
mF2C: Towards a Coordinated Management of the
IoT-fog-cloud Continuum *

Xavi Masip-Bruin
Universitat Politecnica de

Catalunya (UPC)
08800 Vilanova i la Geltrú

Spain
xmasip@ac.upc.edu

Eva Marín-Tordera
Universitat Politecnica de

Catalunya (UPC)
08800 Vilanova i la Geltrú

Spain
eva@ac.upc.edu

Ana Juan-Ferrer
Atos Research and

Innovation
08020 Barcelona

Spain
ana.juanf@atos.net

Anna Queralt
Barcelona Supercomputing

Center (BSC)
08034 Barcelona

Spain
anna.queralt@bsc.es

Admela Jukan
Technical University of

Braunschweig
38106 Braunschweig

Germany
a.jukan@tu-bs.de

Jordi Garcia
Universitat Politecnica de

Catalunya (UPC)
08800 Vilanova i la Geltrú

Spain
jordig@ac.upc.edu

Daniele Lezzi
Barcelona Supercomputing

Center (BSC)
08034 Barcelona

Spain
daniele.lezzi@bsc.es

Jens Jensen
STFC

Didcot OX11 0QX
United Kingdom

jens.jensen@stfc.ac.uk

Cristovao Cordeiro
SixSq

1217 Geneve
Switzerland

cristovao.cordeiro@sixsq.com

Alexander Leckey
Intel R&D Ireland

R148, Easton, Co. Kildare
Ireland

alexander.j.leckey@intel.com

Antonio Salis
Engineering Sardegna Srl

09123 Cagliari
Italy

antonio.salis@eng.it

Denis Guilhot
Worldsensing

08014 Barcelona
Spain

dguilhot@worldsensing.com

Matic Cankar
XLAB d.o.o.

Pot za Brdom 100, 1000 Ljubljana
Slovenia

matija.cankar@xlab.si

ABSTRACT
Fog computing enables location dependent
resource allocation and low latency
services, while fostering novel market and
business opportunities in the cloud sector.
Aligned to this trend, we refer to Fog-to-
cloud (F2C) computing system as a new pool
of resources, set into a layered and
hierarchical model, intended to ease the
entire fog and cloud resources management
and coordination. The H2020 project mF2C
aims at designing, developing and testing a
first attempt for a real F2C architecture.
This document outlines the architecture and
main functionalities of the management

framework designed in the mF2C project to
coordinate the execution of services in the
envisioned set of heterogeneous and
distributed resources.

CCS CONCEPTS
• Computer systems organization →
Architectures; Distributed architectures
• Networks → Network architectures

KEYWORDS
Cloud computing, Fog computing, IoT

ACM Reference format:

X.Masip-Bruin, E.Marín-Tordera, A.Juan-
Ferrer, A.Queralt, A.Jukan, J.Garcia,

The final publication is available at ACM via http://dx.doi.org/10.1145/3213299.3213307

SMARTOBJECTS’18, June 26-29, Los Angeles, USA X.Masip-Bruin et al.

2

D.Lezzi, J.Jensen, C.Cordeiro, A.Leckey,
A.Salis, D.Guilhot, M.Cankar. 2018. SIG
Proceedings Paper in word Format. In
Proceedings of SmartObjects-MobiHoc, Los
Angeles, USA, June 2018

1 INTRODUCTION

The emergence of IoT has led to a rapidly
increasing number of connected devices
worldwide, from billions of units we have
today, to tens of billions of units expected
to be deployed in the coming years. Some
predictions (see for example [1]) point out
that 26 billion edge devices are to be
connected by 2020, collecting more than 1.6
zettabytes (1.6 trillion GB) of data.
According to Cisco reports, it is expected
to have more than 20 billion devices
connected by 2020 [2]). There is no doubt
that the cloud computing paradigm provides a
proper solution to support the management of
the processing and storage needs brought by
the set of existing and yet unforeseen
services in the IoT world. However, it is
also widely accepted that many of these
services have specific requirements not
fully aligned to the cloud characteristics.
For example, it is pretty obvious that long
distances inherent to the cloud model do not
suit real time services which typically need
low runtime latency to operate. To address
such limitations and also to leverage the
ever increasing capacities of edge devices,
fog computing (also referred to as edge
computing) was recently proposed as an
alternative. The main rationale behind fog
computing is in bringing cloud resources
close to the edge, i.e., the location when
services execution is required and where
data is generated. Notable benefits brought
by fog computing are low latency, reduced
network traffic, low energy consumption and
often higher offered security. Nevertheless,
the best is yet to come. Indeed, fog
computing highly complements cloud
computing, in a new scenario where services
execution may benefit from both paradigms
with no need to sacrifice either.

