
UPC CTTC

Numerical simulation of
bubbles and drops in
complex geometries by
using dynamic meshes

Centre Tecnològic de Transferència de Calor
Departament de Màquines i Motors Tèrmics

Universitat Politècnica de Catalunya

Enrique Gutiérrez Álvarez
Doctoral Thesis





Numerical simulation of
bubbles and drops in

complex geometries by
using dynamic meshes

Enrique Gutiérrez Álvarez

TESI DOCTORAL

presentada al

Departament de Màquines i Motors Tèrmics
E.S.E.I.A.A.T.,

Universitat Politècnica de Catalunya

per a l’obtenció del grau de

Doctor per la Universitat Politècnica de Catalunya

Terrassa, July 2018





Numerical simulation of
bubbles and drops in

complex geometries by
using dynamic meshes

Enrique Gutiérrez Álvarez

Director de la tesi

Dr. Assensi Oliva Llena

Co-director de la tesi
Dr. Néstor Vinicio Balcázar Arciniega

Tribunal Qualificador
Dr. Iztok Tiselj

University of Ljubljana

Dr. Antonio M. Pascau Benito
University of Zaragoza

Dr. Carlos D. Pérez-Segarra
Polytechnic University of Catalonia





A mis padres, Encarni y Manolo

X:1

T:Glutius

M:4/4

L:1/8

Q: 1/4=140

V:P1 clef=treble

V:P2 clef=bass t=2 octave=-2

%%score {P1 | P2}

K:Bm

V:P1

|:{f}g4 d4 | B3^c da3|1 f8- | f8 :|2 f8- | f6 _e=f||

|:{f}g4 d4 | B3^c da3|1 eA f6- | f4 zd_e=f :|2 f8- | f6 ag ||

|:{^d}[e3 G3] B ^c g3-|g4 [=f4 a4] |{a}[_b3 g3] g d' a3-|a4 [e ^c][f d][a A][g =B] |

{^d}[e3 G3] B ^c g3-|g4 [=f4 a4] |1 {a}[_b3 g3] g d' a3-|a4 d2- (3dag :|2 [d' g] [^c'3 f3]-[^c'4 f4]-| [^c'8 f8]] 

V:P2

|:_Bg_ed' _Bg_ed' &_e4 _B4| =eged' =cged' & =c4 G4 |1 dfdd' Bfdd' &B4 f4| Bfdd' Bfdd' & d4 F4 :|2 Bfdd' Bfdd' &d2 a2 b2 a2| Bf (3gag dfga & d2 x6||

|:_Bg_ed' _Bg_ed' &_e4 _B4| =eged' =cged' & =c4 G4 |1 dfdd' Bfdd' &B4 f4| Bfdd' Bfdd' & d4 F4 :|2 Bf [D6 a6 d6 d'6]-&d2 x6|[D8 a8 d8 d'8] ||

|: eged' eged'& =c4 G4| eged' eg=fd'& =C4 G4| _eged' =cged' &=c4 _B4 | _eged' ^ca=ed' &=c4 A4 | 

eged' eged'& =c4 G4| eged' eg=fd'& =C4 G4|1 _eged' =cged' &=c4 _B4 | _eged' ^ca=ed' &=c4 A4 :|2 [b8 d8 G8] | z8 || 

i



ii



Acknowledgements
Me gustaría empezar mis agradecimientos por Assensi Oliva, director de mi tesis

y del Centro Tecnológico de transferencia de Calor (CTTC). Él me ha transmitido su
pasión por la mecánica de fluidos computacional; y no solo eso, ha confiado en mi, y me
ha apoyado en los momentos difíciles durante estos años. Así mismo, es el principal
responsable de haber creado este espacio de trabajo constructivo y dinámico que es el
CTTC.

También me gustaría agradecer la labor de mi co-director de tesis Néstor Balcázar,
y de mi tutor Joaquim Rigola. Juntos nos hemos enfrentado a multitud de retos cientí-
ficos. Ellos siempre me han tendido la mano cuando la he necesitado. Os agradezco de
corazón vuestra contribución a esta tesis.

Quedo también profundamente agradecido a mis compañeros del CTTC que me han
acompañado durante esta aventura. A Octavi por todo el tiempo que ha dedicado a
solucionar mis problemas informáticos. A Eduard, con quien he ido de la mano en el
doctorado, apoyándonos cuando lo hemos necesitado. A Ali, por querer ser mi amigo,
tal y como le pedí amablemente el primer día que le conocí. A Jesús por recogerme cada
día a las 13:30 y llevarme a comer. A Héctor, por todas esas conversaciones interesantes
en nuestro despacho. A Fede, por su paciencia y dedicación a nuestro trabajo. A Carles,
que ha sido tanto padre como amigo dentro del laboratorio. A Jordi Chiva, por su ayuda
en programación. A Lluis Jofre, por su amabilidad y atención en mi primera etapa en
el CTTC, guiándome en el aprendizaje del código. A todos ellos, y a los que no incluyo
por razones de espacio, muchas gracias.

Así mismo, me gustaría agradecerle a la profesora Darina Murray del Trinity Col-
lege de Dublin mi acogida por tres meses, así como su amabilidad conmigo, enseñán-
dome el funcionamiento del grupo que lidera y poniéndome en contacto con los investi-
gadores que trabajan allí. Igualmente, quiero agradecerle a Pedro Curto su recibimiento
en el Instituto de Ingeniería Mecánica y Producción industrial (IIMPI), de la Univer-
sidad de la República (Uruguay). Pedro me aceptó amablemente en la institución que
dirige, donde tuve la ocasión de realizar una estancia de investigación de un mes y
medio.

Agradezco muy especialmente el apoyo de mis familiares Encarni, Manolo, Helena,
Chris e Inés, y del resto de mi familia que no puedo mentar por falta de espacio.

Finalmente, como autor de esta tesis me gustaría agradecer a la Generalitat de

iii



iv Acknowledgements

Catalunya por el apoyo financiero recibido durante la tesis doctoral. De igual forma,
a la UPC, el programa Erasmus+ de la Unión Europea, y a La Caixa, por haber con-
tribuido económicamente a que puediese realizar las estancias de investigación en el
extranjero. Por último, quiero agradecer también a la Red Española de Supercom-
putación y al Irish Centre for High-End Computing por los recursos computacionales
provistos durante mi doctorado.



Abstract
The present thesis aims at improving the versatility of the DNS simulations of mul-

tiphase flows. CFD techniques are important tools for the study of multiphase flows,
because most of the physical phenomena of these flows often happen on space and time
scales where experimental methodologies are impossible in practice. Notwithstanding,
numerical approaches are limited by the computational power of the present comput-
ers. In this sense, small improvements in the efficiency of the simulations can make
the difference between an approachable problem and an unapproachable one. The pro-
posal of this doctoral thesis is focused on developing numerical algorithms to optimize
the simulations of multiphase solvers based on single-fluid formulations, applied on
three-dimensional unstructured meshes, in the context of a finite-volume discretiza-
tion. In particular, in the light of previous background of the Heat and Mass Transfer
Technological Center (CTTC) research group, the methods developed in the context of
this PhD thesis use a conservative level set technique to deal with the multiphase do-
main. The previous work on multiphase flows developed at CTTC is mainly focused in
build robust DNS solvers that can be used to address fundamental problems of bubbles,
drops and jets. Thus, it is worth noting that the work presented in the present PhD
thesis is the first attempt within CTTC research group to bring those methods to real
scenarios, with complex geometries and long physical domains.

The work has been organized in five chapters and four appendices. The first chap-
ter constitutes an introduction to the multiphase flows and the different approaches
used to study them. It also includes a description of the background of the present
thesis, and a brief mathematical description of the chosen interface tracking technique
(i.e. the conservative level set method). The core work of the of this PhD thesis is
explained throughout chapters two, three, and four. In those chapters, the improve-
ments performed on the multiphase DNS techniques are addressed in detail, providing
results comparisons and discussions on the obtained outcomes. Most of the content of
these chapters has been already submitted or published in international journals and
conferences. The wording of those papers have been slightly adapted, aiming at unify-
ing their format and at structuring them within the complete document. Consequently,
each chapter is not self-contained, although some key concepts are often recalled. After
developing the main ideas of the thesis a final concluding chapter is presented, summa-
rizing the main findings of this research, and pointing out some future work. Finally,
the appendices includes some material that can be useful to understand in depth some
specific parts of the thesis but, conversely, they are not essential to follow the main
thread.

As said before, the core work of this thesis is presented throughout chapters two,
three and four. In chapter two, four domain optimization methods are formulated and
tested. By using these techniques, small domains can be used in rising bubble simu-
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vi Abstract

lations, thus saving computational resources. These methods have been implemented
in a conservative level set framework. Some of these methods require the use of open
boundaries. Therefore, a careful treatment of both inflow and outflow boundaries has
been carried out. This includes the development of a new outflow boundary condition
as a variation of the classical convective outflow. At this point, a study about the siz-
ing of the computational domain has been conducted, paying special attention to the
placement of the inflow and outflow boundaries. Additionally, once the methods are for-
mulated, several validation cases are run to discuss the applicability and robustness of
each method.

The third chapter presents a physical study of a challenging problem: the Taylor
bubble. By using the most promising technique from those presented in the previous
chapter (i.e. the moving mesh method), the problem of an elongated bubble rising in
stagnant liquid is addressed here. A transient study on the velocity field of the problem
is provided. Moreover, the study also includes sensitivity analyses with respect to the
initial shape of the bubble, the initial volume of the bubble, the flow regime and the
inclination of the channel.

Chapter number four presents an extension of the developed method to simulate
bubbles and drops evolving in complex geometries. The use of an immersed bound-
ary method allows to deal with intricate geometries and to reproduce internal bound-
aries within an ALE framework. The resulting method is capable of dealing with full
unstructured meshes. Different problems are studied here to assert the proposed for-
mulation, both involving constricting and non-constricting geometries. In particular,
the following problems are addressed: a 2D gravity-driven bubble interacting with a
highly-inclined plane, a 2D gravity-driven Taylor bubble turning into a curved channel,
the 3D passage of a drop through a periodically constricted channel, and the impinge-
ment of a 3D drop on a flat plate.
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1

Introduction

The current section aims to present a first look at the work accomplished through-
out this thesis. Multiphase flows and their interaction with solids are present in a
broad range of industrial an natural phenomena. These problems have been studied
by the scientific community over the last centuries, casting valuable light upon their
complex physic. Therefore, some emphasis is placed on those methodology analysis.
Additionally, some important applications will be highlighted in subsequents sections.
Finally, the background of the present work is synthesized at the end of the chapter, as
well as some useful preliminary concepts.

1.1 Motivation
As said before, the proper solution of multiphase flows is of paramount importance to
laid a solid foundation on the understanding of many processes present in engineer-
ing and natural science. For example, the successful optimization of an oil extraction
plant is conditioned to a complete comprehension of the slug flow pattern (elongated
bubbles moving inside a pipe) [1]. The chemical engineering is another field fed by the
multiphase knowhow. Micro-reactors and the lab-on-a-chip concept are good examples
of bubbly flow applications within chemical science [2]. In addition, due to the fact
that biomedical studies are becoming increasingly important for the scientific commu-
nity, multiphase flows seems to be a significant issue to understand complex blood flow
cases, i.e. embolisms. Other relevant engineering fields are also directly related to this
discipline: microfluidics, volcanology, geothermal power plants, cryogenic fluids, sprays
and injection processes. Additionally, many natural phenomena are conditioned to the
behaviour of multiphase flows. For instance, cloud formation, rainfall, cosmic motions,
and others. See [1] for a detailed explanation on the applications of this type of flow.

The simulation of multiphase flows falls within the broader field of the compu-
tational fluid dynamics (CFD). In particular, the methodology followed in the present
thesis lies within the so-called Direct Numerical Simulation (DNS) field, which involves

1



2 §1.2 Background

a complete resolution of all turbulence scales. The present work aims to shed some
light on the resources optimization and flexibility of those multiphase DNS methods. By
progressively introducing numerical improvements, the proposed DNS approach will be
optimized, seeking to achieve a more versatile method as explained in Sec. 1.3.

1.2 Background
The present PhD thesis is developed on the context of the computational fluid dynamics
(CFD). This discipline is strongly linked with the high performance computing (HPC),
used to maximize its applicability. The current section introduces both CFD and HPC

fields, as well as it describes the scientific group within the present work has been
developed.

1.2.1 Multiphase flows in CFD
The intrinsic complexity of multiphase flows limits the approachability of the scientific
community to their related phenomena. On the one hand, theoretical and analytical
methods usually involve major assumptions, which compromises the applicability of
the obtained results. On the other hand, experimental approaches are not always re-
liable, due to the difficulties related with the process of setting the initial conditions,
as well as visualization problems. As an alternative to those methods, numerical ap-
proaches can be adopted. Those methodologies are becoming increasingly important
due to the growth of the computational power available for the scientific community.

The CFD science consists on the analysis of problems involving fluid flows, heat
transfer and associated phenomena, by means of computer-based simulation [3]. The
development of the CFD started at 1960s linked to the aerospace engineering. This
analysis technique is founded upon two mathematical disciplines: modeling and nu-
merical methods. An important branch of CFD is the direct numerical simulation (DNS)
of multiphase flows, which studies the evolution of physical domains in where several
fluids coexist.

During the last two decades, great advances have been made in direct numerical
simulations of multiphase flow. Unverdi and Tryggvason [4, 5] computed the inter-
actions of two-dimensional and three-dimensional bubbles and Jan [3] examined the
motion of two axisymmetric and two-dimensional bubbles in more detail. Ervin and
Tryggvason [6, 7] computed the rise of a bubble in a vertical shear flow and showed
that the lift force changes sign when the bubble deforms. The results of Jan and
Ervin [6,8], which cover a Reynolds number range of about 1−100 have yielded insight
into the dependency of attractive and repulsive forces between two bubbles, depending
on the Reynolds number and bubble deformability. Tryggvason and collaborators [4–8]
have examined the motion of nearly spherical bubbles in periodic domains for low den-
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sity ratio and Reynolds number between 20 and 30, using the front-tracking method.
Bunner and Tryggvason [9, 10] simulated a much larger number of three-dimensional
bubbles following the motion of 216 three-dimensional bubbles in a periodic domain for
a relatively long time.

In general, DNS multiphase methods can be classified in two main groups: those
using an Eulerian framework and those using a Lagrangian one. The latter is com-
posed of front-tracking methods [11], which precisely describe the multiphase flow, but
they are complex to implement due to the need for re-meshing at each iteration. Inside
the group of methods that use an Eulerian approach, there are three main types: the
volume-of-fluid (VoF) methods [12], the level set (LS) methods [13] and hybrid meth-
ods, for example, the CLSVoF method [14]. The VoF methods have the advantage of
inherently conserving the mass, but the calculus of the geometrical properties at the
interface is troublesome. On the contrary, level set approaches precisely calculate these
geometrical properties of the interface (normal and curvature), but they have draw-
backs in mass conservation. The hybrid methods usually solve both problems at the
expense of increasing the computational cost.

