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We prove that propositional translations of the Kneser–Lovász theorem have polynomial

size extended Frege proofs and quasi-polynomial size Frege proofs for all fixed values of k.

We present a new counting-based combinatorial proof of the Kneser–Lovász theorem based

on the Hilton–Milner theorem; this avoids the topological arguments of prior proofs for

all but finitely many base cases. We introduce new “truncated Tucker lemma” principles,

which are miniaturizations of the octahedral Tucker lemma. The truncated Tucker lemma

implies the Kneser–Lovász theorem. We show that the k = 1 case of the truncated Tucker

lemma has polynomial size extended Frege proofs.

 2018 Published by Elsevier Inc.

1. Introduction

This paper discusses proofs of Lovász’s theorem about the chromatic number of Kneser graphs and the proof complex-

ity of propositional translations of the Kneser–Lovász theorem. Our main results give a new proof of the Kneser–Lovász

theorem, which, for fixed parameter k, uses a simple counting argument based on the Hilton–Milner theorem in place

of the topological arguments used in prior proofs, for all but finitely many cases. These arguments can be formalized in

propositional logic to give polynomial size extended Frege proofs and quasi-polynomial size Frege proofs.

The proof complexity of Frege and extended Frege systems was first studied by Cook and Reckhow [14,15] and Stat-

man [31]. Frege systems (denoted F ) are sound and complete proof systems for propositional logic with a finite set of

schemes for axioms and inference rules. The typical example is a “textbook style” propositional proof system using modus

ponens as its only rule of inference. In fact, all Frege systems are equivalent to this system [15]. Extended Frege systems

(denoted eF ) are Frege systems augmented with the extension rule, which allows variables to abbreviate complex formulas.

The reader unfamiliar with Frege systems can consult the surveys [6,11,12,15,24,30] for more information.

✩ This is an expanded version of a paper [3] which appeared in ICALP 2015.
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The size of a Frege or extended Frege proof is the number of symbols in the proof. A proof system P1 simulates a proof

system P2 if and only if there is a polynomial p(n) such that, for any propositional formula ϕ , if ϕ has a P2-proof of size n,

then ϕ has a P1-proof of size ≤ p(n). Also, P1 quasi-polynomially simulates P2 if and only if there is a k > 0 such that, if

ϕ has a P2-proof of size n then ϕ has a P1-proof of size ≤ 2(log n)k . It is trivial that extended Frege systems simulate Frege

systems.

It is generally conjectured that the extension rule can provide substantial shortening of proof length, and therefore that

Frege systems do not (quasi-polynomially) simulate extended Frege systems. The intuition is that Frege proofs are able

to reason using Boolean formulas; whereas extended Frege proofs can reason using Boolean circuits (see [22]). Boolean

formulas are conjectured to require exponential size to simulate Boolean circuits. There is no known direct connection to

proof complexity, but it is generally conjectured by analogy that there is an exponential separation between the sizes of

Frege proofs and extended Frege proofs, and thus that Frege systems do not (quasi-polynomially) simulate extended Frege

systems.

Bonet, Buss, and Pitassi [6] systematically looked for combinatorial tautologies that could be candidates for exponentially

separating proof sizes for Frege and extended Frege systems. Surprisingly, they found only a small number. The first candi-

dates were based on linear algebra, including the Oddtown theorem, the Graham–Pollack theorem, the Fisher Inequality, the

Ray–Chaudhuri–Wilson theorem, and the AB = I ⇒ B A = I tautology (the last was suggested by S. Cook). The remaining

candidate was Frankl’s theorem on the trace of sets. All of these principles were shown to have polynomial size extended

Frege proofs, but it was open whether they had polynomial size Frege proofs.

Hrubeš and Tzameret [20] recently showed that the five tautologies based on linear algebra have quasi-polynomial size

Frege proofs by showing that there are quasi-polynomial size definitions of determinants whose properties can be estab-

lished by quasi-polynomial Frege proofs (as was conjectured by [6]). Subsequently, Aisenberg, Bonet, and Buss [2] proved

that Frankl’s theorem also has quasi-polynomial size Frege proofs. With these results, none of the principles considered by

Bonet–Buss–Pitassi provide an exponential separation of Frege and extended Frege systems.

An earlier combinatorial candidate was the pigeonhole principle, introduced by Cook and Reckhow [15]. They showed

this has polynomial size extended Frege proofs. Buss [9] later proved this also has polynomial size Frege proofs. Buss’s proof

was based on “counting”, and established that Frege proofs can use polynomial size formulas (based on carry-save addition)

to define sizes of sets, and can reason about sizes effectively. Carry-save addition also allows Frege systems to reason about

integer multiplication and about adding vectors of integers. The ability of Frege proofs to “count” and to reason about sizes

of sets will be important for our Frege proofs of the Kneser–Lovász theorem. The counting proofs were quite different than

Cook and Reckhow’s inductive proofs of the pigeonhole principle, so these were sometimes taken as evidence that Frege

systems do not (quasi-polynomially) simulate extended Frege proofs. However, [7] recently showed that Cook and Reckhow’s

inductive proofs can be reformulated as quasi-polynomial size Frege proofs.

Another class of candidates is based on consistency statements. We write ConP (n) for the propositional statement ex-

pressing the condition that the proof system P does not have a proof of p ∧ ¬p of size ≤ n. For “natural” systems P

(including Frege and extended Frege systems), the formula ConP (n) has size polynomially bounded by n (e.g., [13,10]).

Propositional consistency statements have been studied for first-order systems by Pudlák [28,29] and Friedman [unpub-

lished]. Pudlák showed that axiomatizable theories of arithmetic have polynomial size (first-order) proofs of their partial

consistency statements; Pudlák and Friedman independently proved polynomial lower bounds as well. Cook [13] showed

that an extended Frege system has polynomial size proofs of its own partial consistency statements ConeF (n). Buss [10]

proved similarly that a Frege system has polynomial size proofs of its partial consistency statements ConF (n).

It also follows from [10] that Frege systems (quasi-)polynomially simulate extended Frege systems iff there are

(quasi-)polynomial size Frege proofs of ConeF (n). In addition, ConeF (n) is a “logical” principle not really a “combinato-

rial” principle.5 For these reasons, partial consistency statements such as ConeF (n) do not serve as the kinds of candidates

for separating Frege and extended Frege system that we are seeking.

Other candidates for exponentially separating Frege and extended Frege systems arose from the work of Kołodziejczyk,

Nguyen, and Thapen [23] in the setting of bounded arithmetic [8]. These include various forms of the local improvement

principles LI, LIlog and LLI. The results of [23] showed that the LI principle is many-one complete for the NP search problems

of V 1
2 ; it follows that LI is equivalent to partial consistency statements for extended Frege systems. Beckmann and Buss [5]

subsequently proved that LIlog is provably equivalent (in S12) to LI and that the linear local improvement principle LLI is

provable in U1
2 . The LLI principle thus has quasi-polynomial size Frege proofs. Combining the results of [5,23] shows that

LIlog and LLI are many-one complete for the NP search problems of V 1
2 and U1

2 , respectively, and thus equivalent to partial

consistency statements for extended Frege and Frege systems, respectively.

Thus, apart from partial consistency statement, none of the above principles serve as combinatorial candidates for show-

ing that Frege systems do not quasi-polynomially simulate extended Frege systems.

A new candidate based on the Kneser–Lovász theorem was recently proposed by Istrate and Crăciun [21]. As defined

below, the Kneser–Lovász theorem gives a lower bound on the chromatic of the (n,k)-Kneser graphs. Istrate and Crăciun

showed that the k = 3 case of these tautologies have polynomial size extended Frege proofs, but left open whether they

5 However, see Avigad [4] for a combinatorial version of ConeF (n).
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have (quasi-)polynomial size Frege proofs. However, the main results of the present paper show that, for any fixed k ≥ 1, the

Kneser–Lovász tautologies have quasi-polynomial size Frege proofs. Thus these also do not give an exponential separation

of Frege from extended Frege systems.

With these last results, we have few remaining combinatorial candidates for showing Frege systems do not quasi-

polynomially simulate extended Frege systems. One remaining candidate is tautologies based on the Rectangular Local

Improvement principles, RLIk , of Beckmann–Buss [5] for fixed k ≥ 2. The only other combinatorial candidate we know of is

introduced in Section 6 below. This is the k = 1 case of the “truncated Tucker lemma”. Theorem 25 shows it has polynomial

size extended Frege proofs; however, we have been unable to show that it has quasi-polynomial size Frege proofs.

