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Nowadays HPC systems experience a disruptive moment with a variety of novel architectures and frame-
works, without any clarity of which one is going to prevail. In this context, the portability of codes across
different architectures is of major importance. This paper presents a portable implementation model
based on an algebraic operational approach for DNS and LES of incompressible turbulent flows using
unstructured hybrid meshes. The strategy proposed consists in representing the whole time-integration
algorithm using only three basic algebraic operations: sparse matrix-vector product, a linear combina-
tion of vectors and dot product. The main idea is based on decomposing the non-linear operators into
a concatenation of two SpMV operations. This provides high modularity and portability. An exhaustive
analysis of the proposed implementation for hybrid CPU/GPU supercomputers has been conducted with
tests using up to 128 GPUs. The main objective consists in understanding the challenges of implementing
CFD codes on new architectures.

Keywords: Portability, Heterogeneous Computing, GPU, MPI+CUDA, OpenCL, sliced ELLPACK,
CFD code

1. Introduction

The pursuit of exascale has driven the adoption of new parallel models and architectures into HPC
systems in order to bypass the power limitations of the multi-core CPUs. The last prominent trend
has been the introduction of massively-parallel accelerators used as math co-processors to increase
the throughput and the FLOPS per watt ratio of the HPC systems. Such devices exploit a stream
processing paradigm that is closely related to single instruction multiple data (SIMD) parallelism
of the vector registers in the modern multi-core CPUs. The problem that the CFD community has
to face is the variety of competing architectures and frameworks without any clarity of which one
is going to prevail. This level of uncertainty and the complexity of porting scientific codes make
the decision of adopting a specific computing paradigm a risky decision. The traditional anatomy
of an incompressible CFD algorithm consists of two parts: the solution of the Poisson equation,
and the explicit part which is based on stencil data structures to sweep the mesh and operate on
scalar fields that represent physical variables. The first one can be considered as an independent
algebraic module, while the latter is generally the most complex in terms of portability because
it is tightly linked with the overall structure of the code. The effort of porting a source code is
far from trivial, since it consists in rethinking and rewriting thousands of lines. The idea is to
develop an implementation model that allows to separate the application logic from the particular
system architecture. Another key point is that if an algorithm naturally fits stream processing, the

∗Corresponding author. Email: cttc@cttc.upc.edu

1



October 20, 2017 International Journal of Computational Fluid Dynamics article

most restrictive paradigm at the bottom level, then it will work well on upper levels (shared and
distributed memory MIMD parallelization) and, it will work well on GPUs, MICs, and CPUs. This
leads to a conclusion that a fully-portable algorithm must be composed only of operations that are
SIMD-compatible.
Taking into account this diversity of frameworks and architectures, and the increasing complexity

of programming models, the idea proposed in this paper is that the algorithm must: 1) only
consist of operations compatible with stream processing (portability); 2) rely as much as possible
on a minimal set of common linear algebra operations with standard interfaces (modularity); 3)
the Poisson solver is considered as a black-box, linked with highly optimized libraries, or must
be comprised by operations in agreement with the aforementioned points. This maximizes the
independence of the implementation from a particular computing framework.
The algorithm for modeling of incompressible turbulent flows on unstructured meshes presented

in this paper is based on only three linear operators: 1) the sparse matrix-vector product (SpMV);
2) the dot product; 3) the linear combination of vectors y = αx+y (referred as AXPY in the BLAS
standard nomenclature). This way, the problem of porting the code is reduced just to switching
between existing implementations of these operations. The novelty of our approach relies upon
the treatment of the non-linear operator of convection (and also diffusion in case LES is used).
The proposed strategy consists in rewriting them as a concatenation of two sparse matrix-vector
products.
For the sake of simplicity for the Poisson equation we use a preconditioned conjugate gradient

(PCG) solver with the Jacobi preconditioner which fits the requirements of the algebraic operations.
We can afford such a simple solver because the CFD algorithm uses an explicit time integration
which implies a small time step. As a consequence, the pressure field and, respectively, the right-
hand-side of Poisson equation doesn’t change a lot within one time step. Therefore, using solutions
from previous time steps as an initial guess helps notably to speedup the solution process.
It must be noted that the PCG with the SAI preconditioner only needs an SpMV operation on

the solution stage, so it can be easily used in the proposed implementation approach. Furthermore,
according to our experience (Oyarzun (14)), SAI can improve notably the solver performance
especially in cases when more accurate solution of the Poisson equation is required.
Then, in order to prove its applicability, our portable approach has been implemented for hybrid

supercomputers with GPU co-processors and standard multi-core systems. This has allowed us
to carry out a detailed comparative performance analysis. This study aims at understanding the
challenge of running CFD simulations on hybrid CPU/GPU supercomputers, and forming some
fundamental rules to attain the maximal achievable performance. The Minotauro supercomputer
of the Barcelona Supercomputing Center has been used for performance tests. The CUDA platform
was chosen for implementing the main algebraic kernels. We use our in-house SpMV implemen-
tations optimized for the specific sparsity patterns that appear in the algorithm. The cuSPARSE
library for CUDA also provides the necessary linear algebra operations. It was used as a reference
for performance comparison and appeared to have slightly lower performance than the in-house
SpMV versions (Oyarzun (14)). To ensure the portability of our kernels we have also made equiva-
lent OpenCL implementations derived from CUDA in a very straightforward way and no significant
changes in performance were observed.
Asynchronous communications overlapped with computations on accelerators are used for host-

device and MPI data transfers. Scalability tests engaging up to 128 GPUs were performed and the
results have been directly compared with executions on the same number of 6-cores CPUs. Finally,
it is demonstrated that the overall performance of our CFD algorithm can be precisely estimated
by analyzing only the parallel performance of the three basic algebraic kernels individually.
Regarding the related works, an early attempt of using GPU for CFD simulations is described

in (Micikevicius (09)), where a CUDA implementation of a 3D finite-difference algorithm based on
high-order schemes for structured meshes was proposed. Other examples of simulations on GPU
using structured meshes can be found in (Alfonsi (11); Elsen (08)). However, these works focused
only on a single-GPU implementation and rely on structured stencil data structures. OpenCL
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implementations of such a class of algorithms for single GPU can be found, for instance, in (Rossi
(13)), where a novel finite-element implementation based on edge stencils is presented, and in
(Soukov (12)), where a set of basic CFD operations based on high-order schemes is studied.
Within the class of multi-GPU CFD implementations, a successful example of a high-order finite

difference approach with a level set model for simulating two-phase flows can be found in (Jacobsen
(13)). In addition, a Hybrid MPI-OpenMP-CUDA 3D solver is presented in (Zaspel (13)). Both
implementations are restricted to structured grids. Some efforts for porting unstructured CFD
codes to multi-GPU were conceived by porting only the most computational intensive parts of
the algorithm (Poisson equation), as explained in (KhajehSaeed (13); Oyarzun (14)). Although,
this methodology fails to attain the maximum of GPU potential because of Amdahl’s law limita-
tions. Finally, DNS simulation using unstructured meshes and multi-GPU platforms were shown
in (Kampolis (10); Asouti (10)). The strategy adopted there was based on a vertex-centered finite
volume approach including a mixed precision algorithm. Nevertheless, in all the mentioned exam-
ples the overall implementation seems to be tightly coupled with the framework it relies upon.
Therefore, portability of those codes requires a complex procedure and large programming efforts.
In contrast, the present paper focuses on a fully-portable implementation approach for a CFD
algorithm, targeting any computing architecture or mesh type.
The rest of the paper is organized as follows: Section 2 describes the math background for the

numerical simulation of incompressible turbulent flows; in Section 3 the portable implementation
model based on algebraic operations is described; Section 4 focuses on its implementation on hybrid
systems engaging both CPU and GPU devices; numerical experiments on the Minotauro super-
computer of the Barcelona Supercomputing Center are shown in Section 5; and, finally, concluding
remarks are stated in Section 6.

