)). So, ∆ is not complete. Take two non-adjacent vertices,
say u, v, from ∆; since F2 ' 〈u, v〉 6 G∆, Lemma 3.6(iii) tells us that F∞ ' [〈u, v〉, 〈u, v〉] 6
[G∆, G∆] 6 (H1 ∩H2)π0 and thus, (H1 ∩H2)π0 is not abelian either. Accordingly, neither the
infinite graph ∆, nor the finite graph ∆ ′ are complete.
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Suppose now there is a missing edge between some vertex x ∈ V∆ ′ and some vertex
y ∈ V∆r V∆ ′. Take an element g ∈ (H1 ∩H2)π0 with g 6∈ G(∆ ′ r {x}) and Lemma 3.6(ii)
would tell us that y−1gy ∈ G∆ ′ , which is a contradiction.

Hence, in ∆, every vertex from ∆ ′ is connected to every vertex outside ∆ ′. But now, take two
non-adjacent vertices x1, x2 from ∆ ′ and two non-adjacent vertices y1,y2 from ∆r∆ ′ (there
must also be some since ∆r∆ ′ is infinite and Z∞ does not embed into GΓ ). Then, the full
subgraph of ∆ with vertex set {x1, x2,y1,y2} form a copy of C4, a contradiction with ∆ being
Droms.

3.2 Proofs of Theorems 1.6 and 1.7

Proof of Theorem 1.6. First of all, observe that we can restrict ourselves to the case where G is
a disconnected Droms group.

Therefore, we consider Γ = Km ∨ Γ0 (where m > 1 and Γ0 is a disconnected Droms graph), we
will assume SIP is solvable for GΓ0 , and we will prove it solvable for GΓ = Zm ×GΓ0 . Let
X = VΓ0 = {x1, . . . , xn} and T = VKm = {t1, . . . , tm}.

Given a finite set of generators for a subgroup, say H1 6 GΓ , the first step is to im-
prove them: project them to GΓ0 , and then apply Proposition 2.9 to compute a basis for
H1π0, say {u1, . . . ,un1} with commutation graph G∆1 . The respective completions, say
ta1 u1, . . . , tan1 un1 ∈ H1 can be computed from the words expressing the ui’s in terms of the
projected generators, and recomputing them on the original generators for H1.

Now, for each of the original generators of H1, say tcv, we can write v ∈ H1π0 in terms of the
basis u1, . . . ,un1 , say v = v(u1, . . . ,un1) and compute v(ta1 u1, . . . , tan1 un1) = td v(u1, . . . ,un1)

= td v . Since tc v, td v ∈ H1, we get tc−d ∈ H1 ∩Zm. Repeating this operation for each
generator of H1, we get a generating set for H1 ∩Zm which is easily reducible to a free-
abelian basis, say {tb1 , . . . , tbm1 }. In this way, we can compute bases for H1 and H2:

{ tb1 , . . . , tbm1 , ta1 u1, . . . , tan1 un1 } and { tb ′1 , . . . , tb ′m2 , ta ′1 u ′1, . . . , ta ′n2 u ′n2
} , (5)

where {tb1 , . . . , tbm1 } and {tb ′1 , . . . , tb ′m2 } are free-abelian bases of L1 = H1 ∩Zm and L2 =

H2 ∩Zm, respectively; and {u1, . . . ,un1} and {u ′1, . . . ,u ′n2
} are basis of H1π0 and H2π0, with

commutation graphs ∆1, ∆2. That is, H1π0 ' G∆1 and H2π0 ' G∆2 .

Now, the solvability of SIP in GΓ0 (assumed by hypothesis) allows us to decide whether
H1π0 ∩H2π0 is finitely generated or not. If not, then (by Lemma 3.7) neither is (H1 ∩H2)π0,
and we are done. Thus, we can assume that H1π0 ∩H2π0 is finitely generated. Then, the
hypothesis provides a finite set of generators and hence a basis — sayW = {w1, . . . ,wn3} with
commutation graph ∆3 — for H1π0 ∩H2π0. That is, H1π0 ∩H2π0 = G∆3 = 〈w1, . . . ,wn3〉 6
GΓ0 , where the wi’s are words on X. After writing each wi ∈ W as a word on U and
U ′ respectively — say wi = ωi(u1, . . . ,un1) and wi = ω ′i(u

′
1, . . . ,u ′n2

) — we obtain a
description of the inclusions ι1 : H1π0 ∩H2π0 H1π0, and ι2 : H1π0 ∩H2π0 H2π0 in terms
of the corresponding bases.
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Abelianizing ι1 and ι2, we get the integral matrices P1 (of size n3×n1), and P2 (of size n3×n2)
and complete the upper half of Figure 2, where the ρi’s are the corresponding abelianization
maps. Note that, even though ι1 and ι2 are injective, their abelianizations P1 and P2 need not
be (n3 could very well be bigger than n1 or n2).

(H1 ∩H2)π0P

G∆1 ' H1π0 H1π0 ∩H2π0 H2π0 ' G∆2

Zn1 Zn3 Zn2

Zm

6 6

L1 L2

←

�

ρ1 ///

←
�

ρ3

�→ι1 �→ι2

///

←

�

ρ2

←

→A1

///

←→P1 ← →P2

←
→R1

←
→ R2

←

→ A2

///

Figure 2: Intersection diagram for subgroups of Droms groups

Now, we can recompute the words ωi (resp., ω ′i) as words on the (tai ui)’s (resp., on
the (ta ′i u ′i)’s) to get particular preimages of the wi’s in H1 (resp., H2). Namely,

ωi(ta1 u1, . . . , tan1 un1) = tωiA1 ωi(u1, . . . ,un1) = tωiA1 wi ∈ H1 ,

ω ′i(t
a ′1 u ′1, . . . , ta ′n2 u ′n2

) = tω
′
iA2 ω ′i(u

′
1, . . . ,u ′n2

) = tω
′
iA2 wi ∈ H2 ,

where ωi = (ωi)
ab, ω′

i = (ω ′i)
ab; and A1, A2 are the integral matrices (of sizes n1 ×m

and n2 ×m) having as rows {a1, . . . , an1} and {a ′1, . . . , a ′n2
} respectively. Hence, the abelian

completions of wi ∈ H1π0 ∩H2π0 in H1 and H2 are the linear varieties:

CH1(wi) =ωiA1 + L1 = wiι1ρ1A1 + L1 = wiρ3R1 + L1 ,

CH2(wi) =ω
′
iA2 + L2 = wiι2ρ2A2 + L2 = wiρ3R2 + L2 ,

where Lj = Zm ∩Hj, and we have used the commutation ιjρj = ρ3Pj together with the
definition Rj := PjAj, for j = 1, 2; see Figure 2. Note that all maps and matrices involved in
Figure 2 are explicitly computable from the data.

To finish our argument, it suffices to understand which elements of H1π0 ∩H2π0 belong to
(H1 ∩H2)π0. They are, precisely, those whose H1-completion and H2-completion intersect:

(H1 ∩H2)π0 = {w ∈ H1π0 ∩H2π0 | (wρ3P1A1 + L1)∩ (wρ3P2A2 + L2) 6= ∅ }

= ({d ∈ Zn3 | (dR1 + L1)∩ (dR2 + L2) 6= ∅}) ρ−1
3 (6)

= ({d ∈ Zn3 | d(R1 − R2) ∈ L1 + L2})ρ
−1
3

= (L1 + L2)(R1 − R2)
−1ρ−1

3 =Mρ−1
3 ,
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where M := (L1 + L2)(R1 − R2)
−1 denotes the full preimage of L1 + L2 by the matrix R1 − R2

for which a basis is clearly computable using linear algebra. At this point, we can decide
whether (H1 ∩H2)π0 is finitely generated or not by distinguishing two cases.

If ∆3 is complete (this includes the case where ∆3 is empty and n3 = 0), then H1π0 ∩H2π0 '
Zn3 is abelian, ρ3 is the identity, and (H1 ∩H2)π0 = (L1 + L2)(R1 − R2)

−1 = M is always
finitely generated and computable.

So, assume ∆3 is not complete. Since it is a Droms graph, it will have a primary de-
composition, say ∆3 = Kn4 ∨ ∆5, where n4 > 0, and ∆5 is Droms again, disconnected,
and with |V∆5| = n5 = n3 − n4 > 2. Let us rename the vertices {w1, . . . ,wn3} of ∆3 as
VKn4 =: {z1, . . . , zn4}, and V∆5 =: {y1, . . . ,yn5}, depending on whether they belong to Kn4 or
∆5. This means that H1π0 ∩ H2π0 ' G∆3 = Zn4 × G∆5 , where n4 > 0, and G∆5 6= 1 decom-
poses as a nontrivial free product. Furthermore, the normal subgroup (H1 ∩H2)π0 P G∆3

is not contained in Zn4 (taking two vertices, say yi,yj, in different components of ∆5,
Lemma 3.6(iii) tells us that 1 6= [yi,yj] ∈ (H1 ∩H2)π0). In this situation, the abelianization
map ρ3 : G∆3 Zn3 is the identity on the center Zn4 of G∆3 and so, can be decomposed
in the form ρ3 = id× ρ5 : G∆3 = Zn4 ×G∆5 Zn4 ×Zn5 = Zn3 , (c, v) 7→ (c, v). where v
denotes the abelianization v = vab ∈ Zn5 . Of course, if n4 = 0 then ρ5 = ρ3.