To that end, fog and cloud computing when
combined require a novel coordinated
management strategy, intended to properly
manage the whole set of resources in a
harmonious fashion, while also empowering
new policies, such as those based on sharing
or collaborative models. Several current

efforts aim at this management strategy.
First and foremost is the OpenFog Consortium
that recently issued its first release for
the so-called OpenFog Reference Architecture
(OFRA) [3]), as a high level definition of
the main steps to build its architecture. A
parallel effort working on a similar
direction is led by the EU H2020 mF2C
project [4], aimed at developing the Fog-to-
Cloud concept (F2C) proposed in [5]. In this
paper we focus on main findings in the mF2C
architecture design, particularly
emphasizing its main functional modules.

The main objective of the mF2C project is
to design and develop a hierarchical, open,
secure, decentralized and coordinated
management platform facilitating the
efficient usage of F2C resources, taking
into consideration service requirements and
user demands, in a scenario combining cloud
and fog computing. The F2C coordinated
computing ecosystem has been developed to:
i) efficiently and transparently utilize
available distributed and heterogeneous
resources at the edge; ii) support
applications and services that do not fit
well into the paradigm of the traditional
centralized cloud, and; iii) pave the way to
new business models in both cloud and smart
devices sectors. Last but not least,
security and privacy are also addressed with
built-in (by design) capabilities in a
complementary fashion in the mF2C project.

Fig. 1 shows a functional architecture of
the mF2C ecosystem that integrates a
centralized cloud infrastructure, with
various levels (refereed to as layers) of
dispersed elements, all managed by mF2C
agents, and with various degrees of decision
making and data processing capabilities (the
stack of resources). In this combined
scenario, users will see an optimized
service performance when the service can
decide on-the-fly the best suited set of
fog/cloud resources, enabling enriched
service execution features to upscale
performance, such as parallel tasks
execution and computational offloading to
the cloud.

In this paper, we first outline the main
functionalities of the mF2C management
framework being developed in the mF2C
project. To that end, section 2 digs into
the basic principles of the proposed mF2C
architecture. Then, Section 3 describes

mF2C: Towards a Coordinated Management of the
IoT-fog-cloud Continuum

SMARTOBJECTS’18, June 26-29, Los Angeles, USA

 3

services execution in an mF2C system and
Section 4 pockets into the security issues
in mF2C. Section 5 describes the use cases
proposed in the project as candidate markets
for mF2C and finally, conclusions and future
directions are included in Section 6.

2 mF2C: THE BASIC PRINCIPLES

This section describes the main mF2C
architectural blocks, defining the key
elements building the whole mF2C system.

2.1 mF2C Approach: Agents & Leaders

In order to manage the huge set of
heterogeneous devices, we propose to
organize them all in a hierarchical
architecture, as shown in Fig.1, where
resources are grouped into layers, and an
mF2C agent entity deploys the management
functionalities in every component within
the system. We see different layers (from
layer 0 at cloud to Layer N+2 at the level
closer to the edge) and the agent software
installed in all devices capable of
supporting it, participating in the mF2C
system. Information from those devices
incapable of hosting an agent, such as
sensors and actuators (red balls in the
figure) is gathered, processed and
distributed by the agent connecting them to
the system. Devices are clustered under the
control of one device that is defined as the
leader. The clustering strategy and
leadership election policy is yet to be
defined, although characteristics such as
distance and connectivity may be considered
in a first approach. Additional assumptions
to the envisioned mF2C architecture are:

• Fog area or cluster stands for the
set of nodes managed by a leader.

• Only one node acts as leader in each
fog area.

• Only one backup node (which becomes
the leader when the leader fails), in
each fog area.

• IoT devices can be connected to any
of the agents in the mF2C system.