The outline of the paper is as follows. First, in Section 2 we define the (n,k)-Kneser graphs and state Lovász’s theorem

about their chromatic numbers. Theorems 4 and 5 state our main results about Frege and extended Frege proofs of that

theorem. Section 3 gives an informal (“mathematical”) proof of the Kneser–Lovász theorem using a new proof method

based on a simple counting argument. Prior proofs used, at least implicitly, a topological fixed-point lemma. The most

combinatorial proof is by Matoušek [26] and is inspired by the octahedral Tucker lemma; see also Ziegler [32]. Our new

proofs mostly avoid topological arguments and use a counting argument instead. The counting arguments are used to

prove the existence of “star-shaped” color classes. These counting arguments can be formalized with Frege proofs. For the

Kneser–Lovász theorem, the counting arguments reduce the general case to “small” instances of size n ≤ 2k4 . For fixed k,
there are only finitely many small instances, and they can be verified by exhaustive enumeration. As we shall see, this

leads to polynomial size extended Frege proofs, and quasi-polynomial size Frege proofs for the Kneser–Lovász principles.

Sections 3.1 and 3.2 give two “mathematical” versions of the counting proofs, which will be formalized as extended Frege

proofs and Frege proofs (respectively). Section 3.3 is a short diversion and considers whether there are colorings of the

Kneser graphs with many non-starshaped color classes.

Section 4 discusses some of the details of formalizing the arguments in Section 3 in the Frege and extended Frege

systems, establishing our two main theorems. We focus on expressing the concepts described in Section 3 in propositional

logic, and we only sketch some of the details of how Frege systems can prove properties of these concepts.

The proofs of the Kneser–Lovász theorem in Sections 3 and 4 reduce the general case of the Kneser–Lovász theorem

to finitely many base cases, which are then handled by exhaustive enumeration. It would be interesting to give a uniform

proof that does not need to handle the base cases in this way. Motivated by this, Section 5 defines new “truncated” forms of

the octahedral Tucker lemma. These truncated Tucker lemmas can be expressed as families of polynomial size propositional

tautologies. The octahedral Tucker lemma, on the other hand, can only be expressed by exponential size formulas. Matoušek

showed that the Kneser–Lovász theorem follows from the octahedral Tucker lemma. We refine this by proving that the

octahedral Tucker lemma implies the two truncated Tucker lemmas, that the two versions of the truncated Tucker lemma

are equivalent, and that the truncated Tucker lemmas imply the Kneser–Lovász theorem. Since the truncated Tucker lemmas

can be expressed as polynomial size tautologies, it is natural to ask about their proof complexity in (extended) Frege

systems. Section 6 establishes that the k = 1 cases of the truncated Tucker lemmas have polynomial size extended Frege

proofs. It is open whether these have (quasi-)polynomial size Frege proofs. Thus, this is a candidate for separating Frege

and extended Frege systems. Likewise, it is open whether the truncated Tucker lemmas for k > 1 have subexponential size

extended Frege proofs. For this, it is tempting to try to modify the combinatorial proof of the Tucker lemma of Freund and

Todd [18] (see also Matoušek [26]). Their proof uses a version of the parity principle PPA [27]. In fact, the general (not

necessarily octahedral) Tucker lemma is known to be many-one complete for PPA [1]. However, Freund and Todd’s proof

applies the parity principle to exponentially large graphs, and this prevents us from directly formalizing their arguments

with polynomial size extended Frege proofs.

We thank the two referees for helpful comments and suggestions.

2. The Kneser–Lovász principle and statement of the main theorems

The (n,k)-Kneser graph is defined to be the undirected graph whose vertices are the k-subsets of {1, . . . ,n}; there is an

edge between two vertices iff those vertices have empty intersection. The Kneser–Lovász theorem states that Kneser graphs

have a large chromatic number:

Theorem 1 (Lovász [25]). Let n ≥ 2k > 1. The (n,k)-Kneser graph has no coloring with n − 2k + 1 colors.

It is well-known that the (n,k)-Kneser graph has a coloring with n − 2k + 2 colors (see Section 3.3), so the bound

n − 2k + 1 is optimal. For k = 1, the Kneser–Lovász theorem is just the pigeonhole principle.

Istrate and Crăciun [21] noted that, for fixed values of k, the propositional translations of the Kneser–Lovász theorem

are polynomial size in n. They presented proofs that can be formalized by polynomial size Frege proofs for k = 2, and

by polynomial size extended Frege proofs for k = 3. This left open the possibility that the k = 3 case could exponentially

separate the Frege and extended Frege systems. It was also left open whether the k > 3 case of the Kneser–Lovász theorem

gave tautologies that require exponential size extended Frege proofs. As discussed above, the present paper refutes these

possibilities. Theorems 4 and 5 summarize these results.

Let [n] be the set {1, . . . ,n}; members of [n] are called nodes. We identify
(n
k

)

with the set of k-subsets of [n], the vertices
of the (n,k)-Kneser graph.
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Definition 2. An m-coloring of the (n,k)-Kneser graph is a map c from
(n
k

)

to [m], such that for S, T ∈
(n
k

)

, if S ∩ T = ∅, then
c(S) 6= c(T ). If ℓ ∈ [m], then the color class Pℓ is the set of vertices assigned the color ℓ by c.

The formulas Knesernk are the natural propositional translations of the statement that there is no (n− 2k+ 1)-coloring of

the (n,k)-Kneser graph:

Definition 3. Let n ≥ 2k > 1, and m = n − 2k + 1. For S ∈
(n
k

)

and i ∈ [m], the propositional variable pS,i has the intended

meaning that vertex S of the Kneser graph is assigned the color i. The formula Knesernk is
∧

S∈
(n
k

)

∨

i∈[m]

pS,i →
∨

S,T∈
(n
k

)

S∩T=∅

∨

i∈[m]

(

pS,i ∧ pT ,i

)

.

Theorem 4. For fixed parameter k ≥ 1, the propositional translations Knesernk of the Kneser–Lovász theorem have polynomial size
extended Frege proofs.

Theorem 5. For fixed parameter k ≥ 1, the propositional translations Knesernk of the Kneser–Lovász theorem have quasi-polynomial
size Frege proofs.

When both k and n are allowed to vary, it is open whether the Knesernk tautologies have quasi-polynomial size (extended)

Frege proofs, or equivalently, have proofs with size quasi-polynomially bounded in terms of nk .

3. Mathematical arguments

Section 3.1 gives the new proof of the Kneser–Lovász theorem; this is later shown to be formalizable with polyno-

mial size extended Frege proofs. Section 3.2 gives a slightly more complicated but more efficient proof, later shown to be

formalizable with quasi-polynomial size Frege proofs. The next definition and lemma are crucial for Sections 3.1 and 3.2.

Any two vertices in a color class Pℓ have nonempty intersection. One way this can happen is for the color class to be

“star-shaped”:

Definition 6. A color class Pℓ is star-shaped if
⋂

Pℓ is nonempty. If Pℓ is star-shaped, then any i ∈
⋂

Pℓ is called a central
node of Pℓ .

The intuition is that non-starshaped color classes are too small to cover all
(n
k

)

vertices. The Hilton–Milner theorem [19]

(which is a refinement of the Erdős–Ko–Rado [16] theorem on intersecting families of finite sets, and improves on Theo-

rem 2(ii) of [16]) implies that if a color class Pℓ is not star-shaped then Pℓ has size |Pℓ| ≤ 1 +
(n−1
k−1

)

−
(n−k−1

k−1

)

. A simpler

proof of their bound was given by Frankl and Füredi [17]. Hilton and Milner also observe that their bound is optimal. In-

stead of using the Hilton–Milner bound, we state a weakened form as Lemma 7, which has a substantially simpler proof.

(By comparison, the Hilton–Milner bound is ≤ k
(n−2
k−2

)

for k ≥ 3.) Lemma 7 will be used in our proof of the Kneser–Lovász

theorem to establish the existence of star-shaped color classes.

Lemma 7. Let c be a coloring of
(n
k

)

. If Pℓ is not star-shaped, then

|Pℓ| ≤ k2
(

n − 2

k − 2

)

.

Proof. Suppose Pℓ is not star-shaped. If Pℓ is empty, the claim is trivial. So suppose Pℓ 6= ∅, and let S0 = {a1, . . . ,ak} be

some element of Pℓ . Since Pℓ is not star-shaped, there must be sets S1, . . . , Sk ∈ Pℓ with ai /∈ S i for i = 1, . . . ,k.
To specify an arbitrary element S of Pℓ , we do the following. Since S and S0 have the same color, S ∩ S0 is nonempty.

