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Nonlinear Behavior in a Piezoelectric
Resonator: A Method of Analysis

José E. Garćıa, Rafel Pérez, Alfons Albareda, and Enric Minguella

Abstract—Theories used for understanding nonlinear be-
havior of piezoelectric resonators are usually only valid for
a given range of amplitudes. Thus, important discrepan-
cies can sometimes be observed between theory and exper-
iment. In this work, a simplified model of the resonator is
assumed in order to extend the analysis of nonlinear behav-
ior to any kind of nonlinear function, without a significant
increase of mathematical complexity. Nevertheless, nonlin-
earities are considered to be weak enough to be taken as
perturbations. An asymptotic method is used to obtain the
first and second order perturbations of the response to an
harmonic excitation applied to the system, and each one is
separated into Fourier series. Nonlinearity is described by
two functions—Φ (S;D; Ṡ; Ḋ) and Ψ (S;D; Ṡ; Ḋ)—that must
be added to the constitutive equations that give T and E
as functions of S and D. These functions can be split into
their symmetrical and antisymmetrical parts, which have
different incidence over the perturbation terms. In order to
simplify the problem, no mechanical excitation is consid-
ered, the electrical one is taken as strictly harmonic, and
the current rather than the e.m.f. is taken as initial data.
As an application example, this method is applied in order
to find the second harmonic generation for a particular kind
of nonlinearity.

I. Introduction

Nonlinear effects (such as harmonic generation, de-
crease of quality factor, or shift of resonant frequency)

appear when a high strain level is applied to a piezoelectric
ceramic resonator. Near the resonance frequency, all these
effects can be correlated to the motional current Imot,
which is related to the strain amplitude experienced by
the ceramic material.
Most of the theories [1]–[5] accept as a basis the power

series development of the energy, which means that most
of the previous effects must be proportional to the square
of the oscillation amplitude. Obviously, this is true for suf-
ficiently low strain levels.
Unfortunately, experimental results often show that this

prediction is not valid for moderate levels, so these models
often provide only very rough approximations [6]. In prac-
tice, some phenomena cannot be adequately explained by
the usual theories. We know, for example, that for some
materials experimental data fit Imot or I
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the I2
mot predicted by the theory. Moreover, if these ef-

fects are seen as an increase of the electrical impedance
of the resonator [4], the relation defined as m = ∆X/∆R
between its real ∆R(I) and imaginary ∆X(I) parts is a
constant in some materials, which shows that their depen-
dence with I has the same form in spite of not conforming
to the expected behavior. In addition, comparisons of res-
onators with the same geometry but of different material
show a correlation between coefficient m and quality fac-
tor Q, so that in high quality materials the frequency shift,
described by ∆X(I), is stronger than the decrease of the
quality factor, described by ∆R(I).
Because of this, theories based upon power series de-

velopment of nonlinear terms seem to be exceedingly re-
strictive, encouraging us to try to develop a method that
can accept any type of nonlinear function and enabling
the model to fit experimental results in the first or second
approximations.
In order to develop such a method, this work is struc-

tured in three parts, based upon three different models.
In the first part, an oversimplified nonlinear model is de-
veloped in which the system is defined by a single vari-
able, and the nonlinearity can be expressed by any kind of
function. Some restrictions are imposed to make the cal-
culus converge quickly by minimizing the number of itera-
tions. The second part is based upon a linear piezoelectric
model in which the state is defined by two coupled vari-
ables for describing the mechanical and the electrical be-
havior. In the third part, a nonlinear piezoelectric model is
presented, a conjunction of the previous models in which
the restrictions that allow complexity minimization and
improvement of the convergence have been revised.