2. Math model and numerical method

The simulation of a turbulent flow of an incompressible Newtonian fluid is considered. The flow
field is governed by the incompressible Navier-Stokes equations written as:

∇ · u = 0, (1)

∂u

∂t
+ (u ·∇)u = −∇p+ ν∇2u (2)

where u is the three-dimensional velocity vector, p is the kinematic pressure scalar field and ν is
the kinematic viscosity of the fluid.
In an operator-based formulation, the finite-volume spatial discretization of these equations reads

Muc = 0c, (3)

Ω
duc

dt
+C(us)uc +Duc +ΩGpc = 0c, (4)

where uc and pc are the cell-centered velocity and pressure fields, 0c is the discrete collocated
field with zero in each component, us is the velocity field projected to the faces’ normals, Ω is a
diagonal matrix with the sizes of control volumes, C(us) and D are the convection and diffusion
operators, and finally, M and G are the divergence and gradient operators, respectively. In this
paper, a second order symmetry-preserving and energy conserving discretization is adopted (Trias
(14)): the convective operator is skew symmetric, C(uc) + C(uc)

∗ = 0, the diffusive operator is
symmetric positive-definite and the integral of the gradient operator is minus the adjoint of the
divergence operator, ΩG = −M∗. Preserving the (skew-) symmetries of the continuous differential
operators has shown to be a very suitable approach for accurate numerical simulations (Verstappen
(03); Lehmkuhl (14); Rodriguez (11, 15)). For the temporal discretization, a second order explicit
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Adams-Bashforth scheme is used, and the fully-discretized problem reads

Ω
un+1
c − un

c

∆t
= R

(
3

2
un
c − 1

2
un−1
c

)
+M∗pn+1

c , (5)

Mun+1
c = 0c, (6)

where R(uc) = −C(us)uc −Duc. The pressure-velocity coupling is solved by means of a classical
fractional step projection method (Chorin (68)). In short, reordering Eq. 5 is obtained the next
expression for un+1

c

un+1
c = un

c +∆tΩ−1

(
R

(
3

2
un
c − 1

2
un−1
c

)
+M∗pn+1

c

)
. (7)

Then, substituting this into Eq. 6, leads to a Poisson equation for pn+1
c ,

−MΩ−1M∗pn+1
c = M

(
un
c

∆t
+Ω−1R

(
3

2
un
c − 1

2
un−1
c

))
, (8)

which must be solved once per time-step. The left hand side of (8) is the discrete Laplace operator,
L = −MΩ−1M∗, which is symmetric and negative definite.
At each time step, the non-linear convective operator is re-evaluated according to the velocity

at the faces of the control volumes, C(us). In our collocated scheme the evaluation of the velocity
at the faces is based on (Jofre (14)). Two additional operators are required: Γc→s to project a
cell-centered vector field to the faces’ normals; and Gs, to evaluate the gradient of a face-centered
scalar field. The evaluation of us reads:

us = Γc→su
n+1
c −∆t

(
Gsp

n+1
c − Γc→sg

n+1
c

)
(9)

where gn+1
c is the cell-centered pressure gradient field.

In addition, when the LES model is activated, the viscosity at the faces νs needs to be updated at
each time-step according to the turbulence eddie viscosity at faces νts. As a result, the diffusive term
becomes a non-linear operator that also needs to be re-evaluated at each time-step as D(νs). The
computation of νts = K(uc), where K denotes the contribution of a turbulence model, requires the
calculation of the velocity gradients to construct the tensor operators, and, depending of the LES
model, perform certain tensor operations. Various modern LES models fit this approach, including
Smagorinsky, WALE, QR, Sigma, S3PQR. For instance, the WALE model used in the numerical
experiments is defined as follows:

νts = (cwalel)
2 (V : V)3/2

(S : S)5/2 + (V : V)5/4
(10)

where cwale is the model constant, here cwale = 0.325, l is the length of the filter, S is the filtered
strain-of-rotation tensor, and V is the traceless symmetric part of the square of the velocity gradient
tensor. The viscosity is recalculated each iteration as νn+1

s = νs + νn+1
ts , consequently the diffusion

operator is updated (for details about models see, for instance, (Trias (15)) and references therein).
Further details on this integration method and some options for the definition of the discrete
operators can be found in (Trias (14); Jofre (14)). The overall time-step algorithm is outlined in
Algorithm 1.
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Algorithm 1 Time integration step

1: Evaluate the predictor velocities: up
c = un

c +∆tΩ−1
(
R( 3

2
un
c − 1

2
un−1
c )

)
(R evaluated according to us and νs)

2: Solve the Poisson equation: Lpn+1
c = 1

∆t

(
Mup

c

)
3: Correct the centered velocities: gn+1

c = Gpn+1
c , un+1

c = up
c −∆t(gn+1

c )

4: Calculate the velocities at the faces: us = Γc→su
n+1
c −∆t

(
Gsp

n+1
c − Γc→sg

n+1
c

)
5: Calculate the eddie viscosity (if LES used): νt

n+1
s = K(un+1

c ), νn+1
s = νs + νt

n+1
s

6: Calculate ∆t based on the CFL condition: ∆t = CFL(un+1
c )