We first specify some ai ∈ S ∩ S0 . Likewise, S ∩ S i is nonempty; we second specify some b ∈ S ∩ S i . By construction, ai 6= b,
so S is fully specified by the k possible values for ai , the k possible values for b, and the

(n−2
k−2

)

possible values for the

remaining members of S . Therefore, |Pℓ| ≤ k2
(n−2
k−2

)

. ✷

3.1. Argument for extended Frege proofs

Let k > 1 be fixed. We prove the Kneser–Lovász theorem by induction on n. The base cases for the induction are n =
2k, . . . ,N(k) where N(k) is the constant depending on k specified in Lemma 8. We shall show that N(k) is no greater

than k4 . Since k is fixed, there are only finitely many base cases. Since the Kneser–Lovász theorem is true, these base cases

can all be proved by a fixed Frege proof of finite size (depending on k). Therefore, in our proof below, we only show the

induction step.
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Lemma 8. Fix k > 1. There is an N(k) so that, for n > N(k), any (n − 2k + 1)-coloring of
(n
k

)

has at least one star-shaped color class.

Proof. Suppose that a coloring c has no star-shaped color class. Since there are n − 2k + 1 many color classes, Lemma 7

implies that

(n − 2k + 1) · k2
(

n − 2

k − 2

)

≥

(

n

k

)

. (1)

For fixed k, the left-hand side of (1) is 2(nk−1) and the right-hand side is 2(nk). Thus, there exists an N(k) such that (1)

fails for all n > N(k). Hence for n > N(k), there must be at least one star-shaped color class. ✷

To obtain an upper bound on the value of N(k), note that (1) is equivalent to

(n − 2k + 1)k3(k − 1) ≥ n(n − 1). (2)

Since 2k − 1 ≥ 1, (2) implies that (n − 1)k4 > n(n − 1) and thus that n < k4 . Thus, (1) will be false if n ≥ k4; so N(k) < k4 .
We are now ready to give our first proof of the Kneser–Lovász theorem.

Proof of Theorem 1, except for base cases. Fix k > 1. By Lemma 8, there is some N(k) such that for n > N(k), any

(n − 2k + 1)-coloring c of
(n
k

)

has a star-shaped color class. As discussed above, the cases where n ≤ N(k) are handled

by exhaustive search and the truth of the Kneser–Lovász theorem. For n > N(k), we prove Theorem 1 by infinite descent. In

other words, we show that if c is an (n− 2k+ 1)-coloring of
(n
k

)

, then there is some c′ that is an ((n− 1) − 2k+ 1)-coloring

of
(n−1

k

)

.

By Lemma 8, the coloring c has some star-shaped color class Pℓ with central node i. Without loss of generality, i = n

and ℓ = n − 2k + 1. Let

c′ = c ↾
(n−1

k

)

be the restriction of c to the domain
(n−1

k

)

. This discards the central node n of Pℓ , and thus all vertices with color ℓ.

Therefore, c′ is an ((n − 1) − 2k + 1)-coloring of
(n−1

k

)

. This completes the proof. ✷

3.2. Argument for Frege proofs

We now give a second proof of the Kneser–Lovász theorem. The proof above required n− N(k) rounds of infinite descent

to transform a Kneser graph on n nodes to one on N(k) nodes. Our second proof replaces this with only O (logn) many

rounds, and this efficiency will be key for formalizing this proof with quasi-polynomial size Frege proofs in Section 4.2.

We refine Lemma 8 to show that for n sufficiently large, there are many (i.e., a constant fraction) star-shaped color

classes. The idea is to combine the upper bound of Lemma 7 on the size of non-starshaped color classes with the trivial

upper bound of
(n−1
k−1

)

on the size of star-shaped color classes.

Lemma 9. Fix k > 1 and 0 < β < 1. Then there exists an N(k, β) such that for n > N(k, β), if c is an (n− 2k+ 1)-coloring of
(n
k

)

, then
c has at least n

k
β many star-shaped color classes.

Proof. The value of N(k, β) can be set equal to
k3(k−β)
1−β

. Let n >
k3(k−β)
1−β

, and suppose c is an (n− 2k+ 1)-coloring of
(n
k

)

. Let

α be the number of star-shaped color classes of c. It is clear that an upper bound on the size of each star-shaped color class

is
(n−1
k−1

)

. There are n − α − 2k + 1 many non-starshaped classes, and Lemma 7 bounds their size by k2
(n−2
k−2

)

. This implies

that
(

n − 1

k − 1

)

α + k2
(

n − 2

k − 2

)

(n − α − 2k + 1) ≥

(

n

k

)

. (3)

Assume for a contradiction that α < n
kβ . Since n >

k3(k−β)
1−β

, 0 < β < 1, and k ≥ 2, we have n − 1 > k3(k − 1) > k2(k − 1).

Therefore,
(n−1
k−1

)

> k2
(n−2
k−2

)

, and if α is replaced by the larger value n
k
β , the left hand side of (3) increases. Thus,

(

n − 1

k − 1

)

n

k
β + k2

(

n − 2

k − 2

)

(

n −
n

k
β − 2k + 1

)

>

(

n

k

)

.

Since
(n−1
k−1

)

n
k

=
(n
k

)

and n − n
k
β − 2k + 1 = k−β

k
n − 2k + 1,

k2
(

n − 2

k − 2

)

(k − β

k
n − 2k + 1

)

> (1− β)

(

n

k

)

.
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Expanding the binomial coefficients yields

k3(k − 1)
(k − β

k
n − 2k + 1

)

> (1 − β)n(n − 1).

We have
k−β
k (n − 1) >

k−β
k n − 2k + 1. Therefore,

k3(k − 1)
k − β

k
(n − 1) > (1 − β)n(n − 1).

Dividing by n − 1 gives k3(k − β) > (1− β)n, contradicting n >
k3(k−β)
1−β

. ✷

We now give our second proof of the Kneser–Lovász theorem.

Proof of Theorem 1, except for base cases. Fix k > 1. By Lemma 9 with β = 1/2, if n > N(k,1/2) and c is an (n − 2k + 1)-

coloring of
(n
k

)

, then c has at least n/2k many star-shaped color classes. We prove the Kneser–Lovász theorem by induc-

tion on n. The base cases are where 2k ≤ n ≤ N(k,1/2), and there are only finitely of these, so they can be exhaustively

proven. For n > N(k,1/2), we structure the induction proof as an infinite descent. In other words, we show that if c is an

(n − 2k + 1)-coloring of
(n
k

)

, then there is some c′ that is an ((n− n
2k

)−2k+1)-coloring of
(n− n

2k
k

)

. For simplicity of notation,

we assume n
2k is an integer. If this is not the case, we really mean to round up to the nearest integer ⌈ n

2k ⌉.
By permuting the color classes and the nodes, we can assume w.l.o.g. that the n

2k
color classes Pℓ for ℓ = n − n

2k
−

2k + 2, . . . ,n − 2k + 1 are star-shaped, and each such Pℓ has a central node in {n − (n/2k) + 1, . . . ,n}. That is, the last n
2k

many color classes are star-shaped, and they all have a central node among the last n
2k nodes in [n]. We shall discard these

n/2k many star-shaped color classes, and the topmost n/2k many nodes. This discards the central nodes of the discarded

color classes, thereby removing all the vertices of the Kneser graph which are assigned discarded color classes. (It is possible

that some star-shaped color classes share central nodes. We only need to be sure to discard at least one central node for

each color classes, and thus, in this case, additional nodes can be discarded so that n/2k are discarded in all.)

More formally, define c′ to be the coloring of
(n−n/2k

k

)

which assigns the same colors as c. The map c′ is a ( 2k−1
2k n −

2k + 1)-coloring of

( 2k−1
2k

n

k

)

, since n − n
2k = 2k−1

2k n. This completes the proof of the induction step. ✷

When formalizing the above argument with quasi-polynomial size Frege proofs, it will be important to know how many

iterations of the procedure are required to reach the base cases, so let us calculate this.

After s iterations of this procedure, we have a (( 2k−1
2k )sn − 2k + 1)-coloring of

(

( 2k−1
2k

)sn

k

)

. We pick s large enough so

that ( 2k−1
2k )sn is less than N(k,1/2). In other words, since k is constant,

s = log 2k
2k−1

( n

k3(2k − 1)

)

= O (logn)

will suffice, and only O (logn) many rounds of the procedure are required.

3.3. Optimal colorings of Kneser graphs

This section is a brief diversion motivated by the question of whether Lemma 9 about the number of non-starshaped

colors is optimal.

