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Abstract. We studied with the Lugiato–Lefever spatiotemporal formalism the
existence, formation and dynamics of solitons in non-linear Kerr micro-resonators.
For anomalous and normal dispersion we find di↵erent types of solitons, bright and
dark respectively. We have determined the region of existence and stability for both
types of structures and have studied the introduction of third order dispersion which
gives a velocity to the solitons and stabilises them. In the normal GVD regime, we
could not find the recently proposed flat top solitons. Ideas why this is the case are
discussed.
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1. Introduction

Optical-frequency combs have shown many applications in metrology, spectroscopy,

optical clocks or sensing [1]. For years they have been generated by means of trains of

ultra-short laser pulses. Lately, combs generated with micro-resonators (micro-combs)

have attracted a lot of interest, in part, due to their potential on-chip integration [2].

These micro-combs are normally produced when a Kerr micro-resonator is pumped with

a continuous-wave (CW) laser, leading to the generation of spectral side-bands through

four wave mixing (FWM) cascade. They have been experimentally demonstrated

in silica microtoroidal resonators [3, 5], in MgF2 resonators [4] or nitride microring

resonators [6]. Micro-combs are used during several hours and are expected to remain

invariant during this time period. These requirements are fulfilled by dissipative solitons.

The goal of this work is to gain a deeper insight into the variety of steady solutions,

i.e., soliton combs, in a micro-ring.

2. Modal expansion and the Lugiato-Lefever limit

A powerful way of describing the light evolution in the intracavity relies on expanding

the so called modal expansion approach [7] since this method is valid for any micro-
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resonator geometry. Such approach leads to the time-evolution equation for each mode

amplitude. Following [8], we can express the spatio-temporal slowly varying envelope

of the total field as the discrete inverse Fourier transform of these modal amplitudes,

arriving to a modification of the Lugiato-Lefever equation [9], that is a continuous model,

which reads:
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Figure 1: a) Sketch of the driven micro-ring resonator. b) Normalised transmission

versus the cavity modal number. Vertical red line marks the frequency of the external

driving

Equation (1) describes the propagation in time of the intracavity field dynamics

 (t, x), in the driven micro-ring sketched in figure 1 a). The time t is normalized

normalised to roundtrip units, ⌧ , x is the periodic coordinate along the micro-ring in

the moving frame with the group velocity, v
gr

, at the pump frequency, !
p

. The terms

v, B2 and B3, account for velocity drifts from v

gr

, the group velocity dispersion (GVD),

and third order dispersion (TOD) terms of the micro-ring. They contain contributions

of geometrical and material dispersion and are given by B

q
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), here �

p

is the propagation constant of the pump, R is the

cavity radius. The non-linear term | |2  in equation (1) accounts for the third order

non-linear e↵ects parametrised by the third order susceptibility �

(3), of the micro-

ring. Dissipation of the system is accounted for by the dimensionless photon lifetime

� = ⌧!

p

Q

�1, where Q is the quality factor of the micro-ring. � ⌘ (!0 � !

p

) ⌧ is

the normalised cavity detuning between the pump frequency and the nearest cavity

resonance, !0. With this normalised detuning, the free spectral range (FSR) becomes

�

FSR

= 2⇡. Finally, h is the coupled pump strength. In figure 1 b) we can see

a sketch of the cavity resonances where l labels the di↵erent modes. Equation (1)

admits localised stationary solutions, or solitons, where the Kerr non-linearity and pump

counter-balance di↵raction and losses. Equation (1) is invariant to the transformation

{t, x, , �, �, h} ! {ta, x
p
a, 

p
a, �/a, �/a, ha

�3/2}. Setting a = � we get rid of one

parameter (i.e. � = 1 unless stated otherwise) and so, we can take as control parameters

the losses, �, and the pump, h.
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3. Numerical methods

In this section we describe the numerical tools used to find stationary solutions and to

study their stability and dynamics.

3.1. Stationary Solutions

Soliton solutions are sought in the form @

t

 

s

= 0. To find them we use an iterative

Newton-like (relaxation) method. The assumption at the core of the method is that

the solution,  
s

, characterised by its velocity, v

s

, is well described by { 
s

, v

s

} =

{ 
g

, v

g

}+{� , �v}, where { 
g

, v

g

} are the guesses and {� , �v} small corrections. Thus

the linearised equation for � and �v reads:
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implement the derivatives as five point stencil finite di↵erent matrices [10]. Equation

(2) is a system of 2N
x

equations, while we have 2N
x

+ 1 unknowns if v 6= 0. When

the system is underdetermined (i.e., when v 6= 0), we reduce in one the number of
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. The input

guess is updated with the obtained corrections, and the process is repeated until
�!
� and

�v are zero at machine precision.