Now consider the image of (H1 ∩H2)π0 under the projection π1 : Zn4 ×G∆5 G∆5 , which is
nontrivial since (H1 ∩H2)π0 66 Zn4 . We have 1 6= (H1 ∩H2)π0π1 P G∆5 , a nontrivial normal
subgroup in a group which decomposes as a nontrivial free product. Therefore,

H1 ∩H2 is f.g. ⇔ (H1 ∩H2)π0π1 is f.g. ⇔ (H1 ∩H2)π0π1 Pfi G∆5

⇔ Mρ−1
3 π1 Pfi G∆5 ⇔ Mπ1

abρ−1
5 Pfi G∆5

⇔ Mπ1
ab Pfi Zn5 ⇔ rk

(
Mπ1

ab
)
= n5 .

(7)

The first of these equivalences is a (double) application of Corollary 3.4. The second one is
an application of the following theorem in [3, Section 6] by B. Baumslag: Let G be the free
product of two nontrivial groups. Let H be a finitely generated subgroup containing a nontrivial
normal subgroup of G. Then H is of finite index in G. The fourth equivalence is correct since
π1ρ5 = ρ3π1

ab and all of them are surjective maps. Finally, the fifth equivalence is correct
because following backwards the epimorphism ρ5, a subgroup Mπ1

ab 6 Zn5 is of finite index
if and only if its full preimage Mπ1

abρ−1
5 is of finite index in G∆5 , in which case the two

indices do coincide, namely, [Zn5 :Mπ1
ab] = [G∆5 :Mπ1

abρ−1
5 ]; see Figure 3.

(H1 ∩H2)π0 ' Mρ−1
3 6 G∆3 G∆5> Mπ1

abρ−1
5

(L1 + L2)(R1 − R2)
−1 =M 6 Zn3 Zn5 > Mπ1

ab

///

←→π1

←
�ρ3

←

� ρ5

←→π1
ab

Figure 3: The map π1 and its abelianization
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Since the map π1
ab is computable, the last condition in (7) can be effectively checked. Hence,

we can algorithmically decide whether H1 ∩H2 is finitely generated or not (ultimately, in
terms of some integral matrix having the correct rank). This solves the decision part of SIP.

It only remains to compute a finite set of generators for H1 ∩H2 assuming it is finitely
generated, i.e., assuming the equivalent conditions in (7) are satisfied.

We first use linear algebra to compute a finite family C of coset representatives of Zn5

modulo Mπ1
ab. Then, choose arbitrary ρ5-preimages in G∆5 , say {v1, . . . , vr}, where r = [G∆5 :

Mπ1
abρ−1

5 ] = [Zn5 : Mπ1
ab] (we can take, for example, ya1

1 · · ·y
an5
n5 ∈ G∆5 for each vector

a = (a1, . . . ,an5) ∈ Zn5). Now, construct the Schreier graph of the subgroup (H1 ∩H2)π0π1 =

Mρ−1
3 π1 =Mπ1

abρ−1
5 6fi G∆5 with respect to V∆5 = {y1, . . . ,yn5}, in the following way: draw

as vertices the cosets [v1], . . . , [vr]; then, for every [vi] (i = 1, . . . , r), and every yj (j = 1, . . . ,n5),
draw an edge labelled yj from [vi] to [viyj]. Here, we need to algorithmically recognize
which is the coset [viyj] from our list of vertices, but this is easy since: [viyj] = [vk] ⇔
viyjv

−1
k ∈Mπ1

abρ−1
5 ⇔ (viyjv

−1
k )ρ5 ∈Mπ1

ab.

From the Schreier graph of (H1 ∩H2)π0π1 6fi G∆5 , we can obtain a finite set of generators
for (H1 ∩H2)π0π1 just reading the labels of the closed paths T[e] corresponding to the arcs, e,
outside a chosen maximal tree T. These will be words on V∆5 = {y1, . . . ,yn5}, i.e., elements
of G∆3 not using the central vertices {z1, . . . , zn4}.

The next step is to lift the obtained generators to generators of (H1 ∩H2)π0, pulling them
back through π1. For each one of them, say g(y1, . . . ,yn5), we look for its preimages

in (H1 ∩ H2)π0; they all are of the form zλ1
1 · · · z

λn4
n4 g(y1, . . . ,yn5) , where the unknowns

λ1, . . . , λn4 ∈ Z can be found by solving the system of linear equations coming from the fact
zλ1

1 · · · z
λn4
n4 g(y1, . . . ,yn5) ∈Mρ

−1
3 . That is, (λ1, . . . , λn4 , |g|1, . . . , |g|n5)(R1 − R2) ∈ L1 + L2.

For each such g(y1, . . . ,yn5), we compute a particular preimage of the previous form and
put them all, together with a free-abelian basis for

kerπ1 ∩ (H1 ∩H2)π0 =
{
zλ1

1 · · · z
λn4
n4 : (λ1, . . . , λn4 , 0, . . . , 0)(R1 − R2) ∈ L1 + L2

}
,

to constitute a set of generators for (H1 ∩H2)π0.

Finally, we have to lift these generators for (H1 ∩H2)π0, to a set of generators for H1 ∩H2:
for each such generator, say hj, write it as a word hj = ωj(u1, . . . ,un1) and as a word
hj = ω ′j(u

′
1, . . . ,u ′n2

) in the original bases U for H1π0 and U ′ for H2π0, respectively. Now,
reevaluate each ωj and ω ′j in the corresponding basis elements from (5) for H1 and H2

respectively, to obtain vectors cj, c ′j ∈ Zm such that:

ωj(ta1 u1, . . . , tan1 un1) = tcj ωj(u1, . . . ,un1) = tcj hj ∈ H1 ,

ω ′j(t
a ′1 u ′1, . . . , ta ′n2 u ′n2

) = tc ′j ω ′j(u
′
1, . . . ,u ′n2

) = tc ′j hj ∈ H2 .

Finally, for each j, compute a vector dj ∈ (cj + L1)∩ (c ′j + L2) (note that these intersections
of linear varieties must be nonempty because hj ∈ (H1 ∩H2)π0), and consider the element
tdjhj ∈ H1 ∩H2. All these elements tdj hj, together with a free-abelian basis for H1 ∩H2 ∩
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Zm = (H1 ∩Zm)∩ (H2 ∩Zm) = L1 ∩ L2 constitute the desired set of generators for H1 ∩H2,
and the proof is completed.

Below, we extend the previous arguments to prove Theorem 1.7.

Proof of Theorem 1.7. By exactly the same argument as before, we can reduce to a non-
complete connected Droms graph Γ with primary decomposition Γ = Km ∨ Γ0 (where m > 1
and Γ0 is a disconnected Droms graph), we assume ESIP to be solvable for GΓ0 , and we have
to solve it for GΓ = Zm ×GΓ0 .

We are given finite sets of generators for two subgroups H1,H2 6 GΓ , and two extra elements
ta u, ta ′ u ′ ∈ GΓ . Since the solvability of ESIP implies that of SIP, we can apply Theorem 1.6
to effectively decide whether H1 ∩H2 is finitely generated or not, and in the affirmative
case compute a basis for H1 ∩H2. We assume all the notation developed along the proof
of Theorem 1.6.

Now, if H1 ∩H2 is not finitely generated there is nothing else to do; otherwise, we can
compute a basis, say {v1, . . . , vp}, for H1 ∩H2 and we have to decide whether the coset
intersection (ta u)H1 ∩ (ta ′ u ′)H2 is empty or not. Note that (ta u)H1 ∩ (ta ′u ′)H2 = ∅ if
and only if ((ta u)H1 ∩ (ta ′u ′)H2)π0 = ∅, and that ((ta u)H1 ∩ (ta ′ u ′)H2)π0 ⊆ ((ta u)H1)π0 ∩
((ta ′ u ′)H2)π0 = u(H1π0)∩u ′(H2π0). Then, since H1 ∩H2 is finitely generated, we know from
Lemma 3.7 that H1π0 ∩H2π0 is finitely generated as well. Hence, an application of the ESIP
solvability hypothesis for GΓ0 , tells us whether the coset intersection u(H1π0)∩ u ′(H2π0) is
empty or not. If it is empty, then ((ta u)H1 ∩ (ta ′u ′)H2)π0 is empty as well, and we are done.

Otherwise, u(H1π0)∩ u ′(H2π0) 6= ∅, and the hypothesis gives us an element v0 ∈ u(H1π0)∩
u ′(H2π0) as a word on VΓ0 = {x1, . . . , xn}; further, u(H1π0)∩ u ′(H2π0) = v0(H1π0 ∩H2π0).

Observe that ((ta u)H1 ∩ (ta ′u ′)H2)π0 consists precisely of those elements v0w, with w ∈
H1π0 ∩H2π0, for which there exists a vector c ∈ Zm such that tc v0w ∈ (ta u)H1 ∩ (ta ′u ′)H2 ;
that is, such that tc−a u−1v0w ∈ H1, and tc−a ′ (u ′)−1v0w ∈ H2. That is, c − a ∈ CH1(u

−1v0w),
and c − a ′ ∈ CH2((u

′)−1v0w). Hence, ((ta u)H1 ∩ (ta ′u ′)H2)π0 = ∅ if and only if, for all
w ∈ H1π0 ∩H2π0,

(
a + CH1(u

−1v0w)
)
∩
(
a ′ + CH2((u

′)−1v0w)
)
= ∅.