It is well-known that
(n
k

)

has an (n− 2k+ 2)-coloring [25]. A simple construction of such a coloring, which we call c1 , is

given here for completeness as follows. For S ∈
(n
k

)

, define c1(S) by:

(1) If S * [2k − 1], let c1(S) = max(S) − (2k − 2). Clearly 1 < c1(S) ≤ n − 2k + 2.

(2) If S ⊆ [2k − 1], let c1(S) = 1.

We claim that c1 defines a proper coloring. By construction, if c1(S) > 1, then c1(S)+(2k−2) ∈ S . Thus, if c1(S) = c1(S
′) > 1,

then S ∩ S ′ 6= ∅ and S and S ′ are not joined by an edge in the Kneser graph. On the other hand, if c1(S) = 1, then S contains

k elements from the set [2k−1]. Any two such subsets have nonempty intersection, and therefore if c1(S) = c1(S
′) = 1, then

again S ∩ S ′ 6= ∅. Note that c1 contains n − 2k + 1 many star-shaped color classes, and only one non-starshaped color class.

In view of Lemma 9, it is interesting to ask whether it is possible to give (n − 2k + 2)-colorings which have fewer

star-shaped color classes and more non-starshaped color classes. The next theorem gives the best construction we know.

Theorem 10. Let k ≥ 1 and n ≥ 3k − 3. There is an (n − 2k + 2) coloring ck−1 of
(n
k

)

which has k − 1 many non-starshaped color
classes and only n − 3k + 3 many star-shaped color classes.
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Proof. To construct ck−1 , partition the set [n] into n−2k+2 many subsets T1, . . . , Tn−2k+2 as follows. For i ≤ n−3k+3, T i is

chosen to be a singleton set, say T i = {n− i+1}. The remaining k−1 many T i ’s are subsets of size 3, say T i = { j−2, j−1, j}

where j = 3(i − (n − 3k + 3)). Since n = (n − 3k + 3) + 3(k − 1), the sets T i partition [n], and each T i has cardinality either

1 or 3. For S a subset of n of cardinality k, define the color ck−1(S) to equal the least i such that

|S ∩ T i| >
1

2
|T i |.

We claim there must exist such an i. If not, then S contains no members of the singleton subsets T i and at most one

member of each of the subsets T i of size three. But there are only k − 1 many subsets of size three, contradicting |S| = k.

It is easy to check that if ck−1(S) = ck−1(S
′) then S ∩ S ′ 6= ∅. Thus ck−1 is a coloring. Furthermore, ck−1 has k − 1 many

non-starshaped color classes and n − 3k + 3 many star-shaped color classes. ✷

Theorem 10 can be extended to show that when 2k ≤ n ≤ 3k−3, there is a n−2k+2 coloring with no star-shaped color

class. The proof construction uses a similar idea, based on the fact that [n] can be partitioned into n − 2k + 2 ≤ k − 1 many

subsets, each of odd cardinality ≥ 3. We leave the details to the reader.

Question 11. Do there exist (n − 2k + 2)-colorings of the (n,k)-Kneser graphs with more than k − 1 many non-starshaped

color classes?

4. Formalization in propositional logic

4.1. Polynomial size extended Frege proofs

We sketch the formalization of the argument in Section 3.1 as a polynomial size extended Frege proof, establishing

Theorem 4. We concentrate on showing how to express concepts such as “star-shaped color class” with polynomial size

propositional formulas. For expository reasons, we omit the straightforward details of how (extended) Frege proofs can

prove properties of these concepts.

Fix values for k and n with n > N(k). We describe an extended Frege proof of Knesernk . We have variables pS, j (recall

Definition 3), collectively denoted Ep. The proof assumes Knesernk(Ep) is false, and proceeds by contradiction. The main step is

to define new variables Ep′ with the extension rule and prove that Knesern−1
k (Ep′) fails. This will be repeated until reaching a

Kneser graph over only N(k) nodes.

For this, let Star(i, ℓ) express that i ∈ [n] is a central node of the color class Pℓ; namely,

Star(i, ℓ) :=
∧

S∈
(n
k

)

, i /∈S

¬pS,ℓ.

Note that Pℓ may have more than one central node. Conversely, a node i may be a central node for more than one color

class.

We use Star(ℓ) :=
∨

i Star(i, ℓ) to express that Pℓ is star-shaped.

The extended Frege proof defines an instance of the Kneser–Lovász principle Knesern−1
k by discarding one node and one

color. The first star-shaped color class Pℓ is discarded; accordingly, we let

DiscardColor(ℓ) := Star(ℓ) ∧
∧

ℓ′<ℓ

¬Star(ℓ′).

The node to be discarded is the least central node of the discarded Pℓ:

DiscardNode(i) :=
∨

ℓ

[

DiscardColor(ℓ) ∧ Star(i, ℓ) ∧
∧

i′<i

¬Star(i′, ℓ)
]

.

After discarding the node i and the color ℓ, the remaining nodes and colors are renumbered to the ranges [n − 1] and

[n − 2k], respectively. In particular, the “new” color j (in the instance of Knesern−1
k ) corresponds to the “old” color j−ℓ (in

the instance of Knesernk ) where

j−ℓ =

{

j if j < ℓ

j + 1 if j ≥ ℓ.

And, if S = {i1, . . . , ik} ∈
(n−1

k

)

is a “new” vertex (for the Knesern−1
k instance), then it corresponds to the “old” vertex S−i ∈

(n
k

)

(for the instance of Knesernk ), where S−i = {i′1, i
′
2, . . . , i

′
k} with
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i′t =

{

it if it < i

it + 1 if it ≥ i.

For each S ∈
(n−1

k

)

and j ∈ [n − 2k], the extended Frege proof uses the extension rule to introduce a new variable p′
S, j

defined as follows

p′
S, j ≡

∨

i,ℓ

(

DiscardNode(i) ∧ DiscardColor(ℓ) ∧ pS−i , j−ℓ

)

.

As seen in the definition by extension, p′
S, j is defined by cases, one for each possible pair i, ℓ of nodes and colors such

that the node i is the least central node of the Pℓ color class, where Pℓ is the first star-shaped color class. The extended

Frege proof then shows that ¬Knesernk(Ep) implies ¬Knesern−1
k (Ep′), i.e., that if the variables pS, j define a coloring, then

the variables p′
S, j also define a coloring. The first step for the extended Frege proof is to show that there is at least one

star-shaped color class, and then there is a unique ℓ such that DiscardColor(ℓ) holds. In fact, we claim there are polynomial

size Frege proofs of

∨

ℓ

DiscardColor(ℓ) (4)

and

∧

ℓ1<ℓ2

(¬DiscardColor(ℓ1) ∨ ¬DiscardColor(ℓ2)) . (5)

The Frege proof of (4) and (5) starts by proving
∨

ℓ Star(ℓ). This is done essentially via a proof by contradiction: First, under

the hypothesis that ¬
∨

ℓ Star(ℓ), the Frege proof uses the argument of Lemma 7 to show, for each color class Pℓ , that

there is a surjective map πℓ from [k2
(n−2
k−2

)

] onto Pℓ . Fixing a particular value for ℓ, the Frege proof defines πℓ as follows: It

chooses a set S0 in Pℓ , say the lexicographically first set S0 in Pℓ . There are ≤
(n
k

)

many possible choices for this S0; and the

Frege proof splits into cases based on S0 . Then, letting S0 = {a1, . . . ,ak} in increasing order, the Frege proof proves, for each i

the existence of a lexicographically first set S i in Pℓ with ai /∈ S i (using the assumption that Pℓ is not star-shaped). The

Frege proof further splits into polynomially many cases for all possible choices of S1, . . . , Sk . Let ai,i′ be the i′-th member

of S i . For each j 6= j′ ∈ [n], there is a natural bijection π j, j′ from
(n−2
k−2

)

to the (k − 2)-subsets of [n] \ { j, j′}. For i, i′ ∈ [k]

and p ∈
(n−2
k−2

)

, the surjection πℓ can be defined by π(i, i′, p) = {ai,ai,i′ ,πai ,ai,i′
(p)} if this a well-defined member of Pℓ ,

and π(i, i′, p) = S0 otherwise. The intersection properties of Pℓ , as in the proof of Lemma 7, show immediately that πℓ is

surjective.

Using the formalization of “counting” in Frege proofs [9], the surjectivity of πℓ implies that |Pℓ| ≤ k2
(n−2
k−2

)

. But since

(n−2k+1)k2
(n−2
k−2

)

<
(n
k

)

, this contradicts the fact that every vertex is in a color class. The fact that (n−2k+1)k2
(n−2
k−2

)

<
(n
k

)

is proved by just computing the values of both sides of the inequality. Indeed, k is fixed, so there are only
(n
k

)

< nk many

vertices, and we are only counting polynomially many vertices.