In the present PhD thesis a LS approach is used to simulate problems of bubbles
and drops. Those methods are founded upon the tracking of a sharp interface which
separates the two different fluids. When dealing with bubbly flows, these two fluids can
be unambiguously named as the “suspending fluid” and the “secondary phase”. This
is the selected criterion in the present document. Level set methods work by advect-
ing a marker function (namely, the level set function) which takes an specific value
at the secondary phase and another one at the suspending fluid (see Fig. 1.1). The
process of advecting this function while keeping the interface sharp is a challenging
issue in level set methods. According to Tryggvason et al. [11], the other troublesome
facts for getting reliable simulations are (i) the tracking of the interface separating
the fluids and (ii) the implementation of a model which takes into account the surface
tension force. Although level set techniques had been broadly used in mathematics,
the work of Sussman et al. [15] is considered the first successful application of a level
set method to multiphase DNS. Sussman proposed a standard level set (SLS) approach,
in which the level set function is a simple distance function. Successful implemen-
tations of this technique were demonstrated through the subsequent years (see for
instance, [13,15–23]). In 2005, Olsson et al. [18] carried out a significant improvement
on the development of the method. Olsson settled down the so-called conservative level
set (CLS) method by introducing a reinitialization step in the calculation algorithm of
the level set method. This improved method greatly reduces the mass conservation
problems present in the SLS. The development of the CLS was culminated in 2014 by
Balcázar et al. [24], who generalized the method for unstructured meshes. Since then,
the method has been widely used [14,25–29].
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Figure 1.1: Example of a marker function in a level set method.

1.2.2 High Performance Computing
The development of CFD (and in particular multiphase DNS) is strongly linked with the
high performance computing (HPC) science. It is well-known that CFD software is highly
demanding in terms of computational power. Some specific simulations could last years
if they are run sequentially (i.e. using one CPU). HPC makes possible the division of the
computational domain in different regions, thus each of them is assigned to a different
CPU (parallelization). Nowadays, this feature is essential in any reliable DNS software.
Moreover, the computational power grows exponentially over time, as well as other
computing tools, like the GPUs capabilities. All of this makes possible to face DNS

problems in a reasonable time.
The HPC also facilitates the exploration of a level of detail that could not be acces-

sible by using any other scientific approach (i.e. theoretical or experimental). This is
due to the fact that the coupling of CFD and HPC makes possible the solution of very
small turbulence scales, thus allowing a practically unlimited level of detail of results,
as well as providing the ability to study systems under hazardous conditions at and
beyond their normal performance limit (e.g accident scenarios and safety studies) [3].

1.2.3 CTTC research group
The CTTC and its environment develop their own CFD code called TermoFluids [30]. The
code is a 3D unstructured parallel code that uses state-of-the-art numerical and phys-
ical models to perform accurate scientific analysis of engineering problems. Special
care has been taken in its parallel performance, having a high efficiency in supercom-
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puters. The development of the code has been a source of scientific publications in the
most prominent scientific journals, which supports its reliability.

TermoFluids code employs collocated unstructured meshes, in where a finite vol-
ume discretization of the Navier-Stokes equations is performed. This discretization is
conservative, due to the fact that the employed numerical schemes preserve the prop-
erties of the differential operators in which they are based. That is, some properties
of the discretization ensure the kinetic-energy conservation and the stability of the
code. Those properties are: the negative conjugate transpose of the gradient operator
is approximately equal to the divergence operator, the convective operator is skew-
symmetric, and the diffusive operator is symmetric positive-definite.

In order to run the TermoFluids software, the CTTC has a Beowulf HPC cluster (see
Fig. 1.2) with a total of 2304 cores (1024 processing cores 128 nodes of two Quad-core
CPUs each and 1280 processing cores distributed in 40 nodes of 32 Cores each). It
has an infiniband DDR 4X network interconnection between nodes with latencies of
2.25 microseconds with a 20Gbits/s bandwidth and a system of files that allow unified
capacities of several Petabytes, highly scalable.

Figure 1.2: JFF cluster at CTTC.

In addition, the scalability of the code in solving the Navier-Stokes equations has
been recently tested up to 131072 CPU at the ALCF [31]. The scalability of the
CLS multiphase solver has been demonstrated to reach 3072CPUs (PRACE project
2014112666 and 2016153612) [27,32–34].

The group attained several milestones within CFD research. Some of the important
topics addressed at CTTC are: natural and forced convection [35], turbulence modeling
[36], combustion [37], radiation [42], refrigeration [43], HVAC [44], absorption [45],
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fluid-solid interaction [46], numerical algorithms and solvers [48], moving and non-
structured grids [47], adaptive mesh refinement [49], tribology [50], etc. Additionally,
the multiphase flow branch has been broadly developed [14, 24–29, 32–34, 38–41], and
some of this previous advances done at CTTC are essential to understand the course of
the present thesis. Therefore, these founding ideas are summarized below, in Sec. 1.5.

1.3 Objectives of the thesis
Multiphase DNS has attracted a great deal of interest from the scientific community
during the last decades. This is reflected in the the large amount of relevant improve-
ments into the field (see Sec. 1.2.1). However, multiphase DNS is still far from facing
many of the problems present in the industry. This arises from two main reasons. First,
it is not easy to assure a proper coupling among the physics under consideration. And
second, the computational power is still insufficient to tackle some challenging real
cases, which involve big domains, long time-evolution and/or many different turbulent
scales.

In order to address this last issue, there are some recurring approaches in the
literature. One of this ideas consists in assuming axisymmetry, two-dimensionality
or some kind of periodicity in the fluid domain. Although these approaches are useful
to shed some light in some specific configurations, they should not be considered if a
generic method to face industrial problems is sought. This is because they might omit
some of the three-dimensional effects, inherently present in the real problems.

The founding idea of the present work is to consider three-dimensional and un-
structured computational domains, which is aligned with the general philosophy of
Termofluids code. From this point, we will consider the adaptation of the current DNS
approaches to face real problems. In particular, we will be focus on the conservative
level set (CLS) method, which is the most promising technique to simulate multiphase
flows among those tested at CTTC. Therefore, a solid CLS method has been taken as
starting point of the work developed in this thesis. See [24,26] for details on the appli-
cability of this CLS method.

In order to maintain a three-dimensional computational domain in bubbles and
drops problems, some measures should be taken to make the problem approachable.
In this sense, we observed the following issue: in rising bubble problems, there is
a intrinsic need of leaving enough vertical space, so that the bubble evolves. This
introduce a major problem: the expense of computational resources by the fact that
regions far from the bubble are being solved. It is easy to see that those regions are not
actually important to calculate the dynamics of the bubble. Therefore, some specific
flow regimes would be impossible to dealt with, due to the size of the resulting meshes.
Few previous approaches to this problem (although relevant [51–56]) are available in
the scientific literature.



7

Based on this preliminary problem, we settled the following objectives for the present
thesis:

• Investigate the different methods present in in the literature to reduce the com-
putational domain in rising bubbles problems. Implement the feasible ones in
the context of the CLS, and discuss their applicability.

• Select the most promising method and use it to study a challenging problem: the
motion of a Taylor bubble. Detailed findings on the flow regime and rise condi-
tions should be provided, in order to prove the validity of the coupling between
the selected domain optimization method with the CLS method.

• Adapt the aforementioned method to simulate real intricate geometries, while
keeping the computational expenditure under control.

These improvements should be implemented in the context of Termofluids code. For
this purpose, the founding concepts of this software should be born in mind. In par-
ticular, those concerning mass conservation. This is essential to be coherent with the
used CLS method. Other properties should also be a source of concern (i.e. scalability,
interaction with other physics, etc.).

Finally, it is worth noting that, although the aforementioned improvements will be
specifically designed for working with a CLS method, they could be easily transposed
to other single fluid formulations (e.g. VoF, CLSVoF, Ghost fluid), by carrying out minor
adjustments. Analogously, the developed methods should also work in staggered grid
arrangements, by carrying out minor modifications.

1.4 Outline of the thesis
As mentioned before, the present thesis aims at improving the versatility of CLS method
when dealing with bubbles/drops evolving in complex geometries. To accomplish this
goal, a preliminary overview of the basic concepts of the conservative level set method
is described over the present introductory chapter, in order to make the rest of the
document more comprehensible.

The first of the posed objectives of this thesis (see Sec. 1.3) will be addressed thor-
ough Ch. 2. Therefore, we will perform a numerical investigation on the methods al-
lowing a reduction of the computational size in bubbles and drops problems. Several
methods will be implemented in the context of Termofluids. Once formulated, they will
be validated against experiments, and compared among then.

At this point, we intend to choose the domain optimization method presenting a
better performance. Therefore, a discussion on the tested methods becomes impor-
tant to clarify the advantages and drawbacks of each approach. The most promising
technique will be applied to seed some light on an industrial problem: the slug flow.
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Many numerical experiments will be performed throughout Ch. 3 on the Taylor bubble
problem. This study includes sensitivity analyses with respect to the initial shape of
the bubble, the initial volume of the bubble, the flow regime and the inclination of the
channel, among others.

After that, an adaptation of the used method to simulate complex geometries will
be sought. In Ch. 4 we perform some numerical modifications to improve the versatility
of the chosen method. Finally, several test cases are addressed in order to guarantee
the validity of the proposed method.

The document ends with a chapter devoted to summarize the conclusions and the
future work (Ch. 5). Additionally, four appendices are included to complement some
parts of the thesis. First, App. A explains how to compute the cinematic properties of a
bubble/drop in a level set formulation. Second, App. B gathers some useful calculations
in deformable meshes methods. Third, App. C gathers the publications resulting from
this research. And fourth, App. D lists the parallel computing resources uses to perform
the simulations.

1.5 Preliminary concepts on multiphase DNS
In order to make the following chapters more accessible to the reader, in the present
section several founding concept are introduced. Most of this knowledge has been for-
merly developed in the context of the CTTC research activity (see for instance [24,26]).

1.5.1 Conservative level set governing equations
Assuming incompressible flow, Newtonian fluids, no mass transfer at the interface be-
tween fluids, and constant surface tension coefficient σ, the Navier-Stokes equations
governing the fluid motion are written as [24,47]:

∂

∂t
(
ρv

)+∇· (ρvv
)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ (1.1)

∇·v= 0 (1.2)

where t is the time, ρ and µ are respectively the fluid density and viscosity, v is the
velocity field, p is the pressure field, g is the gravity acceleration, n is the unit normal
vector to the interface, κ is the interface curvature, and δΓ is the Dirac delta function
located at the interface Γ. Finally, ρ and µ can be obtained by the following expressions:

ρ = ρ1H1 +ρ2 (1−H1) (1.3)

µ=µ1H1 +µ2 (1−H1) (1.4)
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where subscripts 1 and 2 refer respectively to continuous phase (Ω1) and bubble/drop
fluid (Ω2). H1 is the Heaviside function, which takes the value of 1 inΩ1 and 0 inΩ2. At
discretized level, physical properties are smoothed according to the CLS method [18,24],
in order to avoid numerical instabilities of the interface.

1.5.2 Interface capturing
The two main difficulties of simulating fluid interfaces are to keep up a sharp interface
and to accurately calculate the surface tension [11]. In order to deal with this issues,
we use the CLS method to capture the interface [24]. In this method, the following
regularized indicator function φ is used in order to implicitly represent the interface:

φ (x, t)= 1
2

(
tanh

(
d (x, t)

2ε

)
+1

)
(1.5)

Here, d (x, t)=minxΓ(t)∈Γ (|x,xΓ (t)|) is the signed distance function and ε is a parameter
for controlling the thickness of the interface. This level set function takes the value 0
in the secondary phase, and 1 in the continuous one. It varies continuously along the
interface, which can be located by getting the φ= 0.5 isosurface. Based upon this level
set function, the fluid properties are regularized as follows:

ρ = ρ1φ+ρ2
(
1−φ)

(1.6)

µ=µ1φ+µ2
(
1−φ)

(1.7)

The level set function is advected by the velocity field obtained from the solution of
the Navier-Stokes equations (Eq. 1.1 and 1.2); this yields:

∂φ

∂t
+∇·φv= 0 (1.8)

Due to numerical diffusion, the thickness of the interface tends to widen. In order
to deal with this problem, a reinitialization equation is used to compress the inter-
face [57]:

∂φ

∂τ
+∇·φ(

1−φ)
nτ=0 =∇·ε∇φ (1.9)

where τ is the pseudo-time. This equation consists of a compressive term φ
(
1−φ)

nτ=0
which compresses the level set function along the unit normal vector n, and of a diffu-
sion term ∇·ε∇φ, that maintains the characteristic thickness of the profile proportional
to ε= 0.5h0.9, where h is the grid size [24].
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1.5.3 Surface tension treatment
By using the Continuum Surface Force (CSF) method developed by Brackbill et al. [58]
two challenging issues can be handled: the computation of the curvature κ and the
application of the resulting pressure jump to the fluids. Following [58], the singular
term σκnδΓ is rewritten as a volume force:

σκnδΓ =σκ
(
φ

)∇φ (1.10)

where n and κ
(
φ

)
are given by:

n= ∇φ∥∥∇φ∥∥ (1.11)

κ
(
φ

)=−∇·n (1.12)

Here, ∇φ is evaluated by means of the least-squares method [24].
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2

An assessment of domain

optimization methods to

simulate bubbles dynamics

Abstract. Four domain optimization techniques have been formulated and tested: fringe zone,
buffer zone, moving mesh and non-inertial reference frame methods. By using these techniques,
small domains can be used in rising bubble simulations, thus saving computational resources.
These methods have been implemented in a conservative level set framework. Because some of
them require the use of open boundaries, a careful treatment of both inflow and outflow bound-
aries has been carried out, including the development of a new outflow boundary condition as a
variation of the classical convective outflow. Additionally, we carefully studied the domain sizing
process, in order to employ the minimum domain capable of capturing the physics of the problem.
Validation cases were successfully run in both two and three dimensional configurations.

2.1 Introduction
The bubbly flow is of fundamental importance in a vast variety of engineering applica-
tions and natural phenomena. Bubble-laden flows are present in industrial processes
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such as solvent extraction, unit operations, bubble columns and extraction columns [1].
To understand these flows, the elemental problem of a single rising bubble should be
thoroughly comprehended, laying a solid foundation for the analysis of more complex
cases. Buoyant bubble problems need the use of large domains to achieve proper cap-
ture of the phenomena. That is due to the need of leaving enough vertical space for the
bubble to reach its steady state. This introduces a problem: the loss of computational
efficiency due to the resolution of areas with no influence in the calculation of the dy-
namic properties of the bubble. In effect, at a specific point of the simulation, the region
of interest includes the bubble and its surroundings, and also the zones over which the
upwind and downwind disturbances are propagated. This region of interest does not
include areas far from the bubble, in which the fluid remains totally quiescent.

To avoid this waste of computational resources, several approaches have been tested.
In some cases, improving the efficiency is not only advisable but also mandatory, for
instance when very fine meshes are needed in order to accurately reproduce small scale
turbulent motions. The most usual solution is to reduce the computational domain and
impose periodic boundary conditions at its limits. However, this may cause the bubble
to interact with its own wake if the length of the domain is not large enough, altering
its motion. One solution for this problem could be to use a fringe zone, a region above
the rising bubble where the velocity field is reinitialized. Several studies have been
published using this method [2–4].