The whole set of management and control
functionalities within the agent is divided
into two main blocks, the Platform Manager
(PM), and the Agent Controller (AC). In
short, the PM provides high-level
functionalities, responsible for inter-agent
communications (agents communicate through
their PMs) and thus, with the capacity to
take decisions with a more global view. On
the other hand, Agent Controller (AC) has a
more local scope, dealing with local
resources and services. From an execution
point of view, when a service/task is
requested to any of the mF2C agents, the
responsibility of deciding if this task can
be executed in that agent, or forwarded down
(to any of the agents in the area if the
agent is a leader) or up (to the higher
hierarchical layer) is taken by the PM. If
the task is forwarded, the communication is
also done through the PMs of the agents. The
request is passed to the AC only when an
agent can execute the forwarded task, using
the agent’s local (own) resources.

Regarding the mF2C data management, a
distributed approach is considered,
assuming:

• An agent contains information about
itself and its connected IoT devices

• A leader contains information about
itself, its connected IoT devices,
and the nodes (“children”) within its
fog area (maybe aggregated).

• The cloud agent will manage
information (possibly aggregated)
about all devices in the mF2C system.

2.2 mF2C Agent: Platform Manager and
Agent Controller

In this section we detail the mF2C agent
functionalities, divided between the
Platform Manager (PM) and the Agent
Controller (AC).

Figure 1: mF2C Architecture.

SMARTOBJECTS’18, June 26-29, Los Angeles, USA X.Masip-Bruin et al.

4

2.2.1 The Platform Manager (PM).

Fig. 2 shows the envisioned PM blocks,
split into three main components, Service
Orchestration, Distributed Execution Runtime
and Telemetry.

2.2.1.1 Service Orchestration: Responsible
for allocating the services to the most
suitable resources, is composed by:

Figure 2: Platform Manager (PM) blocks

• Lifecycle management: Responsible for
managing the lifecycle of the
applications to be executed.

• Landscaper: Intended to obtain a view
of the whole mF2C infrastructure,
including all the physical machines
and parts of, e.g., CPU, storage,
memory, etc.

• SLA management: Responsible for
managing the SLAs between the parties
collaborating in a service on the
mF2C platform.

• Recommender: Feeds the Lifecycle with
an appropriate recipe of suitable
type of resources for a service.

2.2.1.2 Distributed Execution Runtime
(DER): Responsible for optimizing
services/tasks execution on the available
resources, is composed of::

• Task management: Its main purpose is
to orchestrate the execution of
tasks, to optimally exploit the
available computing resources.

• Task Scheduling: Responsible for
distributing the tasks generated by
the execution of the applications on
the resources selected by the
Lifecycle Manager.

• Policies: Needed to support the
Runtime in the selection of the
resources for the tasks scheduling.

• Data management: Responsible for
storing the metadata of the objects..

Components related to Policies, Task
Management and Scheduling are handled by
COMPSs [6], while Data Management uses
dataClay [7].

2.2.1.3. Telemetry and Monitoring:
Responsible for analysing the service
performance on the infrastructure it is
deployed on. The three main components are:

• Intelligent Instrumentation:
Responsible for providing the
telemetry collectors and aggregators
of the metrics, measuring performance
of key physical components.

• Distributed Query Engine: Provides a
single API to facilitate the querying
of all telemetry data captured.

• The Analytics module: Characterises
service execution by mapping the
service's deployment configuration
against telemetry captured for those
same nodes.

2.2.2 The Agent Controller (AC).

The set of AC functionalities is split
into three main blocks, Resource, Service,
and User Management (see Fig. 3).

Figure 3: Agent Controller (AC) blocks.

2.2.2.1. Resource management: Responsible
for collecting and managing local resources.
In the case of a leader device, its ‘local
view’ includes its own resources but also
those of the devices forming part of its

	

	

mF2C: Towards a Coordinated Management of the
IoT-fog-cloud Continuum

SMARTOBJECTS’18, June 26-29, Los Angeles, USA

 5

cluster. The six components of the resources
management block are:

• Discovery. Responsible for
discovering resources in a fog area
managed by a leader.

• Policies. Rules to be used by the AC
(clustering, leader and backup
selection, protection, resource
aggregation, etc.).