Once
∨

ℓ Star(ℓ) has been proved with a polynomial size proof (under the hypothesis that ¬Knesernk(Ep)), the formulas

(4) and (5) follow easily. Likewise, there are polynomial size Frege proofs that there is a unique value i ∈ [n− 2k+ 1] which

satisfies DiscardNode(i).

For fixed values of ℓ and i, a polynomial size Frege proof now establishes

DiscardColor(ℓ) ∧ DiscardNode(i) ∧ Knesern−1
k (Ep′) → Knesernk(Ep).

This Frege proof argues as follows, assuming DiscardColor(ℓ) and DiscardNode(i) and Knesern−1
k (Ep′). Since Knesern−1

k (Ep′) is

true, either (a) its hypothesis is false and we have
∧n−2k

j=1 ¬p′
S, j for some S ∈

(n
k

)

or (b) its conclusion is true and there are

S, T ∈
(n
k

)

and j such that S ∩ T = ∅ and p′
S, j and p′

T , j . If (a) holds then ¬pS−i , j−ℓ for all j ∈ [n− 2k] and this together with

the fact that i /∈ S−i and i and ℓ were discarded further implies that the hypothesis of Knesernk(Ep) is false so Knesernk(Ep) is

true. Likewise, if (b) holds, then using S−i and T−i and j−ℓ shows that the conclusion of Knesernk is true.

Putting all these arguments together gives the desired Frege proof of

¬Knesernk(Ep) → ¬Knesern−1
k (Ep′).

The extended Frege proof iterates this process of removing one node and one color until it is shown that there is a

coloring of
(N(k)

k

)

. This is then refuted by exhaustively considering all colorings of Kneser graphs on ≤ N(k) nodes. ✷
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4.2. Quasi-polynomial size Frege proofs

This section discusses some of the details of the formalization of the argument in Section 3.2 as quasi-polynomial size

Frege proofs, establishing Theorem 5. First we will form an extended Frege proof, then modify it to become a Frege proof.

As before, the proof starts with the assumption that Knesernk(Ep) is false. As we describe next, the extended Frege proof then

introduces variables Ep′ by extension so that Kneser
n−n/2k
k (Ep′) is false. This process will be repeated O (logn) times. The final

Frege proof is obtained by unwinding the definitions by extension.

For a set X of formulas and t > 0, we now use the notation “|X | ≤ t” to denote a formula that is true when the number

of true formulas in X is less than or equal to t . As already discussed, “|X | ≤ t” can be expressed by a formula of size

polynomially bounded by the total size of the formulas in X , using the construction in [9]. “|X | = t” is defined similarly.

The formulas Star(i, ℓ) and Star(ℓ) are the same as in Section 4.1. A color ℓ is now discarded if it is among the least n/2k

star-shaped color classes.

DiscardColor(ℓ) := Star(ℓ) ∧
(

|{Star(ℓ′) : ℓ′ ≤ ℓ}| ≤ n/2k
)

The discarded nodes are the least central nodes of the discarded color classes.

DiscardNode(i) :=
∨

ℓ

[

DiscardColor(ℓ) ∧ Star(i, ℓ) ∧
∧

i′<i

¬Star(i′, ℓ)
]

.

DiscardNode(i) will hold for at most n/2k many nodes i, since there are only n/2k many discarded colors. We could modify

the definition of DiscardNode to discard exactly n/2k many nodes; however, this is not strictly necessary, as the only use of

DiscardNode is to define the predicate RenumNode(i′, i) below, and that definition effectively discards exactly n/2k many

nodes even if DiscardNode(i) picks out fewer than n/2k many nodes to be discarded.

The remaining, non-discarded colors and nodes are renumbered to form an instance of Kneser
n−n/2k
k . For this, the formula

RenumNode(i′, i) is true when the node i′ is the i-th node that is not discarded; similarly RenumColor( j′, j) is true when

the color j′ is the j-th color that is not discarded.

RenumNode(i′, i) :=
(

|{¬DiscardNode(i′′) : i′′≤i′}| = i
)

∧ ¬DiscardNode(i′)

RenumColor( j′, j) :=
(

|{¬DiscardColor( j′′) : j′′≤ j′}| = j
)

∧ ¬DiscardColor( j′)

The predicate RenumNode(i′, i) defines a bijection between the sets [n−n/2k] and the non-discarded nodes of [n]. Likewise,

the predicate RenumColor( j′, j) defines a bijection between [(n − n/2k) − 2k + 1] and the non-discarded colors.

For each S = {i1, . . . , ik} ∈
(n−n/2k

k

)

and j ∈ [(n − n/2k) − 2k + 1], we define by extension

p′
S, j ≡

∨

i′1,...i
′
k
, j′

(

k
∧

t=1

(

RenumNode(i′t, it)
)

∧ RenumColor( j′, j) ∧ p{i′1,...,i
′
k
}, j′

)

.

The Frege proof then argues that if the variables pS, j define a coloring, then the variables p′
S, j define a coloring, i.e.,

that ¬Knesernk(Ep) → ¬Kneser
n−n/2k
k (Ep′). The first step for this is proving that there are at least n/2k star-shaped color

classes by formalizing the proofs of Lemmas 7 and 9. Those proofs were “counting” arguments: they involved counting the

number of members of
(n
k

)

that are contained in the color classes Pℓ . As already mentioned, the proof of Lemma 7 can be

formalized with polynomial size Frege proofs proving that, if Pℓ is a non-starshaped color class, there is a surjective map

from [k2
(n−2
k−2

)

] onto Pℓ and from this concluding that |Pℓ| ≤ k2
(n−2
k−2

)

. Similarly, and even easier, there are polynomial size

Frege proofs of the fact that if Pℓ is star-shaped, then there is a surjective map from
(n−1
k−1

)

onto Pℓ , from whence |Pℓ| ≤
(n−1
k−1

)

. The Frege proof then splits into polynomially many cases depending on the number α of star-shaped color classes.

For each α, the inequality (3) must hold by the upper bounds on the |Pℓ|’s. However, for any fixed value of α < n
k
β = n

2k
,

directly substituting the (fixed) values of n,k,α into (3) shows that it is false.6 It follows that α ≥ n
2k ; that is, there are

≥ n
2k many star-shaped colors. From this, it follows, again with a polynomial size Frege proof, that RenumNode(i′, i) and

RenumColor( j′, j) define bijections.

After that, it is straightforward to prove that, for each S ∈
(n−n/2k

k

)

and j ∈ [(n − n/2k) − 2k + 1], the variable p′
S, j is

well-defined. In addition, a polynomial size Frege proof can prove that if Knesernk(Ep) is false, then Kneser
n−n/2k
k (Ep′) is false.

This is iterated O (logn) times until fewer than N(k,1/2) nodes remain. The proof concludes with a hard-coded proof

that there are no such colorings of the finitely many small Kneser graphs.

To form the quasi-polynomial size Frege proof, we unwind the definitions by extension. Each definition by extension was

polynomial size; they are nested to a depth of O (logn). So the resulting Frege proof is quasi-polynomial size. ✷

6 We know that (3) is false by the argument given in the proof of Lemma 9; therefore a Frege proof can use direct calculation to verify this for the

needed values of n,k,α. Alternatively, a polynomial size Frege proof can carry out all the steps of the argument used earlier to establish (3); however, this

is not necessary, and does not seem to add anything apart from possibly a bit more uniformity.
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5. The octahedral Tucker lemma and truncated Tucker lemmas

A natural question arising from the previous sections is the possibility of giving short uniform Frege proofs of the Kneser–

Lovász theorem for fixed k, namely, proofs that avoid handling finitely many base cases separately. A possible approach to

this problem is formalizing the proof of Matoušek [26] in the Frege system. A significant obstacle in carrying this out is that

Matoušek’s proof goes through the octahedral Tucker lemma, and, as will be discussed below, naïve propositional transla-

tions of the octahedral Tucker lemma are of exponential size. To overcome this, we describe two miniaturizations of the

octahedral Tucker lemma, called the truncated Tucker lemmas; these have polynomial size propositional translations, and

are strong enough to imply the Kneser–Lovász theorem with polynomial size, constant depth Frege proofs.

Our definitions and proofs below borrow techniques and notation from Matoušek [26].

Definition 12. Let n ≥ 1. The octahedral ball Bn is:

B
n := {(A, B) : A, B ⊆ [n] and A ∩ B = ∅}.

Definition 13. Let n > 1. A mapping λ : Bn → {1,±2, . . . ,±n} is antipodal if λ(∅,∅) = 1, and for all other pairs (A, B) ∈ Bn ,

λ(A, B) = −λ(B, A).