Other approaches can also be adopted by using open boundaries instead of periodic
ones. The problem can be formulated employing an Arbitrary Lagrangian-Eulerian
(ALE) formulation. In this case, since the mesh is moving along the bubble rise, a short
computational domain is enough to capture the evolution of the bubble. Moving Mesh
(MM) methods have been broadly used in CFD [5–7]. In particular, it is starting to be
applied to bubbles and drops problems [8]. The non-inertial reference frame method
is another similar method that can be used with identical aim and which also involves
the use of open boundaries. In this method a new reference frame is attached to the
bubble centroid, and the dynamics of the bubble are analyzed from this frame. This
method has already been used within the context of bubbly flows [9,10].

As shown above, rising bubbles problems frequently involve the use of open bound-
aries. A proper design of these boundaries (specially the outflow) could have an over-
riding impact in the behavior of the simulation. The outflow boundary should allow
the outlet of disturbances, with a minimum influence in the rest of the domain. Differ-
ent approaches have been adopted to deal with outflow boundary conditions in other
rising bubbles studies [9, 11, 12]. This work undertakes the task of developing a suit-
able outflow boundary condition aiming to minimize the global mass error derived from
the presence of this boundary. In this regard, a mass correction step is added to the
well-known fractional step method [13].

The size of the computational domain is a crucial parameter to study the viability
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of a DNS simulation. Bigger domains give rise to bigger meshes, and therefore more
resources-consuming simulations. For example, by increasing only a 10% the side of a
cubic mesh, the computational expenditure would be more than 130% of the original
one. This increment can make the difference between an approachable problem and
an unapproachable one. In bubbles and drops problems, the work of Harmathy [14]
marked the first step towards a complete domain sizing optimization. In that paper,
Harmathy proposed an expression to compute the lateral distance (i.e. from bubble
centroid to the lateral walls) while keeping under control the absolute error of the
terminal velocity. In the present work, we study the influence of the distances from the
bubble centroid to the inflow and outflow, with a view to maintain unaltered the fluid
field around the bubble, while keeping a compact domain.

The above-mentioned studies has been put into practice in the problem of a stan-
dard rising bubble. This constitutes an essential problem to understand many of the
underlying physical phenomena in multiphase flow problems. First, a two-dimensional
approach has been conducted, with the aim of making the testing stage more versatile.
To this end, the well-known configuration of Hysing et al. [15] has been taken as ref-
erence. Additionally, a three dimensional configuration has also been tested, following
the work of Balcázar et al. [16].

The work is organized as follows. The problem of reducing the computational do-
main is explained in Sec. 2.2. The used numerical methods are presented in Sec. 2.3,
followed by an in-depth explanation of the needed boundary conditions (Sec. 2.4). In ad-
dition, a thoughtful study on the computational domain sizing is presented in Sec. 2.5,
in order to provide a procedure to minimize the size of the mesh in rising bubble prob-
lems. Thereafter, for the sake of validating the different methods, a set of numerical
experiments is carried out in Sec. 2.6. Finally, Sec. 2.7 presents the concluding re-
marks, together with an assessment of the used methods, in order to choose the one
with better performance, which will be selected for the following work of the PhD the-
sis.

2.2 Domain optimization methods
The present section describes the strategies followed to minimize the domain dimen-
sions. Without these strategies, a large domain would be needed in order to leave
enough vertical space for the bubble to rise. This causes a loss of the efficiency due to
the fact that regions far from the bubble are being solved. Therefore, the use of the
following methods improves the efficiency, and enables finer meshing and/or saving
computational resources.
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2.2.1 Fringe zone method
The first method considered to reduce the computational domain is based upon avoid-
ing the interaction between the bubble and its own wake in a periodic domain. It is
the so-called fringe zone method, and was first introduced by Nordström et al. [4]. This
method defines a region above the bubble in which the velocity field is reset, leaving a
quiescent domain for the approaching bubble. Both up and down boundaries are con-
nected by imposing periodic boundary conditions. Mathematically, the dampening zone
is defined as an extra source term in the momentum equation (Eq. 1.1):

Ψfringe =
1
ρ
λ (x)v (2.1)

where x is the position vector and λ (x) is a fringe function given by:

λ (y)=λmax

[
S∗

( y− ystart

∆

)
−S∗

( y− yend

∆
+1

)]
(2.2)

Here, λmax is the maximum amplification factor, ystart and yend are respectively the
vertical coordinate of the start and the end of the fringe zone, and ∆ is the width over
which the function ramp up or down. Finally, S∗ is the regularized sigmoid function:

S∗(u)=


0 if u ≤ 0
S(u) if 0< u < 1
1 if u ≥ 1

(2.3)

As is shown in Fig. 2.1, several forms for the sigmoid function S(u) were tested,
without finding any relevant difference in the behaviour of the fringe zone source term.
Thus, the original formulation of [3] is used, which for the current problem yields the
following form:

S(u)= 1
1+exp

[ 1
u−1 + 1

u
] (2.4)

Fig. 2.2 depicts the position and shape of the fringe zone in a 2D rectangular do-
main. As shown in the figure, the definition of the fringe zone is conditioned by the
values of the following parameters: {s,b,∆,λmax}. The vertical positions of the start
of the fringe zone ystart and its end yend are determined by the following relations:
ystart = ybubble + s, yend = ybubble + s+ b, where ybubble is the vertical coordinate of the
bubble position.

In addition, an extra source term is needed in order to compensate the weight of
the fluids within the domain [16]:

Ψρ0 =−ρ0g (2.5)
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Figure 2.1: Comparison among different normalized sigmoid functions tested:
S1(x) = erf

(p
πx/2

)
, S2(x) = tanh(x), S3(x) = 2arcsin(tanh(πx/2)) /π, S4(x) =

x/
√

1+ x2, S5(x)= 2arctan(πx/2) /π, S6(x)= x/ (1+|x|), S7(x)= 2/(1+ e−x)−1.

where ρ0 is the space averaged density given by:

ρ0 = 1
VΩ

∫
Ω
ρdV = 1

VΩ

∫
Ω

[
ρ1 H|t=0 +ρ2 (1− H|t=0)

]
dV (2.6)

where VΩ is the domain’s volume.
Taken into account the extra source term introduced above, the governing equa-

tions to be solved in this method are given by:

∂

∂t
(
ρv

)+∇· (ρvv
)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ+Ψfringe +Ψρ0 (2.7)

∇·v= 0 (2.8)

Immersed boundary formulation

The implementation of a Fringe zone method can be readily carried out in a framework
where an Immersed Boundary (IB) method is available [17]. By proceeding this way,
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Figure 2.2: Geometrical parameters defining the fringe zone, showed in a two-
dimensional domain.

the obtained method is indeed more versatile, as it is capable of dealing with more flow
conditions than the traditional approach explained above. However, the implementa-
tion may be problematic.

IB methods allow the representation of inner boundaries that do not actually con-
form the shape of the grid. They do so by imposing Dirichlet conditions in the internal
nodes of a moving object, which is represented by means of triangular surface meshes
in stereo-lithography format (STL). See [17] for a detailed explanation on these meth-
ods. Thus, by defining a dampening inner boundary above the moving bubble, we can
impose zero velocity at a specific region of the fluid domain, just as it was done in the
previous formulation. This formulation is suitable for situations where the bubble has
a strong lateral velocity. In these cases, periodic boundaries should be imposed at the
lateral limits. The inner boundary rotates in conjunction with the velocity, so it is able
to dampen also the lateral disturbances, acting as a shield against the bubble wake.

Two extra auxiliary objects are needed for the moment in which the main damp-
ening object is crossing one of the boundaries. Those objects move in unison with the
leading one, but displaced a fixed distance equal to the longitudinal or transversal
length of the domain, respectively. See Fig. 2.3 for a sketch on this method. Addi-
tionally, when the leading dampening object completely crosses a boundary, one of the
other solids is set as the leading one. The outer solid is then instantaneously moved
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Figure 2.3: Proposed variation of the fringe zone method, based on an immersed
boundary approach.

to the position where completes the aforementioned configuration. With this cyclical
procedure, a virtual infinite domain is obtained, and an artificial periodic behaviour for
the main dampening object is imitated, just as the bubble in the periodic domain.

Although this variation of the fringe zone is more versatile, the method comparison
carried out throughout the present chapter has been performed using the standard
approach, since it is easier to implement and less likely to introduce computational
errors.

2.2.2 Buffer zone method
As a variation of the previous one, we have developed the buffer zone method. This
artificial high-viscosity regions have been broadly used in CFD, especially to dampen
the disturbances before an outflow boundary condition. Here, we enforced of a moving
region in which the viscosity of the fluid is notably increased. With this strategy, the
buffer zone dampens the velocity field, leaving a mainly unaltered domain.
The viscosity field is updated each time step as follows:

µ=λ (x)
[
µ0H+µ1 (1−H)

]
(2.9)

where λ (x) is given by Eq. 2.2. As with the fringe zone method, the additional source
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term Φρ0 is needed to compensate the weight of the fluids within the domain. There-
fore, governing equations can be written as:

∂

∂t
(
ρv

)+∇· (ρvv
)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ+Ψρ0 (2.10)

∇·v= 0 (2.11)

2.2.3 Moving mesh method
Using this method, an Arbitrary Lagrangian-Eulerian approach is adopted to describe
the problem. The momentum equation given in Eq. 1.1 is mildly modified as follows:

∂

∂t
(
ρv

)+∇· (ρv (v−vdomain)
)=−∇p+∇·

(
µ∇v+µ (∇v)T

)
+ρg+σκnδΓ (2.12)

where vdomain is the velocity of the computational domain, which for this specific case
is identical to the vertical component of the bubble velocity (see Ap. A). Numerical
details about this method for incompressible single phase flow can be found in [5]. The
algorithm derived in that paper has been simplified to take into account that the mesh
is just linearly translated, without deformation. Fig. 2.4 shows a diagram on how this
method works. The mesh is moving at the vertical velocity of the bubble, so apparently
the bubble stays vertically stationary inside the mesh domain.

A zero-velocity inlet boundary condition is imposed at the top of the domain and an
outlet boundary condition at its bottom. These boundary conditions are explained in
detail in Sec. 2.4.

2.2.4 Space conservation Law
When an Arbitrary Lagrangian-Eulerian approach is adopted, the computational vol-
ume should be preserved. This is done by using the so-called Space Conservation Law
(SCL) [5]:

d
dt

∫
ΩCV

dΩCV +
∫

S
vg ·ndS = 0 (2.13)

whereΩCV is a moving control volume (CV), S is its closed surface, and vg is the surface
velocity whose outward unit vector is represented by n. The mass conservation is then
procured by enforcing this SCL. Actually, only mass flux through a cell c needs to be
modified as follows:

ṁmodified
c =

∫
Sc

ρ
(
v−vg

) ·ndS ≈ ρc (v ·n)c Sc −ρc
(
vg ·n

)
c Sc (2.14)
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Figure 2.4: Schematic representation of the moving mesh method, showing two con-
secutive time instants. The mesh displacement is calculated as the product of the
current time step and the bubble vertical velocity.

where subscript c denotes that the corresponding variable is evaluated at cell c. The
term

(
vg ·n

)
c Sc represents the volume swept by the CV face c per unit of time (see

Fig. 2.5). As the mesh is trivially moved without deformation at a velocity vdomain equal
to the bubble’s vertical velocity, the calculation of the this swept volume is straightfor-
ward.

2.2.5 Non-inertial reference frame method
In this method a non-inertial frame of reference is attached to the projection of the
bubble’s centroid over the vertical central axis. As in the moving mesh method, the
bubble apparently remains vertically still, although it can move sideways. Fig. 2.6
depicts a sketch of this method. The frame of reference of the studied domain is now
non-inertial, and its acceleration is considered by means of adding the corresponding
virtual forces Ψvirtual to the momentum equation (Eq. 1.1). As the movement of the
domain is just linear, the inertial forces due to the rotation of the reference system are
not presented [18]; this yields:
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Figure 2.5: Volume swept by the CV face c in the movement of the mesh.

Ψvirtual =−ρabubble,yûy (2.15)

where abubble,y is the vertical component of the bubble acceleration (see App. A) and ûy
is the vertical unit vector.

In the same way as the moving mesh method, an inlet boundary condition is used
at the top of the domain and an outlet boundary condition at its bottom. See Sec. 2.4
for details on the formulation of the inflow/outflow boundary conditions. At the inflow
boundary condition the velocity is set to the vertical value of the bubble velocity vbubble,
with the sign reversed.

2.3 Numerical methods
The aforementioned numerical procedures have been implemented on a collocated un-
structured grid arrangement by means of the finite-volume method, according to [19].
A Central Difference (CD) scheme is used to discretize the diffusion terms of the gov-
erning equations (Eqs. 1.1 and 1.9). A Superbee flux limiter adapted to unstructured
meshes [19] is used to discretize the convective term of the advection equation Eq. 1.8,
and a CD scheme is used for the convective term of the momentum equation, Eq. 1.1.
For time discretization, a 3-step-third-order accurate TDV Runge-Kutta scheme [20]
is used for advection and reinitialization equations (Eqs. 1.8 and 1.9). Finally, CD
schemes are used for the compressive and diffusive terms of the reinitialization equa-
tion, Eq. 1.9 [21]. For the non-inertial reference frame method (Sec. 2.2.5), the accel-
eration of the bubble has been calculated from its velocity by means of a second order
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Figure 2.6: Sketch of the non-inertial reference frame method, showing configuration
and boundary conditions used.

finite difference scheme (see. A).
The pressure-velocity coupling is solved by means of a Fractional Step method [13,

19,22,23]. Momentum equation (Eq. 1.1) is computed in two steps:

ρvp −ρnvn

∆t
=∇· [ρvn (

vn −vn
domain

)]+∇·µ
(
∇vn +∇Tvn

)
+ρg+σκ∇φ+Ψ (2.16)

where vp is the predictor velocity of the Fractional Step method. For simplicity, this
equation is discretized using an explicit Euler scheme, however and explicit Adams-
Bashforth scheme has been used for computations. Eq. 2.16 is applicable in all the
presented methods, taking into account that vdomain = 0 except in the moving mesh
method, and Ψ depends on the selected method. The next step of the fractional step
method is the calculation of the following expression:

vn+1 = vp − ∆t
ρ

∇pn+1 (2.17)

Now, by adding the continuity equation (Eq. 1.2), the following Poisson equation is
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obtained to solve the pressure:

∇·
(

1
ρ
∇pn+1

)
= 1
∆t

∇·vp (2.18)

The discretization of this equation leads to a linear system, which is solved by means of
a preconditioned conjugate gradient method. Cell-face velocity is calculated according
to [19, 23], in order to avoid pressure-velocity decoupling and to fulfill the incompress-
ible constraint. This cell-face velocity is used to advect the CLS function in Eq. 1.8 and
momentum in Eq. 1.1.

The characteristic interface thickness is ε = Cε (∆n)α, where Cε = 0.5. The param-
eter α is set to 1 in the fringe zone, buffer zone and the moving mesh methods, and
to 0.9 in the non-inertial reference frame method. A lower parameter α helps to avoid
numerical instabilities, but at the price of artificially widen the interface thickness.