3.2. Stability Analysis

In order to study the stability of our numerical solutions, we analyse the associated

growth of small perturbations ✏ = a (x, y) e�t + b

⇤ (x, y) e�
⇤
t, |✏| ⌧ | 

s

|. By substituting

the perturbed field  
s

+ ✏ into equation (1) and linearising in ✏ we obtain the eigenvalue

problem:
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. For stable solutions

 

s

, we will find an exponential decay of all the perturbations, i.e. Re{�} 6 0, 8� in the

spectrum of Ĝ, therefore they propagate with strictly stationary profiles [cf. figure 3

b) and figure 6 b) for t > 50]. For unstable solutions, there will be typically a pair of

Hopf eigenvalues with Re{�} > 0 associated to growing internal modes of the soliton

(see discussion in section 5). Although linear stability analysis accurately predicts when
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Figure 2: 1D HSSs and their stability for � = 1, B3 = 0 and . a) For normal dispersion

B3 = �1 and b) for anomalous dispersion B3 = 1. c) Gain spectrum Re{�} of HSSs

and d) Im{�} for � = 0.1.

solutions are unstable, it cannot provide information about the dynamics far from the

unperturbed state. That information is obtained via numerical propagation simulations,

described below.

3.3. Time evolution

Propagations are carried out by the Split-Step pseudospectral method (see e.g. [11])

with a small variation to take pump into account. We rewrite equation (1) as

@

t

 =
⇣
D̂ + i2 | |2 + i

h

 

⌘
 , where D̂ ⌘ i (B3@

2
x

� iB3@
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+ i� � �) is the linear part.

The introduction of the pump term in this way is in general potentially problematic

as the term h/ becomes singular for | | ! 0. However this is not problematic for

us since our study is focused around stationary solutions that we know that have non

null modulus. This is due to the external pump itself that excites the field inside the

cavity and forces it to be di↵erent from zero. Comparisons with the slower Runge-Kutta

methods confirm this statement.

4. The Homogeneous Steady State and its stability

Solitons in driven micro-cavities are embedded in a background field set by the external

pump [cf. figure 4 c) and figure 6 c)]. The stability of this background is therefore

crucial for solitons and is analysed in first place. The amplitude of the background or

Homogeneous Steady State (HSS) can be found from the relation h

2 = 4 | |6�4� | |4+
(�2 + �

2) | |2 which is straightforward from equation (1). This bicubic polynomial has

three roots | |2, if � < �/

p
3, exhibiting the so called bistable behaviour. When

performing the linear stability analysis with a perturbation ✏ = ae

i�kx+�t + b

⇤
e

�i�kx+�⇤t

as described in (section 3.2) we obtain the stability charts shown in figure 2 a) for

normal GVD and figure 2 b) for anomalous GVD. In both cases, we can see three

di↵erent regions: stability, flat instability (FI) together with modulational instability
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Figure 3: a) Stability and existence chart of the soliton family  �. b) Stable soliton

generation via MI for � = 0.2 and h = 0.15. c) Time propagation continuation of b) for

the breathing solitons with � = 0.13. d) Spectrum of b) at t = 8 (left axis) and MI gain

(right axis).

(MI), and MI alone. For the FI, the perturbations have an exponential growth for

�k = 0 (i.e. for flat perturbations), so the HSS itself will contribute to the growth of

the perturbations and therefore these solutions are intrinsically unstable. MI is an e↵ect

resulting from highly e�cient FWM where two pump photons are transformed into two

sideband photons through the Kerr nonlinearity [1], and therefore perturbations grow

at �k 6= 0 values (i.e. for modulated perturbations). For normal dispersion [cf. figure 2

a)] MI appears in the lower branch for a finite range of � (from � = 0 to � ⇡ 0.477)

while for the anomalous case [cf. figure 2 b)] it appears for � 2 R�0. In figure 2 c)

and d) we see an example of the gain spectrum, Re{�} and Im{�} versus power of the

HSS for anomalous dispersion, � = 0.1 and B3 = 0. The two dashed lines delimit the

bistable region, where FI and MI coexist. The black curves in figure 2 c) and figure 2

d) mark the instability thresholds Re{�} = 0. We note that the eigenvalues rising the

instabilities have Im{�} = 0, meaning that the growing perturbations oscillate at the

pump frequency, together with the HSS.