II. Nonlinear Model with a Single

Degree of Freedom

In this section, a single degree of freedom u is consid-
ered, so neither the fact that there are actually two cou-
pled systems (electrical and mechanical) nor that they are
distributed systems are taken into account. Consequently,
the variable u can symbolize displacement in a mechanical
system or the charge in an electrical one.
An asymptotic resolution method is used, assuming

that the nonlinearity is weak, so its solution is not very
different from that of the respective linear system [7].
The normalized differential equation that applies can

be written as:

ü+ 2µu̇+ u = F+ ε g(u, u̇), (1)

0885–3010/$10.00 c© 2000 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/185526242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


922 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, no. 4, july 2000

where the parameter ε is applied only to the nonlinear
term, so this vanishes when ε tends to zero, but it is applied
neither to the dissipative term nor to the external force.
The nonlinear term g(u, u̇) depends on the phase space so
the function and its first and second derivatives are zero
at the origin. Thanks to this definition, the function g not
only states elastic nonlinearities but also nonlinear losses.
In order to simplify the notation, a linear operator G is

defined:

G ≡ d2

dt2
+ 2µ

d

dt
+ 1. (2)

With this operator, the differential equation (1) can be
written as:

G(u) = F+ ε g(u, u̇). (3)

Because nonlinearity can be expressed as a scalar field in
the phase space, and the periodic evolution of the system
is given by a closed orbit in that space, the value of g at
each moment can be found. It must be considered that the
actual orbit u differs slightly from the linear one u0, so it
can be written as:

u = u0 + εu1 + ε2u2. (4)

Odd harmonics are seen as centrosymmetric deviations of
the orbit, and even harmonics are shown as noncentrosym-
metric perturbations. We will assume that u0, the linear
part of u, which is sinusoidal, is fixed a priori in amplitude
A and phase:

u0 = A cosωot, (5)

so the perturbation functions u1 and u2 do not contain
fundamental harmonic.
We also will assume that the external force is strictly

harmonic, but its amplitude is not fixed, because it de-
pends on the value of A and the strength of the nonlinear-
ity:

F = �
[
(F I0 + εF

I
1 + ε

2F I2 )e
jωot

]
. (6)

The nonlinear effects produced at the fundamental fre-
quency are described by the perturbations of the force F,
and those produced at harmonic frequencies are described
by the perturbations of u.
Because the actual trajectory (u, u̇) is not very different

from the linear one (u0, u̇0), the function g(u, u̇) can be
developed in power series of the parameter ε:

g(u, u̇) =g(u0, u̇0) +

ε

[
u1
∂g
∂u
(u0, u̇0) + u̇1

∂g
∂u̇
(u0, u̇0)

]
+O(ε2).

(7)

Then, the differential equation can be detached into
three equations, one for each approximation order:

G(u0) = �(F I0 ejωot) (8)
G(u1) = �(F I1 ejωot) + g(u0, u̇0) (9)

G(u2) = �(F I2 ejωot) + u1
∂g
∂u
(u0, u̇0)

+ u̇1
∂g
∂u̇
(u0, u̇0). (10)

A. Detachment into Successive Approximations

Taking into account that the system has reached a sta-
tionary state under a periodical external force, all the
terms that appear are periodical functions of time, so their
Fourier transforms have only terms of multiple frequency
of the main frequency.
We will use the superindices: 0 I II III in order to assign

the complex amplitude of the respective harmonic term of
a given function. We also will use these superindices to
assign the respective Fourier transforms of the operator
G.
The operator G can be described by a function of the

frequency:

Gn = −(nωo)2 + j(2nωo)µ+ 1 (11)

where n is the number assigned to the respective harmonic.
There are other resonances not considered by this

model, due to the fact that the system is actually con-
tinuous, so GII and GIII may be rather different from
their expected expression.
Equation (8) contains only terms of fundamental fre-

quency, and it allows to obtain F I0 in the form:

F I0 = G
I(uI0) (12)

where uI0 denotes the complex amplitude of u0.
In (9) and (10), the left-hand term does not contain

fundamental frequency, and the first right-hand term has
only fundamental frequency. So, in the first approximation
we find the following expressions:

F I1 = −gI(u0, u̇0) (13)
G0(u0

1) = g
0(u0, u̇0) (14)

GII(uII1 ) = g
II(u0, u̇0) (15)

GIII(uIII1 ) = gIII(u0, u̇0). (16)

For the second approximation we find:

F I2 = −
[
u1
∂g
∂u
(u0, u̇0) + u̇1

∂g
∂u̇
(u0, u̇0)

]I
(17)

G0(u0
2) =

[
u1
∂g
∂u
(u0, u̇0) + u̇1

∂g
∂u̇
(u0, u̇0)

]0

(18)

GII(uII2 ) =
[
u1
∂g
∂u
(u0, u̇0) + u̇1

∂g
∂u̇
(u0, u̇0)

]II
(19)

GIII(uIII2 ) =
[
u1
∂g
∂u
(u0, u̇0) + u̇1

∂g
∂u̇
(u0, u̇0)

]III
(20)

which allow us to find the function u2 from the previous
approximation.
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TABLE I
Repercussion of the Symmetrical S and Antisymmetrical A

Terms of the Function g(u, u̇) Over Each of the Effects

Taken Into Account, in First (Direct) and Second

(Indirect) Order Approximation.

DIR. S A INDIR. SS AA SA

F I1 X F I2 X X
uIII1 X uIII2 X X
uII1 X uII2 X
u0

1 X u0
2 X

B. Symmetry of the Nonlinear Function

The function g can be split into a symmetrical and an
antisymmetrical one:

g(u, u̇) = gS(u, u̇) + gA(u, u̇) (21)

where:

gA(u, u̇) = −gA(−u,−u̇)
gS(u, u̇) = gS(−u,−u̇). (22)

Then, owing to the symmetry of u0, the nonlinear func-
tion gA(u0, u̇0) only contains odd order harmonics, de-
noted as gIA and g

III
A , whereas gS(u0, u̇0) only contains

even harmonics g0
S and g

II
S . Then, only the antisymmetri-

cal term contributes to the function F I1 :

F I1 = −gIA = − ω
2π

∫ 2π
ω

0 gA(u0, u̇0)e−jωtdt
(23)

= − 1
2π

∫ 2π
0 gA(A cosφ,−Aω sinφ)e−jφdφ.

We see that the even components 0 and II of the func-
tion u1 depend on the symmetric function, whereas the
odd component III depends on the antisymmetrical one:

G0(u0
1) =

1
2π

∫ 2π

0
gS(A cosφ,−Aω sinφ)dφ (24)

GII(uII1 ) =
1
2π

∫ 2π

0
gS(A cosφ,−Aω sinφ)e−j2φdφ (25)

GIII(uIII1 ) =
1
2π

∫ 2π

0
gA(A cosφ,−Aω sinφ)e−j3φdφ. (26)

Otherwise, the respective derivatives with respect to u
or u̇, have opposite symmetry. Then, in order to obtain
F I2 , which is antisymmetrical, the product of symmetrical
u1 by derivatives of gS , in addition to the product of an-
tisymmetrical u1 by derivatives of gA, must be considered
as shown in Table I. In Table I, a cross indicates that such
an effect is produced by that type (A or S) of nonlinearity,
otherwise it is indicated by a blank.
If there are only direct effects, these are linear with

respect to the causes (g(u, u̇)) that produce them. This is
no longer true when indirect effects play a non-negligible
role, in which case all combinations are possible.

III. Linear System with Two Coupled

Degrees of Freedom

There is an additional difficulty in applying the last
model to a piezoelectric resonator, because two degrees of
freedom are needed to describe it (one for the mechanical
state, and one for the electrical state). In each case we must
take the adequate variables: we have taken the mechani-
cal strain S and electrical displacement D, so the state of
the system is defined without ambiguity for each pair of
values (S,D). The study is restricted to a one-dimensional
case, so thickness resonators only are considered. Although
the variables S and D are, in general, functions of time
and space, we restricted our study by assuming that they
are reasonably uniform; so the thickness of the transducer
must be significantly less than the wavelength of the acous-
tical wave.
The last conditions are fulfilled by a sandwich trans-

ducer (Langevin). If it is symmetrical, only a half trans-
ducer must be studied, in which there is a node at one end
(infinite mechanical impedance) and a mass at the other
end, to which will be assigned a mechanical impedance
Zmec. We shall call the total thickness and section area of
the transducer 2l and W , respectively.
If the variable u describes the displacement of the

surface between the ceramic and the countermass, then
S = u/l, assuming that S is uniform.