3. Operational algebraic implementation approach

Leaving aside the linear solver, the most common form of implementing a CFD code is by using
stencil data structures. This is how it is arranged our CFD code, TermoFluids (Lehmkuhl (07);
Borrell (16)), that is an object-oriented code written in C++. TermoFluids includes a user-friendly
API to manage the basic discrete operations of the geometric discretization. This API is used on
the pre-processing stage to generate stencil raw data structures, storing in a compact form the
geometric information required by the numerical methods. On the time integration phase, where
most of computing time is spent, computations are based on sweeping through the stencil arrays
and operating on scalar fields that represent physical variables. Using raw flattened stencil data
structures, rather than higher-level object-oriented intuitive API, optimizes the memory usage and
increases the arithmetic intensity of the code resulting in higher performance. In this paper we
present a new implementation approach where stencil data structures and stencil sweeps are re-
placed by algebraic data structures (namely, sparse matrices) and purely algebraic kernels (SpMV).
The high-level abstractions based on object-oriented programming are the same but the data struc-
tures at the bottom layer, used to accelerate the time integration phase, are sparse matrices stored
in compressed formats instead of stencil arrays. Both implementations are equivalent in terms of
the physical results and very similar in terms of performance. However, with the algebraic approach
a perfect modularity is achieved since the code is mainly reduced to three algebraic kernels: the
sparse-matrix vector product (SpMV), the linear combination of two vectors (denoted “AXPY”
in the BLAS standard) and the dot product of two vectors (DOT). In the numerical experiments
section it is shown how these three kernels represent more than 95% of the computing time. As a
result, the portability of the code becomes also straightforward since we need to focus only on the
three algebraic kernels.
The linear operators that remain constant during all the simulation can be evaluated as a sparse-

matrix vector product in a natural way. For the non-linear operators, such as the convective term,
the sparsity pattern remains constant during all the simulation but the matrix coefficients change.
For these operators, we have followed the strategy of decomposing them into two SpMV: the first
product is to update the coefficients of the operator, and the second to apply it.
In particular, the coefficients of the convective operator are updated at each time step according

to us. If Nf is the number of mesh faces, us is a scalar field living in RNf . On the other hand, in
practice, the coefficients of the convective term are stored in a one-dimensional array of dimension
Ne, where Ne is the number of non-zero entries in C(us). The arrangement of this array depends
on the storage format chosen for the operator. Under these conditions, we define the evaluation of
C(us) as a linear operator EC : RNf 7→ RNe , such that:

C(us) ≡ ECus. (11)

Therefore, the evaluation of the non-linear term, C(us)uc, results on the concatenation of two
SpMV. In particular, the definition of EC for the sliced ELLPACK (Monakov (10)) storage format
used in this paper is presented in Section 4.
In an analogous way, when the LES model is activated, the coefficients of the diffusive term need
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Step of Algorithm 1 SpMV axpy dot extras
1 - predictor velocity 8 6 0 0
2.1 - Poisson equation (r.h.s) 3 1 0 0
2.2 - Poisson equation (per iteration) 2 3 2 0
3 - velocity correction 3 3 0 0
4 - velocity at faces 7 0 0 0
5 - eddie viscosity (optional) 9 0 2 1
6 - CFL condition 0 0 0 1
Total outside Poisson solver 30 10 2 2

Table 1. Number of times that each basic operation is performed in the numerical algorithm

to be updated according to νs. Therefore, the evaluation of the diffusive operator is performed as
a linear map ED : RNf 7→ RNe , such that:

D(νs) ≡ EDνs. (12)

This strategy allows the evaluation of the non-linear operators by calling two consecutive SpMV
kernels with constant coefficients, without adding new functions to the implementation. Table 1
sums up the number of times that each kernel is called at the different steps of Algorithm 1.
The column “extra” corresponds to operations different from our three main algebraic kernels. In
Section 5 is shown that these operations have a relatively negligible computing cost.
In our implementation the vector fields uc and gc are stored as three scalar fields, one for each

cartesian component. Therefore the linear operators applied to them result in three SpMV calls.
In particular, for the convective and diffusive terms, the three components are multiplied by the
same operator, so this can be optimized by using a generalized SpMV (see Section 4). On the other
hand, the vectorial operator G is decomposed into the matrices Gx, Gy,Gz which are operated
independently.
In the first step of Algorithm 1 the SpMV kernel is called eight times: one to re-evaluate the

coefficients of the convective operator (EC), then (considering the LES model activated) another
one is needed to update the diffusive operator (ED), and finally six calls are required to apply the
convective (C) and diffusive (D) operators to the velocity components. Additionally six AXPY
operations are performed, three to evaluate the linear combination of the velocities (32u

n
c − 1

2u
n−1
c )

and three more to multiply by Ω−1, that is a diagonal matrix stored as a scalar field. Step 2 is
separated into two sub-steps: firstly, the right hand side of the Poisson equation is calculated, here
the divergence operator (M) requires 3 SpMV; secondly, the preconditioned conjugate gradient
(PCG) method is used to solve the Poisson equation. Within a PCG iteration one SpMV, three
AXPY and two DOT are performed, the preconditioner (it can be a sparse approximate inverse,
for instance, or the Jacobi diagonal scaling which is used in the present work) is counted as an
additional SpMV. In the step 3 the velocity is corrected using the pressure gradient, the gradient
operator (G) requires three SpMV. The projection of the velocities at the faces in step 4 requires
six SpMV coming from the operator Γc→s and one instance of Gs.
When LES model is activated, the eddie viscosity is evaluated (νts = K(uc)) at the fifth step of

Algorithm 1. The most costly part of this computation is the evaluation of a tensor dot product
over the gradients of the velocity fields. For portability purposes, the linear part of the LES model,
that derives on nine SpMV and two DOT, is separated from “extra” operations (pow exp ,etc)
that depend on the model selected. Moreover, if a dynamic choice of the time step size is enabled
one more extra operation is performed at step 6 . This operation consists on calculating the local
CFL condition and obtaining the minimum value across the mesh cells.
In summary, the explicit part of the time step requires 30 calls to the SpMV kernel, 10 AXPY,

2 DOT products and few additional operations on the evaluation of the turbulence model and the
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CFL condition. These “extra” operations are simple kernels compatible with stream processing
and easily portable to any architecture. On the other hand, for the PCG solver: 2 SpMV, 2 DOT
and 3 AXPY are required per iteration.

4. Implementation for a hybrid CPU/GPU supercomputer

Once the CFD algorithm has been reconstructed in a portable way, based on an algebraic oper-
ational approach, our aim is to implement this strategy to port our code to hybrid architectures
engaging both multi-core CPUs and GPU accelerators. The introduction of accelerators into lead-
ing edge supercomputers has been motivated by the power constraints that require to increase the
FLOPS per watt ratio of HPC systems. This seems to be a consolidated trend according to (Top500
(16)). Therefore, this development effort is aligned with the current HPC evolution trend (Oyarzun
(17)). In particular, our computing tests were performed on the Minotauro supercomputer of the
Barcelona Supercomputing Center (BSC). Its nodes are composed of two 6-core Intel Xeon E5649
CPUs and two NVIDIA M2090 GPUs, and are coupled via an InfiniBand QDR interconnect. The
kernels were implemented in CUDA 5.0 since it is the natural platform to implement a code in
NVIDIA GPUs (Nvidia (07)). Moreover the availability of the cuBLAS and cuSPARSE libraries
provides all the necessary linear algebra operations, making the code portability straightforward.
Nevertheless, for the SpMV kernel, we have focused on optimizing the implementation targeting our
specific application context, i.e. targeting the sparsity pattern derived from our unstructured dis-
cretizations. On the other hand, note that the AXPY and DOT are algebraic kernels independent
of any application context, so we have relied on the efficient implementations of the cuBLAS 5.0
library. The rest of this section is focused on the implementation of the SpMV kernel on single-GPU
and multi-GPU platforms.