• Identification. Responsible for both
providing every device with a
globally unique ID, and establishing
a mechanism to update and/or revoke
the ID.

• Categorization. Provides common
information about the resources,
i.e., hardware, power, software,
security, attached components,
attached IoT information, and also
information about its behaviour.

• Monitoring. Responsible for
instrumentation of each compute
resource. A number of telemetry
probes will capture performance
metrics of the hardware/software that
services are deployed onto.

• Data management. Responsible for
allowing applications or other
functionalities to store, retrieve,
and delete data in mF2C.

2.2.2.2 Service Management: Responsible
for the orchestration of local services it
has the following functionalities.

• Categorization: It receives a service
request, and categorizes this request
according to some defined attributes
(CPU, Storage, Network, Memory,
Priority, Time limit and Location in
a first approach).

• Mapping: Responsible for selecting
the resources best matching the
demanded task requirements in the own
resources of the agent.

• Allocation: Responsible for the
optimal allocation of available
resources in the agent to the various
tasks requests.

• QoS provisioning. Based on previous
executions’ performance metrics, this
block will inform the Lifecycle to
discard unsuitable candidates.

2.2.2.3 User Management: Responsible for
managing the profiling and the sharing model
properties of users. This module is composed
by three components, as follows:

• Profiling: A user profile is the
collection of personal data related
with a specific user.

• Assessment: Responsible for checking
if the mF2C apps meet the sharing
model and the profile properties
defined by the device's user.

• Sharing model. Defines resources that
the device’s owner wants to share
with the mF2C system.

2.3 mF2C Agent: System databases

The database is unique, and both the PM
and the AC share the database. Due to the
hierarchical mF2C architecture and the
shared database, a key AC functionality is
to fill in the database to be used by both
PM and AC with information about:

• Own resources if the device is part
of the cluster but not a leader.

• Own resources and resources of the
devices in the cluster if the device
is the leader of the cluster.

As can be seen in Fig. 4, the database in
each agent will contain its local
information, which is periodically copied or
summarized (according to a certain policy)
in the same device. In turn, this aggregated
data, denoted as AGGR in Fig. 4, is also
periodically synchronized with the local
data of its leader.

Finally, in the 3 hierarchical layers
proposed as a first approach to the mF2C
architecture, the leader will also aggregate
its local data (about its own resources and
resources of its children devices), and this
AGGR information will be periodically (or by
another policy) synchronized with the
cloud’s leader database.

In Fig. 4 we can see that each agent holds
local data and aggregated data (AGGR),
synchronized with the higher layer database.
In order to simplify the example we have
considered only three parameters: CPU,
Storage and IoT (includes information about
sensors, actuators, etc., attached to the
agent).

SMARTOBJECTS’18, June 26-29, Los Angeles, USA X.Masip-Bruin et al.

6

3 SERVICE EXECUTION IN mF2C SYSTEMS

In the envisioned mF2C distributed
scenario, a service request may be launched
by any agent in the system. The execution
process, as it is described in Fig. 5, runs
as follows:

• The service is always requested to
the PM, reaching out the Lifecycle.

• If the PM of the agent can solve the
service request with its own
resources (leader and children), it
starts the process of resources
deployment and services execution.

• Otherwise the request is forwarded to
the PM of the leader in the upper
layer of the hierarchy.

• The leader’s PM will check if the
service can be executed in its own
resources, otherwise the request will

be forwarded to the PM of the leader
in the upper hierarchical layer.

• Deployment and execution of a service

Let us assume a service is launched in
Agent X in Fig. 5. After checking its own
resources, the PM in Agent X forwards the
request to its leader in the upper layer. We
also assume that the leader or/and some
other agents in the cluster have the
requisite resources to execute the service,
with no need to forward the request further
to an upper layer in the hierarchy.

The service request reaches out to the
Lifecycle that queries the Recommender for a
recipe (comprising resources best suiting
the service demands). The Lifecycle matches
this recipe with a snapshot showing the
actual resources availability obtained from
the Landscaper, the information from the QoS
Providing and the Profiling to select the

Figure 4: Aggregation example.

Figure 5: Service execution in mF2C systems

mF2C: Towards a Coordinated Management of the
IoT-fog-cloud Continuum

SMARTOBJECTS’18, June 26-29, Los Angeles, USA

 7

specific set of resources the service must
be deployed at. The DER is then called to
allocate and execute the service.