Note that −1 is not in the range of λ, and (∅,∅) is the only member of Bn that is mapped to 1 by λ.

Definition 14. Two pairs (A1, B1) and (A2, B2) in Bn are complementary with respect to λ if A1 ⊆ A2 , B1 ⊆ B2 and

λ(A1, B1) = −λ(A2, B2).

Theorem 15 (Octahedral Tucker lemma). If λ : Bn → {1,±2, . . . ,±n} is antipodal, then there are two elements in Bn that are com-

plementary.

For a proof of Theorem 15, see [26].

Definition 16. Let 1 ≤ k ≤ n. The truncated octahedral ball Bn
≤k is:

B
n
≤k :=

{

(A, B) ∈ B
n : |A| ≤ k, |B| ≤ k}.

We write
( n
≤k

)

for {A ⊆ [n] : |A| ≤ k}.

The octahedral Tucker lemma used the subset relation ⊆ on [n] to define “complementary”. The truncated Tucker lemma

uses an analogous partial order � to define “k-complementary”. For A ⊆ [n], let A≤k denote the least k elements of A. By

convention, if |A| < k, then A≤k = A.

Definition 17. Let � be the partial order on sets in
( n
≤k

)

defined by A � B iff (A ∪ B)≤k = B .

Note that if |B| = k, then A � B is equivalent to the statement that every member of A \ B is ≥ max(B). On the other

hand, if |B| < k, then A � B is equivalent to A ⊆ B . When k = n, Bn = Bn
≤k , and the � relation is identical to the subset

relation.

Lemma 18. The relation � is a partial order with ∅ its least element.

Proof. It is clearly reflexive. For anti-symmetry, A1 � A2 and A2 � A1 imply that A1 = (A1 ∪ A2)≤k = (A2 ∪ A1)≤k = A2 . For

transitivity, suppose A1 � A2 and A2 � A3 . Then (A1 ∪ A2)≤k = A2 and (A2 ∪ A3)≤k = A3 . This implies

A3 = (A2 ∪ A3)≤k = ((A1 ∪ A2)≤k ∪ A3)≤k = (A1 ∪ (A2 ∪ A3)≤k)≤k = (A1 ∪ A3)≤k.

Therefore A1 � A3 . That ∅ is the least element is clear from the definition. ✷

Definition 19. For (A1, B1) and (A2, B2) in Bn
≤k , write (A1, B1) � (A2, B2) when A1 � A2 , B1 � B2 , and Ai ∩ B j = ∅ for

i, j ∈ {1,2}. The pairs (A1, B1) and (A2, B2) are k-complementary with respect to an antipodal map λ on Bn
≤k if (A1, B1) �

(A2, B2) and λ(A1, B1) = −λ(A2, B2).

We are ready to state the version of the truncated Tucker lemma for Bn
≤k .
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Theorem 20 (Truncated Tucker lemma on Bn
≤k). Suppose n ≥ k ≥ 1. If λ : Bn

≤k → {1,±2 . . . ,±n} is antipodal, then there are two

elements in Bn
≤k that are k-complementary.

When k = n, this is equivalent to the octahedral Tucker lemma. The truncated Tucker lemma on Bn
≤k follows from the

octahedral Tucker lemma:

Proof of Theorem 20 from Theorem 15. We argue by contradiction. Suppose λ : Bn
≤k → {1,±2, . . . ,±n} is antipodal. We

define λ′ : Bn → {1,±2, . . . ,±n}. For (A, B) ∈ Bn , define λ′(A, B) = λ(A≤k, B≤k). The map λ′ is clearly antipodal, so by

Theorem 15, there are (A, B), (C, D) in Bn that are complementary with respect to λ′ . We claim that (A≤k, B≤k) and

(C≤k, D≤k) are k-complementary with respect to λ. By definition of λ′ , λ(A≤k, B≤k) = −λ(C≤k, D≤k), so it remains to show

that (A≤k, B≤k) � (C≤k, D≤k). Since C ∩ D = ∅ and A ⊆ C and B ⊆ D , it follows that

C≤k ∩ D≤k = A≤k ∩ D≤k = A≤k ∩ B≤k = B≤k ∩ C≤k = ∅.

Moreover, A ⊆ C implies that A≤k � C≤k . This is because

(A≤k ∪ C≤k)≤k = (A ∪ C)≤k = C≤k.

The same argument shows that B≤k � D≤k . ✷

Definition 21. Let 1 < 2k ≤ n. The truncated octahedral ball Bn
k is:

B
n
k :=

{

(A, B) : A, B ∈

(

n

k

)

∪ {∅}, A ∩ B = ∅, and (A, B) 6= (∅,∅)

}

.

The fact that (∅,∅) is excluded from Bn
k is only a technical convenience. Corresponding to this, the value “1” will now

be omitted from the range of λ. We say that λ : Bn
k → {±2k . . . ,±n} is antipodal provided that λ(A, B) = −λ(B, A) for all

(A, B) ∈ Bn
k .

Theorem 22 (Truncated Tucker lemma on Bn
k ). Suppose n ≥ 2k > 1. If λ : Bn

k → {±2k . . . ,±n} is antipodal, then there are two
elements in Bn

k that are k-complementary.

Proof of Theorem 22 from Theorem 20. Suppose that λ : Bn
k → {±2k, . . . ,±n} is antipodal; we must show it has k-comple-

mentary pairs. We extend λ to an antipodal λ′ : Bn
≤k → {1,±2, · · · ± n}. Let “≤” be any total order on

( n
≤k

)

that extends �.

Let (A, B) ∈ Bn
≤k . The value of λ′(A, B) is defined by cases:

Case 1: If |A| < k and |B| < k, then define

λ′(A, B) =

{

1+ |A| + |B| if A ≤ B

−(1 + |A| + |B|) if B < A.

Case 2: If max{|A|, |B|} = k and min{|A|, |B|} < k, then define

λ′(A, B) =

{

λ(A,∅) if |B| < k

λ(∅, B) if |A| < k.

Case 3: If |A| = |B| = k, then define λ′(A, B) = λ(A, B).

The map λ′ is clearly antipodal; hence Theorem 20 implies there exist (A1, B1) � (A2, B2) which are k-complementary

with respect to λ′ , so we have λ′(A1, B1) = −λ′(A2, B2). We prove this gives rise to k-complementary pairs for λ. The

argument splits into cases depending on how λ′ assigns values to (A1, B1) and (A2, B2).

Suppose that one of λ′(A1, B1) or λ′(A2, B2) is assigned by case 1. Since case 1 only assigns values from {1,±2, . . . ,

±(2k − 1)}, and cases 2 and 3 only assign values from {±2k, . . . ,±n}, this implies that both λ′(A1, B1) and λ′(A2, B2) are

assigned by case 1. Also, A1 � A2 and B1 � B2 where at least one of these precedences is proper. For sets of cardinality less

than k, the � relation is equivalent to the subset relation; therefore, we have A1 ⊆ A2 and B1 ⊆ B2 where again at least one

of the inclusions is proper. Thus 1+ |A1| + |B1| < 1+ |A2| + |B2|, so λ′(A1, B1) and λ′(A2, B2) differ in absolute value. This

contradicts the fact that (A1, B1) and (A2, B2) are k-complementary w.r.t. λ′ . Thus it is impossible that either λ′(A1, B1) or

λ′(A2, B2) is assigned by case 1.

Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 2. Without loss of generality |B1| < k, which implies |A1| =
|A2| = k and |B2| < k. This implies that λ(A1,∅) = −λ(A2,∅). But (A1,∅) � (A2,∅), so these form a k-complementary pair

for λ.
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Suppose λ′(A1, B1) is assigned by case 2 and λ′(A2, B2) is assigned by case 3. Without loss of generality |B1| < k. This
implies that λ(A1,∅) = −λ(A2, B2). But (A1,∅) � (A2, B2), so these form a k-complementary pair for λ.

Suppose λ′(A1, B1) and λ′(A2, B2) are both assigned by case 3. In this case, λ(A1, B1) = −λ(A2, B2), so these form a

k-complementary pair for λ.

Suppose λ′(A1, B1) is assigned by case 3 and λ′(A2, B2) is assigned by case 2. This is impossible because |A1| = |B1| = k,
and A1 � A2 , B1 � B2 , so |B1| = |B2| = k. ✷

For fixed parameter k, the two truncated Tucker lemmas have polynomial size propositional translations. We will only

describe the translation of the truncated Tucker lemma on Bn
k . A similar translation works for the truncated Tucker lemma

on Bn
≤k . For each (A, B) ∈ Bn

k , and for each i ∈ {±2k, . . . ,±n}, let pA,B,i be a propositional variable with the intended

meaning that pA,B,i is true when λ(A, B) = i. The following formula Ant(Ep) states that the map is total and antipodal:

∧

(A,B)∈Bn
k

∨

i∈{±2k,...,±n}

(pA,B,i ∧ pB,A,−i).