Fix an arbitrary word w = ω(w1, . . . ,wn3) ∈ H1π0 ∩ H2π0 (for its abelianization, write
|ω|i = λi, for i = 1, . . . ,n3). Choose vectors c ∈ CH1(u

−1v0), c ′ ∈ CH2((u
′)−1v0), and

di ∈ CH1(wi), d ′i ∈ CH2(wi), for i = 1, . . . ,n3. By Lemma 3.2:(
a + CH1(u

−1v0w)
)
∩
(
a ′ + CH2((u

′)−1v0w)
)
=

= (a + c + CH1(w)) ∩
(
a ′ + c ′ + CH2(w)

)
=

(
a + c +

n3∑
i=1

λiCH1(wi)

)
∩

(
a ′ + c ′ +

n3∑
i=1

λiCH2(wi)

)

=

(
a + c +

n3∑
i=1

λidi + L1

)
∩

(
a ′ + c ′ +

n3∑
i=1

λid ′i + L2

)
.
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Hence, the coset intersection
(
(ta u)H1 ∩ (ta ′u ′)H2

)
π0 is empty if and only if for every integer

λ1, . . . , λn3 ∈ Z, (a − a ′ + c − c ′) +
∑n3
i=1 λi(di − d ′i ) /∈ L1 + L2; or equivalently, if and only if((

a − a ′ + c − c ′
)
+
〈

d1 − d ′1, . . . , dn3 − d ′n3

〉)
∩ (L1 + L2) = ∅ .

This can be effectively decided using linear algebra. And furthermore, in case it is not
empty, one can compute an explicit element from (ta u)H1 ∩ (ta ′ u ′)H2, just following the
computations back. This completes the proof.

4 The free product case

In this section, we shall consider the free product case and prove Theorems 1.8 and 1.9. We
follow the graph-theoretical approach developed by S. Ivanov in [16].

The classical theory of Stallings foldings (see [27]) provides a bijection between the subgroups
of a given free group and certain kind of labelled directed graphs (the so-called Stallings
automata) which when restricted to finitely generated subgroups (corresponding to finite
automata) is fully constructive. This geometric approach allowed to solve many algorithmic
problems about free groups in a very nice and intuitive way.

S. Ivanov (in [16]) generalized this machinery to free products. Among other applications, this
allowed him to give a modern proof of the Kurosh Subgroup Theorem, and of B. Baumslag
theorem stating that free products of Howson groups are again Howson (see [16–18]).
However, he did not consider algorithmic issues in his approach.

More recently, Kapovich–Weidmann–Myasnikov extended further these folding techniques
(see [20]) to fundamental groups of graphs of groups. Their method produces the automaton
corresponding to a given subgroup, under some conditions on the edge groups (which
automatically hold in the case of free products), and leads to the solution of the membership
problem in some cases. However, they do not analyze subgroup intersections.

In order to treat algorithmically intersections of subgroups of free groups, we use Ivanov’s
approach with the necessary technical adaptations to make it fully algorithmic. In the sake
of clarity, we offer here a self-contained exposition.

The idea is to use generalized folding techniques to algorithmically represent any finitely
generated subgroup H 6 G1 ∗G2 by a finite graph of certain kind, called a reduced wedge
automaton, denoted by ΓH. We note that from such an object ΓH one can already deduce,
algorithmically, a Kurosh decomposition for the subgroup H.

Note also that following Ivanov’s argument it is possible to define ΓH for arbitrary subgroups
H 6 G1 ∗ G2. On the other hand, Ivanov gives in [16] a generalization of the classical
“pullback” technique for free groups: given two subgroups H1,H2 6 G1 ∗G2, and having at
hand corresponding reduced wedge automata ΓH1 and ΓH2 , he describes a reduced wedge
automaton ΓH1 ∧ ΓH2 for H1 ∩H2, in terms of ΓH1 and ΓH2 . Note a substantial difference with
the free situation: ΓH1 ∧ ΓH2 may very well be an infinite object even with ΓH1 and ΓH2 being
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finite (corresponding to the possible non-Howson situation; i.e., H1 ∩H2 may very well be
non finitely generated, even with H1 and H2 being finitely generated).

The main argument in the present section is the following: given finite generating sets for
H1 and H2, we are able to construct ΓH1 and ΓH2 , and then start constructing ΓH1 ∧ ΓH2 (even
with the possibility of this being infinite). The crucial point is that, in finite time while the
construction is running, we are able to either detect thatH1∩H2 is not finitely generated, or to
complete the construction of ΓH1 ∧ ΓH2 ; in the first case we have algorithmically deduced that
the intersection H1 ∩H2 is not finitely generated, and in the second case we have effectively
constructed ΓH1 ∧ ΓH2 , from which we shall be able to extract a finite set of generators for
H1 ∩H2. In order to check whether H1 ∩H2 is not finitely generated the hypothesis of SIP or
ESIP in the factor groups G1 and G2 will be crucial.

4.1 Wedge automata

We assume the reader familiar with standard Stallings automata (representing subgroups of
free groups, say F2 = 〈a〉 ∗ 〈b〉, as involutive {a,b}-automata recognizing exactly the elements
in the corresponding subgroup).

To cover the more general situation of G1 ∗G2, we need to encode more information into
the arcs. A classical a-labelled arc would correspond to what we call here a G1-wedge: an
arc subdivided in two halves, admitting a (possibly trivial) label from G1 on each side, and
also admitting a (possibly trivial) subgroup A 6 G1 as a label of the middle (special) vertex
between the two halves. Doing the same with the b-arcs (and subgroups of G2) we get an
automaton with two types of vertices, primary (the original ones), and secondary (the new
ones). See Figure 4.

A

(g1,g ′1∈G1, A6G1)

B

(g2,g ′2∈G2, B6G2)

g1 g ′1 g2 g ′2

Figure 4: Wedges of first and second kind

In these new automata, walks are going to spell subsets of G1 ∗G2 (instead of words in {a,b}±),
by picking all the elements from the label of a secondary vertex when traversing it. Allowing,
in addition, vertices to have any degree, we get the new notion of wedge automaton.

Definition 4.1. Let G1,G2 be two arbitrary groups. A (wedge) (G1,G2)-automaton is a septuple
Γ = (VΓ, EΓ, ι, τ, `,−1 , ), where:

(i) Γ = (VΓ, EΓ, ι, τ, −1) is an involutive digraph (called underlying digraph of Γ) with three
disjoint types of vertices, VΓ = V0Γ tV1Γ tV2Γ; namely, primary (those in V0Γ, denoted
by ), 1-secondary (those in V1Γ, denoted by , and 2-secondary (those in V2Γ, denoted
by ); and with all arcs in EΓ joining (in either direction) a primary vertex with a
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secondary one; i.e., EΓ = E1Γ t E2Γ, where the arcs in Ej are called j-arcs and connect
primary vertices with j-secondary vertices (for j = 1, 2).

(ii) ` is a twofold label map: for ν = 1, 2, ` : EνΓ → Gν, e 7→ `e compatible with the
involution in Γ ; and ` : VνΓ → Sgp(Gν), q 7→ `q.

(iii) is a distinguished primary vertex called the basepoint of Γ.

We say that a wedge automaton Γ is connected (resp., finite) if the underlying undirected
graph is so; note that, by definition, it is always primary-secondary bipartite. We will also
say that a wedge automaton Γ is of finite type if the underlying digraph is finite, and the
subgroups labelling the secondary vertices are all finitely generated. This will always be
the situation when we consider computational issues; in this case, the labels of vertices will
usually be given by finite sets of generators. We say that a vertex label is trivial if `q = {1}. If
not stated otherwise all the wedge automata appearing from this point will be assumed to
be finite.

Recall that wedge automata are involutive (as automata): for every arc e ≡ p q reading g,
there exists a unique inverse arc e−1 ≡ q p reading g−1. Hence, a wedge automata Γ can
always be represented by one of its (say positive, denoted by E+Γ) arc orientations. Then
EΓ = E±Γ := E+Γ t E−Γ, where E−Γ is the set of inverses of the arcs in E+Γ. A walk in Γ is
a sequence of alternating and successively incident vertices and arcs, starting and ending
at primary vertices, γ = p0(e−1

1 q1e ′1)p1(e−1
2 q2e ′2)p2 · · · pr−1(e−1

r qre ′r)pr, where p0, . . . , pr are
(not necessarily distinct) primary vertices, q1, . . . , qr are (not necessarily distinct) secondary
vertices, and for every k = 1, . . . , r, all three of ek, qk, e ′k are simultaneously of the same
type νk (νk = 1, 2). A ν-elementary walk is a walk of length 2 visiting a secondary vertex
of ν-type, ν = 1, 2; it is degenerate if it consists of two mutually inverse arcs; otherwise it is
called non-degenerate. Every walk γ decomposes as a product of elementary walks (either
degenerate or nondegenerate, and with possible repetitions) in a unique way, corresponding
to the brackets in the expression above: this is called the elementary decomposition of γ (for
convention, we take r = 0 when the walk γ is trivial). We say that a walk γ is alternating if its
elementary decomposition sequence γ1,γ2, . . . ,γr alternates between types 1 and 2.

The length of a walk is the number of arcs in the sequence defining it, i.e., twice the number
of elementary walks r in its elementary decomposition.