Theoretical performance estimation

For a performance estimation of the SpMV we count the floating point operations to be performed
and the bytes to be moved from the main memory to the cache, then we can estimate the cost of
both processes by comparing with the presumed computing performance and memory bandwidth
of the device where the kernel is executed.
We consider as a representative problem the discrete Laplacian operator over a tetrahedral mesh,

a second order discretization results in 5 entries per row (diagonal + 4 neighbors of a tetrahedron,
except boundary cells). Therefore, if the mesh has N cells the Laplacian operator will contain
approximately 5N entries. The size of the matrix in memory is 60N bytes (with double precision
8-byte values): 5N double entries (40N bytes), plus 5N integer entries (20N bytes) to store the col-
umn indices of the non-zero elements (additional elements to store row indices depend on the chosen
storage format). We need to add also the two vectors engaged in the SpMV which contribute with
16N additional bytes. Regarding the arithmetics, 5 multiplications and 4 additions are required
per each row of the Laplacian matrix, so this results in a total of 9N floating point operations. In
our performance estimation we assume an infinitely fast cache, zero-latency memory and that each
component of the input vector is read only once, i.e. ideal spatial and temporal locality. For the
NVIDIA M2090 accelerator with ECC mode enabled the peak memory bandwidth is 141.6 GB/s.
Therefore, the total time for moving data from DRAM to cache is 76N/141.6 = 0.54Nns. On the
other hand, the peak performance of the NVIDIA M2090 for double precision operations is 665.6
GFLOPS (fused multiplication addition is considered). Therefore, the total time to perform the
floating point operations of the SpMV is estimated as: 9N/665.6 = 0.014Nns, which is 38× lower
than the time to move data from DRAM to cache. This is therefore a clearly memory-bounded
kernel characterized by a very low FLOP per byte ratio: 9N/76N = 0.12. Thus, the efficiency of
the implementation basically depends on the memory transactions rather than on the speed of
computations. Under these conditions, a tight upper bound for the achievable performance is the
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product of the arithmetic intensity by the device bandwidth, this gives 16.8 GFLOPS, i.e. 2.5%
of the peak performance of the M2090 GPU. With this estimation in mind, that is based in some
optimistic assumptions, special attention has been paid to the memory access optimization.

Heterogeneous implementation

The utilization of all resources of a hybrid system, such as Minotauro supercomputer, to run a
particular kernel requires a heterogeneous implementation. As shown in the previous subsection,
the maximum performance achievable with the SpMV kernel is proportional to the memory band-
width of the device where the kernel is executed. The memory bandwidth of the CPU and the
GPU composing the Minotauro supercomputer is 32GB/s and 142 GB/s, respectively. Thus, in
idealized conditions the GPU outperforms the CPU by 4.4×. Consequently, considering this ratio,
a balanced workload distribution would be 82% of the rows for the GPU and 18% for the CPU.
However, this partition requires a data-transfer process between both devices that generates and
additional overhead. This leaves a margin of improvement that can only be profited by using com-
plex heterogeneous implementations. Recent developments (Yang (17)), based on distributing the
different parts of a hybrid storage format, have shown up to 11.07% time reductions. Another het-
erogenous algorithm is presented in (Yang (15); Li (2015)), their idea consists in determining the
partitions using a probabilistic mass function to represent the distribution pattern of the non-zeros,
and afterwards distribute them accordingly. By doing so, they reported an average improvement
of 15.75% comparing to similar heterogeneous solutions. However in the parallel implementation
(described latter in this section), CPUs are used only to asynchronously manage inter-GPU com-
munications by overlapping them with calculations on the GPUs. We expect for the future a closer
level of integration between CPUs and GPUs, given by improved interconnection technologies or,
as shown in different examples, by the integration of both devices on a single chip.

Unknowns reordering

A two-level reordering is used in order to adapt the SpMV to the stream processing model and to
improve the efficiency of the memory accesses. Firstly, the rows are sorted according to the number
of non-zero elements. For hybrid meshes this means that the rows corresponding to tetrahedrons,
pyramids or prisms are grouped continuously. The boundary elements are reordered to be at the
end of the system matrix. This ordering aims to maintain regularity from the SIMD point of view:
threads processing rows of the same group have identical flow of instructions. Secondly, a band-
reduction Cuthill-McKee reordering algorithm (Cuthill (69)) is applied at each subgroup in order
to reduce the number of cache misses when accessing the components of the multiplying vector.
Note that in the SpMV kernel the random memory accesses affect only the multiplying vector, the
matrix coefficients and the writes on the solution vector are sequential. Each component of the
multiplying vector is accessed as many times as neighbors has the associated mesh cell, so this is
the measure of the potential temporal locality or cache reuse. The unknowns reordering is a costly
operation in comparison with SpMV, but it is performed only once at the preprocessing stage so
it becomes negligible.

Generalized SpMV

Another way to reduce the memory communications is by grouping wherever possible different
SpMV into a so-called “Generalized SpMV” (GSpMV), that multiplies the same matrix to mul-
tiple vectors simultaneously. For instance, the velocity vector in any cell is described by three
components (u, v, w), which in practice are stored on three independent scalar fields. Some opera-
tors are multiplied by each of the three velocity components, resulting in three calls to the SpMV
kernel using the same sparse matrix. Therefore, if the components are operated independently, the
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same matrix coefficients and indices are fetched three times from the DRAM to the cache. With
the GSpMV the matrix elements are fetched only once and the arithmetic intensity increases by
≈ 2.1×. However the reuse of components of the multiplying vector stored in the cache may reduce,
because it is filled with elements of the three velocity vectors instead of only one. Nevertheless, in
our numerical experiments we have obtained in average 30% time reduction by using the GSpMV.

Storage formats

Given a sparse matrix, its sparsity pattern determines the most appropriate storage format. The
goal is to minimize the memory transmissions and increase the arithmetic intensity by: i) reducing
the number of elements required to describe the sparse matrix structure, ii) minimizing the memory
divergence caused by its potential irregularity. The sparse matrices used in our CFD algorithm arise
from discretizations performed on unstructured meshes. Considering that we are using second order
schemes for the discretization of the operators, and that the typical geometrical elements forming
the mesh are tetrahedrons, pyramids, prisms and hexahedrons, generally the number of elements
per row ranges between 5 and 7 for the interior elements and is 1 or 2 for the few rows associated
to boundary nodes. Since we are not concerned in modifying the mesh, we restrict our attention
to static formats, without considering elements insertion or deletion.
With this scenario in mind, an ELLPACK-based format is the best candidate to represent our

matrices. The standard ELLPACK format is parametrized by two integers: the number of rows,
N, and the maximum number of non-zero entries per row, K. All rows are zero-padded to length
K forcing regularity. The matrix is stored in two arrays: one vector of doubles with the matrix
coefficients (Val), and a vector of integers with the corresponding column indices (Col). This
regularity, benefits the stream processing model because each equal-sized row can be operated by a
single thread without imbalance. However, the zero-padding to the maximum initial row-length can