An extra particular treatment of the non-inertial reference frame method is also
needed for the discretization of the convective term in the momentum equation (Eq. 1.1).
Whilst a central difference (CD) scheme can be used in fringe zone and moving mesh
methods, an upwind scheme is required in the non-inertial reference frame method,
which introduce numerical diffusion. For a detailed discussion about the influence of
convective schemes in the buoyancy-driven motion of single bubbles, see [16].

2.3.1 Time step
A CFL type condition is used to dynamically determine an admissible time step for
stable computations. By a straightforward comparison among the terms of the mo-
mentum equation (Eq. 1.1), the following relations are obtained. The convective time
step condition is:

(∆t)conv ≤min
(
∆n

‖vn‖
)

(2.19)

where superscript n denotes that the corresponding variable is evaluated at the node n
under consideration, and ∆n is the characteristic size of the control volume n calculated
as the cubic root of the cell volume. The viscous time step restriction is calculated as
follows:

(∆t)visc ≤min

(
(∆n)2ρn

µn

)
(2.20)

Furthermore, the gravity source term gives the following restriction:

(∆t)g ≤
√

min
(
∆n

g

)
(2.21)
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where g = ‖g‖. Finally, the surface tension source term gives [36]:

(∆t)cap ≤min
((ρ1 +ρ2

4πσ

)1/2 (
∆n)3/2

)
(2.22)

For some specific methods, other time step restrictions should be taken into account.
For instance, in the fringe zone method:

(∆t)fringe ≤min
(
ρn

λmax

)
(2.23)

For the methods using the extra source term Φρ0 , the following conditions should also
be imposed:

(∆t)ρ0 ≤
√

min
(
ρn∆n

ρ0 g

)
(2.24)

For the moving mesh method the following condition should be imposed:

(∆t)mesh ≤min
(

∆n

‖vdomain‖
)

(2.25)

and for the non-inertial reference frame:

(∆t)accel ≤
√√√√min

(
∆n∣∣abubble,y

∣∣
)

(2.26)

Finally, the global stability condition for the fringe zone method is given by:

∆t ≤min
(
(∆t)conv , (∆t)visc , (∆t)g , (∆t)cap , (∆t)fringe , (∆t)ρ0

)
(2.27)

for the buffer zone method

∆t ≤min
(
(∆t)conv , (∆t)visc , (∆t)g , (∆t)cap , (∆t)ρ0

)
(2.28)

for the moving mesh method:

∆t ≤min
(
(∆t)conv , (∆t)visc , (∆t)g , (∆t)cap , (∆t)mesh

)
(2.29)

and for the non-inertial reference frame method:

∆t ≤min
(
(∆t)conv , (∆t)visc , (∆t)g , (∆t)cap , (∆t)accel

)
(2.30)

2.3.2 Calculation algorithms
Depending on the selected method, a different calculation process should be carried
out in order to advance from the current time step tm to the following one tm+1.
Algs. 1, 2 and 3 summarize these different algorithms for the methods studied in this
work.
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Algorithm 1 Fringe zone and buffer zone methods
repeat:

1: Choose a suitable time step, as explained in Sec. 2.3.1.
2: Advect the level set function φ by solving Eq. 1.8.
3: Compress the interfaces between both fluids by solving Eq. 1.9.
4: Update the density, viscosity and curvature fields.
5: Calculate the predictor velocity.
6: Solve the Poisson equation to get the pressure field.
7: Compute the velocity at the faces [19]
8: Calculate the final velocity.

until t > tend

Fractional
step method

Algorithm 2 Moving mesh method
repeat:

1: Calculate the mesh velocity, as explained in Sec. 2.2.3.
2: Choose a suitable time step, as explained in Sec. 2.3.1.
3: Advect the level set function φ by solving Eq. 1.8.
4: Compress the interfaces between both fluids by solving Eq. 1.9.
5: Update the density, viscosity and curvature fields.
6: Calculate the predictor velocity.
7: Perform the mass conservation step explained in Sec. 2.4.3.
8: Solve the Poisson equation to get the pressure field.
9: Compute the velocity at the faces [19]

10: Calculate the final velocity.
11: Move the mesh.

until t > tend

Fractional
step method
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Algorithm 3 Non-inertial reference frame method
repeat:

1: Calculate the bubble velocity and its acceleration, as explained in App. A.
2: Choose a suitable time step, as explained in Sec. 2.3.1.
3: Advect the level set function φ by solving Eq. 1.8.
4: Compress the interfaces between both fluids by solving Eq. 1.9.
5: Update the density, viscosity and curvature fields.
6: Calculate the predictor velocity.
7: Perform the mass conservation step explained in Sec. 2.4.3.
8: Solve the Poisson equation to get the pressure field.
9: Compute the velocity at the faces [19]

10: Calculate the final velocity.
until t > tend

Fractional
step method

2.4 Boundary conditions treatment
The different methods presented above can be used both in two- and three-dimensional
problems. In the two-dimensional case, the bubble rises in a rectangular shaped do-
main, while in the three-dimensional case the domain is a cylinder, in order to have
a constant distance from the bubble centroid to the lateral walls. In both cases, three
kinds of boundaries can be identified: a lateral boundary, consisting of both side walls
parallel to the gravity vector for the 2D case and all the curved side of the cylinder for
the 3D case; an upper boundary, which for both cases is the side to which the bubble
is directed; and a lower boundary, which is the domain limit from which the bubble
moves away. These upper and lower limits are not physical, they do not exist in reality.
They are used in order to limit the computational domain, as explained in Sec. 2.1. In
the lateral boundary, either free slip or non slip boundary condition is imposed (see
Sec. 2.6). The conditions applied in the other boundaries change depending on the
method used, as is described in previous sections. The numerical treatment of these
conditions is explained below.

2.4.1 Periodic boundary condition
In the fringe zone and buffer zone methods, a periodic boundary condition is imposed
at the upper and lower domain limits, linking both boundaries. This is accomplished
by imposing the following condition on the corresponding boundary faces:

γupper = γlower ; γ= {v, p,m} (2.31)

where m is the mass flux across these faces, and subscripts upper and lower refer to
the property at that respective boundary face.
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2.4.2 Inflow boundary condition
An inflow boundary condition is needed in the moving mesh and the non-inertial ref-
erence frame methods. This boundary condition aims to achieve a well-defined flow
profile at the boundary. The formulation we used is based upon specifying the veloc-
ity vector at the corresponding boundary and using a zero gradient condition for the
pressure. These conditions are readily implemented, but the boundary needs to be
carefully placed far enough from the bubble. Hence, its interaction with the propa-
gated upstream disturbances is avoided, or at least it is restricted to a negligible effect
on the whole flow structure, specially near the bubble. See Sec. 2.5.2 for further notes
about the placement of this boundary.

2.4.3 Outflow boundary condition
As well as the inflow boundary condition, an outflow boundary condition is also re-
quired in some of the methods tested in this work (namely, moving mesh and non-
inertial reference frame methods). However, the numerical implementation of the
outflow boundary condition is much more burdensome. The real infinite domain is
truncated by the outflow boundary, and it would be desirable that this limit is placed
sufficiently far to prevent it from interacting with the region of interest. In spite of
that, due to practical computational considerations, the boundary is usually placed not
so far from the bubble, so a suitable outflow boundary condition is necessary. An incor-
rect placement of this boundary or an improper choice of the boundary condition might
seriously affect the motion of the bubble. In general, there are three desirable features
that an effective outflow boundary condition must have [25]: it should allow the flow
to exit the domain with a smooth discharge of disturbances, it should have a minimum
effect on the flow near the outlet, and it should have a negligible effect on the bubble
motion.

The approach taken in the formulation of the outflow boundary condition was to
minimize the global mass error, due to the importance of this factor in terms of numer-
ical stability, and to be coherent with the conservative level set formulation used [19].
This is not the only criterion to tackle the task of designing the outlet; other criteria
could also be adopted in order to get a suitable boundary condition (for instance, to
minimize the local mass error, to minimize the mesh requirements near the boundary,
etc.).

The formulation of our outflow boundary condition is based upon a combination of
the well-known convective boundary condition (CCB) explained for instance in [26] and
the outflow used by Davis and Moore [27]. As the fractional step method is going to be
used to solve the Navier-Stokes equations [13], a condition for calculating the predictor
velocity vp in the boundary should be given. In this regard, a convective boundary
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condition is used:
∂vp

∗
∂t

+VC
∂vp

∗
∂n

= 0 (2.32)

where n indicates the boundary face normal direction and VC is the convective ve-
locity. A characteristic velocity of the problem should be used as VC. We assumed
VC = ‖vbubble‖, but other options were also tested (for instance, VC = UT , where UT
is the expected terminal velocity of the bubble), with negligible differences in the ob-
tained results. Eq. 2.32 is discretized by using an Euler scheme in time. The variable
vp
∗ is not the predictor velocity for the fractional step method. A correction mass step

is carried out at this point, in order to ensure the global mass conservation of the cal-
culated pseudo-velocity field. The correction mass process differs from others used in
the literature and is explained in detail at thi end of the current section.
The employed discrete form of Eq. 2.32 yields:

vp
∗ = vb −

∆t
‖∆xb→nb‖

VC (vb −vnb) (2.33)

where subscript b denotes that the corresponding variable is evaluated at the boundary
node, subscript nb denotes the neighbor node, ∆t is the current time step and ‖∆xb→nb‖
is the distance between the boundary node and its neighbor node.

At this point, the pressure at the boundary nodes is set to the corrected hydrody-
namic pressure. For the moving mesh method, it yields:

p = ρgx (2.34)

and for the non-inertial reference frame method:

p = ρgx+ρabubble,y y (2.35)

The outflow boundary surface of all tested cases is perpendicular to the gravity vector
g and also to the acceleration of the non-inertial reference frame (for the non-inertial
method). Therefore, any constant pressure (for instance, p = 0) can be imposed at
this boundary. Once the pressure is obtained at those nodes, the velocity is computed
following the fractional step method [13].

As explained before, the design of this boundary aims to minimize the global mass
error. This error is directly related to the global volume error EV, which compares the
initial bubble volume with the current one. It is defined as follows:

EV =
VΩ2 −V 0

Ω2

V 0
Ω2

(2.36)

where VΩ2 is the volume of the bubble at the current time step and V 0
Ω2

is its initial
one. This error is computed numerically as:

EV =
∑

nφnVn −∑
nφ

0
nVn∑

nφ
0
nVn

(2.37)
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where φn is the level set function evaluated at the node n, φ0
n is again the level set func-

tion at the node n, but at the initial state, and Vn is the volume of the corresponding
cell.

Tab. 2.1 and Fig. 2.7 show a comparison between different outflow boundary condi-
tions, including the one proposed in the present section. Tab. 2.1 shows the average and
maximum global volume error EV for a fixed number of iterations (1000) in the resolu-
tion of a two dimensional rising bubble problem (see Sec. 2.6.1 for further details about
this problem). It is shown that the conservative convective boundary condition (CCBC)
proposed in this work has the best behavior in terms of global volume error. The only
boundary condition that has an error of the same order is the Neumann boundary con-
dition (NBC). However, the outlet of disturbances is not correctly reproduced by using
NBC. Additionally, Fig. 2.7 shows the evolution of this global error along iterations.

Type of Outflow Formulation Average EV Maximum EV
Conserv. Convective (Described in the text) 7.10 ·10−14 1.45 ·10−13

Simple Convective ∂v
∂t +VC

∂v
∂n = 0 3.82 ·10−6 5.61 ·10−6

Neumann ∂v
∂n = 0 7.29 ·10−14 1.45 ·10−13

Davis [27] ∂v
∂n = 0 , p = p∗ 5.26 ·10−6 9.95 ·10−6

Christer [28] ∂3vn
∂n3 = 0 , ∂

2vθ
∂n2 = 0 , p = p0 6.63 ·10−7 2.22 ·10−6

Shirayama [29] ∂2v
∂n2 = 0 2.26 ·10−4 8.09 ·10−4

Magnaudet [30] ∂2vn
∂n2 = 0 , ∂vθ

∂n = 0 , ∂p
∂n∂θ = 0 1.14 ·10−3 2.84 ·10−3

Table 2.1: Comparison between the different outflow boundary conditions tested in
a two-dimensional rising bubble problem, where EV is the global volume error, VC
is the convective velocity, n and θ indicate directions normal and tangential to the
outer boundary, vn and vθ refer the normal and tangential velocity components, p∗
is the corrected hydrodynamic pressure, and p0 is a fixed pressure.

Mass correction

As it is explained above, the outflow boundary condition requires a mass correction
step which is performed after calculating the pseudo-velocity field. In the literature,
this is usually done by adding the corrective mass mcor to the mass flow m of the
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Figure 2.7: Evolution of the global volume error EV for different outflow boundary
conditions tested in a two-dimensional rising bubble problem.

corresponding outflow boundary node [25]:

mcor
b =∑

bf
mb

Ab∑
obf A

(2.38)

where A is the face area. Subscript b denotes that the corresponding variable is evalu-
ated at the boundary node under consideration. Summation

∑
bf mb is performed over

all boundary faces in the entire domain and summation
∑

obf A is performed just over
the outflow boundary faces. This method for mass correction might have the draw-
back of the formation of large local mass errors in the corner cells of the domain due
to the physical characteristics of the problem, causing numerical instabilities. In or-
der to avoid this issue, a modified mass correction step is proposed. Fig. 2.8 shows a
graphic interpretation of the simple mass correction method and the one presented in
this work.

In this way, the global mass balance error ∆m is distributed on a weighted basis
over the outflow boundary nodes. A weighting coefficient w is assigned to each node of
the outflow boundaries, so that the nodes near the corners have small coefficients, and
the central nodes have larger ones. The distribution of these weights is based on the
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following formula:

wb = vbubble ·n
‖vbubble‖ ·‖n‖ exp

{
−1

2
χ

[(
α− Sα

2

)2
+

(
β− Sβ

2

)2]}
(2.39)

where χ is a shape control parameter of the weight function (χ= 1 by default), α and β

are curvilinear coordinates over the boundary surface, and Sα and Sβ are projections of
the surface in α and β directions, respectively. Other similar weight functions were also
tested, with negligible differences in the obtained results. The previous expression can
be rewritten for general cases, with an homogeneous bubble motion and an ordinary
domain. For instance, for the two-dimensional rising bubble problem (see Sec. 2.6.1),
the following formula can be used:

wb = exp
{
−1

2
χ

(
x− Sx

2

)2}
(2.40)

2.5 Domain sizing
The current section presents an study on the size of the computational domain, which
is a crucial parameter to study the viability of the multiphase simulations. Small differ-
ences in the dimensions of the computational domain could give rise to big differences
in the mesh size, compromising the viability of the study case.

2.5.1 Lateral boundaries placement
The lateral distance from bubble centroid to the lateral walls should be enough to not
constrict the motion of the drop. This constriction has a dampen effect on the terminal
velocity of the bubble. Harmathy [14] proposed the following expression to compute
the lateral distance while keeping under control the terminal velocity error:

UT

U∞
T

' 1−
(

d
D

)2
(2.41)

where U∞
T represents the terminal velocity in an infinite domain, UT is the actual ter-

minal velocity, d is the bubble’s diameter and D is the diameter of the computational
domain. U∞

T can be taken from the graphs shown in Fig. 2.9. We adopted this ex-
pression throughout the present work to compute the lateral distance, taken 3% as an
acceptable threshold of the absolute error of the terminal velocity.
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Figure 2.8: Sketch of the mass correction step, showing (a) the mass profile at an
outflow boundary without correction, (b) this profile after a simple mass correction
step and (c) this same profile after performing the improved correction step.