Remark 4.2. Note that γ involves no backtracking if and only if the γi’s in its elementary
decomposition γ = γ1 · γ2 · · ·γr are all nondegenerate, and there is no backtracking in the
consecutive products γi · γi+1.

Definition 4.3. The label of a walk γ = p0(e−1
1 q1e ′1)p1(e−1

2 q2e ′2)p2 · · · pr−1(e−1
r qre ′r)pr, denoted

by `γ, is the subset `γ = (`−1
e1
`q1`e ′1)(`

−1
e2
`q2`e ′2) · · · (`

−1
er `qr`e ′r) ⊆ G1 ∗G2. That is, while travel-

ling along γ, when we traverse an arc e, we pick its label `e, and when we traverse a secondary
vertex q we take all labels c ∈ `q (primary vertices have no contribution to `γ). Picking
always the trivial element when visiting a secondary vertex, we obtain the so-called basic
label of γ, `•γ = (`−1

e1
`e ′1)(`

−1
e2
`e ′2) · · · (`

−1
er `e ′r) ∈ `γ ⊆ G1 ∗G2.

It is clear that `α−1 = `−1
α and `α · `β = `αβ.
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Remark 4.4. Note also that if γ = p0(e−1
1 q1e ′1)p1(e−1

2 q2e ′2)p2 · · · pr−1(e−1
r qre ′r)pr is alternating,

and we take elements ci ∈ `qi such that `−1
ei ci`e ′i 6= 1 for all i = 1, . . . , r, then the brackets in the

expression (`−1
e1
c1`e ′1)(`

−1
e2
c2`e ′2) · · · (`

−1
er cr`e ′r) indicate, precisely, the syllable decomposition of

the element in G1 ∗G2 read by γ; otherwise, some consecutive pairs of brackets may merge
into the same syllable. This remark will be crucial later.

Let Γ be a (G1,G2)-automaton and let p, p ′ be two primary vertices. We define the coset
recognized by Γ relative to (p, p ′) to be the set 〈Γ〉(p,p ′) := ∪γ `γ, where the union runs over
all walks in Γ from p to p ′. When p = p ′, then we abbreviate 〈Γ〉p := 〈Γ〉(p,p). Moreover, if
p = p ′ = then we simply write 〈Γ〉 = 〈Γ〉 , and we call it the subgroup recognized by Γ. The
lemma below, which is straightforward to prove, justifies this terminology.

Lemma 4.5. Let Γ be a (G1,G2)-wedge automaton, and let p, p ′ ∈ V0 Γ. Then,

(i) 〈Γ〉p is a subgroup of G1 ∗G2;

(ii) 〈Γ〉p and 〈Γ〉p ′ are conjugate to each other; viz. 〈Γ〉p ′ = (〈Γ〉p)g, for every g ∈ 〈Γ〉(p,p ′);

(iii) 〈Γ〉(p,p ′) is a right coset of 〈Γ〉(p,p); viz. 〈Γ〉(p,p ′) = 〈Γ〉(p,p) · g, for every g ∈ 〈Γ〉(p,p ′).

Proposition 4.6. For every subgroup H 6 G1 ∗G2, there exists a (G1,G2)-automaton Γ recognizing
H. Furthermore, if H is finitely generated, one such Γ is of finite type and algorithmically constructible
from a finite set of generators for H given in normal form.

Proof. Let H = 〈W〉, where W = {w1,w2, . . .} is a set of generators for H. For every non-
trivial generator in W, say w, consider its normal form as an element of G1 ∗ G2, say
w = a1b1 · · ·asbs, with s > 1, ai ∈ G1, bi ∈ G2, ai 6= 1 for all i = 2, . . . , s, and bi 6= 1 for all
i = 1, . . . , s− 1. Let Fl(w) denote the (G1,G2)-automaton depicted in Fig. 5, and called the
petal automaton corresponding to w. Clearly, 〈Fl(w)〉 = 〈w 〉.

1
1

1
1

1

a1
1 b1

a2 · · ·bs−1

1as
1

bs

Figure 5: A wedge petal

Now consider Fl(W) the disjoint union of all the Fl(wi)’s identifying the basepoints into a
single primary vertex (declared as basepoint); the resulting object is a (G1,G2)-automaton
called the flower automaton corresponding to W. Clearly, 〈Fl(W)〉 = 〈W〉 = H. Moreover, if
|W| <∞ then Fl(W) is of finite type and constructible.

4.2 Reduced wedge automata

In the same vein as in the classical Stallings graphs, we will ask our wedge graphs to
be ‘deterministic’ (in a precise sense specified below). Similar constructions are called

19



‘irreducible graphs’ by Ivanov in [16], and are particular cases of the so-called ‘folded graphs’
in Kapovich–Weidman–Miasnikov [20].

Definition 4.7. Let G1,G2 be two groups, and let Γ be a finite (G1,G2)-automaton. We say
that Γ is reduced if the following conditions are satisfied: (i) Γ is connected; (ii) every
primary vertex of Γ is incident with at most one arc from E1Γ, and at most one arc from E2Γ;
(iii) no nondegenerate elementary walk reads the trivial element; that is, for ν = 1, 2, every
ν-secondary vertex q ∈ Vν Γ, and every pair of different ν-arcs e1, e2 with ιe1 = ιe2 = q, we
have that 1 6∈ `−1

e1
`q`e2 (equivalently, `e1`

−1
e2
6∈ `q).

In a reduced wedge automaton Γ, remark 4.2 can be restated in the following way: γ
presents no backtracking if and only if it is alternating and the elementary walks on its
elementary decomposition are all nondegenerate. In this case, additionally, property (iii)
from Definition 4.7 ensures that the elementary decomposition of γ gives the syllable
decomposition of every g ∈ `γ as element from G1 ∗G2 (since nondegenerate elementary
walks do not admit the trivial element as a label). However, this is not the whole story: even
with some of the γi’s being degenerate, we can still get the syllable decomposition of g ∈ `γ
assuming that the elements picked from the labels of the backtracking vertices (if any) are
nontrivial. This motivates the following lemma, definition and the subsequent important
technical lemma.

Lemma 4.8. For any reduced (G1,G2)-automaton Γ, and any nontrivial walk γ between two primary
vertices and without backtracking, 1 6∈ `γ.

Proof. This is clear since, by the previous remark, the label of γ gives its syllable decomposi-
tion as element of G1 ∗G2.

Definition 4.9. Let γ be a walk in a wedge automaton Γ , with elementary decomposition
γ = γ1 γ2 · · · γr = p0(e−1

1 q1e ′1)p1(e−1
2 q2e ′2)p2 · · · pr−1(e−1

r qre ′r)pr. We define the reduced label
of γ as

˜̀
γ =

{
(`−1

e1
c1`e ′1)(`

−1
e2
c2`e ′2) · · · (`

−1
er cr`e ′r)

∣∣∣∣∣ ci ∈ `qici 6= 1 if γi is degenerate

}
⊆ `γ.

Lemma 4.10. For a reduced (G1,G2)-automaton Γ, we have 〈Γ〉 = ∪γ`γ = ∪ γ̂ ˜̀γ̂, where the first
union runs over all -walks γ of Γ, and the second one only over the alternating -walks γ̂ of Γ.

Proof. The inclusion ‘⊇’ is clear, since the first union is over more sets than the second one,
and `γ ⊇ ˜̀γ. To see ‘⊆’, fix a -walk γ = γ1 · · ·γr, and an element g ∈ `γ, and let us find an
alternating -walk γ̂ such that g ∈ ˜̀γ̂.

In fact, if γ is not alternating then there are ν = 1, 2 and i = 1, . . . , r − 1 such that
γi = pi−1e−1

i qie ′ipi and γi+1 = pie−1
i+1qi+1e ′i+1pi+1 are both of type ν; so, by condition

(ii) in Definition 4.7, qi = qi+1 and e ′i = ei+1. Replacing γiγi+1 by = pi−1e−1
i qie ′i+1pi+1, we

get a new -walk γ
(1) , with shorter elementary decomposition and such that g ∈ `γ

(1)
as well,

since (`−1
ei ci`e ′i)(`

−1
ei+1
ci+1`e ′i+1

) = `−1
ei (cici+1)`e ′i+1

, for all ci, ci+1 ∈ `qi 6 Gν. Repeating this
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operation a finite number of times, say k, we can assume that γ̂ = γ
(k)

is alternating and
g ∈ `γ̂.

It remains to prove that, maybe simplifying γ̂, g ∈ ˜̀
γ̂: if qj is the secondary vertex in

the degenerate elementary walk γj = pj−1e−1
j qjejpj−1, and the corresponding cj picked

in the formation of g is trivial, then just ignore (`−1
ej cj`ej) = 1, and realize g in the label

of γ̂
(1) = γ1 · · ·γj−1γj+1 · · ·γs, a -walk with shorter elementary decomposition, which will

be again alternating after repeating the operation in the above paragraph. Repeating this
operations a finite number of times, until no trivial choices are made at the degenerate
vertices, we obtain the desired result.

Remark 4.11. The usefulness of the previous lemma is the following: when realizing an
element g ∈ 〈Γ〉 from the subgroup recognized by a reduced automaton X as g ∈ ˜̀γ̂ for some
alternating -walk γ̂, the elementary decomposition of γ̂ automatically provides the syllable
decomposition of g as element of G1 ∗G2. This is a crucial bridge between the algebraic and
the geometric aspects of the theory.