Figure 1. An example of sELL format and its memory layout for CPUs and GPUs.

produce an important sparse overhead, specially when there is a reduced number of polygons in the
mesh with maximal number of faces. To overcome this overhead, a generalization of the previous
algorithm, called sliced ELLPACK (sELL)has been implemented based on (Monakov (10)). In the
sELL format the matrix is partitioned into slices of S adjacent rows, which are stored using the
ELLPACK format. The benefit of this approach is that each slice has its particular K parameter,
reducing the overall zero-padding overhead. The reordering strategy described above, i.e. grouping
rows by its entries, improves the efficiency of the sELL format since minimizes the zero entries that
need to be padded. In the sELL format it is added an integer-vector, called slice start, holding
the indices of the first element on each slice. Thus, for the i’th slice, the number of non-zero entries
per row (including the zero-padded elements) can be calculated as

Ki =
slice start[i+ 1]− slice start[i]

S
.

If S = N the sELL storage format becomes the standard ELLPACK. On the other hand, if S = 1

9



October 20, 2017 International Journal of Computational Fluid Dynamics article

no zeros are padded and the format becomes equivalent to the Compressed Sparse Row format
(CSR). For GPU implementations S is set equal to the number of threads launched per block, this
way a single thread is associated to each row of the slice. The index of the row processed by each
thread is calculated as rowid = threadIdx.x + BlockIdx.x*BlockDim.x. Zeros are padded in
the case that a slice is composed by rows with different number of entries.
Figure 1 shows the storage of a sparse matrix using the sELL format for both a CPU and a

GPU execution. In this case S=4 and the matrix is divided in two slices with 3 and 4 elements
per row, respectively. However, note that the memory layout is different in both cases. In the CPU
execution the elements are stored in row-major order within each slice, because a sequential process
operates one row after the other. In the GPU execution a single thread is associated to each row,
consequently, the elements are stored in column-major order to achieve coalesced memory accesses
to the Val and Col arrays. Further details of this aspects can be found in (Bell (08)). Table 2
compares the entries required with the ELLPACK and sliced ELLPACK formats to store matrices
coming from different discretizations. The sELL format requires around 16% less entries because
less zero-padding is needed to achieve the desired regularity.

Rows Pyramids Tetrahedrons total entries ELL total entries sELL Reduction
500, 000 3.80% 96.30% 3, 000, 000 2, 519, 000 16.03%

1, 500, 000 2.62% 97.38% 9, 000, 000 7, 539, 300 16.23%
5, 500, 000 1.45% 98.55% 33, 000, 000 27, 579, 750 16.43%

Table 2. Entries required to store our discretization matrices with ELL and sELL formats

Non linear operators

Since the sliced ELLPACK storage format has already been described in previous subsection, now
it can be explicitly defined the respective operator EC : RNf 7→ RNe that, given us, generates
the array Val storing the corresponding coefficients of the convective operator in the sELL format.
However, first of all the discretization of the convective operator needs to be explicitly specified:

[C(us)uc]i =
∑

j∈nb(i)

(ucj + uci)
usijAij

2
(13)

where i is a mesh node, nb(i) are its neighboring nodes, Aij is the area of the face between node i
and node j, and usij the corresponding component of the field us. For each node i, the indices of
the non-zero entries of its row are: entries(i) = nb(i) ∪ i. Being these indices sorted in ascending
order, we refer to the relative position of any index j ∈ entries(i) with the notation ordi(j). For
each ordered pair (i, j) of neighboring nodes, the next two coefficients are introduced to EC:

EC(ind(i, j), ij) = EC(ind(i, i), ij) =
Aij

2
(14)

where ij is the index corresponding to the face between nodes i and j, and the function ind(i, j),
that fixes the layout of the elements of the convective operator in the array Val, is defined as:

ind(i, j) = i%S + ordi(j) ∗ S +
∑
l< i

S

Kl ∗ S, (15)

where S and Kl are parameters of the sELL format described in previous subsection. The first two
terms of Equation 15 define the position of the new index within its slice: the first term represents
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the row and the second the column. The third term is the offset corresponding to all previous slices.
The sparse matrix EC has constant coefficients and is also stored in a compressed format. How-

ever, its rows can not be reordered since the order is determined by the sELL layout of C(us).
Therefore, with the purpose of avoiding a high sparse overhead produced by the zero-padding, EC

is stored using the standard CSR format (Bell (08)).
Finally, note that the definition of ED, the sparse linear operator used to evaluate the coefficients

of D(νs), is performed following the same strategy than with EC.

Multi-GPU parallelization

At the top level the parallelization strategy to run the code on multiple GPUs is based on a
standard domain decomposition: the initial mesh,M, is divided into P non-overlapping sub-meshes
M0, ...,MP−1, and an MPI process executes the code at each sub-mesh. For the i′th MPI process
its unknowns can be categorized into different sub-sets:

• owned unknowns are those associated to the nodes of Mi;
• external unknowns are those associated to the nodes of other sub-meshes;
• inner unknowns are the owned unknowns that are coupled only with other owned unknowns;
• interface unknowns are the owned unknowns coupled with external unknowns;
• halo unknowns are the external unknowns coupled with owned unknowns.

In our MPI+CUDA implementation, the mesh is divided into as many sub-domains as GPUs
engaged. The communication episodes are performed on three stages: i) copy data from GPU to
CPU, ii) perform the required MPI communication, iii) copy data from CPU to GPU. Note that the
inter-CPU communications are performed through the system network while the communications
between the CPU and GPU through the PCI-e bus. For the SpMV kernel, we have developed
a classical overlapping strategy, where the sub-matrix corresponding to the inner unknowns is
multiplied at the same time that the halo unknowns are updated. Once the updated values of the
halo unknowns are available at the GPU, the sub-matrix corresponding to the interface unknowns
can also be multiplied. An schematic representation of this two-stream concurrent execution model
is depicted in Figure 2. Note that a synchronization episode is necessary after both parts of the
matrix are multiplied. This strategy is really effective because communications and computations
are performed simultaneously on independent devices that do not disturb each-other (see examples
on Section 5).

Figure 2. Two-stream concurrent execution model.

In order to facilitate and optimize the partition of the sparse matrices to perform the overlapped
parallel SpMV, a first reordering of variables is performed forming three groups: inner, interface
and halo variables. This ordering precedes and is prioritized versus the orderings described above
for grouping rows with the same number of elements and for band-reduction. Therefore, for parallel
executions a three-level reordering strategy is applied in order to optimize the data locality and
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regularity. Further details of our overlapping strategy can be found in our previous work (Oyarzun
(14)).

5. Computing experiments and performance analysis

The performance testing has been carried out on the Minotauro supercomputer of the Barcelona
Supercomputing Center (BSC), its characteristics are summarized in Section 4. In the Minotauro
supercomputer there is one 6-core CPU for each GPU, therefore, at comparing the multi-CPU vs
the multi-GPU implementation we have respected this ratio running 6 CPU-cores for each GPU.