The following formula Comp(Ep) states that there exists two elements in Bn
k that are k-complementary:

∨

(A1,B1),(A2,B2)∈B
n
k
,

(A1,B1)�(A2,B2)
i∈{±2k,...,±n}

(

pA1,B1,i ∧ pA2,B2,−i

)

.

The truncated Tucker tautology Tuckernk is defined to be Ant(Ep) → Comp(Ep). (We could add an additional hypothesis, that

for each A, B there is at most one i such that pA,B,i , but this is not needed for the truncated Tucker tautologies to be

valid.) There are < n2k members (A, B) in Bn
k . Hence, for fixed k, there are only polynomially many variables pA,B,i , and

the truncated Tucker tautologies have size polynomially bounded by n. On the other hand, the propositional translation of

the octahedral Tucker lemma requires an exponential number of propositional variables in n, since the cardinality of Bn is

exponential in n.

We claim that the proof of Theorem 22 from Theorem 20 can be translated into polynomial size Frege proofs. Namely, if

all instances of the propositional translations of the truncated Tucker lemma on Bn
≤k are given as hypotheses, then there are

polynomial size Frege proofs of the propositional translations of the truncated Tucker lemma on Bn
k . These Frege proofs have

propositional variables pA,B,α indicating that λ(A, B) = α. They start by assuming that λ as encoded by these propositional

variables does not satisfy (the propositional translation of) the statement of Theorem 22. The function λ′ was defined in

terms of λ by a simple set of cases; hence there are polynomial-size formulas ϕA,B,α defining the condition λ′(A, B) = α.

Invoking the instance of Theorem 20 with the formulas ϕ , there must be a k-complementary pair (A, B) for λ′ as encoded

by the formulas ϕA,B,α . A simple case analysis using the proof of Theorem 22 now gives a complementary pair for λ as

encoded by the variables pA,B,α . This suffices to give polynomial size Frege proofs of translations of Theorem 22 from

Theorem 20.

In Section 5.1 will prove a converse to this: There are polynomial size Frege proofs of the propositional translations of

the truncated Tucker lemma on Bn
≤k given instances of the propositional translations of the truncated Tucker lemma on

B
n+2k−1
k as additional hypotheses.

We next show that the Kneser–Lovász theorem (Theorem 1) follows from the truncated Tucker lemma on Bn
k .

Proof of Theorem 1 from Theorem 22. Suppose for sake of contradiction that c :
(n
k

)

→ {2k, . . . ,n} is an (n−2k+1)-coloring

of
(n
k

)

. Let ≤ be a total order on
(n
k

)

∪ {∅} that refines the partial order �. Let (A, B) ∈ Bn
k . Define λ(A, B) as follows:

λ(A, B) =

{

c(A) if A > B

−c(B) if B > A
(6)

The map λ is clearly antipodal, so by Theorem 22, there is a pair (A1, B1) � (A2, B2) ∈ Bn
k that is k-complementary. Since

λ must assign (A1, B1) and (A2, B2) opposite signs, it must be that either A1 < B1 ≤ B2 < A2 or B1 < A1 ≤ A2 < B2 . In

the former case, c(B1) = c(A2) and in the latter case c(A1) = c(B2). Since B1 ∩ A2 = A1 ∩ B2 = ∅, in either case we have a

contradiction. ✷

We claim that, for fixed k, the above proof of the Kneser–Lovász theorem from the truncated Tucker lemma can be

translated into polynomial size constant depth Frege proofs. Recall that the propositional translations of the Kneser–Lovász

theorem (see Definition 3) used propositional variables pS,i ; by inspection, they are polynomial size and constant depth.

The propositional translations of the truncated Tucker lemma given above use variables pA,B,i , and are also polynomial

size and constant depth. Constant depth Frege proofs of the propositional Kneser–Lovász theorem from instances of the

truncated Tucker lemma are formed as follows. For A 6= B ∈
(n
k

)

and i ∈ {±2k, . . . ,±n}, define the formula ϕA,B,i to be

pA,i−2k+1 if A > B and i > 0, to be pB,−i−2k+1 if B > A and i < 0, and to be the constant False otherwise. The “−2k + 1”
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adjusts colors back to the range [m] = [n−2k+1], so this mimics the definition of λ in (6), and the formulas ϕA,B,i define a

substitution instance of the propositional truncated Tucker lemma. The Kneser–Lovász theorem for the variables pA,i follows

immediately from this instance of the truncated Tucker lemma by a simple case analysis.

5.1. Equivalence between the truncated Tucker lemmas

Theorem 23. The truncated Tucker lemma on Bn
k implies the truncated Tucker lemma on B

n−2k+1
≤k .

Proof. Let 1 < 2k ≤ n. Suppose that λ : Bn−2k+1
≤k → {1,±2, . . . ,±(n − 2k + 1)} is an antipodal map. By renaming the range

elements, we can instead write λ : Bn−2k+1
≤k → {1,±2k, . . . ,±(n−1)}. We will define λ′ : Bn

k → {±2k, . . . ,±n} as follows: For

(A, B) ∈ Bn
k ,

λ′(A, B) =











λ(A∗, B∗) if A 6= ∅ and B 6= ∅

n if A = ∅

−n if B = ∅

where A∗ = {a ∈ A : a ≤ n−2k+1}. For (A, B) ∈ Bn
k , we clearly have (A∗, B∗) ∈ B

n−2k+1
≤k . We also claim that λ′(A, B) is never

equal to 1. To prove this, suppose λ′(A, B) = 1. By the definition of λ′ , both A and B are nonempty. Thus λ(A∗, B∗) = 1 and

consequently A∗ = B∗ = ∅. This means that A and B are both subsets of {n − 2k + 2, . . . ,n}, a set of cardinality 2k − 1. But

this contradicts A ∩ B = ∅ and |A| = |B| = k.

The map λ′ is clearly antipodal by definition. By the truncated Tucker lemma on Bn
k , there are pairs (A1, B1) � (A2, B2) ∈

Bn
k such that λ′(A1, B1) = −λ′(A2, B2). We claim that λ(A1, B1) 6= n. Otherwise, λ(A2, B2) = −n, so A1 = ∅ and B2 = ∅, and

this contradicts (A1, B1) � (A2, B2). Similarly, λ(A1, B1) 6= −n. It follows that all four sets A1, B1, A2, B2 are nonempty.

Therefore, by the choice of (A1, B1) and (A2, B2),

λ(A∗
1, B

∗
1) = −λ(A∗

2, B
∗
2).

We now claim that (A∗
1, B

∗
1) � (A∗

2, B
∗
2). Since A1 ∩ B2 = ∅ and A2 ∩ B1 = ∅, we have A∗

1 ∩ B∗
2 = ∅ and A∗

2 ∩ B∗
1 = ∅. Also,

since A1 � A2 ,

(A1 ∪ A2)≤k = A2

From this we obtain

(A∗
1 ∪ A∗

2)≤k = ((A1 ∪ A2)≤k)
∗ = A∗

2.

Thus A∗
1 � A∗

2 . The same argument shows B∗
1 � B∗

2 . This establishes that (A∗
1, B

∗
1) and (A∗

2, B
∗
2) are k-complementary with

respect to λ. ✷

The proof of Theorem 23 can be translated into polynomial size, constant depth Frege proofs. In other words, the propo-

sitional translations of the truncated Tucker lemma on Bn
≤k can be proved with polynomial size, constant depth Frege proofs

if all instances of the truncated Tucker lemma on Bn
k are given as additional hypotheses. This is proved analogously to the

fact that the proof of Theorem 22 (truncated Tucker on Bn
k ) from instances of Theorem 20 (truncated Tucker on Bn

≤k) can

be translated into constant depth Frege proofs. This establishes:

Corollary 24. The propositional translations of the truncated Tucker lemma on Bn
k have (quasi-)polynomial size Frege proofs if and

only if the same holds for the truncated Tucker lemma on Bn
≤k .

6. Short eF proofs of the truncated Tucker lemma, k = 1 case

In this section we prove the k = 1 case of the truncated Tucker lemma. As we outline at the end of the paper, the

argument is formalizable as polynomial size extended Frege proofs. Note that when k = 1 the two versions of the truncated

Tucker lemma are equivalent.