One of the most useful applications of reduced (G1,G2)-automata is that they naturally
encode the Kurosh free product decomposition (the induced splitting) of their recognized
subgroups as subgroups of G1 ∗G2. With some technical differences, our exposition fol-
lows [16, 20], but with special emphasis on the algorithmic point of view. The theorem below
appears as Lemma 4 in Ivanov’s [18] and, in a more general setting, as Proposition 4.3 in
Kapovich–Weidmann–Myasnikov [20]. A detailed proof (including the algorithmicity in the
the finite type case) can be found in [6].

Notation 4.12. Let Γ be a reduced (G1,G2)-wedge automaton. Fix a maximal subtree T in Γ+,
and let E = EΓ+ r ET be the set of arcs of Γ+ outside T. For every two vertices u, v ∈ VΓ, let
T[u, v] denote the unique walk without backtracking from u to v along the tree T. Now, for
every vertex u ∈ VΓ, let zu denote the basic label zu = `•T[u, ]

∈ G1 ∗G2 and, for every arc
e ∈ E±, let xe denote the element xe = z−1

ιe `e zτe ∈ G1 ∗G2.

Theorem 4.13. Let Γ be a reduced (G1,G2)-automaton. Then, with the above notations, the subgroup
recognized by Γ is

〈 Γ 〉 = F ∗

(
∗

q∈V1Γ

z−1
q `q zq

)
∗

(
∗

q∈V2Γ

z−1
q `q zq

)
, (8)

where F is the free subgroup of 〈Γ〉 freely generated by the set { xe | e ∈ E }. Moreover, if Γ is of
finite type, then the subgroup 〈Γ〉 is finitely generated, and we can algorithmically compute a Kurosh
decomposition like (8) for 〈Γ〉 6 G1 ∗G2.

Corollary 4.14. For a reduced (G1,G2)-automaton Γ, the group 〈Γ〉 is finitely generated if and only
if Γ is of finite type (i.e., the underlying graph of Γ has finite rank, and all vertex labels of Γ are finitely
generated). In this case, a set of generators (in the form of the Kurosh decomposition theorem) for 〈Γ〉
is computable.

Theorem 4.13 and Corollary 4.14 are easily seen to be false if we substitute reduced automata
by general wedge automata.

21



4.3 Effective reduction of wedged automata

Following [16] and [20], the next step is to show that every finitely generated subgroup
H 6 G1 ∗G2 is the subgroup recognized by some reduced (G1,G2)-automaton of finite type.
We introduce several elementary operations on wedge automata which will not change their
recognized subgroup (to simplify notation, we shall work with positive arcs and assume that
everything done to an arc e will also be done accordingly to e−1).

Definition 4.15. Let us consider the following elementary transformations on a (G1,G2)-
wedge automata:

(i) Adjustment: replacing the label of any arc e leaving a secondary vertex q, by c · `e, for
any c ∈ `q; see Figure 6.

C
g1
g2

gk
C

cg1
g2

gk

Figure 6: Adjustment

(ii) Conjugation: (for ν = 1, 2) replacing, given g ∈ Gν, the label `q of a ν-secondary vertex
q, by (`q)

g−1
= g`qg

−1; and replacing the label `ei of every arc ei incident from q, by
the respective g`ei ; see Figure 7.

C
g1
g2

gk
Cg

−1

gg1

gg2

ggk

Figure 7: Conjugation

(iii) Isolation: removing from Γ all the connected components not containing the basepoint;
see Figure 8.

Figure 8: Isolation

(iv) Primary open folding: for ν = 1, 2, given two ν-secondary vertices q1, q2 adjacent to the
same primary vertex through respective arcs e1, e2 with the same label g ∈ Gν, identify
q1 and q2 into a new secondary vertex with label 〈`q1 , `q2〉, and identify the arcs e1, e2

into a new arc with the same label g; see Figure 9.
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C1 C2

g g

C

g

Figure 9: Primary open folding, where C = 〈C1 ∪C2〉

(v) Secondary open folding: for ν = 1, 2, given a ν-secondary vertex q adjacent to two
different primary vertices p1, p2 through arcs e1, e2 having the same label g ∈ Gν,
identify the vertices p1 and p2, and the arcs e1, e2 into an arc maintaining the label g;
see Figure 10.

C

g g1

C

g

Figure 10: Secondary open folding

(vi) Closed folding: for ν = 1, 2, given a primary vertex p adjacent to a ν-secondary vertex q
by two non mutually inverse arcs e1, e2, consists in identifying e1 and e2 into a single
arc with label `e1 , and change the label of q from `q to 〈`q, `e1`

−1
e2
〉 6 Gν; see Figure 11.

C

g h

C ′

g

Figure 11: Closed folding, where C ′ = 〈C,gh−1〉

Note that the (folding) transformations (iv), (v), and (vi) in Definition 4.15 decrease the num-
ber of arcs in the automata exactly by 1. The following result is also straightforward.

Lemma 4.16. Let Γ be a reduced (G1,G2)-automaton, and let Γ Γ ′ be any of the elementary
transformations in Definition 4.15. Then, the recognized subgroups of Γ and Γ ′ coincide.

Theorem 4.17 (S. V. Ivanov, 1999, [16]). For any groups G1,G2, and any finitely generated
subgroup H 6 G1 ∗ G2, there exists a reduced (G1,G2)-automaton recognizing H. Moreover,
if both G1 and G2 have solvable membership problem, then given a finite set of generators of a
subgroup H 6 G1 ∗G2, one can algorithmically obtain a reduced (G1,G2)-automaton of finite type
recognizing H.
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Proof. Since the trivial automaton recognizes the trivial subgroup, we can assume H 6= 1.
Starting with the corresponding flower automaton for H, successively do the following:

(I) if, for ν = 1, 2, Γ has a primary vertex adjacent to two different ν-secondary vertices,
then apply a suitable conjugation move to one of the ν- vertices and then a primary
open folding.

(II) if, for ν = 1, 2, Γ has a primary vertex and a ν-secondary vertex connected to each
other by two non mutually inverse arcs then apply a closed folding.

(III) if Γ has a secondary vertex q adjacent to two different primary vertices through arcs e1

and e2, ιe1 = ιe2 = q, such that `e1`
−1
e2
∈ `q, apply a suitable adjustment move to one of

the two arcs, and then an elementary open folding.

Note that this can be done algorithmically (we use MP in G1 and G2 for (III)). Since the
number of edges decreases at each step, this process will eventually stop. It is clear that the
resulting automaton is reduced, of finite type, and it recognizes H by Lemma 4.16.

4.4 A reduced automaton for the intersection

Recall that if G1 and G2 are Howson, then G1 ∗G2 is Howson as well; see [3] and [16], the
second proof being essentially the one we present here.

The goal of this section is to describe, following [16], a reduced automaton ΓH ∧ ΓK recogniz-
ing the intersection H∩K, in terms of given reduced automata ΓH and ΓK, with 〈ΓH〉 = H
and 〈ΓK〉 = K, where H,K 6 G1 ∗G2 are finitely generated subgroups. This construction is
not algorithmic, in general, since ΓH ∧ ΓK may very well be not of finite type, even when both
ΓH and ΓK are so (corresponding to the case where H,K are both finitely generated but H∩K
is not, see Corollary 4.14).

Later, in Section 4.6, we shall give an effective procedure which starts constructing, locally,
the aforementioned automaton ΓH ∧ ΓK. While running, there will be an alert observing
the construction: if some (algorithmically checkable) specific situation occurs, then the
intersection H ∩ K is not finitely generated. We shall achieve our goal by proving that, in
finite time, either the alert sounds or the procedure terminates providing the finite type
reduced automaton ΓH ∧ ΓK as output.

So, suppose we are given two finite type reduced (G1,G2)-wedge automata ΓH and ΓK with
recognized subgroups 〈ΓH〉 = H and 〈Γk〉 = K, where H,K 6 G1 ∗G2 are finitely generated
subgroups. Along the following paragraphs, we will first define the product automaton Γ̃ of
ΓH and ΓK whose main connected component will be the junction ΓH ∧ ΓK.

Define the set of primary vertices of the product Γ̃ as the cartesian product V0Γ̃ = V0ΓH ×V0ΓK.
and the basepoint of Γ̃ to be the pair of basepoints, i.e., = ( H, K). Now, for ν = 1, 2, we
consider the subsets of primary vertices (in ΓH and ΓK) adjacent to some ν-secondary vertex,
i.e., V0←ν ΓH = { p ∈ V0 ΓH | p is adj. to a ν-secondary in ΓH } ⊆ V0 ΓH (and idem for V0←ν ΓK)
and define the relation ≡ν on the set V0←ν ΓH ×V0←ν ΓK ⊆ V0Γ̃ to be: (p1, p ′1) ≡ν (p2, p ′2) if
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and only if there exist two ν-elementary walks: γ from p1 to p2 in ΓH (say γ = p1e−1
1 qe2p2,

with q ∈ Vν ΓH), and γ ′ from p ′1 to p ′2 in ΓK (say γ ′ = p ′1e′−1
1 q ′e ′2p ′2, with q ′ ∈ Vν ΓK), such

that the intersection of their labels is nonempty, `γ ∩ `γ ′ 6= ∅.

The following result is not hard to see with the natural reasoning.

Lemma 4.18. The relations ≡1 and ≡2 are equivalence relations.