5.1. Profiling the algorithm for a turbulent flow around a complex geometry

First of all, the MPI-only and the MPI+CUDA versions of the code are profiled. The percentage
of the total execution time spent in each algebraic kernel has been measured during the time
integration process. The test case is the turbulent flow around the ASMO car geometry (Re =
7 × 105), for which a detailed study was previously published in (Aljure (14)). The mesh has
around 5.5 millions of control volumes that include tetrahedrons, pyramids and triangular prisms
that are used in the boundary layer. The stopping criterion for the Poisson solver is set equal to
10−5 (the norm of the residual relative to the right-hand-side norm). In this particular case the
average number of PCG solver iterations is 37 when using a Jacobi preconditioner. Additionally,
the LES turbulence modeling is enabled with the WALE (Nicoud (99)) eddie-viscosity model.
The profiling results on different number of CPUs and GPUs are shown in Figure 3. Results for

the multi CPU implementation show that the contribution of the SpMV in the overall algorithm
stays constant at around 78% with a growth of the number of 6-core CPUs from 4 to 128. This
indicates that the SpMV accelerates equally as the overall time-step. On the other hand, the
AXPY operation is the leader in speedup: its contribution reduces from 14% to around 6%. This
was expected since there are no communications in the AXPY operation. Finally, the contribution
of the DOT operation grows with number of CPUs due to the collective reduction communications,
its negative contribution is counteracted by the AXPY super-linearity. Finally, the remaining 2%
of time is spent in other operations (the evaluation of the eddie viscosity on step 5 of Algorithm
1, and the evaluation of the CFL condition on step 6 of Algorithm 1). Therefore, the three basic
algebraic kernels sum up to 98% of the time-step execution time on CPUs. This fact emphasizes
the portability of the algorithm implementation.
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Figure 3. Relative weight of the main operations for different number of CPUs and GPUs (left) and diagrams of the average

relative weight (right)

The GPU execution shows a lower percentage of time spent on the SpMV kernel. As demonstrated
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in next subsection, this is due to a better exploitation of the device bandwidth by the SpMV kernel
on GPUs. It is also observed a significant increase of the DOT percentage, which is mainly penalized
by the all-reduce communication and the overhead of the PCI-Express host-device transactions.
In Figure 3 (right) are depicted the average results of the previous tests for different number

of devices. Note that the distribution of the computing costs among the main kernels depends on
the number of iterations required by the Poisson solver, because the distribution is substantially
different for the Poisson solver and for the explicit part of the time step. Table 3 shows the relative
weight of the main operations for these two parts separately. Results are similar for the GPU and
CPU executions: the Poisson solver represents around 55% of the time-step and within it the SpMV
kernel represents 57 − 67% of the computing costs. One the other hand, in the explicit part the
SpMV is more dominant, it represents more than 90% of the computing costs.

Device Part of the code
Algebraic Operations

SpMV AXPY DOT others
Poisson solver (55.81%) 67.58% 14.84% 16.97% 0.61%

CPU Explicit(44.19%) 91.94% 3.34% 1.66% 3.06%
Time-step 78.33% 9.73% 10.24% 1.70%
Poisson solver (55.42%) 57.71% 17.61% 24.19% 0.49%

GPU Explicit (44.58%) 91.67% 2.10% 3.74% 2.49%
Time-step 72.53% 10.45% 15.14% 1.88%

Table 3. Relative weight of the main operations for the Poisson solver, the explicit part and the overall time-step. Average of
the results shown in Fig 3 for different number of devices

5.2. Performance of SpMV on a single GPU and a single 6-core CPU

The SpMV tests have been carried out for the discrete Laplace operator since it represents the
dominant sparsity pattern. The Laplace operator has been discretized on 3D unstructured meshes.
The number of non-zero entries per row ranges from 5 to 7 for tetrahedral, prismatic, pyramidal
and hexahedral cells. Our implementation of the CPU and GPU SpMV with the sELL storage
format is compared with general-purpose SpMV implementations of commonly used standard li-
braries: Intel Math kernel library (MKL) 13.3 for CPUs and cuSPARSE 5.0 for GPUs. Intel MKL
only supports the CSR format, while cuSPARSE supports the CSR format and a hybrid (HYB)
format, which automatically determines the regular parts of the matrix that can be represented
by ELLPACK while the remaining are solved by COO format (Bell (08)). The execution on the
6-core CPUs employs OpenMP shared memory loop-based parallelization with a static scheduling.
In all cases, the two-level reordering explained in Section 4 (grouping of rows with equal number of
non-zero entries + band reduction reordering) is used in order to improve the memory performance.
Unknowns reordering results in 40% time reduction in average for CPU executions.
The achieved net performance, in GFLOPS for the different storage formats under consideration

and for different mesh sizes is shown in Table 4. In all the cases our in-house sELL format shows the
best performance. In average the speedup versus the Intel MKL and NVIDIA cuSPARSE library
is 38% and 11%, respectively. Consequently, the sELL format has been chosen for the rest of this
paper.

Device, SpMV format
Mesh size, thousands of cells

50 100 200 400 800 1600
CPU CSR MKL 2.45 2.18 1.49 1.37 1.30 1.18
CPU sliced ELLPACK 3.44 3.02 2.89 2.76 2.41 2.06
GPU CSR cuSPARSE 3.64 4.10 4.40 4.58 4.79 4.70
GPU HYB cuSPARSE 8.74 11.25 13.36 14.93 15.62 15.94
GPU sliced ELLPACK 10.91 12.79 14.90 15.92 16.15 16.37

Table 4. Net performance in GFLOPS obtained with different implementations of various matrix storage formats

Figure 4, shows the performance evolution of the sELL executions for matrices of different sizes
and for both the CPU and GPU devices. There is a solid horizontal line on the plots that indicates an
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estimation of the maximal theoretically achievable performance evaluated as explained in Section 4.
Up to 90% of the peak estimation is achieved on the CPU and up to 97% on the GPU. It is important
to note that the CPU shows better performance on a smaller matrices while the GPU on bigger
ones. This trend can be clearly seen in Figure 4. The CPU performance decreases with the matrix
size due to the increasing weight of cache misses. In other words, the perfect temporal locality
assumed in our estimation is not met when the problem size grows. In particular, some of the
multiplying vector components that need to be reused can not be held on the cache because of its
limited size. On the GPU the effect is the opposite, there is a net performance growth with the
matrix size due to the resulting higher occupancy of the stream multiprocessors, which allows to
more efficiently hide memory latency overheads by means of hardware multi-threading. Saying it
from the opposite perspective, if the amount of parallel threads (i.e. rows) is not enough the device
can not be fully exploited. For the executions on the GPU the grid of threads was parametrized
in accordance to the occupancy calculator provided by NVIDIA (Nvidia (07)). Moreover, on the
NVIDIA M2090 GPU the distribution of the local memory between shared memory and L1 cache
can be tuned. For the SpMV kernel the best performance is obtained when the maximum possible
fraction of the local memory of the stream multiprocessors is used for cache functions (48KB).
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Figure 4. Net performance achieved on a single Intel Xeon E5649 6-core CPU (left) and a single NVIDIA M2090 GPU (right)

for different mesh sizes. Solid line indicates an estimation of maximal theoretically achievable performance