4 SECURITY IN mF2C SYSTEMS

The mF2C usage scenario combines cloud,
fog and IoT devices at the edge rendering
security an arduous challenge. There is no
doubt that experience from each individual
area may assist the development of an
appropriate solution for mF2C, we need a
single solution that works from f2C. To this
end, efforts have been split into two
directions. First, defines a comprehensive
list of security requirements. Second,
design a security architecture addressing
these specific demands for mF2C systems.

To that end, [8] proposes a security
architecture for the first time, leveraging
the concept of decoupling security from
other functionalities. The main rationale
behind this decoupling concept boils down to
considering security as a transversal
service. This approach abstracts away the
need to provide security from each block in
the mF2C architecture (see Fig. 6). A
“control-area unit” (CAU), which is factored
out of the agent, provides security services
locally to all nearby agents.

The strategy uses a centralized controller
in cloud (layer 0 in mF2C) and distributed

CAUs to provide the security requirements in
distributed fogs (layer 1 to layer n in

mF2C). The distributed CAUs, in the
registration and initialization phases, get
their authentication and authorization
artifacts from a centralized controller at
cloud to provide security to their
corresponding fogs.

Notice that this should not be seen as a
modification of the architecture, but rather
a complementary service unit running
alongside the agents within layer 1. In
simple code terms, the question is whether
security functionality is provided by a
library linked into the agent, or by a
nearby web service (or similar).

5 USE CASES

The mF2C project proposes three real-world
use cases for validation purposes.

5.1 Emergency Situation Management
in Smart Cities (ESM)

This use case proposes to use mF2C to
handle emergency situations in smart cities,
leveraging the inherent mF2C characteristics
to evaluate the obtained benefits in terms
of service performance. Basically, while the
fog layer provides a rapid response to the
emergency, the connection with the cloud
allows optimizing the resources to be used
based on the historical knowledge of similar
situations (applying predictive models,
etc.). The use case is deployed at the UPC
testbed located at the CRAAX lab that
emulates a smart city in a 25m2 area. The

Figure 6: Security in mF2C systems

SMARTOBJECTS’18, June 26-29, Los Angeles, USA X.Masip-Bruin et al.

8

envisioned service for validation purposes
will consist in: i) detecting the collapse
of a city construction, and ii) triggering a
set of actions in the city to mitigate the
effects produced by the accident.

Figure 7: Emergency management (ESM).

The proposed scenario is split into two
areas, as shown in Fig. 7. The area on the
left includes the different components
(ambulance, traffic control systems, fire
truck, traffic lights, street lights)
deployed in reaction to the accident and the
one on the right includes the sensors
(inclinometer connected through LoRa, a
jammer detector and a temperature sensor)
deployed to detect the accident. The two
areas deploy agents in the Fog layer and are
interconnected through an agent in Cloud.

In the proposed scenario, the inclinometer
is periodically monitored by an agent in the
building, responsible for triggering a
request for accident mitigation (supported
by IoT devices previously associated with
the service) reacting to a sensor warning.
This request is first handled by the PM of
the same building agent to check if it has
the necessary resources to handle the
incident. Otherwise, the request is sent to
the PM of the leader, which checks if any of
the agents in its cluster (area) have the
requested IoT resources. Otherwise, the
request is escalated to the Cloud layer,
which has a complete view of the entire
system. The cloud leader will find which
leader has agents with the requested IoT
resources, and forwards the request for
resources to this leader. The corresponding
leader checks that the resources are
available in the agents and sends a resource
assignment request. The agents involved in
the care of the service establish direct

communication with the agent that activates
the emergency and the action order is given
(for example, the traffic lights turn
green/red to facilitate the access of the
fire truck that, together with the
ambulance, etc.).

Figure 8: Smart Boat Services (SBS).