5. Anomalous GVD: Bright Solitons

For B3 = 1, � = 0 and B3 = 0, equation (1) admits a pair of soliton solutions  ±

[12]. Below, we focus on the  � family since  + is unstable for � 6= 0. Taking  � as

initial guess, we built the existence and stability chart shown in figure 3 a) by means

of the simulations outlined in section 3.1, hence reproducing the results in [12]. In this

figure we can see that, typically, instability regime is achieved by decreasing losses, � or

increasing pump, h. For the region where MI coexist with stable HSSs [cf. figure 2 b)],

HSSs with MI can be used to excite stable solitons nested in the stable lower HSSs, as

shown in figure 3 b) for � = 0.2 and h = 0.15, for t < 10 (see below). This parameters

are just above the Hopf threshold in figure 3 a), marked with a green dot. Therefore,

if � is decreased to � = 0.13 (blue dot in figure 3 a)) the solitons become unstable and

exhibit breathing behaviour as showed in figure 3 c). To illustrate the role of MI in the
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Figure 4: a) Spectrum of in the complex plane for h = 1 and � = 0.018. The red

dashed line indicates Re{�} = �� b) Maximum growth rate, Re{�}, and Im{�} as a

function of � for h = 1. c) Soliton profile. d) Normalised Neutral mode (top) and hopf

(bottom) modes.

soliton generation, we ploted in figure 3 d) the spectrum of the first stages (t = 8) of

the propagation shown in figure 3 b). We have displayed the computed side lobes of

the gain spectrum as the black dashed curve (see right axis) and the intracavity field

spectrum as vertical bars, corresponding to the comb lines (see left axis). The transition

from stable to unstable solitons is associated to a Hopf bifurcation in the spectrum of Ĝ

[cf. equation (3)]. In figure 4 a) we show the spectrum of Ĝ for � = 0.018 and h = 0.1,

corresponding to an unstable soliton. Instability is therefore characterised by the pair

of complex eigenvalues with Re{�} > 0 ad Im{�} 6= 0. Having a non-zero imaginary

part makes the instability grow at di↵erent frequencies than the pump. This results in a

breathing of the soliton amplitude and width in time, for unstable solitons. In figure 4 a)

we also see an eigevalue at (0, 0). Equation (3) always has this zero eigenvalue associated

to the eigenfunction
��!
@

x

 that corresponds to the neutral mode. In figure 4 b) we trace

the Hopf eigenvalues versus � and see how they detach from Re{�} = �� (dashed

line) when � is reduced. In figure 4 c), d) and e) we have represented the soliton, the

neutral and the Hopf modes respectively. Because the neutral mode is proportional to

the space derivative of the soliton, ✏
N

/ @

x

 , such mode is associated to small spatial

translations. From the Hopf modes we see that these modes are localised in the soliton

but their tails exhibit a slower decay to the HSS than the soliton. That is why in figure 3

c), when the solitons become unstable they start to interact with each other repulsively

or attractively. This interaction induces them a small velocity in the frame defined by x.

Since we know that solitons, no matter whether they are stable or unstable, have zero

velocity, we can conclude that the normal mode is also excited and is responsible for

the small drift they su↵er. Once the number of unstable solitons is reduced, (t > 1300

in figure 3 c)), they don’t see each other and recover the zero drift propagation.

From equation (1) we can extract some useful information about the solitons

of the system from the power integral P ⌘
R

L

0 | |2 x and the mean momentum

hki ⌘
R

L

0  ̃k ̃dk/P whose evolution, according to equation (1), are given by
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@

t

P = �2�P + 2h

Z
L

0

Im{ }dx and @

t

hki = �2h hki
P

Z
L

0

Im{ }dx. (4)

Stable solitons have, by definition of stationary solution, @
t

P = 0 and @
t

hki = 0.

From the first condition we observe that since the losses, �, power, P and pump , h are

positive quantities, the imaginary part of the soliton Im{ } integrated over the micro-

resonator has to be always positive for � > 0, or zero for the undamped case, � = 0. We

also corroborate the intuitive thought that if the system has losses we need an external

pump in order to get solitons. The evolution of hki can be simplified (by combining

both expressions in equation (4)) for stationary solutions as @
t

hki = �2� hki. We can

extract two important facts from this equation. First, for a lossy medium the mean

momentum has to be zero, i.e. the soliton is locked to the external pump. For realistic

micro-resonators this will always be like that, since we can not achieve perfect � = 0.

Second, for fields not locked to the pump, the system will end up locking them since

hki = 0 is a sink point.