A. Linear Constitutive Equations
and Boundary Conditions

Without any losses, the variables S and D are related
to the mechanical and electrical ”forces” T and E that are
applied to the material through the constitutive equations,
which can be expressed in their matricial form:(

cD −h
−h 1

εs

)(
S
D

)
=
(

T
E

)
. (27)

As D must be uniform due to the Gauss law, and S is
assumed to be uniform, T and E are also assumed to be
uniform. The field E is related to the voltage applied to
the piezoelectric V = El.
If there are losses, a matricial term must be added to

(27), which includes not only mechanical losses but also
electrical and piezoelectric ones:(

cD −h
−h 1

εs

)(
S
D

)
+
(
αm αp
αp αe

)(
Ṡ
Ḋ

)
=
(

T
E

)
. (28)

This expression can be written in a compact form:
 cD + αm ∂

∂t −h+ αp ∂
∂t

−h+ αp ∂
∂t

1
εs + αe

∂
∂t


( S

D

)
=
(

T
E

)
.
(29)

When the linearity of the system is assumed, each har-
monic component can be treated separately, so a complex
formulation is advantageous, and complex amplitudes can
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be used instead of time functions. For a periodic excita-
tion of fundamental frequency ωo, the response also will
be periodical, and we will have only frequencies multiples
of ωo. We can write:(

S
D

)
= �

{∑
n

[(
Sn

Dn

)
ejnωot

]}
. (30)

For a single frequency (harmonic excitation), (29) can
be written as:

 c
D(1 + j 1

Qm
) −h(1 + j 1

Qp
)

−h(1 + j 1
Qp
) 1
εs (1 + j

1
Qe
)


( S

D

)
=
(
T
E

)
(31)

where the mechanical, electrical, and piezoelectric losses
are expressed in terms of Qm, Qe, and Qp. The counter-
mass M is modeled as a mechanical impedance Zmec con-
nected to the piezoelectric piece. Then, if we assume that
there is no mechanical excitation:

T = −Zmec
W

u̇

so,

T = −jω l
W
ZmecS. (32)

In a similar way, if the transducer is electrically con-
nected to a generator of electromotive force E with an
electrical impedance Zel, then:

E = V + IZel

and,

E =
E
l
− j ωW

l
ZelD. (33)

The (32) and (33) can be joined in a matricial form:(
T
E

)
=
(
−jω l

W Zmec 0
0 −j ωWl Zel

)(
S
D

)
+
(
0

1
l E

)
.(34)

B. Linear Operator Matrix. Linear Solution

As we have seen, vector (T,E) can be related to (S,D)
through constitutive equations, with losses included (31),
and on the other side it can be expressed in terms of
the boundary conditions and the applied electromotive
force (34). Identifying both expressions, and arranging the
boundary terms with the constitutive ones, we attain the
usual format of a differential equation system, in which
one of the independent terms (the mechanical excitation)
is null. So: (

L11 L12
L21 L22

)(
S
D

)
=
(
0

1
l E

)
(35)

where L11, L12, L21, and L22 symbolize linear operators
applied to the variables S and D. The operator matrix

Lij(ω) can be written as:

(L) =


 c

D+ j(ω l
W Zmec+

cD

Qm
) −h+ j 1

Qp

−h+ j 1
Qp

1
εs + j(ω

W
l Zel+

1
εsQe

)


 .
(36)

The (35) can be solved for each frequency by the use
of complex variables. In this case, we can obtain S and D
from the value of E without any other difficulty than the
inversion of the operator matrix, in which each coefficient
is a complex function of the frequency.
In the linear case, it may be convenient to approach

the problem in the following way: which voltage must be
applied (in amplitude and phase) in order to reach a given
current? In this case, the initial data is D (because I =
jωWD) so, applying the first row of operators, we obtain:

S = −L12

L11
D (37)

and from (37) we can obtain the modulus and phase of
S, that can be used to calculate the complex value of E
through the second row of the operator matrix:

E =
(
L22 −

L2
12

L11

)
lD. (38)

Then, the electromotive force E and the voltage V can
be expressed as a function of the current I, which yields
the expression of the electrical impedance of the resonator:

Z(ω) = −j
(
L22 −

L2
12

L11

)
l

ωW
− Zel. (39)

IV. Nonlinear Analysis with

Two Degrees of Freedom

When a weak nonlinearity is assumed in an electrome-
chanically coupled system, we can join the procedure de-
scribed in Section II to the system stated in Section III.
As a departure point, the nonlinearity can be consid-

ered a modification of both constitutive equations through
the terms Φ and Ψ, which are, in general, not only func-
tions of the variables S and D but also functions of their
time derivatives. Although in Section II the functions are
normalized, in the present case this is no longer suitable.
However, the use of the parameter ε, which multiplies the
nonlinear terms, still stands.(

cD −h
−h 1

εs

)(
S
D

)
=
(

T
E

)
+ ε
(
Φ(S,D, Ṡ, Ḋ)
Ψ(S,D, Ṡ, Ḋ)

)
.
(40)

Taking into account the contribution of all frequencies
involved, we obtain:

�
{∑

n

[ [(Ln11 L
n
12

Ln21 L
n
22

)(
Sn

Dn

)
−
(
0

1
l En

)]
ejnωt

]}

= ε
(
Φ(S,D, Ṡ, Ḋ)
Ψ(S,D, Ṡ, Ḋ)

)
. (41)
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The expected solutions will be expressed as a power
series of this parameter, leading to different levels of ap-
proximation. So the general solution, which cannot be si-
nusoidal, must be described as a function of time instead
of a complex amplitude:(

S
D

)
=
(

So
Do

)
+ ε
(

S1
D1

)
+ ε2

(
S2
D2

)
+ · · ·

(42)

where the subindices 0, 1, and 2 have been used to desig-
nate the linear, first and second approximations, respec-
tively. Nonlinearity is assumed to be weak enough for the
first term to be much greater than the other two, so in the
phase map (that has to be described in a space of dimen-
sion four) the actual stationary trajectory of the system
follows the expected linear trajectory (ε→ 0) quite closely.
This fact implies that nonlinear terms can be developed

as a function of parameter ε:(
Φ
Ψ

)
=
(
Φo
Ψo

)
+ ε
(
Φ1
Ψ1

)
+ · · · (43)

where

Φo = Φ(So,Do, Ṡo, Ḋo)
Ψo = Ψ(So,Do, Ṡo, Ḋo).

(44)

In the definition of Φ1 and Ψ1, we must take into account
that Φ and Ψ are four-variable functions:

Φ1 = S1
∂Φ
∂S +D1

∂Φ
∂D + Ṡ1

∂Φ
∂Ṡ
+ Ḋ1

∂Φ
∂Ḋ

Ψ1 = S1
∂Ψ
∂S +D1

∂Ψ
∂D + Ṡ1

∂Ψ
∂Ṡ
+ Ḋ1

∂Ψ
∂Ḋ
.

(45)

As in the simple case, the functions Φ and Ψ can be split
into the sum of two functions, symmetrical and antisym-
metrical, so,

Φ(S,D, Ṡ, Ḋ) = ΦS(S,D, Ṡ, Ḋ) + ΦA(S,D, Ṡ, Ḋ)
Ψ(S,D, Ṡ, Ḋ) = ΨS(S,D, Ṡ, Ḋ) + ΨA(S,D, Ṡ, Ḋ)(46)

where these functions satisfy:

ΦS(S,D, Ṡ, Ḋ) = ΦS(−S,−D,−Ṡ,−Ḋ)
ΦA(S,D, Ṡ, Ḋ) = −ΦA(−S,−D,−Ṡ,−Ḋ) (47)