Now, define the ν-secondary vertices of Γ̃ to be the equivalence classes modulo ≡ν, namely
Vν Γ̃ = (V0←ν ΓH × V0←ν ΓK) / ≡ν. Finally, define the ν-arcs of Γ̃ as EνΓ̃ = {q p | q ∈
Vν Γ̃, p ∈ q }, i.e., for each secondary vertex q ∈ VνΓ̃, and each primary vertex p = (p, p ′) ∈ q,
add a ν-arc q p. This finishes the definition of the underlying digraph of Γ̃. Observe that
Γ̃ may not be connected in general, even with ΓH and ΓK being so.

By construction, it is clear that, for ν = 1, 2, every primary vertex of Γ̃ is adjacent to
at most one ν-secondary vertex of Γ̃ through at most one arc. We define now natural
projections (digraph homomorphisms) from Γ̃ to ΓH and ΓK. Define π : Γ̃ → ΓH as follows:
for primary vertices, take the projection to the first coordinate, π : V0Γ̃ → V0ΓH, (p, p ′) 7→ p;
for ν-secondary vertices, assign to every vertex q ∈ Vν Γ̃ the only ν-secondary vertex in ΓH
adjacent to every p = (p, p ′)π ∈ V0 ΓH for (p, p ′) ∈ q; finally, for ν-arcs, assign to every q p
(for q ∈ VνΓ̃ and (p, p ′) ∈ q) the unique ν-arc in ΓH from q = qπ to p = (p, p ′)π. Clearly, π
is a well defined digraph homomorphism, called the projection to ΓH. The projection to ΓK,
denoted by π ′ : Γ̃ → ΓK, is defined in an analogous way.

It remains to establish the labels for its vertices and arcs. For ν = 1, 2, and for every ν-
secondary vertex q ∈ VνΓ̃, choose a distinguished primary vertex pq = (pq, p ′q) ∈ q, and
let eq be the only arc in Γ̃ form q to the representative pq. This means that, in ΓH, there
is a ν-arc eq := (eq)π ∈ Eν ΓH from q = qπ ∈ Vν ΓH to pq, and, in ΓK, there is a ν-arc
e ′q := (eq)π

′ ∈ EνΓK from q ′ = qπ ′ ∈ VνΓK to p ′q. Then, we define the label of vertex q
as

`q := `−1
eq `q `eq ∩ `−1

e ′q `q
′ `e ′q = `

`eq
q ∩ `

`e ′q
q ′ 6 Gν . (9)

Finally, for any ν-arc e ∈ Eν Γ̃ from q to a primary vertex p = (p, p ′) ∈ q, call e := eπ,
e ′ := eπ ′, and define the label of e as an arbitrary element from the coset intersection `e ∈
`−1
eq `q`e ∩ `

−1
e ′q
`q ′`e ′ , which is nonempty since (pq, p ′q) ≡ν (p, p ′) by construction; see Figure 12.

Note that, in particular, we can take `eq = 1.
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Figure 12: Secondary vertex and related labels in Γ̃

This completes the definition of the product automaton Γ̃ (technically depending on some
choices made on the way). The main property of the labels defined for Γ̃ is expressed in the
following lemma.

Lemma 4.19. Let Γ̃ be the product of two reduced wedge automata ΓH and ΓK. Then, for every ν-
elementary walk γ in Γ̃, the projected walks γπ and γπ ′ are ν-elementary in ΓH and ΓK, respectively,
and we have `γ = `γπ ∩ `γπ ′ . Furthermore, γ is degenerate if and only if both γπ and γπ ′ are
degenerate.

Proof. Clearly, the projections by π and π ′ of ν-elementary walks in Γ̃ are also ν-elementary
walks (in ΓH and ΓK, respectively), with the original one being degenerate if and only if both
projections are degenerate (note that γ may be nondegenerate with one (and only one) of γπ
and γπ ′ being degenerate; see Figure 12).

To see the equality in labels, let γ = p1e−1
1 qe2p2 be a ν-elementary walk in Γ̃, where

p1 = (p1, p ′1) and p2 = (p2, p ′2), and let γπ = p1e−1
1 qe2p2 and γπ ′ = p ′1(e ′1)

−1q ′e ′2p ′2 be the
corresponding ν-elementary walks in ΓH and ΓK, respectively. We have `γπ = `−1

e1
`q `e2 and

`γπ ′ = `
−1
e ′1
`q ′ `e ′2 .

Now, consider the distinguished ν-arc eq incident to q (possibly equal to e1 and/or e2).

According to the above definitions, we have `q = `
`eq
q ∩ `

`eq′

q ′ and `ei ∈ `−1
eq `q`ei ∩ `

−1
eq ′
`q ′`e ′i , for

i = 1, 2; see Figure 12. Therefore,

`γ = `−1
e1 `q`e2 = `−1

e1 ·
(
`
`eq
q ∩ `

`eq ′
q ′

)
· `e2 = `−1

e1
`q`e2 ∩ `

−1
e ′1
`q ′`e ′2 = `γπ ∩ `γπ ′ . (10)

This completes the proof.

We can now state the definition of junction automaton ΓH ∧ ΓK and show that it is a reduced
(G1,G2)-wedge automaton such that 〈ΓH ∧ ΓK〉 = H∩K.

Definition 4.20. With the above notation, we define the junction automaton of ΓH and ΓK,
denoted by ΓH ∧ ΓK, as the connected component of Γ̃ containing the basepoint. (Recall that
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there are some arbitrary choices made on the way so, ΓH ∧ ΓK is not canonically associated to
ΓH and ΓK.)

Proposition 4.21. The junction automaton ΓH ∧ ΓK is a (G1,G2)-reduced automaton recognizing
the subgroup H∩K.

Proof. It is clear that the junction automaton satisfies the properties (i) and (ii) in Defini-
tion 4.7.

To see property (iii), take ν = 1, 2, let q ∈ Vν Γ̃ be a ν-secondary vertex of Γ̃, let e1, e2 be
two different ν-arcs from q to p1 = (p1, p ′1) and p2 = (p2, p ′2), respectively, and consider the
nondegenerate elementary walk γ = pe−1

1 qe2p2. By symmetry, we can assume p1 6= p2,
i.e., that γπ = p1e−1

1 qe2p2 is a nondegenerate elementary walk in ΓH. Since ΓH is reduced,
1 6∈ `−1

e1
`q `e2 = `γπ and by Lemma 4.19, 1 6∈ `γ = `γπ ∩ `γπ ′ .

It remains to show that 〈ΓH ∧ ΓK〉 = H∩K. Indeed, let γ be an arbitrary -walk in Γ̃, and let
γ = γ1 · · ·γr be its elementary decomposition. Clearly, the elementary decompositions of
γπ in ΓH, and γπ ′ in ΓK, are γπ = (γ1π) · · · (γrπ) and γπ ′ = (γ1π

′) · · · (γrπ ′), respectively.
Then, by Lemma 4.19, `γ = `γ1 · · · `γr ⊆ `γ1π · · · `γrπ = `(γ1π)···(γrπ) = `γπ ⊆ H. Since
this is true for every γ, we deduce 〈ΓH ∧ ΓK〉 6 H; and, by the symmetric argument, also
〈ΓH ∧ ΓK〉 6 K.

For the other inclusion, take an element g ∈ H ∩ K, and let g = g1 · · ·gr be its syllable
decomposition in G1 ∗G2. Since ΓH is a reduced automaton and 〈ΓH〉 = H, Lemma 4.10
ensures us that g ∈ ˜̀γ for some alternating -walk γ from ΓH; in this situation, its elementary
decomposition, γ = γ1 · · ·γr, corresponds to the syllable decomposition g = g1 · · ·gr,
i.e., gi ∈ ˜̀γi , for i = 1, . . . , r. Similarly, there exists an alternating -walk γ ′ from ΓK, whose
elementary decomposition γ ′ = γ ′1 · · ·γ ′r again corresponds to the syllable decomposition
g = g1 · · ·gr, i.e., gi ∈ ˜̀γ ′i , for i = 1, . . . , r.

Write γi = pi−1e−1
i qifipi and γ ′i = p ′i−1(e ′i)−1q ′if ′ip ′i. Then, for each i = 1, . . . , r, we have

gi ∈ `γi = `−1
ei `qi `fi and gi ∈ `γ ′i = `

−1
e ′i
`q ′i `f ′i ; so, ∅ 6= `−1

ei `qi`fi ∩ `
−1
e ′i
`q ′i`f ′i ⊆ Gν. This means

that pi−1 = (pi−1, p ′i−1) ≡νi (pi, p ′i) = pi , where νi is the common type of the vertices qi
(in ΓH) and q ′i (in ΓK). Therefore, pi−1 and pi are both incident to a common νi-secondary
vertex in ΓH ∧ ΓK. In other words, there is a νi-elementary walk in ΓH ∧ ΓK, say γi, from pi−1
to pi . Finally, by Lemma 4.19, gi ∈ `γi ∩ `γ ′i = `γi . Therefore, g = g1 · · ·gr ∈ `γ1 · · · `γr =

`γ1···γr ⊆ 〈ΓH ∧ ΓK〉, concluding the proof.

Corollary 4.22. In the above situation, H∩K is finitely generated if and only if all the vertex labels
of ΓH ∧ ΓK are finitely generated.