2.5.2 Inlet placement
The placement of the inflow boundary has a strong influence in the terminal velocity of
the bubble. By placing it too close to the bubble, the upper surrounding flow could be
underdeveloped, causing a reduction of the terminal velocity of the bubble. A statistical
analysis has been carried out at this point, aiming to obtain a procedure to compute a
suitable inlet distance, in a manner similar to Harmathy’s equation [14] (Eq. 2.41) for
the lateral distance.
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Figure 2.9: Useful diagrams to obtain tentative values of the rising velocity in both
(a) constrained or (b) unconstrained rising bubbles. Diagrams are reproduced from
those represented in [33] and [34], respectively.

Regression analysis

Given a discrete set of results that relates the distance hi from the bubble to the inlet
and the error in the terminal rise velocity, a non-linear regression analysis can be car-
ried out. By doing this study, an analytical expression can be obtained. This expression
can be used to calculate the expected lost of accuracy in a given domain size.

The original dataset for this statistical study is presented in Tab. 2.2. For each
of these sets of parameters, different simulations were run varying the distance from
the bubble to the inflow. Long distances from bubble centroid to lateral and outlet
boundaries were used.

A base of exponential functions is used to fit the results from the aforementioned
test cases. We found that, by retaining the first five terms of the series, enough accu-
racy is achieved. Thus, by following the process given by [32], the following equation is
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Case label Eo Mo
A 1.0 10−2

B 1.0 10−4

C 1.0 10−6

D 9.0 10−2

E 9.0 10−4

F 9.0 10−6

G 90.0 10−2

H 90.0 10−4

I 90.0 10−6

Table 2.2: Flow conditions taken into account to obtain Eq. 2.42 by a regression
analysis, as explained in the text.

obtained:

EU = 1−C0 (Eo, Mo)+C1 (Eo, Mo) ·exp
{

hi

d

}
+C2 (Eo, Mo) ·exp

{
2

hi

d

}
+C3 (Eo, Mo) ·exp

{
3

hi

d

}
+C4 (Eo, Mo) ·exp

{
4

hi

d

} (2.42)

Here, EU = ∣∣UT −U∞
T

∣∣ /U∞
T is the absolute error of the terminal velocity. The coeffi-

cients Cn (Eo, Mo) are adjusted by two-dimensional log-linear regression:

Cn (Eo, Mo)= cn1 + cn2 · log(Eo)+ cn3 · log(Mo) (2.43)

where cnk are the regression constants. Tab. 2.3 provides the expressions to compute
the coefficients Cn (Eo, Mo).

Cn (Eo, Mo)
C0 (Eo, Mo)= 1.200−0.023log(Eo)+0.033log(Mo)
C1 (Eo, Mo)=−2.875+0.035log(Eo)−0.497log(Mo)
C2 (Eo, Mo)= 13.906+2.455log(Eo)+2.600log(Mo)
C3 (Eo, Mo)=−25.577−13.930log(Eo)−5.605log(Mo)
C4 (Eo, Mo)= 9.016+17.048log(Eo)+3.981log(Mo)

Table 2.3: Values of regression coefficients Cn (Eo, Mo) of the inlet study, obtained by
fitting a set of numerical results. A base of exponential functions was used to perform
this fitting.

Fig. 2.10 shows the results of measuring the variation of the absolute error of the
terminal velocity with the distance from the inlet to the bubble, for the different flow
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Figure 2.10: Variation of the absolute error in the rising velocity when varying the
distance from the bubble to the inlet. The graphs have been obtained by using the
Eq. 2.42 with the flow conditions described in Tab. 2.2. A threshold of 3 ·10−2 has
been marked on those graphs.

conditions presented in Tab. 2.2. Those results were fitted as explained above, and
used to obtain Eq. 2.42.

In order to check the applicability of Eq. 2.42, several well-known flow regimes
are selected for a validation case. In particular, the different flow conditions described
in [35] are chosen. In that reference, the authors selected 8 representative flow regimes
from the Clift diagram (Fig. 2.9). Tab. 2.4 summarizes those conditions.

Results from the validation cases are presented in Fig. 2.11. That figure shows the
variation of the absolute error of the terminal velocity when varying the distance from
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Case label Eo Mo
Spherical 1.0 1.26 ·10−3

Ellipsoidal 10.0 9.71 ·10−4

Skirted 0.971 97.1
Intermediate spherical cap + wobbling 9.71 9.71 ·10−12

Wobbling 1.94 10−12

Dimpled ellipsoidal cap 97.1 103

Intermediate skirted + ellipsoidal 38.8 9.71 ·10−4

Intermediate ellipsoidal + wobbling 10.0 9.71 ·10−8

Table 2.4: Flow conditions for the validation cases shown in Fig. 2.11. Those condi-
tions are set by some representative cases of the Clift diagram (Fig. 2.9) given by [35].
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Figure 2.11: Absolute error variation of the rising velocity when varying the distance
from the inflow to the bubble, obtained by using Eq. 2.42. The flow conditions have
been set by taking some representative cases of the Clift diagram (Fig. 2.9) given
by [35]. An indicative threshold of 3 ·10−2 has been marked on the graph.

the bubble to the inlet, based on Eq. 2.42. Results are coherent with the physical obser-
vations. For cases with a high Reynolds number (i.e. “wobbling” situations), the bubble
faces the approaching fluid faster, thus the disturbances are propagated only a small
upstream distance. On the contrary, slow cases require longer upstream distances.
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2.5.3 Outlet placement
By varying the distance between the outlet and the bubble it is shown that the be-
haviour of the results differs from that seen in the inlet study. In the outlet case, when
the distance to the outflow ho is reduced, the error in the terminal velocity does not
significantly increase until a critical distance h∗

o . Beyond this threshold value, the
simulation becomes unstable and diverges. The calculation of this h∗

o is not straight-
forward, since it strongly depends on the numerical parameters of the problem, the
simulation time, the flow regime, etc. For tested cases, we successfully used the follow-
ing expression:

ho =
{

1.3Cho d if ReT < 10
1.3Cho d log(ReT ) if ReT > 10 (2.44)

where Cho is a safety constant (Cho ≈ 1.4) and ReT is the expected terminal Reynolds
number. This last parameter can easily be obtained by using the graphs provided by
Clift [33] (for standard rising bubbles) and White and Beardmore [34] (for Taylor bub-
bles), which relate the terminal velocity, the Eötvös number and the Morton number.
Fig. 2.9 shows these graphs.

2.6 Numerical experiments
The current section presents a set of numerical experiments upon which the explained
domain optimization methods have been tested. We have simulated a standard rising
bubble, both in a two- and three-dimensional domain. These cases have been used to
validate the DOMs explained above.

2.6.1 Two dimensional rising bubble
The ascent of a two-dimensional bubble is a well-known benchmark test case in mul-
tiphase flow field. It consists of a buoyant bubble immersed in a heavier fluid. The
problem was originally proposed by [15], but several authors have already reported
their results (see for instance [19], [31]).

Fig. 2.12 depicts the computational set-up and domain arrangement of the problem.
As it shows, the used mesh is orthogonal and structured. The mesh density is set by
dividing the bubble diameter into 50 control volumes, since based upon the results
reported by [31] this grid refinement is enough to achieve good-accurate results. The
horizontal dimension of the domain is 2d, whereas the value of the vertical dimension
depends on the selected Domain Optimization Method (DOM). For methods based on
periodic boundaries (i.e. fringe and buffer zone methods), the distance to the inlet and
the outlet are both set to 1.5d, giving rise to a total vertical dimension of 4d. For
DOMs based on open boundaries (i.e. moving mesh and non-inertial reference frame
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Figure 2.12: Sketch of (a) initial state and (b) mesh configuration of the two dimen-
sional rising bubble problem, in which d denotes the bubble’s diameter, and hi and
ho are the distances from the bubble to the inlet and outlet boundaries, respectively.
The mesh is orthogonal and structured, and its density is obtained by dividing the
bubble diameter d into 50 control volumes.

methods), the distances to inlet and outlet are optimized by following the explanation
given in Sec. 2.5. By doing this, we successfully employed the following distances:
hi = 1.4d and ho = 1.7d. Thus, the total vertical distance is 3.1d, significantly smaller
than the originally proposed in [31].
The flow regime is defined by setting the following dimensionless numbers:

ηρ = ρ1

ρ2
, ηµ = µ1

µ2
, Eo = gd2 (

ρ1 −ρ2
)

σ
, Mo = gµ4

1
(
ρ1 −ρ2

)
ρ2

1σ
3

(2.45)

where ηρ and ηµ are respectively the density and viscosity ratios, Eo is the Eötvös
number and Mo is the Morton number. In the present problem, ηρ = 10, ηµ = 10,
Eo = 9.0 and Mo = 6 ·10−4.

Benchmark quantities are depicted in Fig. 2.13. App. A details how these quanti-
ties are obtained. As shown there, these results are in excellent agreement with the
ones published by [15]. The simulation times were similar in all the tested methods,
except in the buffer zone one, in which it is significantly larger. This, together with the
fact that this method requires a complex setting of parameters (see Sec. 2.2.2) and its
results are not totally accurate, makes the buffer zone method not very promising for
solve more complex cases. Furthermore, the following parameters were found suitable
for fringe zone and buffer zone methods: {s,b,∆,λmax}fringe = {2.5d,0.17d,0.017d,100},
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and {s,b,∆,λmax}buffer = {0.9d,2.2d,0.2d,320}.
Benchmark quantities are depicted in Fig. 2.13. Details about how to obtain these

magnitudes are presented in App. A. Results are in excellent agreement with those
published by [15]. It is important to note that, in contrast to the standard periodic case
in which the terminal velocity slightly increases over time, all tested methods avoid
this issue, faithfully reproducing the actual physics of the problem. Finally, Tab. 2.5
summarizes the obtained results.

Method Re ζ2D EV
Fringe zone 9.6196 0.91819 1.5951 ·10−12

Buffer zone 9.6268 0.92237 8.4924 ·10−13

Moving mesh 9.6065 0.91960 2.3515 ·10−13

Non-inertial reference frame 9.6391 0.91868 5.1756 ·10−13

Table 2.5: Summary of achieved results at dimensionless time t∗ = 4 for the two-
dimensional rising bubble problem. Reynolds number Re, circularity ζ2D and global
volume error EV are shown for the different tested methods.

2.6.2 Three dimensional rising bubble
In the present section, the different methods are assessed in a full three-dimensional
configuration. The flow regime is now set by choosing ηρ = 100, ηµ = 100, Eo = 39.4
and Mo = 0.065 (see Eq. 2.45). Buffer zone method has been excluded from this test
case, since based on the results obtained in the previous 2D case that method does not
seems capable of solving the current 3D configuration in a reasonable simulation time.

The initial state and the mesh configuration are sketched in Fig. 2.14. A cylindrical
shaped domain is used. We used the semi-empirical expression obtained by Harmathy
[14] to calculate the diameter of the tube D (Eq. 2.41). Based on this equation, the
diameter of the domain D is set to 8d, as it leads to accurate enough results.

Boundary conditions at inlet and outlet depend on the selected method (see Sec. 2.4),
and free slip boundary condition is applied at lateral walls. The bubble is initially
placed on the cylinder axis. The mesh structure is generated by extruding a non-
uniform two-dimensional mesh along the cylinder axis. The minimum control volume
size hmin is set by dividing the bubble diameter into 30. An exponential growth in ra-
dial direction is used, and an orthogonal structured grid is fixed in the immediate area
of the axis, with a cell size of hmin. The mesh configuration showed in Fig. 2.14b is suit-
able for this flow regime since the lateral motion of the bubble is practically worthless.
For methods where the bubble remains stationary within the domain (namely, moving
mesh and non-inertial reference frame methods), a more efficient grid could have been
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Figure 2.13: Two-dimensional rising bubble results comparison against numerical
experiment of [15], for the four tested methods: fringe zone, buffer zone, moving
mesh and non-inertial reference frame. The graphs show (a) Reynolds number Re =
ρ1Ud/µ1, (b) centroid vertical position y∗c = yc/d, (c) circularity ζ2D , and (d) bubble
shape evolution over dimensionless time t∗ = tg1/2d−1/2.

used, with an axial concentration of cells in the vicinity of the bubble. However, in
order to make a fair comparison between methods, the same mesh was used.

For the fringe zone method, we found the following set of suitable parameters:
{s,b,∆,λmax}= {2.3d,0.2d,0.017d,100}. For details about the used numerical schemes,
the reader is referred to [16]. A particular treatment of the non-inertial reference frame
method is needed for set-up the domain dimensions. By running some preliminary
studies, the distances to the inlet and outlet were fixed to 2.5d and 4.0d respectively,
for the three tested methods. However, the non-inertial reference frame technique
needs a bigger distance to the outlet (ho = 6.0d) in order to improve the stability of this
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method. Therefore, non-inertial reference frame method need a more careful setting
process. Otherwise, it could give rise to numerical instabilities in the most challeng-
ing regions of the problem (namely, the bubble’s interface and the outflow boundary
surroundings).

In order to find a suitable mesh resolution to solve the problem, we selected one
of the tested DOMs (i.e. the moving mesh method) and we run several simulations
with different mesh resolutions. Tab. 2.6 summarizes this grid independence study, in
comparison with the results from other authors [16, 37]. Additionally, Fig. 2.15 shows
the time evolution of several variables, for the different tested meshes and with the
chosen DOM (i.e. the moving mesh method).
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Figure 2.14: Representation of (a) computational set-up and (b) mesh configuration
of the three-dimensional rising bubble problem, in which d denotes the diameter of
the bubble, and hi and ho are the distances from the bubble to the inlet and outlet
boundaries, respectively.

Furthermore, Fig. 2.17 shows the results corresponding to the tested cases with the
different DOMs. From the previous mesh independence study, a resolution of h = d/50 is
known to be capable of accurate reproduce the physics of the problem. Good agreement
was found with results reported by Balcázar et al. [16]. Additionally, Fig. 2.16 depicts
the profiles’ evolution by using the tested methods, without appreciable differences
between them. Finally, Tab. 2.7 summarizes the obtained results.
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Results UT (dg)−1/2 ζ3D
CLS - Moving mesh method (h = d/20) 0.595 0.7923
CLS - Moving mesh method (h = d/25) 0.604 0.7848
CLS - Moving mesh method (h = d/30) 0.607 0.7803
Balcázar [16] (fixed mesh) 0.610 0.784
Hnat and Buckmaster [37] (experimental) 0.622 —

Table 2.6: Summary of achieved results at dimensionless time t∗ = 10 for the three-
dimensional rising bubble problem. Dimensionless terminal velocity UT (dg)−1/2 and
sphericity ζ3D are shown for moving mesh method, in comparison with reference
data reported by [16] (ηρ = 100,ηµ = 6.67 ·103), and by [37] (ηρ = 714,ηµ = 6.67 ·103).