Finally, Figure 5 depicts the speedup of the execution on a single GPU versus the execution
on a single 6-core CPU. Due to the trends observed in the above-mentioned tests the speedup
significantly grows with the mesh size, since the CPU performance goes down with size and the
GPU performance goes up. The speedup ranges in the tests from around 3× up to 8×. Being
the ratio between the GPU and CPU peaks memory bandwidth 4.4 (141.6GB/s for the GPU and
32GB/s for the CPU ), and recalling that the SpMV is a clearly memory bounded operation, we
can conclude from the result shown in Figure 5 that the bandwidth is better harnessed on the GPU
than on the CPU, because in most of cases the speedup achieved is greater than 4.4. For the matrix
with 50K rows the opposite result is observed, however this case is particularly small for devices
with 6 GB and a 12 GB of main memory such as the the GPU and CPU under consideration, so
it does not represent realistic usage.

5.3. Parallel performance of the SpMV on multiple GPUs

Firstly, we evaluate the benefit of overlapping computations with communications. In Figure 6
(left) is compared the time needed to perform the SpMV with and without overlapping, engaging
128 GPU for different matrix sizes. The matrices used range between 50 and 200 million (M)
rows, corresponding to workloads between 0.4M and 1.6M per GPU, respectively. From 64% up to
86% of the communication costs are hidden behind computations using the overlapping strategy.
The benefit increases with the problem size since the weight of the computations grows and the
communications can be more efficiently hidden.
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Figure 5. Speedup of the SpMV execution on a single GPU vs. on a 6-core CPU, for different mesh sizes.

All the remaining parallel performance tests are carried out using the overlap mode. Further details
on the implementation of the SpMV with the overlapping strategy can be found in Section 4. Weak
speedup tests for the SpMV on multiple GPUs are shown in Figure 6 (right). Three different local
matrix sizes are considered: 0.4M, 0.8M, and 1.6M rows. The execution time grows for the biggest
load only 1.2× while the problem size is increased 128×. For the smallest load considered this
factor is around 2×. The slowdown is caused by an increase of the communication costs with the
number of GPUs engaged, and is proportional to the relative cost of communications. The maximal
load of 1.6M cells per GPU was chosen according to the limitation of the mesh size that could fit
in memory if we run a complete CFD simulation. Furthermore, the strong speedup of the SpMV
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Figure 6. Left: Effect of overlapping communications and computations in the SpMV for different mesh sizes on 128 GPU.
Right: Weak speedup tests for different local matrix sizes

kernel is shown in Figure 7 (left) for matrices of different sizes. Certainly, the larger is the size of
the problem the better is the speedup obtained, because the relative weight of the communications
is inversely proportional to the problem size. In the right part of the figure the same results are
shown in terms of parallel efficiency (PE). It can be observed that in the range of tests performed
the PE achieved mainly depends on the local workload rather than on the number of devices
engaged: ∼ 80% PE is obtained for a workload of 400K rows, 55 − 60% for 200K rows, 37 − 41%
for 100K rows and ∼ 30% for 50K rows. Therefore, if we are seeking for high PE we should not
reduce the local problem below 400K rows per GPU. This result is consistent with the decrease
of the GPU performance for matrices below 400K rows shown in Figure 4, that is produced by a
lack of occupancy of the device. Indeed, note that the load of 400K unknowns could be considered
a moderate one for a GPU with 6 GB of main memory. In any case, the resources engaged in a
simulation should be consistent with this type of evaluations in order to use efficiently the granted
computing time.
Figure 7 includes the strong speedup of the SpMV on up to 128 devices for the 12.8M cells mesh.

The speedup on CPUs, 127×, is much higher than on GPUs, 53×. The PE degradation with the
number of GPUs is twofold: i) an increase of the communications overhead; ii) the net performance
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Figure 7. Strong speedup on multiple GPUs for different mesh sizes (left). Same result expressed in terms of parallel efficiency
(right)

of each GPU reduces with local computing load due to occupancy fall. An opposite situation is
observed for the CPUs: the performance increases when the local problem reduces due to better
cache usage. Therefore, the increase of the communication overhead on CPU is compensated by
the boost in the computing performance.
Figure 8 (left) demonstrates this effect in detail. It shows how the net performance of CPU and

GPU changes when the number of devices increases (and the local problem size on each device
reduces, respectively). Results are normalized by the performance achieved having the whole matrix
on a single device. It can be observed that the CPU net performance increases more than twice
while GPU performance goes down on 25%.
Figure 8 (right) shows an emulation of how the speedup plot would look like if the CPU and GPU

performance (GFLOPS) would remain the same as the achieved on a single device, i.e. canceling
cache and occupancy effects. We have “eliminated” both effects by considering a linear reduction of
the computing time while keeping the same communication costs measured on the real tests. The
CPU and GPU plots in this idealized case appear very close to each other, therefore, we conclude
that eventually the speedup on the CPUs is produced by the cache driven super-linear acceleration
of the local computations that lacks on the GPU. The variation between the real performance and
the imaginary emulation is minimal on the GPUs.
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Figure 8. Relative net performance of CPUs and GPUs compared to the performance on a single device for the mesh of 12.8M

cells (left); idealized emulation of how speedup would look like if the CPU and GPU performance would remain the same as
on a single device (right)

The reason is that the communications dominate in the overlapping scheme, so canceling the
degradation produced by the occupancy fall only affects the cost of the interface sub-matrix product
(see Section 4). This result also demonstrates the efficiency of the overlapping communications
scheme: CPU and GPU plots are very near, despite initially the GPU execution is 9× faster.
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5.4. Experiments with complete CFD simulations

The overall CFD algorithm has been evaluated on two test cases: the LES of the ASMO car
(Re = 7× 105) executed on a mesh of 5.5M cells, that has been previously used for profiling; and
the LES of a driven cavity (Re = 105) with a mesh of 12.8M cells (the driven cavity was chosen in
this paper just for its simple geometry that makes generation of meshes of different sizes very easy).
Figure 9 shows the solution time for different numbers of devices for both cases, we can derive from
it the acceleration achieved and the difference between CPU and GPU executions. The dotted line
represents the ideal scaling for each device with respect to the first execution (8 devices). The
Poisson solver stopping criterion was set equal to 10−5 (the norm of the residual relative to the
right-hand-side norm), and the LES turbulence modeling is enabled with the WALE (Nicoud (99))
eddie-viscosity model. It also includes estimations of the execution time. These are based only on
time measurements for the three basic algebraic kernels, and the number of repetitions of each
kernel per time-step (shown in Table 1). This simple formula reads:

Texp = 30Tspmv + 10Taxpy + 2Tdot

Timp = 2Tspmv + 3Taxpy + 2Tdot

Ttotal = Texp + it · Timp

where the subindex of T indicates the corresponding kernel, and it refers to the iterations required
by the Poisson solver.
Figure 9 shows, firstly, that the scalability on CPUs is better than on GPUs. Secondly, the

performance on GPUs is always higher than on CPUs. For the ASMO car case the speedup of
the GPU execution versus the CPU execution ranges from 6.3×, down to 2.6×, while for the DC
case from 7.8× to 3.7×. Moreover, the estimation appears to be in good agreement with the real
measurements, providing great portability in terms of performance evaluation: we can predict the
performance and scalability of our code in any architecture by just studying the three main kernels
separately.
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Figure 9. Strong speedup for the overall time-step (real and estimation), for the ASMO car with a mesh of 5.5M cells (left)
and the Driven Cavity with a mesh of 12.8M cells (right)

6. Concluding remarks

The contribution of this paper is twofold. Firstly, we propose a portable modeling for LES of incom-
pressible turbulent flows based on an algebraic operational approach. The main idea is substituting
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stencil data structures and kernels by algebraic storage formats and operators. The result is that
around 98% of computations are based on the composition of three basic algebraic kernels: SpMV,
AXPY and DOT, providing a high level of modularity and a natural portability to the code. Among
the three algebraic kernels the SpMV is the dominant one, it substitutes the stencil iterations. The
non-linear terms, such as the convective operator, are also rewritten as two consecutive SpMVs.
The modularity and portability requirements are motivated by the current disruptive technological
moment, with a high level of heterogeneity and many computing models being under consideration
without any clarity of which one is going to prevail.
The second objective has been the implementation of our model to run on heterogeneous clusters

engaging both CPU and GPU co-processors. This objective is motivated by the increasing presence
of accelerators on HPC systems, driven by power efficiency requirements. We have analyzed in detail
the implementation of the SpMV kernel on GPUs, taking into account the characteristics of the
matrices derived from our discretization. Our in-house implementation based on a sliced ELLPACK
format clearly outperforms other general purpose libraries such as MKL on CPUs and cuSPARSE
on GPUs. Moreover, for multi-GPU executions we have developed a communication-computations
overlapping strategy. On the other hand, the AXPY and DOT kernels do not require specific
optimizations because they are application-independent kernels with optimal implementations in
libraries such as cuSPARSE.
Finally, several numerical experiments have been performed on the Minotauro supercomputer

of the Barcelona Supercomputing Center, in order to understand in detail the performance of our
code on multi-GPU platforms, and compare it with multi-core executions. First we have profiled
the code for both implementations showing that certainly 98% of time is spent on the three main
algebraic kernels. Then, we have focused on the SpMV kernel, we have shown its memory bounded
nature, and how the throughput oriented approach of the GPU architecture better harnesses the
bandwidth than the standard latency reducing strategy implemented on CPUs by means of caches
and prefetching modules. The result is that although the bandwidth ratio between both devices
is 4.4 the speedup of the GPU vs the CPU implementation reaches up to 8× in our tests. Then
the benefits of the overlapping strategy for multi-GPU executions has been tested, showing that
large part of the communication (86%) can be hidden. We have also included strong and week
speedup tests engaging up to 128 GPUs, in general good PE is achieved if the workload per GPU
is kept reasonable. Considering the overall time-step, the multi-GPU implementation outperforms
the multi-CPU one by a factor ranging between 3× and 8× depending on the local problem size.
Finally, we have demonstrated that the performance of our code can be very well estimated by
only analyzing the three kernels separately.

Acknowledgments

This work has been financially supported by the Ministerio de Ciencia e Innovación, Spain (ENE-
2014-60577-R), the Russian Science Foundation, project 15-11-30039, CONICYT Becas Chile Doc-
torado 2012, the Juan de la Cierva posdoctoral grant (IJCI-2014-21034) and the Initial Training
Network SEDITRANS (GA number: 607394), implemented within the 7th Framework Programme
of the European Commission under call FP7-PEOPLE-2013-ITN. Our calculations have been per-
formed on the Minotauro supercomputer at the Barcelona Supercomputing Center. The authors
thankfully acknowledge these institutions.

References

G. Oyarzun, R. Borrell, A. Gorobets, A. Oliva, MPI-CUDA sparse matrix-vector multiplication for the
conjugate gradient method with an approximate inverse preconditioner, Computers & Fluids, Volume 92,
20 March 2014, Pages 244-252

18



October 20, 2017 International Journal of Computational Fluid Dynamics article

Micikevicius P., 3D Finite Difference Computation on GPUs using CUDA, in: Proceeding of 2nd Workshop
on General Purpose Processing on Graphics Processing Units,2009.

Alfonsi A, Ciliberti S., Mancini M, Primavera L. Performances of Navier-Stokes Solver on a Hybrid
CPU/GPU Computing System. Parallel Computing Technologies. Lecture Notes in Computer Science
Volume 6873, 2011, pp 404-416 (3D)

Elsen, E., LeGresley, P., Darve, E. Large calculation of the flow over a hypersonic vehicle using a GPU
(2008) Journal of Computational Physics, 227 (24), pp. 10148-10161 (2D )

R. Rossi and F. Mossaiby and S.R. Idelsohn, A portable OpenCL-based unstructured edge-based finite
element Navier-Stokes solver on graphics hardware, Computers & Fluids, Volume 81, 2013, Pages 134–
144

S.A. Soukov, A.V. Gorobets, P.B. Bogdanov, OpenCL Implementation of Basic Operations for a High-order
Finite-volume Polynomial Scheme on Unstructured Hybrid Meshes, Procedia Engineering, Volume 61,
2013, Pages 76–80

Dana A. Jacobsen, Inanc Senocak, Multi-level parallelism for incompressible flow computations on GPU
clusters, Parallel Computing, Volume 39, Issue 1, 2013, Pages 1–20

Peter Zaspel, Michael Griebel,Solving incompressible two-phase flows on multi-GPU clusters,Computers &
Fluids, Volume 80, 10 July 2013, Pages 356-364

Ali KhajehSaeed, J. Blair Perot , Direct numerical simulation of turbulence using GPU accelerated super-
computers,Journal of Computational Physics, vol. 235 (2013), pp.241-257.

I.C. Kampolis, X.S. Trompoukis, V.G. Asouti and K.C. Giannakoglou, CFD-based analysis and two-level
aerodynamic optimization on graphics processing units, Computer Methods in Applied Mechanics and
Engineering, vol. 199 (2010), pp. 712-722

V. G. Asouti, X. S. Trompoukis, I. C. Kampolis and K. C. Giannakoglou, Unsteady CFD computations
using vertex-centered finite volumes for unstructured grids on Graphics Processing Units, International
Journal for numerical methods in fluids, vol. 67 (2010), pp. 232-246.
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