4.5 Understanding intersections of cosets

According to Lemma 4.5, given a wedge automaton ΓH, the union of labels of all the walks
in ΓH from the basepoint to a primary vertex p ∈ V0 ΓH, denoted by 〈ΓH〉( ,p), constitutes
a coset of the recognized subgroup 〈ΓH〉 = H. In general, though, this does not reflect all
the cosets of H (consider, for example the cases when ΓH has only finitely many primary
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vertices, but H has infinite index in G1 ∗G2). We can slightly modify the automaton ΓH to fix
this issue.

Let u = a1b1 · · ·asbs ∈ G1 ∗ G2, written in normal form. Consider the (G1,G2)-wedge
automaton (also denoted by u) consisting on a chain spelling the normal form for g, and
having trivial vertex label; let us call it the thread for u. Attach this thread to ΓH by identifying
the basepoint H with ιu, and then apply the folding process until no more foldings are
possible (see the proof of Theorem 4.17). Observe that operation (II) will not be used, and
the triviality of the vertex labels in the thread implies that the vertex groups already present
in ΓH will not be changed along the process. So, the output is the exact same graph ΓH with
a terminal segment of the thread attached somewhere and sticking out; denote this new
automaton by ΓHu. Clearly, ΓHu is a reduced automaton, like ΓH, and furthermore, since
the new secondary vertices out of ΓH have trivial label, 〈ΓHu〉 = 〈ΓH〉 = H.

By Lemma 4.5 (iii), 〈ΓHu〉( H,τu) = 〈ΓH〉 · u (the situation where this coset could already
be represented by a vertex in ΓH corresponds to the fact that the thread happens to fold
completely and so, ΓHu = ΓH).

Now let us go back to the graph ΓH ∧ ΓK. It is useful to understand the intersection of H and
K but also, adding the corresponding hairs, it will be useful to understand the intersection
of two arbitrary cosets Hu and Kv.

Given elements u, v ∈ G1 ∗G2, consider the reduced automata ΓHu and ΓKv, and consider
the junction automaton ΓHu ∧ ΓKv.

Lemma 4.23. With the above notation,

(i) ΓH ∧ ΓK is a reduced subgraph of ΓHu ∧ ΓKv;

(ii) Hu∩Kv 6= ∅ if and only if the vertex (τu, τv) belongs to ΓHu ∧ ΓKv;

(iii) for any walk γ in ΓHu ∧ ΓKv from ( H, K) to (τu, τv), and any g ∈ `γ, we have Hu∩Kv =
〈ΓHu ∧ ΓKv〉( H, K),(τu,τv) = (H∩K)g.

Proof. Note that the initial set of primary vertices for ΓHu ∧ ΓKv, namely V0 ΓHu × V0 ΓKv,
contains as a subset V0 ΓH ×V0 ΓK, the initial set of primary vertices for ΓH ∧ ΓK. And two
old vertices (p1, p ′1), (p2, p ′2) ∈ ΓH ∧ ΓK are ≡ν-equivalent in ΓH ∧ ΓK if and only if they are
≡ν-equivalent as vertices in ΓHu ∧ ΓKv (since vertices of ΓHu ∧ ΓKv outside ΓH ∧ ΓK have
always trivial labels). This proves (i).

Suppose first that (τu, τv) ∈ V ΓHu ∧ΓKv, let γ be a walk in ΓHu ∧ΓKv from ( H, K) to (τu, τv),
and consider its basic label `•γ ∈ G1 ∗G2. By the same argument as in Proposition 4.21,
`•γ ∈ `γπ ∩ `γπ ′ . But γπ (resp., γπ ′) is a walk in ΓHu from H to τu (resp., a walk in ΓKv from
K to τv) hence, by Lemma 4.5 (iii), `•γ ∈ 〈ΓHu〉( H,τu) ∩ 〈ΓKv〉( K,τv) = Hu∩Kv, concluding

that Hu∩Kv 6= ∅.

Conversely, suppose that Hu∩Kv 6= ∅ and let g ∈ Hu∩Kv. Again by Lemma 4.5 (iii), there
exist walks γ in ΓHu from H to τu, and γ ′ in ΓKv from K to τv, such that g ∈ `γ ∩ `γ ′ .
Again, with an argument like in the proof of Proposition 4.21, there exists a walk γ in
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ΓHu ∧ ΓKv from ( H, K) to (τu, τv) such that g ∈ `γ. In particular, (τu, τv) ∈ ΓHu ∧ ΓKv. This
proves (ii) and (iii).

4.6 Proofs of Theorems 1.8 and 1.9

Let us now address the algorithmic aspects of this construction. For all the present section,
assume the two starting reduced (G1,G2)-automata ΓH and ΓK to be of finite type (namely,
H and K are finitely generated subgroups of G1 ∗G2). Recall that although the underlying
graph of ΓH ∧ ΓK is finite, the labels of the vertices in ΓH ∧ ΓK may very well be non finitely
generated as a result of intersections of finitely generated subgroups of G1 and of G2.

A first easy observation is that, under the assumption that both G1 and G2 are Howson, then
ΓH ∧ ΓK will always be of finite type. This proves that the free product of two Howson groups
is again Howson, recovering a classical result originally proved by B. Baumslag in [3].

Proof of Theorem 1.8. Assume that both G1 and G2 have solvable ESIP; and suppose we are
given two finitely generated subgroups H,K 6 G1 ∗G2 by finite sets of generators, and two
extra elements u, v ∈ G1 ∗G2, all of them in normal form. By Remark 2.2, both G1 and G2

also have solvable membership problem; and by Theorem 4.17, we can compute reduced
(G1,G2)-automata ΓH and ΓK such that 〈ΓH〉 = H, and 〈ΓK〉 = K.

Now let us keep constructing ΓH ∧ ΓK: we start looking at the basepoint = ( H, K), with
the whole set V0 Γ̃ = V0 ΓH ×V0 ΓK in the background. We have to keep adding ν-secondary
vertices (with their labels), and ν-arcs (with their labels too) connecting them to certain
primaries, until getting ΓH ∧ΓK, the full connected component of Γ̃ containing the basepoint .

We start checking whether there exists ν ∈ {1, 2}, such that both H and K have nonempty
ν-neighborhoods. If not, then the basepoint is not adjacent to any secondary vertex in Γ̃,
and we are done (namely, the product is the trivial automaton, and H∩K = 1). Otherwise,
let q ∈ Vν ΓH, and e ∈ Eν ΓH with ιe = q, τe = H; and let q ′ ∈ Vν ΓK and e ′ ∈ Eν ΓK with
ιe ′ = q ′, τe ′ = K, and enlarge our picture by drawing a new ν-secondary vertex, say q, and
a new ν-arc, say e = (e, e ′), from q to . According to (9) — and with respect to the choice
(pq, p ′q) = ( H, K) — we know that the label of q is `q = ` `eq ∩ `

`e ′
q ′ 6 Gν.

Applying SIP for Gν to the (finitely generated) subgroups ` `eq and ` `e ′q ′ , we can decide whether
`q is finitely generated or not. In case it is not, kill the whole process and declare H ∩ K
to be non finitely generated. Otherwise, compute a finite set of generators for `q, assign
`e = 1, and check which other primary vertices from Γ̃ are adjacent to q: p = (p, p ′) ∈ V0 Γ̃

is adjacent to q if and only if (p, p ′) ≡ν (pq, p ′q), which happens if and only if there exists
f ∈ Eν ΓH from q to p, and f ′ ∈ Eν ΓK from q ′ to p ′, such that `−1

e `q `f ∩ `−1
e ′ `q ′`f ′ 6= ∅. So,

run over every p ∈ V0ΓH adjacent to q, and every p ′ ∈ V0ΓK adjacent to q ′ and, for each such
pair, check whether the intersection of (right) cosets

` `eq · (`−1
e `f) ∩ `

`e ′
q ′ · (`

−1
e ′ `f ′) = `

−1
e `q `f ∩ `−1

e ′ `q ′ `f ′ (11)
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is empty or not; this can be done using the above call to ESIP from Gν, since they are right
cosets of ` `eq , ` `e ′q ′ 6 Gν, whose intersection happens to be finitely generated.

In case this intersection is not empty, add a ν-arc, say f = (f, f ′), from q to p, and `(f,f ′)
arbitrarily chosen from that nonempty intersection. After this procedure, we have a complete
picture of the 1-elementary and 2-elementary walks in ΓH ∧ ΓK starting at the basepoint .

Now, for every ν = 1, 2, and every primary vertex p = (p, p ′) added to the picture and not
yet explored, repeat the same process (with p in place of ). Since the underlying graph of Γ̃
is finite, this procedure will either find a non finitely generated vertex label, or will finish the
complete construction of ΓH ∧ ΓK in finite time. In the first case, we deduce the non finitely
generated type of H∩K; in the second case, we can compute generators for H∩K (in fact, a
Kurosh decomposition) applying Theorem 4.13.

Hence, so far, we have solved SIP(G1 ∗G2). To finish the proof, let us place ourselves in the
case where H ∩ K is finitely generated (and so, with the junction automaton ΓH ∧ ΓK fully
constructed), and let us decide whether the intersection of right cosets Hu∩Kv is empty or
not. We can extend the computation of ΓH ∧ ΓK to that of ΓHu ∧ ΓKv; or alternatively construct
directly ΓHu ∧ ΓKv from the beginning.