Method Re ζ3D EV
Fringe zone 19.203 0.7811 2.440 ·10−12

Moving mesh 19.098 0.7803 3.569 ·10−11

Non-inertial reference frame 19.031 0.7797 7.021 ·10−8

Balcázar et al. [16] 19.00 0.784 —

Table 2.7: Summary of achieved results at dimensionless time t∗ = 10 for the three-
dimensional rising bubble problem. Reynolds number Re, sphericity ζ3D and global
volume error EV are shown for the different tested methods.

2.7 Conclusions
In the present section, several DOMs have been formulated and implemented. By using
those methods, small computational domains can be used, thus saving resources. First,
two methods based on periodic boundaries have been introduced: the fringe zone and
the buffer zone methods. The first methods are based on a moving region that reini-
tializes the velocity field. This fringe is moved at each iteration so that it remains at
a constant from the bubble centroid. By reinitializing the velocity field in this region,
the bubble is prevented from encountering its own wake. Otherwise, due to the use of
periodic boundaries, the bubble could interact with its own perturbations. Similarly,
the buffer zone method aims to dampen the disturbances by introducing a diffusive
moving region.

Another two DOMs have been presented in this chapter, both based on open bound-
aries. On the one hand, a moving mesh method has been posed. In this method, the
mesh follows the ascent of the bubble, assuring a small computational domain. Inflow
and outflow conditions are needed on the domain limits. On the other hand, a non-
inertial reference frame method has been enforced. In this method the dynamics of the
bubble are analyzed from an observer on the bubble. An extra source term is needed
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Figure 2.15: Mesh independence study for the three-dimensional standard rising
bubble problem, by using the moving mesh method as DOM. The graphs show (a)
Reynolds number Re = ρ1Ud/µ1, (b) bubble shape evolution, (c) sphericity ζ3D and
(d) global volume error EV over dimensionless time t∗ = tg1/2d−1/2, for the different
mesh resolutions tested.

in order to take the inertial forces into account.
Once the aforementioned methods have been formulated, Sec. 2.3 presents the nu-

merical treatment of the governing equations. Some of the DOMs need a particular
treatment of the boundary conditions. In particular, a careful formulation is needed
when dealing with inflow and outflow boundary conditions, as explained in Sec. 2.4.
Finally, complete study on the sizing of the computational domain has been carried out
in Sec. 2.5, aiming to minimize the mesh size while maintaining sufficiently precise
results.

The proposed numerical procedures have been validated by running two numerical
tests. First, a two-dimensional rising bubble configuration has been studied (Sec. 2.6.1).
Obtained results have been compared against those present in the literature. Second,
the three-dimensional problem of a bubble rising in an unbounded medium has been
conducted (Sec. 2.6.2). Good agreement was found in both test cases.
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(a) (b) (c)

Figure 2.16: Bubble shape evolution by using (a) fringe zone (b) moving mesh and (c)
non-inertial reference frame methods.

Once the three proposed methods have been validated, it is reasonable to compare
the behavior of each method, in order to find out the one with the best performance.

The fringe zone method features an easy implementation, both in the mathematical
model and in the treatment of the boundary conditions. The simulations carried out by
using this method do not show a noticeable increase in the simulation time, compared
with the standard periodic case. Moreover, we found it stable for the selected problems.
However, this method does not seem very promising in terms of applicability, due to the
following issues. As it was already mentioned, this method does not allow the presence
of an hypothetical second bubble within the domain, since the fringe zone would disrupt
its motion. In addition, the mesh could be more efficient using the other methods that
maintain the bubble in a static position. Finally, the fact that chiefly restricts the
applicability of this method is that it requires a difficult process of parameter setting.
The defining parameters of the fringe zone (namely, s, b, ∆ and λmax) should be re-
adjusted when willing to simulate a new study case, because they vary at different
regimes and geometries. Therefore, a careful setting of those parameters is needed, in
order to correctly dampen the velocity field and not to perturb the ascent of the bubble.

The buffer zone method has the same disadvantages as the fringe zone method.
Moreover, it presents an extra drawback: as shown in Sec. 2.3.1, the maximum al-
lowable time step depends on the inverse of the maximum viscosity, so the simulations
using the buffer zone method could be significantly slower than those using other meth-
ods.

The non-inertial reference frame method solves the main disadvantages of the
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Figure 2.17: Three-dimensional rising bubble results for the three tested methods:
fringe zone, moving mesh and non-inertial reference frame. The graphs show (a)
Reynolds number Re = ρ1Ud/µ1, (b) centroid vertical position y∗c = yc/d, (c) spheric-
ity ζ3D and (d) global volume error EV over dimensionless time t∗ = tg1/2d−1/2.

fringe zone and buffer methods. It allows both the use of improved meshes and the
study of bubble interaction problems. Nevertheless, we found numerical stability prob-
lems in the tested cases. The method is very sensitive to the setting up of the con-
servative level set parameters (e.g. numerical schemes) and the domain lengths (e.g.
distances from the inlet and outlet). In particular, the following points need a special
treatment. First, a non-conservative convective schemes are needed in order to dis-
cretize the governing equations (see Sec. 2.3). Second, wider interfaces between fluids
are needed in order to assure numerical stability (see Sec. 2.3). Third, the continu-
ity equation (Eq. 1.2) becomes unsatisfied in some high demanding flow regimes. And
fourth, larger security factors are needed for the sizing of the computational domain
(see Sec. 2.5). An improper treatment of these issues can cause the simulation to di-
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verge, which makes this technique not very robust.
We found the moving mesh method the most promising technique from those pre-

sented in this work. Despite it involves a computationally expensive process of moving
the mesh, it shows a robust behavior in the tested problems. The disadvantages found
in the methods based on periodic boundaries are not present in the moving mesh tech-
nique. Furthermore, it seems less sensitive to the setting up of the problem compared
to the non-inertial reference frame method, which makes the simulations more sta-
ble in a broader range of parameters. Based on the aforementioned facts, we chose
this method to tackle the challenging problem of the three dimensional Taylor bubble,
which is presented in the following chapter.
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3

The Taylor Bubble

problem

Main contents of this chapter have been published in:

E. Gutiérrez, N. Balcázar, E. Bartrons and J. Rigola. Numerical study of Taylor bubbles ris-
ing in a stagnant liquid using a level-set/moving-mesh method. Chemical Engineering Science,
164:158–177, 2017.

Abstract. An Arbitrary Lagrangian-Eulerian formulation has been posed to solve the chal-
lenging problem of the three-dimensional Taylor bubble, within a Conservative Level Set (CLS)
framework. By employing a domain optimization method (i.e. the moving mesh method), smaller
domains can be used to simulate rising bubbles, thus saving computational resources. The cou-
pled CLS - Moving Mesh method has been verified by means of extensive numerical tests. The
challenging problem of the full three-dimensional Taylor bubble has then been thoroughly ad-
dressed, providing a detailed description of its features. The study also includes sensitivity
analyses with respect to the initial shape of the bubble, the initial volume of the bubble, the flow
regime and the inclination of the channel.
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3.1 Introduction
The slug flow is of fundamental importance in a vast variety of engineering applications
and natural phenomena. This flow pattern consists of bullet-shaped bubbles separated
by liquid slugs. The bubbles almost completely fill the channel cross section, where at
most a thin liquid film separates them from the wall. In reference to its applications,
the growing interest in miniaturization of chemical unit operations makes slug flow
an important area of study [1]. In addition, due to the fact that biomedical studies
are becoming increasingly important for the scientific community, slug flows seems
to be the key to understand complex blood flow cases, e.g. embolisms. Other relevant
scientific fields are also directly related to this flow pattern: volcanology [2], geothermal
power plants, gas and oil extraction, cryogenic fluids, etc.

To understand these flows the elemental problem of a single Taylor bubble should
be thoroughly comprehended, laying a solid foundation for the analysis of more com-
plex cases. Buoyant bubble problems need the use of large domains to achieve proper
capture of the phenomena. That is due to the need of leaving enough vertical space for
the bubble to reach its steady state. This problem can be handled by using an Arbitrary
Lagrangian-Eulerian (ALE) formulation. In this case, since the mesh is moving along
the bubble rise, a short computational domain is enough. Dynamic mesh methods have
been broadly used in CFD [3–5].

In order to deal with the multiphase domain, several methods are available in the
literature. In the present chapter, a Conservative Level Set method (CLS) is used [6].
As stated in previous chapters, this technique has been implemented in the framework
of finite-volume discretization and unstructured meshes. The method greatly reduces
the problem of mass conservation of the Standard Level Set (SLS) methods, and it was
thoroughly verified in [7, 8]. The coupling between the conservative level set method
and the moving mesh technique has been already verified and validated in the previous
chapter (see Sec. 2.6.1 and 2.6.2).

In the present chapter, the challenging problem of the full three-dimensional Tay-
lor bubble is addressed. Since the publications of the original works of Davies and
Taylor [9] and White and Beardmore [10], several approaches have been assessed to
simulate Taylor bubbles. Rigorous experimental research have been reported [11–14],
theoretical models have been proved [15, 16] and numerical methods have been ad-
dressed, by using Volume of Fluid method [17], Front Tracking method [18], Lat-
tice Bolzmann method [19, 20], and others [21, 22]. To the authors’ knowledge, the
present work is the first approach to the Taylor bubble problem by means of a conser-
vative level set method. Regarding the aforementioned numerical studies, the proposed
method solve three typical problems encountered when the Taylor bubble problem is
addressed. First, as three-dimensional unstructured meshes are employed, 3D circular
cross-section tubes can be directly studied, with no need of using a simplified approach
(i.e. assuming axisymmetric). Second, by using the CLS method, the mass conservation
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problem which is known to affect to standard level set formulations is circumvented.
Finally, by using a domain optimization method, the covered domain is small compared
with other methods, thus saving computational resources. Therefore, a simulation for
some specific conditions has been carried out, allowing comparison against experimen-
tal data [13] and other numerical studies [22]. Furthermore, in order to check the
validity of the method in a wide variety conditions, other studies have been considered,
e.g. sensitivity to the shape of the initial bubble, sensitivity to variations in the initial
volume of the bubble, sensitivity to flow regime (comparing the results against those of
Quan [18] and Hayashi et al. [23]), and sensitivity to the channel inclination. Regard-
ing this last topic, there are several valuable studies present in the literature that aim
to solve the Taylor bubble problem in inclined channels. For instance, Amaya-Bower
and Lee [20] numerically solved the problem in a square cross-section channel, and
Shosho and Ryan [14] studied several mixtures at different inclinations.

The work is organized as follows: Sec. 3.2 presents a short summary about the
CLS+MM method, aiming to gather the different parts of the algorithm presented in a
scattered manner throghout the previous chapters. This section collects the governing
equations of the method, the surface tension treatment, the moving mesh technique
and the numerical formulation used to discretize the governing equations. Thereafter,
the problem of the three-dimensional Taylor bubble is thoroughly addressed in Sec. 3.3,
providing particular studies and a complete description of its features. This study
includes sensitivity analyses with respect to the initial shape of the bubble, the ini-
tial volume of the bubble, the flow regime and the inclination of the channel. Finally,
Sec. 3.4 presents the concluding remarks.

3.2 Mathematical formulation
The present section aims to gather the mathematical approach to solve multiphase
problems by using a conservative level set + moving mesh (CLS+MM) method. Assuming
incompressible flow, Newtonian fluids, no mass transfer at the interface between fluids,
constant surface tension coefficient σ and the use of a moving mesh, the Navier-Stokes
equations governing the fluid motion are written as [3,6]:

∂

∂t
(
ρv

)+∇· (ρv (v−vdomain)
)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ (3.1)

∇·v= 0 (3.2)

where t is the time, ρ and µ are respectively the fluid density and viscosity, v is the
velocity field, p is the pressure field, g is the gravity acceleration, n is the unit normal
vector to the interface, κ is the interface curvature, and δΓ is the Dirac delta function
located at the interface Γ. vdomain is the mesh velocity, which for this case is equal
to the vertical component of the bubble velocity (see App. A). Finally, ρ and µ can be
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obtained by the following expressions:

ρ = ρ1H1 +ρ2 (1−H1) (3.3)

µ=µ1H1 +µ2 (1−H1) (3.4)

where subscripts 1 and 2 refer to continuous fluid and bubble fluid respectively, and H1
is the Heaviside function, which takes the value of 1 in Ω1 and 0 in Ω2. These Ω1 and
Ω2 are the corresponding subdomains associated with the two fluids. At discretized
level, physical properties are smoothed according to the CLS method [6,25], in order to
avoid numerical instabilities of the interface.

3.2.1 Interface capturing
The two main difficulties of simulating fluid interfaces are to keep up a sharp interface
and to accurately calculate the surface tension [24]. In order to deal with this issues,
we use the CLS method for interface capturing [6]. In this method, the regularized
indicator function φ is used in order to implicitly represent the interface:

φ (x, t)= 1
2

(
tanh

(
d (x, t)

2ε

)
+1

)
(3.5)

Here, d (x, t)=minxΓ(t)∈Γ (|x,xΓ (t)|) is the signed distance function and ε is a parameter
for controlling the thickness of the interface. This level set function takes the value 0
in one fluid, and 1 in the other. It varies continuously along the interface, which can be
located by getting the φ = 0.5 isosurface. Based upon this level set function, the fluid
properties are regularized as follows:

ρ = ρ1φ+ρ2
(
1−φ)

(3.6)

µ=µ1φ+µ2
(
1−φ)

(3.7)

The level set function is advected by the velocity field obtained from the solution of
the Navier-Stokes equations (Eq. 3.1 and 3.2); this yields:

∂φ

∂t
+∇·φv= 0 (3.8)

Due to numerical diffusion, the thickness of the interface tends to widen. In order to
deal with this problem, a reinitialization equation is used to compress the interface
[26]:

∂φ

∂τ
+∇·φ(

1−φ)
nτ=0 =∇·ε∇φ (3.9)

where τ is the pseudo-time. This equation consists of a compressive term φ
(
1−φ)

nτ=0
which compresses the level set function along the unit normal vector n, and of a diffu-
sion term ∇·ε∇φ, that maintains the characteristic thickness of the profile proportional
to ε= 0.5h0.9, where h is the grid size [6].
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Figure 3.1: Sketch of the moving mesh method in Taylor bubble problems.

3.2.2 Surface tension treatment
By using the Continuum Surface Force (CSF) method developed by Brackbill et al. [27]
two challenging issues can be handled: the computation of the curvature κ and the
application of the resulting pressure jump to the fluids. Following [27], the singular
term σκnδΓ is rewritten as a volume force:

σκnδΓ =σκ
(
φ

)∇φ (3.10)

where n and κ
(
φ

)
are given by:

n= ∇φ∥∥∇φ∥∥ (3.11)

κ
(
φ

)=−∇·n (3.12)

Here, ∇φ is evaluated by means of the least-squares method [6].

3.2.3 Moving mesh
By using the current dynamic mesh approach, the computational domain is moved
at the vertical velocity of the bubble (see App. A). Thus, the bubble apparently stays
vertically stationary inside the mesh domain. Fig. 3.1 shows how the moving mesh
method works in Taylor bubble problems.

When an Arbitrary Lagrangian-Eulerian approach is adopted [4], the computa-
tional volume should be preserved. This is done by using the so-called Space Conser-
vation Law (SCL) [3]. The mass conservation is procured by enforcing this SCL, which
results in the modification of the mass flux through faces, adding the corresponding vol-
ume swept in the movement of the face under consideration. As the mesh is trivially
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moved without deformation at a velocity vdomain equal to the bubble’s vertical velocity,
the calculation of the this correction is straightforward.