5.2 Smart Boat Services (SBS)

This use case focuses on intermittent
communication availability in Fog and IoT
environments. The vessels (such as yachts or
boats of different sizes) generate large
amounts of data, useful for either safer
boating or potential business cases, ranging
from insurance to social media. Similarly to
the previous one, this use case also
considers the deployment of some sensing
devices, in this case Sentinel, an IoT
device consisting of different sensors
currently applied in the navigation sector
for vessel monitoring. The mF2C solution can
help implement novel services and sustain a
part of the Smart Boat device functionality
when the boat is outside of 3G/4G network
coverage as well, by facilitating boat
connectivity using alternative technologies.
Core services that benefit from this are
continuous monitoring for fleet management,
anomaly detection, offline and anonymous
anchorage payment and data plan sharing
based on fair exchange policies.

An example of the proposed service, as
shown in Fig. 8, assumes an agent located on
land or at sea, wants to know the average
temperature on a particular area at sea. To
that end, the deployed system performs as
follows:

mF2C: Towards a Coordinated Management of the
IoT-fog-cloud Continuum

SMARTOBJECTS’18, June 26-29, Los Angeles, USA

 9

• The service request is sent to the
Cloud agent.

• The PM of the Cloud agent selects the
requisite resources and allocates tasks
to resources in different ships.

• A selected device aggregates the data
and sends it to the Cloud agent.

• The Cloud agent replies with the
average temperature at sea.

One of the main characteristics of the
proposed services is the use of WiFi or LoRa
for maintaining connections between ships,
and the use of 3G/4G for connecting to the
agent in the cloud. The same functionality
will be available whether there is
connectivity to the cloud or not. In this
particular scenario, the leading PM would
include only the nearby agents, visible
through alternative connections.

5.3 Smart Fog-Hub Service (SFHS)

The main rationale behind the third use
case is setting up hubs in public
environments (e.g. airports, train stations,
hospitals, malls and related parking areas),
capable of tracking the presence of people
and other objects in the field, and
developing added value services on top for
proximity marketing, prediction of
path/behaviour of consumers, and making real
time decisions based on prediction of
path/behaviour of consumers.

Let us consider an airport as a small city
where a large number of people must spend a
long period of time wandering through it
while waiting for their flights. In this
space, many services are offered to users
such as shops, restaurants, relaxation
areas, etc., which are distributed
throughout the airport. Users can while away
their waiting time by exploiting these
services but they must always be attentive
to the time of boarding their flight and to
the location of the boarding gate, which may
change. The uncertainty caused by not
knowing the time a user needs to get to the
boarding gate means that, in large airports,
the use of these services is limited to
their physical proximity to the boarding
gate and the amount of spare time before
boarding. This means that most users do not
move out of a radius near the boarding gate
during the last hour of boarding their

flight. Thus, many of the services offered
at airports depend on the area where the
boarding gate is located and, therefore, are
not used by users from other areas.

The main features of the developed
services will be: i) tracking people and
objects; ii) developing added value services
for proximity marketing; iii) recommending
best use of airport services, and; iv)
predicting path/behaviour of consumers

Fig. 9 shows the architecture overview of
the proposed Smart Fog-Hub Service,
including: i) Layer 0 at cloud; ii) Layer 1
consisting in Fog leaders; iii) Layer 2
bringing together the lower devices
installing the mF2C agent (workers), and;
iv) layer 3 including edge devices with no
mF2C agent running.

Figure 9: Smart Fog-Hub Service (SFHS).

6 RELATED FRAMEWORKS

The mF2C project has already produced
several papers to introducing its main
concepts (see [9] or [10]). Considering that
the mF2C project proposes a strategy to
optimally map services into resources which
span the full stack from cloud to the edge,

SMARTOBJECTS’18, June 26-29, Los Angeles, USA X.Masip-Bruin et al.

10

we find a key initiative working with
similar objectives, the OpenFog consortium.

The OpenFog Consortium is in fact working
on providing a complete solution to manage
fog and cloud resources, using a high level
architecture (referred to as the OpenFog
Reference Architecture (OFRA) [3]). Although
both initiatives share similar objectives,
it is important to note a critical
difference, the Open Fog Consortium
architecture is based on the concept of Fog
Node. The scalable pervasive computing
architecture in OFRA is built based on fog
nodes, which are specific hardware devices
(legacy brown-field devices), setting the
communication and computing entities that
support hardware virtualization and trusted
computing on one hand while perform secure
communication and service provisioning on
the other. Instead, the agents in mF2C are
devices with enough capacity to support the
mF2C agent software.