It only remains to check whether the vertex (τu, τv) appears in ΓHu ∧ ΓKv, or not. Namely,
using Lemma 4.23 (ii): (τu, τv) is connected to ( H, K) if and only if the intersection Hu∩Kv
is nonempty; and, if so, any element g from the label of any walk from ( H, K) to (τu, τv)

belongs to such intersection, g ∈ Hu∩Kv = (H∩K)g. This concludes the proof.

Finally, we complement the arguments in the last proof to prove that TIP also passes through
free products.

Proof of Theorem 1.9. Since solvability of TIP implies that of ESIP, Theorem 1.8 already gives
us ESIP for G1 ∗G2. It remains to solve CIP for G1 ∗G2 in the case where the given finitely
generated subgroups H,K have a non finitely generated intersection.

Given H,K 6 G1 ∗G2 finitely generated, and u, v ∈ G1 ∗G2, run the same algorithm as in
the proof of Theorem 1.8: construct ΓHu and ΓKv and start building the junction ΓHu ∧ ΓKv;
when we encounter a secondary vertex q whose label `q = ``eq ∩ `

`e ′
q ′ 6 Gν is not finitely

generated, instead of computing a set of generators for it (which is not possible), we just put
the trivial subgroup as a label in place of `q. Then, when analyzing which other primary
vertices are adjacent to q, we need to decide if the intersection of cosets from equation (11)
are empty or not: even though ` `eq ∩ `

`e ′
q ′ 6 Gν is not finitely generated, the decision can be

made effective using CIP from Gν. This way, we can algorithmically complete the description
of ΓHu ∧ ΓKv except that, for some secondary vertices q, instead of having generators for `q,
we just have the trivial element labelling them.

Of course, this is not enough information for computing a set of generators for H ∩ K.
But it suffices for deciding whether the vertices ( H, K) and (τw, τw ′) belong to the same
connected component of ΓHu ∧ ΓKv. By Lemma 4.23, this allows us to decide whether the
intersection of cosets Hu ∩ Kv is empty or not; and in case it is not, we can compute an
element from it, just choosing a walk γ from ( H, K) to (τw, τw ′), and then picking an
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element from `γ (if γ traverses some secondary vertex with a non finitely generated label,
we just recorded the trivial element from it for this purpose). This completes the proof.

Acknowledgments

The first two named authors acknowledge financial support from the Spanish Agencia
Estatal de Investigación, through grant MTM2017-82740-P (AEI/FEDER, UE), and also the
“María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0445). The
third named author acknowledges support by CMUP (UID/MAT/00144/2013), which is
funded by FCT (Portugal) with national (MEC) and European structural funds (FEDER),
under the partnership agreement PT2020; he was also partially supported by the ERC Grant
336983, by the Basque Government grant IT974-16, by the grant MTM2014-53810-C2-2-P of
the Ministerio de Economia y Competitividad of Spain, and by the Russian Foundation for
Basic Research (project no. 15-01-05823).

References

[1] I. J. Aalbersberg and H. J. Hoogeboom. “Characterizations of the decidability of some problems
for regular trace languages”. Mathematical systems theory 22.1 (Dec. 1989), pp. 1–19 (cit. on p. 4).

[2] A. Baudisch. “Subgroups of semifree groups”. Acta Mathematica Academiae Scientiarum Hungari-
cae 38.1 (Mar. 1981), pp. 19–28 (cit. on p. 6).

[3] B. Baumslag. “Intersections of Finitely Generated Subgroups in Free Products”. Journal of the
London Mathematical Society s1-41 (Jan. 1, 1966), pp. 673–679 (cit. on pp. 13, 24, 29).

[4] A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. n edition. Philadelphia: Society
for Industrial and Applied Mathematics, Jan. 1, 1987. 316 pp. (cit. on p. 3).

[5] R. Charney. “An introduction to right-angled Artin groups”. Geometriae Dedicata 125.1 (2007),
pp. 141–158 (cit. on p. 6).

[6] J. Delgado Rodríguez. “Extensions of free groups: algebraic, geometric, and algorithmic as-
pects”. PhD thesis. Universitat Politècnica de Catalunya, 2017 (cit. on pp. 4, 21).

[7] J. Delgado. “Some characterizations of Howson PC-groups”. Reports@SCM 1.1 (Jan. 10, 2014),
pp. 33–38 (cit. on p. 6).

[8] J. Delgado and E. Ventura. “Algorithmic problems for free-abelian times free groups”. Journal of
Algebra 391 (Oct. 1, 2013), pp. 256–283 (cit. on pp. 2, 4).

[9] C. Droms. “Graph groups, coherence, and three-manifolds”. Journal of Algebra 106.2 (1987),
pp. 484–489 (cit. on p. 7).

[10] C. Droms. “Isomorphisms of graph groups”. Proceedings of the American Mathematical Society
100.3 (Mar. 1987), pp. 407–407 (cit. on p. 6).

[11] C. Droms. “Subgroups of graph groups”. Journal of Algebra 110.2 (Oct. 15, 1987), pp. 519–522
(cit. on p. 3).

31



[12] E. S. Esyp, I. V. Kazachkov, and V. N. Remeslennikov. “Divisibility Theory and Complexity of
Algorithms in Free Partially Commutative Groups”. arXiv:math/0512401 (Dec. 16, 2005) (cit. on
p. 6).

[13] E. R. Green. “Graph products of groups”. PhD thesis. 1990 (cit. on p. 6).

[14] S. Hermiller and J. Meier. “Algorithms and Geometry for Graph Products of Groups”. Journal
of Algebra 171.1 (1995), pp. 230–257 (cit. on p. 6).

[15] A. G. Howson. “On the Intersection of Finitely Generated Free Groups”. Journal of the London
Mathematical Society s1-29.4 (Oct. 1, 1954), pp. 428–434 (cit. on p. 1).

[16] S. V. Ivanov. “On the intersection of finitely generated subgroups in free products of groups”.
International Journal of Algebra and Computation 09.5 (Oct. 1, 1999), pp. 521–528 (cit. on pp. 4, 16,
20–24).

[17] S. V. Ivanov. “Intersecting free subgroups in free products of groups”. International Journal of
Algebra and Computation 11.3 (June 1, 2001), pp. 281–290 (cit. on pp. 4, 16).

[18] S. V. Ivanov. “On the Kurosh rank of the intersection of subgroups in free products of groups”.
Advances in Mathematics 218.2 (2008), pp. 465–484 (cit. on pp. 16, 21).

[19] Y. Jing-Ho, C. Jer-Jeong, and G. J. Chang. “Quasi-threshold graphs”. Discrete Applied Mathematics
69.3 (1996), pp. 247–255 (cit. on p. 3).

[20] I. Kapovich, R. Weidmann, and A. Myasnikov. “Foldings, graphs of groups and the membership
problem”. International Journal of Algebra and Computation 15.1 (Feb. 2005), pp. 95–128 (cit. on
pp. 7, 16, 20–22).

[21] T. Koberda. “Right angled Artin groups and their subgroups”. Lecture notes Yale University
(Mar. 7, 2013), pp. 1–50 (cit. on p. 6).

[22] H.-N. Liu, C. Wrathall, and K. Zeger. “Efficient solution of some problems in free partially
commutative monoids”. Information and Computation 89.2 (Dec. 1990), pp. 180–198 (cit. on p. 6).

[23] M. Lohrey and B. Steinberg. “The submonoid and rational subset membership problems for
graph groups”. Journal of Algebra. Computational Algebra 320.2 (July 15, 2008), pp. 728–755
(cit. on p. 7).

[24] K. A. Mikhailova. “The occurrence problem for direct products of groups”. Doklady Akademii
Nauk SSSR 119 (1958), pp. 1103–1105 (cit. on p. 5).

[25] K. A. Mikhailova. “The occurrence problem for free products of groups”. Mathematics of the
USSR-Sbornik 4.2 (Feb. 28, 1968), pp. 181–190 (cit. on p. 4).

[26] E. Rodaro, P. V. Silva, and M. Sykiotis. “Fixed points of endomorphisms of graph groups”.
Journal of Group Theory 16.4 (Jan. 5, 2013), pp. 573–583 (cit. on p. 3).

[27] J. R. Stallings. “Topology of finite graphs”. Inventiones Mathematicae 71 (Mar. 1983), pp. 551–565
(cit. on p. 16).

[28] L. Van Wyk. “Graph groups are biautomatic”. Journal of Pure and Applied Algebra 94.3 (July 8,
1994), pp. 341–352 (cit. on p. 6).

[29] E. S. Wolk. “The Comparability Graph of a Tree”. Proceedings of the American Mathematical Society
13.5 (Oct. 1, 1962), pp. 789–795 (cit. on p. 3).

32



[30] C. Wrathall. “The word problem for free partially commutative groups”. J. Symb. Comput. 6.1
(Aug. 1988), pp. 99–104 (cit. on p. 6).

[31] C. Wrathall. Free partially commutative groups. 1989 (cit. on p. 6).

33

View publication statsView publication stats

https://www.researchgate.net/publication/319501768

	Introduction
	Results

	Preliminaries
	Algorithmic aspects
	PC-groups
	Droms groups
	Proof of the main result

	The direct product case
	Preparation
	Proofs of thm: SIP-center,thm: ESIP-center

	The free product case
	Wedge automata
	Reduced wedge automata
	Effective reduction of wedged automata
	A reduced automaton for the intersection
	Understanding intersections of cosets
	Proofs of thm: ESIP-free,thm: TIP-free