3.2.4 Numerical schemes
The aforementioned equations have been discretized on a collocated unstructured grid
arrangement by means of the finite-volume method, according to [6]. A Central Differ-
ence (CD) scheme is used to discretize the diffusion terms of the governing equations
(Eqs. 3.1 and 3.9). A Superbee flux limiter adapted to unstructured meshes [6] is used
to discretize the convective term of the advection equation Eq. 3.8, and a CD scheme is
used for the convective term of the momentum equation, Eq. 3.1. For time discretiza-
tion, a 3-step-third-order accurate TDV Runge-Kutta scheme [28] is used for advection
and reinitialization equations (Eqs. 3.8 and 3.9). Finally, CD schemes are used for the
compressive and diffusive terms of the reinitialization equation, Eq. 1.9 [6].

The pressure-velocity coupling is solved by means of a Fractional Step method [6,
29–31]. Momentum equation (Eq. 3.1) is computed in two steps:

ρv∗−ρnvn

∆t
=∇· [ρvn (

vn −vn
domain

)]+∇·µ
(
∇vn +∇Tvn

)
+ρg+σκ∇φ (3.13)

For simplicity, this equation is discretized using an explicit Euler scheme, however and
explicit Adams-Bashforth scheme has been used for computations. The next step of the
method is the calculation of the following expression:

vn+1 = v∗− ∆t
ρ

∇pn+1 (3.14)

Now, by adding the continuity equation (Eq. 3.2), the following Poisson equation is
obtained to solve the pressure:

∇·
(

1
ρ
∇pn+1

)
= 1
∆t

∇·v∗ (3.15)

The discretization of this equation leads to a linear system, which is solved by means of
a preconditioned conjugate gradient method. Cell-face velocity is calculated according
to [6,31], in order to avoid pressure-velocity decoupling and to fulfill the incompressible
constraint. This cell-face velocity is used to advect the CLS function in Eq. 3.8 and
momentum in Eq. 3.1.

Boundary condition

As the mesh is vertically moved, open boundaries are needed at the upper and lower
domain limits. Therefore, an inflow condition is enforced at the upper limit, whilst
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an otflow boundary condition is applied at the lower limit. The reader is referred to
Sec. 2.4 for details on the formulation of these boundaries. Correspondingly, all condi-
tions are imposed at the lateral boundaries.

Time step

A CFL type condition is used to dynamically determine an admissible time step for
stable computations. By a straightforward comparison among the terms of Eq. 3.1, the
following global stability condition for the proposed CLS-MM method is obtained:

∆t =CCFL ·min

(
h

‖vn‖
,
h2ρn

µn
,

√
h
g

,
(ρ1 +ρ2

4πσ

)1/2
h3/2,

h
‖vmesh‖

)
(3.16)

where subscript n denotes that the corresponding variable is evaluated at the node n
under consideration, h is the characteristic size of the control volume n calculated as
the cubic root of the cell volume, and CCFL is a safety constant (CCFL ≈ 0.1).

Calculation algorithm

The calculation process needed to advance from the current time step tm to the follow-
ing one tm+1 is detailed in Alg. 1. The present method has been implemented in the
context of a parallel c++/MPI code called TermoFluids. The reader is referred to Bal-
cázar et al. [6] for further details on the finite volume discretization of the governing
equations. Simulation times of the cases presented in this chapter are between 12 and
72 hours (depending mostly on the size of the mesh and the obtained CFL condition).
Those cases were run using 32 up to 256 CPUs.

3.3 Taylor bubble study
In the present section, the challenging problem of the full three-dimensional Taylor
bubble is addressed. First, some general definitions are introduced in Sec. 3.3.1. Sec-
ond, a well-known flow regime is chosen, in order to have enough reference data. A
complete result comparison has been carried out at this point (see Sec. 3.3.2). From
this scenario, several studies have been conducted to check the influence of different
conditions in the problem (see Sec. 3.3.3 to 3.3.7). To the authors’ knowledge, most of
these investigations are novel in scientific terms.

3.3.1 General considerations about the problem
The Taylor bubble problems studied below have some common defining parameters
that set up the problem configuration and, in particular, its initial condition. Those
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Algorithm 1 CLS-MM method
repeat:

1: Calculate the mesh velocity, as explained in Sec. 3.2.3.
2: Choose a suitable time step, as explained in Sec. 3.2.4.
3: Advect the level set function φ by solving Eq. 3.8.
4: Compress the interfaces between both fluids by solving Eq. 3.9.
5: Update the density, viscosity and curvature fields.
6: Calculate the predictor velocity.
7: Perform the mass conservation step explained in Sec. 2.4.3.
8: Solve the Poisson equation to get the pressure field.
9: Compute the velocity at the faces [6]

10: Calculate the final velocity.
11: Move the mesh.

until t > tend

Fractional
step method

parameters are presented in the present section. Fisrt, the size of the bubble is char-
acterized by a dimensionless bubble size parameter k = 2a/D, where a is the radius
of an equivalent spherical bubble of the same volume, and D = 2R is the diameter of
the tube. Then, a = (

3VΩ2 /4π
)1/3, where VΩ2 is the volume of the bubble. The initial

radius of the bubble r is chosen to be close to the one that will have the bubble in the
steady state. In order to do so, the following expression is used, as derivation of the
one obtained by Brown [32] when D ∼ r:

r = D
2
− 3

√√√√ 3µ2
1

4gρ2
1
·ReT = D

2
− 3

√
3µ1D3/2

4g1/2ρ1
·FrT (3.17)

where the expected terminal Reynolds number ReT = ρ1UT D/µ1 or the expected ter-
minal Froude number FrT =UT /

√
D g is obtained from the well-known predictions of

White and Beardmore [10].
Furthermore, as the used method leaves the bubble quiescent at its starting vertical

position, initial distances from the bubble nose to the inlet hi and from the bubble
rear end to the outlet ho should be fixed, as they will remain approximately constant
during the simulation. On the one hand, the distance hi is set to D, since for not
too slow regimes (ReT > 1) velocity field perturbations do not propagate beyond D
from the bubble nose. On the other hand, the distance ho has been determined by
used Eq. 2.44 presented in the previous chapter. It is important to note that that
equation was successfully used in the context of the method presented in this work. The
extrapolation of its applicability to other conditions should be analyzed particularly.
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Figure 3.2: Outline of the initial set-up of the Taylor bubble problem. Here, r =
0.007m is the the bubble’s radius and hb = 0.0523m is its length.

3.3.2 Taylor bubble rising in viscous liquid - validation case
In this section, the Taylor bubble problem is studied by using the coupled CLS-MM

method. The chosen reference case is the one published by Bugg and Saad [13] (ex-
periment) and by Ndinisa et al. [22] (numerical simulation).

Fig. 3.2 depicts the initial configuration for the reference case. The simulation is
based on the conditions described by Ndinisa et al. [22]. The density of the continuous
phase ρ1 is set to 911kg/m3, and its viscosity µ1 is 0.084Pa · s. On the other hand, the
properties of the bubble’s fluid correspond to air at 20◦C. Therefore, ρ2 = 1.205kg/m3

and µ2 = 1.827 ·10−5Pa · s. The surface tension coefficient σ is set to 0.0328N/m. The
diameter of the pipe D is set to 0.019m. Those properties and geometrical parameters
yield the following dimensionless groups: ηρ = ρ1/ρ2 = 756.017, ηµ = µ1/µ2 = 4597.701,
Eo = ρ1 gD2/σ= 100 and Mo = gµ4

1/
(
ρ1σ

3)= 0.015. For its part, the expected terminal
Reynolds number ReT = ρ1UT D/µ1 is about 27, where UT is the terminal velocity cal-
culated as explained in App. A. No-slip boundary condition is used at the lateral side of
the domain. The boundary conditions at the inlet and the outlet have been explained
in detail in Sec. 2.4.

The initial shape of the bubble is a cylinder with an hemisphere at the front end
(see Fig. 3.2). The radius r of this cylinder is 0.007m (see Eq. 3.17). The total axial
distance hb of the initial bubble is 0.0523m, which leads to a total initial volume of
7.697 ·10−6m3, and a parameter k of 1.29.
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The simulation domain is cylindrical and it was meshed using hexahedral control
volumes uniformly distributed over the whole space. The meshes were generated by
a constant step extrusion of a two-dimensional unstructured grid along the axis of
the cylinder, being the step size ylength/Nplanes, where ylength is the axial length and
Nplanes is the number of planes in which the vertical axis is divided. Tab. 3.1 shows a
description of the used grids. Three meshes with different resolution were considered,
namely M1, M2 and M3. The mesh resolution was set by dividing the tube diameter D
into 52, 76 and 95 control volumes, respectively.

Furthermore, as pointed out above, initial distance form the bubble nose to the
inlet hi was set to D, and distance from the bubble rear end to the outlet ho was
computed by means of Eq. 2.44. For the conditions of the experiment of Ndinisa et
al. [22], we obtained ho ≈ 2D. Taking into the account that the axial dimension of the
initial bubble hb is 2.75D, a total axial distance ylength of 5.75D was found enough
to reproduce the ascent of the Taylor bubble until it reached the steady state. This
greatly reduces the domain requirements compared to previous works, where axial
distances between 8D and 16D are typically used [18]. Moreover, more complex meshes
could be used, with a relatively large characteristic cell size, and having enough nodes
concentration in the important regions of the problem (i.e. the wall vicinities and the
wake zone). However, for the sake of simplicity, current simulations were run with
quasi-homogeneous meshes.

Mesh
name Mesh size

Cells per
plane Nplanes ylength h

M1 5.3 ·105 2098 254 5D D/52
M2 1.9 ·106 5043 380 5D D/76
M3 3.7 ·106 7891 475 5D D/95

Table 3.1: Description of the meshes used in the Taylor bubble problem, where
Nplanes is the number of planes in which the vertical axis is divided and ylength
is the length of this vertical axis.

Fig. 3.3a shows the evolution of the Reynolds number Re along dimensionless time
t∗. Results are summarized in Tab. 3.2, where a comparison against other works are
presented. Good agreement was found when M2 and M3 meshes are used. With M1

mesh, the final velocity is less accurate. Furthermore, Fig. 3.3b depicts the bubble
profile evolution along the dimensionless time t∗.
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Figure 3.3: Reynolds number evolution and profiles evolution of the tested Taylor
bubble. The bubble profile after t∗ = 1.2 remains approximately constant.

Case UT EUT

Present work (M1) 0.1210m/s 7.63%
Present work (M2) 0.1277m/s 2.52%
Present work (M3) 0.1286m/s 1.83%
Ndinisa et al. [22] 0.140m/s 6.87%

White and Beardmore [10] 0.1272m/s 2.90%
Bugg and Saad [13] 0.131m/s —

Table 3.2: Summary of achieved results at dimensionless time t∗ = 4.5 for the three-
dimensional Taylor bubble problem, where EUT is the relative error compared to the
experimental results of Bugg and Saad [13].

Results discussion

Fig. 3.4 shows several velocity profiles plotted over different sections by comparing
them with the reference data. Results are shown for the three studied meshes. On the
other hand, Fig. 3.5 sketches the velocity field and the streamlines. By analysing these
images, a fairly accurate picture of the velocity field can be depicted.
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First, the normalized axial velocity along the tube axis above the bubble nose is
plotted in Fig. 3.4a. Results of this graph are referred to an auxiliary reference frame
located in the bubble nose. Ahead of the bubble, the suspending fluid is perturbed by
the ascent of the bubble. However, as shown in Fig. 3.4a, the bubble does not have a
strong influence on the fluid above it, since the axial velocity tends toward zero at a
distance of D/3. Close to the bubble nose, the fluid is strongly radial, since the bubble is
moving upwards and the fluid ahead of it is pushed sideways. This can be clearly seen
in Figs. 3.4b and 3.4c, where the normalized axial and radial velocities across the tube
radius at 0.111D above the bubble nose are plotted, respectively. Figs. 3.4d and 3.4e
depict the normalized axial and radial velocities in the developing film at 0.504D be-
low the bubble nose, showing that, as we descend into the developing film, a strong
radial velocity component is still observed, specially close to the fluids’ interface. The
developing film speeds up and thins as it falls, until the shear stress at the wall is ca-
pable of withstanding the weight of the film. The fully developed film is then formed,
giving rise to an essentially axial and constant flow. When the rear end is achieved,
the axial velocity is dramatically reduced (see Fig. 3.4f, showing the normalized axial
velocity in the wake of the bubble at 0.2D below the bubble). At this point the flow be-
comes strongly radial, since the fluid from the wall is transferred toward the cylinder
axis. The radial velocity component swiftly decays to zero near the tube axis, where
the suspending fluid is moving upward with a similar velocity as the bubble’s one.

The present results are confirmed by experimental and numerical studies reported
by Bugg and Saad [13] and Ndinisa et al. [22]. For meshes M2 and M3, good agreement
can be found in all of the results. On the other hand, mesh M1 does not seem fine enough
to correctly replicate these results. For the results obtained with M2 and M3 meshes,
the slight disagreements can be explained based on the ambiguity of locating a specific
section relative to the bubble nose. In effect, results in Fig. 3.4 show notable changes
when visualizing sections near each other, highlighting the importance of using fine
meshes. This observation is consistent with Ndinisa et al. work [22].

The sketches of the velocity field and the streamlines (Fig. 3.5) agree qualitatively
with results reported by Bugg and Saad [13] and by Ndinisa et al. [22]. These images
underscore the essentially axisymmetric nature of this problem. Furthermore, a large
vortex is observed inside the Taylor bubble. Due to the selected flow regime, no vortex
appears in the closed-wake of the bubble.

3.3.3 Effect of the initial shape of the Taylor bubble
Besides the initial shape proposed above, others were also tested in order to check the
influence of the initial condition on the obtained results, with the same dimensionless
numbers than in the previous section. The different initial bubble forms tested are:
a cylinder with an hemisphere at the front end, a cylinder with two hemispheres, a
standard cylinder, a cylinder with an hemisphere at the front end and a notched rear
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Figure 3.4: Results of the three-dimensional Taylor bubble problem, showing (a) the
normalized axial velocity in the tube axis above the bubble nose, (b) the normalized
axial velocity in a section above the bubble, (c) the normalized radial velocity in a
section above the bubble, (d) the normalized axial velocity in the developing film,
(e) the normalized radial velocity in the developing film and (f) the normalized axial
velocity in the wake of the bubble.
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(a)

(b)

(c)

Figure 3.5: Streamlines and velocity field details of the three-dimensional Taylor
bubble problem.

end, and a shape close to the stationary. This last form was obtained by taking the
bubble profile from a previous simulation. Fig. 3.6 depicts these different initial bubble
shapes. All of them have the same total volume of 7.697 ·10−6m3 (k = 1.29), and the
same radius r. The radius of the notch in the respective case is 0.8r. Fig. 3.7 shows the
time evolution of these distinct cases. The initial bubble shape only has influence in the
transient period and in the total time needed to achieve the final state. In this regard,
the shape close to the stationary is narrowly the first to achieve the stationary state,
at approximately t∗ = 3.0. The governing factor in the time evolution of the different
shapes seems to be the shape of the bubble’s frontal area (at least for the selected



69

parameter k). While all the shapes with an hemisphere in the front part of the bubble
evolve similarly, the standard cylinder presents a very different time evolution, as well
as the shape close to the stationary state.