Other important differences pertain to the
strategy to manage security. For example,
mF2C considers data privacy, which is not
considered in OFRA. In OFRA the security
boundaries are open whereas in mF2C an
underlying uniform architecture is proposed.
OFRA ranks security threats according to the
severity of impact while mF2C threats ranks
would be used by people monitoring the
system; OFRA builds on Hardware Trusted
Platform Models, an expensive solution
requiring hardware Trusted Computing and
notable sysadmin support.

Finally, it is also worth mentioning other
related initiatives, such as the ETSI Multi-
Access Edge Computing (MEC) [11], and the
OpenEdge Computing organization [12].

7 CONCLUSIONS

There unstoppable deployment of devices at
the edge is bringing new challenges
requiring much attention by the scientific
and industrial communities. As the devices
are becoming ever smarter, the concepts that
take advantage of such “smartness”, will
lead to a wider adoption fog computing.
However, fog and cloud play similar and
complementary roles and thus some
coordination among them would help optimize
service execution. The mF2C project aims at
providing such coordination by creating an
innovative management architecture, deployed

through software instantiations, hence with
no need for specific hardware deployments.

In this paper, we highlighted the
motivation for resources coordination akin
to mF2C, and illustrated the main components
of the envisioned mF2C architecture, with
particular detail on the set of functional
blocks in the mF2C system. Finally, and most
interestingly, we also showed three
different use cases that will be deployed to
validate the mF2C development.

ACKNOWLEDGMENTS

This work was supported by the H2020 mF2C
project (730929). For UPC authors is also
partially supported by the Spanish Ministry
of Economy and Competitiveness and by the
European Regional Development Fund under
contract TEC2015-66220-R (MINECO/FEDER), and
for BSC authors, by the Spanish Ministry of
Science and Innovation under contract
TIN2015-65316, and by Generalitat de
Catalunya under contract 2014-SGR-1051.

REFERENCES
[1] D.C. Plummer. 2016. Top Strategic Predictions for

2016 and Beyond: The Future is a Digital Think,
https://www.gartner.com/binaries/content/assets/even
ts/keywords/symposium/sym26/gartner_top_strategic_pr
edictions_2016.pdf [Accessed: Feb. 2018].

[2] Dave Evans. 2011. The Internet of Things. Cisco
White paper at
https://www.cisco.com/c/dam/en_us/about/ac79/docs/in
nov/IoT_IBSG_0411FINAL.pdf [Accessed: Feb. 2018].

[3] OpenFog Consortium Working Group. 2017. OpenFog
Reference Architecture for Fog Computing. Feb. 2017.

[4] mF2C project at http://www.mf2c-project.eu.
[Accessed March 2018].

[5] Xavi Masip-Bruin, et al. 2016. Foggy clouds and
cloudy fogs: a real need for coordinated management
of fog-to-cloud (F2C) computing systems. Wireless
Communication Magazine, Vol. 23, Issue 5, Oct. 2016.

[6] COMPS at https://www.bsc.es/research-and-
development/software-and-apps/software-list/comp-
superscalar , [Accessed March 2018].

[7] Toni Cortes, et al. 2015. DataClay: Towards Usable
and Shareable Storate. Big Data and Extreme-Scale
Computing (BDEC), 2015

[8] Sarang Kahvazadeh, et al. 2017. Securing combined
Fog-to-Cloud System through SDN approach , 4th
Workshop on CrossCloud Infrastructures & Platforms
(ACM Digital Library), Serbia, Belgrade, April 2017.

[9] Xavi Masip-Bruin, et al. 2018. Managing Resources
Continuity from the Edge to the Cloud: Architecture
and Performance. Future Generation Computer Systems,
Vol. 37, February 2018.

[10] Wilson Ramírez, et al. 2017. Evaluating the Benefits
of Combined and Continuous Fog-to-Cloud
Architectures. Computer Communications, Vol.113,
pp.43-52, November 2017

[11] ETSI, Multi-access Edge Computing (MEC)
http://www.etsi.org/technologies-
clusters/technologies/multi-access-edge-computing,
[Accessed: Feb. 2018].

[12] OpenEdge Computing at http://openedgecomputing.org,
[Accessed March 2018].