Due to the symmetry of (So,Do), the functions ΦA and
ΨA have only odd harmonics, whereas ΦS and ΨS have
only even harmonics, with similar results to the simple
case. However, the fact that Φ is symmetrical is not enough
to null the term EI1 , because this requires that Ψ also be
symmetrical.
Because the overall problem can be stated in multiple

forms, we must assume some arbitrary restrictions, which
have been chosen for the problem to be solved with a min-
imum degree of complexity. We will assume that there is
no mechanical excitation, and that the electrical excita-
tion is strictly sinusoidal. Furthermore, we will assume that
the amplitude of the current at fundamental frequency is
known, so no perturbation is assigned to D at this fre-
quency; then the terms D1 and D2 have no fundamental

frequency terms, only harmonics. In spite of these restric-
tions, the function S has no restriction in its approxima-
tions.
By applying the developments (42) and (43), and a de-

velopment similar to (6) for the electromotive force E , the
equation system that governs the nonlinear behavior can
be developed as follows:

�
{∑

n

[[(
Ln11 L

n
12

Ln21 L
n
22

)(
Sno
Dno

)

+ε
(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn1
Dn1

)
+ ε2

(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn2
Dn2

)

−
(
0

1
l Eno

)
+ ε
(
0

1
l En1

)
+ ε2

(
0

1
l En2

)]
ejnωot

]}

= ε

(
Φo
Ψo

)
+ ε2

(
Φ1
Ψ1

)
+O(ε3) (48)

where the expressions related to each level of approxima-
tion can be solved separately, taking the result of each
iteration as data for the development of the following one.

A. Linear Approximation

It can be obtained as described in (37) and (38), and
So y Eo can be written in the form :

So = −
LI12

LI11
Do (49)

Eo =
(
LI22 −

LI12
2

LI11

)
lDo. (50)

B. First Approximation

Taking the terms on ε in development (48), we can
write:

�
{∑

n

[[(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn1
Dn1

)
−
(
0

1
l En1

)]
ejnωot

]}

=
(
Φo(So,Do, Ṡo, Ḋo)
Ψo(So,Do, Ṡo, Ḋo)

)
. (51)

We must first calculate the nonlinear term over the lin-
ear trajectory, which is treated as an independent term
because it depends only on the previous iteration, and
then develop it in Fourier series. Due to the restrictions
imposed, the term of fundamental frequency requires a dif-
ferent treatment from the others.
At fundamental frequency:(

LI11 L
I
12

LI21 L
I
22

)(
SI1
0

)
=
(
0

1
l EI1

)
+
(
ΦIo
ΨIo

)
(52)

from where it is deduced that

SI1 =
1
LI11
ΦIo (53)
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EI1 = l LI21S
I
1 − l ΨIo. (54)

Furthermore, for the other frequencies we get:(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn1
Dn1

)
=
(
0
0

)
+
(
Φno
Ψno

)
(55)

so: (
Sn1
Dn1

)
= (Ln)−1

(
Φno
Ψno

)
. (56)

C. Second Approximation

Selecting the terms on ε2 from development (48), we
have:

�
{∑

n

[[(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn2
Dn2

)
−
(
0

1
l En2

)]
ejnωot

]}

=
(
Φ1(S1,D1, Ṡ1, Ḋ1)
Ψ1(S1,D1, Ṡ1, Ḋ1)

)
. (57)

The perturbations Φ1 y Ψ1 can be calculated, following
(45), from the harmonic components of the first iteration;
they also are developed in Fourier series. The fundamental
frequency also receives a different treatment.
At fundamental frequency:(

LI11 L
I
12

LI21 L
I
22

)(
SI2
0

)
=
(
0

1
l EI2

)
+
(
ΦI1
ΨI1

)
(58)

so:

SI2 =
1
LI11
ΦI1 (59)

EI2 = l LI21S
I
2 − l ΨI1. (60)

For the other frequencies we have:(
Ln11 L

n
12

Ln21 L
n
22

)(
Sn2
Dn2

)
=
(
0
0

)
+
(
Φn1
Ψn1

)
(61)

that is: (
Sn2
Dn2

)
= (Ln)−1

(
Φn1
Ψn1

)
. (62)