When considering a micro-resonator whit TOD, B3 6= 0 [i.e., if we move the pump

frequency close to the zero GVD point] we can find radiating bright solitons. The

space profile and spectrum of these solitons are no longer symmetric and so they have

a constant velocity. This is because emission of the radiating tail produces spectral

recoil [13] in order to fulfil @
t

hki = 0 and therefore the carrier frequency of the soliton

is shifted from the pump. We can see both the space profile of stable radiating soliton

in figure 5 a) and its associated spectrum in figure 5 b). From the latter, we see the

new peak that appears due to the radiation of the soliton at k

x

⇡ 0.43 and how the

soliton spectrum around the pump gets modified and su↵ers the recoil to the left from

k

x

= 0 to k

x

= �0.05. When taking B3 as the control parameter, we can see how the

introduction of the TOD induces a velocity of the soliton due to the k

x

= �0.05. This

e↵ect is shown in figure 5 c). The introduction of TOD has also proved to stabilise

bright solitons [15, 16, 17]. This e↵ect is shown in figure 5 d) where we can see the

real part of the Hopf eigenvalues as a function of the TOD coe�cient. We see how the

growth rate Re{�} e↵ectively decreases for larger B3. We have seen that high losses,

�, stabilise the soliton [cf. figure 3 a)]. The radiating tail is extracting energy from the

soliton, just as the losses, �, so for unstable solitons with no TOD, the introduction of

B3 induces an extra energy loss that gets to stabilise them. In the simulations we have

increased B3 to 0.5, but [15, 14] show that bright solitons and dark solitons can exist

for B3 ! inf.

6. Normal GVD: Dark Solitons and platicons

Dark solitons are a di↵erent type of structures that can be found in micro-resonators with

normal GVD. These solitons are nested in the stable upper HSS and form a localised dip

in the power of the field. Dark solitons are expected to exist when the higher and lower
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Figure 5: a) Space profile of stable radiating bright soliton for B3 = 1, � = 0.2388 and

h = 0.2388. b) Spectrum of a). c) Velocity of the soliton as a function of B3 and d)

growth rate Re{�} as a function of B3.

HSSs are stable. These structures have shown to exist as a snaking connection branch

between the two stable HSSs [18]. We were able to excite a dark soliton by going to the

region of small � and h and propagating an upper HSS state with a broad dip. From

this soliton we built the stability and existence chart of its family just as for the bright

soliton  �. We see in figure 6 a) that the region of existence of these dark solitons gets

drastically reduced compared to one for the bright solitons. In figure 6b) we show the

time propagation of a stable dark soliton and the continuation of the propagation for a

lower � in order to destabilise it (analogously to figure 3 c) ). We see how the breathing

behaviour also appears for dark solitons. We have studied the fundamental dark solitons,

with one oscillation in its dip since it is the family with the largest existence region [18].

In figure 6 c) we plot the fundamental soliton (red), and two higher order ones (black,

yellow). Dashed horizontal lines mark the higher and lower stable HSSs. We see how

these families are nested in the higher branch, and the dips tend to the lower HSS.

Figure 6: a) Stability and existence chart of the fundamental dark soliton. b) Time

propagations of a stable dark soliton for � = 0.213 and h = 0.23 for t = [0, 50) and for

an unstable one for � = 0.19 for t = [50, 150]. c) Di↵erent families of dark solitons for

stable parameters of b) with 1 (red), 3 (black) and 5 (yellow) oscillations. Dashed lines

correspond to the two stable HSS. d) Time propagation of an hypotetical platicon for

� = 1, h = 4 and � = 10.
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Another structures that have been reported are flat-top pulses called platicons

[19, 20]. In order to understand this structures we have to take into account the

switching waves (SWs). This waves are travelling states that connect the stable higher

and lower HSSs. Because of periodicity of the micro-resonator, this waves have to go

in pairs. The SW have a monotonically slope from the higher state while they end

in the lower state in an oscillatory way [18]. These states can help us to understand

dark solitons. Dark solitons are the connection of two SWs that get coupled with each

other by their oscillating tails in the lower HSS, as clearly seen from figure 6 c) [18].

Platicons are conceived as ’complementary’ to dark solitons, i.e. 2 SWs are linked by

the higher HHS. However, some authors recently pointed at that such bonding of SWs

can be di�cult, if not impossible, because the SWs top state ha no oscillations. We

have studied these platicons in propagation, as shown in figure 6 d). Su�ciently long

simulations always revealed repulsion or collapse of the SWs. In addition, the stationary

solution solver (from Section 3.1) always diverge. Therefore, a conclusion of our study

is that such states seem not to exist, at least in the context of equation (1) with B3 = 0.

7. Conclusions

In this work we have studied the basic properties of the one dimensional micro-ring

soliton combs in the normal and anomalous GVD regimes. We have analysed their

existence and stability features, in particular we found that instabilities in this system

are triggered by the growth of Hopf instability, associated to the growth of soliton

internal modes. We have also analysed the stability of the background flat states of the

cavity which is crucial for solitons. In addition we studied the e↵ect of the radiation

induced by TOD to bright solitons and how this stabilises them. Finally we attempted

to investigate the recently proposed bright solitons in the normal GVD, the so called

platicons. Even if this structures might seem to exist in the numerical propagation

simulations, exact computation of this states always diverged.
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