Recall the partial order � of Definition 17. When k = 1, this partial order is a total order where {i} � { j} iff i ≥ j. Thus,

∅ � {n} � {n − 1} � · · · � {2} � {1}

is a complete description of � on
(n
1

)

.

Theorem 25. The k = 1 case of the truncated Tucker lemma, Tuckern1 , has polynomial size extended Frege proofs.
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The polynomial size extended Frege proofs of the k = 1 case of the truncated Tucker lemma are formed by formalizing

the argument of Lemma 26 below.

Lemma 26. Suppose n > 2 and λ : Bn
1 → {±2, . . . ,±n} is an antipodal map with no 1-complementary pairs. Then there is an antipo-

dal map λ′ : Bn−1
1 → {±2, . . . ,±(n − 1)} with no 1-complementary pairs.

Proof. Given λ satisfying the hypothesis, let ℓ = λ({n},∅). We will define an antipodal map λ′ : Bn−1
1 → {±2, . . . ,±n} \ {±ℓ}.

Let (A, B) ∈ B
n−1
1 . The value λ′(A, B) will be defined by cases:

Case 1: If (A, B) ∈ B
n−1
1 with |A| = |B| = 1, then λ′(A, B) = λ(A, B).

Case 2: If (A,∅) ∈ B
n−1
1 , then λ′(A,∅) is defined by cases:

Case 2a: If ℓ /∈ {λ(X,∅) : {n − 1} � X � A}, then define λ′(A,∅) to be λ(A,∅).

Case 2b: If case 2a does not apply, then define λ′(A,∅) to be λ(A, {n}).

Case 3: If (∅, B) ∈ B
n−1
1 , then λ′(∅, B) is defined to be −λ′(B,∅), where λ′(B,∅) has already been defined by case 2.

The map λ′ is antipodal because λ is.

Claim 27. The map λ′ never maps to ℓ or −ℓ.

The argument splits into cases:

• Suppose (A, B) ∈ B
n−1
1 , with |A| = |B| = 1. Then λ′(A, B) = λ(A, B). Since |A| = 1, {n} � A, and since B ∈

(n−1
1

)

, it

follows that {n} ∩ B = ∅. Additionally ∅ � B , and ∅∩ A = ∅. Therefore ({n},∅) � (A, B). Since λ has no 1-complementary

pairs, and λ({n},∅) = ℓ, it follows that λ(A, B) 6= −ℓ. Therefore λ′(A, B) 6= −ℓ. Because λ′ is antipodal, this also proves

λ′(A, B) 6= ℓ.

• Suppose (A,∅) ∈ B
n−1
1 , and λ′(A,∅) is assigned by case 2a. For case 2a to apply, it must be that λ(A,∅) 6= ℓ. Fur-

thermore, λ({n},∅) = ℓ, ({n},∅) � (A,∅), and the fact that λ has no 1-complementary pairs imply that λ(A,∅) 6= −ℓ.

Therefore, λ′(A,∅) = λ(A,∅) 6= ±ℓ.

• Suppose (A,∅) ∈ B
n−1
1 , and λ′(A,∅) is assigned by case 2b. This implies that there is some X ∈

(n−1
1

)

with {n − 1} �
X � A such that λ(X,∅) = ℓ. Note that {n − 1} � X implies that {n} ∩ X = ∅. Since (X,∅) � (A, {n}), it follows that

λ(A, {n}) 6= −ℓ. Since λ(∅, {n}) = −ℓ and (∅, {n}) � (A, {n}) it follows that λ(A, {n}) 6= ℓ. Thus λ′(A,∅) = λ(A, {n}) 6= ±ℓ.

• Suppose (∅, B) ∈ B
n−1
1 . Then λ′(∅, B) = −λ′(B,∅), and we have shown above that λ′(B,∅) 6= ±ℓ.

This completes the proof of Claim 27.

Claim 28. The map λ′ has no 1-complementary pairs.

We show the contrapositive. The argument splits into cases:

• Suppose (A1, B1) � (A2, B2) ∈ B
n−1
1 with |A1| = |B1| = |A2| = |B2| = 1. Then λ′(A1, B1) and λ′(A2, B2) both are assigned

by case 1. Thus,

λ(A1, B1) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, B2)

Therefore λ has a 1-complementary pair.

• Suppose (A1,∅) � (A2, B2) ∈ B
n−1
1 , with λ′(A1,∅) assigned by case 2a and λ′(A2, B2) assigned by case 1. So λ(A1,∅) =

−λ(A2, B2). Thus λ has a 1-complementary pair.

• Suppose (A1,∅) � (A2, B2) ∈ B
n−1
1 , with λ′(A1,∅) assigned by case 2b and λ′(A2, B2) assigned by case 1. So λ(A1, {n}) =

−λ(A2, B2). Since (A1, {n}) � (A2, B2), it follows that λ has a 1-complementary pair.

• Suppose (A1,∅) � (A2,∅) ∈ B
n−1
1 , with λ′(A1,∅) and λ′(A2,∅) both assigned by case 2a. So then λ(A1,∅) = −λ(A2,∅),

hence λ has a 1-complementary pair.

• Suppose (A1,∅) � (A2,∅) ∈ B
n−1
1 , with λ′(A1,∅) and λ′(A2,∅) both assigned by case 2b. So then λ(A1, {n}) =

−λ(A2, {n}), hence λ has a 1-complementary pair.

• Suppose (A1,∅) � (A2,∅) ∈ B
n−1
1 , with λ′(A1,∅) assigned by case 2a and λ′(A2,∅) assigned by case 2b. Thus,

λ(A1,∅) = λ′(A1, B1) = −λ′(A2, B2) = −λ(A2, {n})

and since (A1,∅) � (A2, {n}), it follows that λ has a 1-complementary pair.
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• Suppose (A1, B1) � (A2,∅) ∈ B
n−1
1 where |A1| = |B1| = 1. This impossible, because B1 � ∅, and no set of cardinality 1

precedes the emptyset under the partial order �.

• Suppose (A1,∅) � (A2,∅) ∈ B
n−1
1 , and λ′(A1,∅) is assigned by case 2b and λ′(A2,∅) is assigned by case 2a. Then there

exists an X ∈
(n−1

1

)

such that {n − 1} � X � A1 and λ(X,∅) = ℓ. Since A1 � A2 , it follows that {n − 1} � X � A2 . This

implies that λ′(A2,∅) is not assigned by case 2a, so this case is impossible.

• Suppose (A1,∅) � (∅, B2) ∈ B
n−1
1 . This is impossible, because A1 � ∅ implies that A1 = ∅, but (∅,∅) /∈ B

n−1
1 .

• The remaining cases involving case 3 of the definition of λ′ follow from above, using the fact that if (A1, B1) � (A2, B2)

form a 1-complementary pair, then (B1, A1) � (B2, A2) also form a 1-complementary pair.

This completes the proof of Claim 28. Claims 27 and 28 suffice to prove Lemma 26. ✷

We are now ready to sketch the proof of polynomial size extended Frege proofs of Tuckern1 .

Proof of Theorem 25. To give an extended Frege proof of Tuckern1(Ep), where Ep is a set of propositional variables encoding

a map λ, we use the extension rule to introduce new variables Ep′ to encode λ′ as in Lemma 26. It is straightforward to

see that the definition of λ′ from λ can be carried out by polynomial size formulas. Furthermore, there are polynomial size

proofs of ¬Tuckern1(Ep) → ¬Tuckern−1
1 (Ep′), namely they formalize the argument of Lemma 26. This process is repeated, using

the extension rule to introduce new propositional variables each round, until the proof reaches ¬Tucker21(Ep
′′). From here,

the extended Frege proof concludes with a constant size proof of Tucker21(Ep
′′). ✷

Question 29. Do the propositional translations of the truncated Tucker lemma for k > 1 have short (extended) Frege proofs?
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[16] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Q. J. Math., Oxford Second Ser. 12 (1961) 313–320.

[17] P. Frankl, Z. Füredi, Non-trivial intersecting families, J. Comb. Theory, Ser. A 41 (1) (1986) 150–153.

[18] R.M. Freund, M.J. Todd, A constructive proof of Tucker’s combinatorial lemma, J. Comb. Theory, Ser. A 30 (1981) 321–325.

[19] A.J.W. Hilton, E.C. Milner, Some intersection theorems for systems of finite sets, Q. J. Math., Oxford Second Ser. 18 (1967) 369–384.

[20] P. Hrubeš, I. Tzameret, Short proofs for determinant identities, SIAM J. Comput. 44 (2) (2015) 340–383.
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