V. Analysis of Second Harmonic Generation

As an example of an application of the method, the
study of second harmonic generation in a Langevin trans-
ducer is proposed, in a first approximation, when a har-
monic voltage excitation is applied at the resonant fre-
quency.
In order to reduce the complexity of this example, we

consider that the system has mechanical losses, but no di-
electric nor piezoelectric ones, and that the quality factor
is enough high to allow some approximations. We suppose
that the functions ΦS y ΨS are not null, otherwise sec-
ond harmonic cannot be produced. We also assume that
the electrical impedance of the generator is nearly null,
not only at fundamental frequency but also at double fre-
quency.

A. Linear Analysis

For an harmonic excitation, the impedance associated
to the countermass is:

Zmec = jωoM. (63)

So the linear operator matrix (36) can be written as:

(
LI
)
=


 c

D(1− ω2
o

ω2
a
+ j 1

Qm
) −h

−h 1
εs


 (64)

where ωa is the antiresonance frequency:

ω2
a =

cDW

Ml
. (65)

At resonance, if there are no losses, it is fulfilled for (35)
that:

(
LI
)( So
Do

)
=
(
0
0

)
(66)

which, by solving (66), leads to:

(
ωo
ωa

)2

= 1− k2 ≡ γ (67)

where k is the effective electromechanical coupling fac-
tor:

k2 ≡ h
2εs

cD
.

By the inclusion of losses, we have:


 cD(1− γ + j 1

Qm
) −h

−h 1
εs


( So

Do

)
=
(
0

1
l Eo

)
(68)

and, from (49) and (50) we obtain:

So =
1
hεs
(1− j 1

Qm(1− γ)
)Do (69)

Eo = j
l

εs
1

Qm(1− γ)
Do. (70)

At the resonance frequency, the electrical impedance
of the resonator (39) can be written as a function of the
mean impedance Z̃, whose value is that of the capacitor
Co = εsW/l at that frequency:

Z =
Z̃

Qm(1− γ)
. (71)
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B. Achieving the Second Harmonic

Assuming that the model used to describe the linear
operator matrix at the frequency ωo is also valid at double
frequency, we can write that:

(
LII
)
=


 cD(1− 4γ + j 1

Qm
) −h

−h 1
εs


 . (72)

Once matrix (72) has been inverted, (56) can be written
as follows:

SII1 = − 1
3cDγ

(
1 + j

1
3Qmγ

)
ΦIIo

− hεs

3cDγ

(
1 + j

1
3Qmγ

)
ΨIIo (73)

DII1 = − hεs

3cDγ

(
1 + j

1
3Qmγ

)
ΦIIo

− εs

3γ

(
1− 4γ + j k2

3Qmγ

)
ΨIIo (74)

which are matched with the mechanical displacement and
the electrical current at the double frequency, respectively.
The functions ΦIIo and ΨIIo are obtained from the

Fourier transform of the functions Φo y Ψo, after they
have been calculated from the values of:

Do = Do cosωot (75)

So =
Do
hεs
(cosωot+

1
Qm(1− γ)

sinωot) (76)

where So has been obtained through the inverse Fourier
transform of (69).

C. A Particular Case of a Nonlinear Function

Let us suppose that nonlinearity is so weak that we can
still assume the power series development of the energy
function. Then the functions Φ y Ψ are related because
they are derived from the same potential U ; if Uo is the
linearized potential energy function, we have:

Φ =
∂U

∂S
− ∂Uo
∂S

=
∂∆U
∂S

(77)

Ψ =
∂U

∂D
− ∂Uo
∂D

=
∂∆U
∂D

. (78)

Now we calculate a simple case of nonlinearity described
by a quadratic term, which due to its symmetry, can only
generate harmonics of frequency 2ω and 0 (constant term).
We wish to calculate the contribution of the elastostric-
tive term ∆U = λSSDS2D to the second harmonic gen-
erated mechanical displacement and electrical current. In
this case, both nonlinear functions Φ and Ψ are not null.
From (77) and (78) we obtain:

Φo = 2λSSDSoDo (79)

Ψo = λSSDS2
o (80)

and substituting (75) and (76) into (79) and (80), we see
that:

Φo = D2
o

2λSSD
hεs

(
cos2 ωt+

1
Qm(1− γ)

sinωt cosωt
)
(81)

Ψo = D2
o

λSSD
(hεs)2

(
cos2 ωt+

2
Qm(1− γ)

sinωt cosωt
)
(82)

whose complex amplitudes at frequency 2ωo are:

ΦIIo = D
2
o

λSSD
hεs

(
1− j 1

Qm(1− γ)

)
(83)

ΨIIo = D
2
o

λSSD
2(hεs)2

(
1− j 2

Qm(1− γ)

)
. (84)

By using (83) and (84) in (73) and (74), the first ap-
proximation second harmonic generation due to the elas-
tostrictive term can be obtained:

SII1 (SSD) = −D2
o

λSSD
hεscD

1
2γ

(
1 + j

fs
Qm

)
(85)

DII1 (SSD) = −D2
o

λSSD
h2ε

1− 2γ
2γ

(
1 + j

fd
Qm

)
(86)

where

fs =
1− 5γ
3γ(1− γ)

fd =
γ

(1− γ)(1− 2γ) .

It must be pointed out that γ can take values near to
0.5, so (86) must often be rewritten in a convenient form
to avoid indetermination.
This method allows the independent evaluation of the

contribution of each cubic term of ∆U to the electrical
current and to the mechanical displacement, giving ex-
pressions similar to that calculated in the example:

DII1 (m) = d̂mλmD2
o

SII1 (m) = ŝmλmD2
o

where m refers to any of the four cubic terms. The com-
plex constants d̂m and ŝm are strongly dependent on the
electromechanical coupling factor of the employed mate-
rial.

VI. Conclusions

With the aim of studying the nonlinear behavior of
a piezoelectric resonator, a perturbative method was de-
veloped, enabling us to analyze the nonlinear effects in
nondistributed systems, on the assumption that there are
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mechanical, electrical, and piezoelectric losses. No restric-
tions were imposed on the form of the nonlinear function,
so the results are valid for a range of amplitudes larger
than those in which the power series development of the
potential energy is accepted.
The problem can be simplified if the amplitude of the

electrical current at fundamental frequency is previously
fixed, and the electromotive force is perfectly sinusoidal
but of unknown amplitude (so we assume that the gener-
ator has no distortion) and there is no mechanical excita-
tion. On this basis, the amplitude and phase of the exci-
tation voltage can be found as a function of the electrical
displacement Do, as well as the amplitude and phase of
the current and mechanical displacement of the generated
harmonics.
The nonlinear functions can be split into symmetrical

and antisymmetrical parts, and each part has a different
influence on the response of the system, depending on
whether the first or second approximation is considered.
At first order perturbation (direct effect), the antisym-
metrical terms produce odd harmonics; the symmetrical
terms give even harmonics at first order, but odd harmon-
ics at second order perturbation (indirect effect). When
only antisymmetrical terms are significant, the increment
of impedance of the resonator is directly related to the fun-
damental frequency component of the nonlinear functions.
In the actual form, the method cannot be applied to

solve subharmonic generation because the solution is de-
veloped in harmonics terms, whose frequency is multiple
of the excitation one. In order to analyze a given sub-
harmonic, all boundary conditions must be reconsidered,
taking the fractional frequency as the fundamental one
and applying an electromotive force only at the correct
frequency.
There is a unique value of electromotive force for each

value of the current. So the resonance hysteresis occurs
when, due to the nonlinear character of the equations, a
single value of the e.m.f. modulus is assigned to two dif-
ferent values of the current i.
Although the current at the excitation frequency is fixed

a priori, energy interchange between fundamental and har-
monics is not forbidden because the e.m.f. depends on the
harmonic frequencies behavior. The energy involved at the
fundamental frequency also depends on it.
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