Figure 3.6: Sketch of the different initial states tested to solve the Taylor bubble
problem.

3.3.4 Effect of the volume of the Taylor bubble
As stated above, the initial volume of the bubble is 7.697 ·10−6m3, corresponding to
a parameter k equal to 1.29. A comparative study varying this parameter has been
carried out, in order to investigate the influence of the volume of the bubble in the
results.

A set of 11 cases has been run, corresponding to the following k numbers: 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 and 1.4. The initial shapes of the bubbles have been
taken spherical when k < 2r/D, and cylindrical with an hemisphere at the front end
when k > 2r/D. All other physical and geometrical parameters are the same as in pre-
vious sections. The type of mesh employed is also equivalent to the ones described
above. In order to determine a suitable number of control volumes, a mesh indepen-
dence study has been carried out for the extreme cases k = 0.4 and k = 1.4, since the
geometry of the problem has changed. Tab. 3.3 summarized the results of this study,
proving that by using a mesh with 70 control volumes per diameter, the obtained re-
sults are sufficiently precise. The dimensions of the domain are obtained as discussed
above.

Outcomes of the current study are presented in subsequent figures. On the one
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Figure 3.7: Evolution of the velocity of the Taylor bubble over dimensionless time t∗,
for the different initial bubble shapes tested.

hand, terminal shapes of the bubbles are shown in Fig. 3.8. These forms present the
following features: for k < 0.5 the influence of the wall is not a crucial factor in the
ascent of the bubble. Thus, it remains elliptical, as it corresponds to this regime for
standard rising bubbles. For k = 0.6 and k = 0.7, the bubble tends to acquire an elon-
gated mushroom shape, showing the transition from a standard rising bubble to a
Taylor bubble, where the interaction of the bubble with the tube walls has a capital
influence in the dynamics of the bubble. For k greater than 0.8 and lower than 1.1,
the bubble tends to take a bullet shape. Beyond this critical point, any increase in the
total volume of the bubble results in increasing the axial length without changing the
shape of the nose and the rear end of the bubble. Finally, for k > 1.2 the bubble becomes
slug-shaped. This behaviour is consistent with the one observed by other authors (i.e.
Li et al. [33] and Amaya et al. [20]).

Additional results are shown in Fig. 3.9 as function of the bubble size, character-
ized by the parameter k. First, the Reynolds number is plotted in Fig. 3.9a. For small
k values (k < 1), the velocity of the bubble grows almost linearly as k does, as a result
of the increase in the buoyancy force. As the bubble size becomes comparable to the
tube size, the confining walls make the drag force increase. These results in a stagna-
tion of the Reynolds number at k ≈ 1.0, when the bubble velocity becomes independent
of its volume. Furthermore, Fig. 3.9c shows the relationship between k and the film
thickness δ. As the volume of the bubble increases, the film thickness is reduced until
achieve a stagnation point at k ≈ 1.1. From this point on, the value of δ stays con-
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Figure 3.8: Final shapes in the study of the sensibility to the initial volume of the
bubble, listed in increasing order from k = 0.4 to k = 1.4, with 0.1 increases.
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Case h ReT ∆ EReT E∆

k = 0.4

h = D/44 24.776 −0.2175 6.7% 7.5%
h = D/58 25.450 −0.2341 4.2% 0.5%
h = D/70 26.067 −0.2362 1.9% 0.4%
h = D/84 26.575 −0.2352 – –

k = 1.4

h = D/44 26.032 0.6543 3.6% 5.1%
h = D/58 26.311 0.6629 2.6% 3.7%
h = D/70 26.883 0.6429 0.5% 1.9%
h = D/84 27.012 0.6307 – –

Table 3.3: Mesh independence study for the extreme cases k = 0.4 and k = 1.4, where
h is the characteristic cell size, ReT is the terminal Reynolds number, ∆ is the de-
formation parameter, EReT is the relative error of the terminal Reynolds number
referred to the case with a denser mesh, and E∆ is analogously the relative error of
the deformation parameter.

stant and the increment of the bubble volume has an impact exclusively on the bubble
axial length, but not on its proximity to the walls. This pattern is coherent with the
behaviour observed in the evolution of the deformation parameter ∆ = (L−B)/(L+B),
where L is the length of the bubble and B is its width. ∆ increases as k increases, with
a decreasing slope, due to the fact that B achieves an approximately constant value for
high values of k. Finally, the fraction of the total channel cross-sectional area occupied
by the bubble Abubble/Achannel is plotted as function of k in Fig. 3.9d. This figure re-
flects how large bubbles (k > 1.1) occupy the same fraction of the total cross-sectional
area available. All these results corroborate the findings of Li et al. [33] and Amaya et
al. [20], presenting similar tendencies and analogous general behaviours.

3.3.5 Effect of the Eötvös number
The importance of surface tension forces compared to body forces is measured by terms
of the Eötvös number Eo. In order to quantify this influence in the Taylor bubble prob-
lem, some experiments proposed by Hayashi et al. [23] have been addressed. In this
paper, several cases are studied for different sets of Eötvös and Morton numbers. For a
fixed Morton number, up to four different Eötvös numbers are studied. Therefore, we
chose a Morton number Mo of 10−2.5 and we took the following set of Eötvös numbers:
Eo = {10,33,55,77}.

Experimental conditions of these four cases are described below. First, density and
viscosity of the suspending fluid are respectively 1220kg/m3 and 85.0 ·10−3Pa · s. The
density ratio ηρ and the viscosity ratio ηµ are respectively set to 1.26 and 0.88. The
surface tension coefficient is 0.031N/m. Variations in the Eötvös number are obtained
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Figure 3.9: Comparison of (a) Reynolds number Re, (b) film thickness δ, (c) deforma-
tion parameter ∆ and (d) fraction of maximum channel cross-sectional area occupied
by the bubble Abubble/Achannel, as a function of the bubble size characterized by the
parameter k.

by changing the diameter of the tube, D = {0.011,0.0201,0.0261,0.0308}m. The initial
bubble has a cylindrical shape with two hemispheres, and a total volume corresponding
to a parameter k of 1.25. The initial radius of the bubble r is calculated from Eq. 3.17.
The used meshes are the same as the M2 mesh described above, but scaled to the new
sizes.

A comparison between obtained results and reference data is summarized in Tab. 3.4,
where a good agreement can be noticed. Furthermore, Fig. 3.10 depicts the profiles evo-
lution for the run cases. The final shapes represented in this figure match qualitatively
well with the images of the bubble provided by Hayashi et al. [23]. As can be further
seen from these results, velocity increases when the Eötvös number increases. Due to
the higher buoyant forces, the elongation of the bubble also increases whit the Eötvös
number. For small Eötvös numbers, the bubble tends to take an elongated egg shape
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(Fig. 3.10a and 3.10b). On the contrary, the bubble acquires a slug shape when higher
Eötvös numbers are used (Fig. 3.10c and 3.10d).

Eo ReT EReTPresent work Hayashi et al. [23]
10 0.40 0.41 2.43%
33 8.48 8.7 2.53%
55 19.62 20.2 2.87%
77 30.57 31.0 1.39%

Table 3.4: Results comparison against the experiments of Hayashi et al. [23], where
EReT is the relative error of the terminal Reynolds number ReT .

(a) (b) (c) (d)

Figure 3.10: Evolution profiles of the three-dimensional Taylor bubble, corresponding
to the different Eötvös numbers tested, i.e. (a) Eo = 10, (b) Eo = 33, (c) Eo = 55 and
(d) Eo = 77. The other parameters have remained the same.

3.3.6 Effect of the Morton number
In order to study the particularities of the problem when varying the Morton number,
we chose some of the cases studied by Quan [18], and we simulated them. In the
mentioned paper, the inverse viscosity number N f is used to describe the flow regime,
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instead of the Morton number Mo. Both dimensionless numbers are related by the
following expression:

N f =
(

Eo3

Mo

)1/4

(3.18)

On the one hand, the viscosity of the first fluid is determined from N f , taking g =
9.85m/s2. We select the following set of inverse viscosity numbers to be tested: N f =
{291,200,109,44,22,16}. On the other hand, the density of the suspending fluid is
1220kg/m3. The density ratio ηρ and the viscosity ratio ηµ are both set to 100. The
surface tension coefficient is 0.06N/m. The tube’s diameter D is 0.032m. The initial
bubble has a cylindrical shape with two hemispheres, with k = 1.14. The initial radius
of the bubble r is obtained by computing Eq. 3.17. The used mesh is the same as the
M2 mesh described above, but scaled to fit the new geometry.

Tab. 3.5 summarizes the obtained terminal Reynolds numbers (ReT ) compared
against those reported by Quan [18]. Good agreement was found between both sets
of results. The slight differences between these results are caused by the different
numerical approaches, and mainly because Quan is using an axisymmetric solver.
Fig. 3.11 shows the profile’s evolution and the final form of the tested cases. Again,
the agreement of these results is qualitatively good in comparison with those obtained
by Quan [18]. When decreasing Mo (i.e. increasing N f ), some general effects are ob-
served in the performance of the problem. First, the bubble rises faster, as a result of
the decrease in the viscous force. Additionally, the slug shape is progressively trans-
formed into a skirted oval shape. The length of the main body of the bubble decreases,
which indicate that the reduction of the viscous forces tends to compress the bubble. It
becomes thicker, which is evidenced by a narrower film region between the tube wall
and the bubble.

Regime ReT EReTN f Mo Present work Quan [18]
291 2.12 ·10−3 95.97 97.0 1.06%
200 9.53 ·10−3 65.65 65.6 0.07%
109 1.36 ·10−1 32.78 33.6 2.44%
44 4.07 10.59 10.9 2.83%
22 6.31 ·101 3.59 3.8 5.42%
16 2.33 ·102 1.69 1.8 6.11%

Table 3.5: Results comparison against the numerical experiments of Quan [18],
where EReT is the relative error of the terminal Reynolds number ReT .
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Evolution profiles of the three-dimensional Taylor bubble problem when
varying the Morton number. These graphs show different inverse viscosity numbers
tested, i.e. (a) N f = 16, (b) N f = 22, (c) N f = 44, (d) N f = 109, (e) N f = 200 and (f)
N f = 291.
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3.3.7 Effect of channel inclination
A comprehensive study of the Taylor bubble behaviour under non-vertical inclinations
is herewith presented. We chose the work of Shosho and Ryan [14] as reference. In
this paper, several mixtures were experimentally tested in cylindrical inclined tubes.

The selected parameters for the study are presented below. The inside diameter
of the tube D is 0.0254m. The bubble’s initial shape is a cylinder with a diameter d
of 0.84D. This cylinder is ended by two hemispheres, and it has a total length of 2d,
corresponding to k = 1.14. The density of the suspending fluid is 1320.02g/m3 and its
viscosity 0.191Pa · s. Surface tension coefficient is set to 0.051N/m. These parameters
give rise to a Eötvös number Eo of 40.97 and a Morton number Mo of 0.0746. The
density ratio ηρ and viscosity ratio ηµ are both set to 100. It is important to point out
that these ratios do not match with the actual ratio of corn syrup-air mixture used in
the experiment of Shosho and Ryan [14]. However, such large density and viscosity
ratios give rise to numerical instabilities, and terminal velocity and bubble shapes are
minimally upset when smaller ratios are used [18].

The new flow regime and the non-axisymmetric configuration of the current case,
bring about a more challenging problem compared to the previous ones. Thus, a new
mesh is designed to meet the resolution requirements of the current simulations. It
is composed of triangular prismatic control volumes. A mesh independence study has
been performed for the extreme case (θ = 5π/12), in order to obtain a suitable mesh
which accurately reproduce the physics of the problem. The results of this study are
presented in Tab. 3.6, showing that a mesh with 147 control volumes per diameter
seems to be a suitable mesh to study this problem.

Case h Fr ∆ EFr E∆

θ = 5π/12

h = D/103 0.3297 0.7239 1.0% 6.5%
h = D/123 0.3304 0.6585 0.4% 3.1%
h = D/147 0.3307 0.6755 0.2% 0.6%
h = D/165 0.3316 0.6796 – –

Table 3.6: Results of the mesh independence study for the extreme case θ = 5π/12,
where h is the characteristic cell size, Fr is the Froude number, ∆ is the deformation
parameter, EFr is the relative error of the Froude number referred to the case with
denser mesh, and E∆ is analogously the relative error of the deformation parameter.

The distance ho from the bubble rear end to the outflow should also be reconsidered.
The use of Eq. 2.44 could a priori not be convenient for inclined cases, where their
particular configurations give rise to longer wakes. Therefore, a particular study of the
influence of the distance ho (controlled by the safety constant Cho ) has been conducted.
Results of this study have been summarized in Tab. 3.7), showing that the deformation
parameter and the Froude number are minimally upset by increasing ho, when Cho ≈
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2.5. This fact reveals that for Cho = 2.27 the obtained ho from Eq. 2.44 is enough to
accurately reproduce the physics of the problem.

Case Cho Fr ∆ EFr E∆

θ = 5π/12
Cho = 2.27 0.3307 0.6755 0.6% 1.0%
Cho = 2.60 0.3318 0.6749 0.3% 0.5%
Cho = 2.90 0.3328 0.6735 – –

Table 3.7: Study of the influence of the distance ho (controlled by Cho ) for the ex-
treme case θ = 5π/12, where Cho is the safety constant of Eq. 2.44, Fr is the Froude
number, ∆ is the deformation parameter, EFr is the relative error of the Froude num-
ber referred to the case with longer domain, and E∆ is analogously the relative error
of the deformation parameter.

Thus, the new mesh consists of 2.9 · 106 cells and is obtained by a constant step
extrusion of a two-dimensional grid along the tube axis. The total tube length ylength
is 5D, the number of planes in which the vertical axis is divided Nlength is 334, the
number of cells per plane is 8546, and the characteristic cell dimension is hmin = 2.283·
10−4m.

The inclination of the channel is controlled by setting the angle θ between the tube’s
axis and the gravity vector. The set of studied angles is θ = {0,π/6,π/4,π/3,5π/12} (in
radians).

In Tab. 3.8 and Fig. 3.13 a comparison of the results obtained in the present work
against those of Shosho and Ryan [14] is presented. This comparison is made in terms
of the Froude number Fr, finding a good agreement. Furthermore, Fig. 3.13 shows
the general tendency of the Taylor bubble terminal velocity when the channel inclina-
tion increases: it rises and reaches its maximum at an inclination close to π/4, and
then decreases. This behaviour was noted by other researchers in many different con-
figurations, i.e. with arbitrary cross-section channels [34] or with different types of
mixtures [14]. Moreover, Fig. 3.12 shows the time evolution of the Froude number for
the different inclination angles.
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θ
Fr EFrPresent work Shosho and Ryan [14]

0 0.2949 0.2854 3.33%
π/6 0.3504 0.3520 0.45%
π/4 0.3733 0.3760 0.72%
π/3 0.3679 0.3627 1.43%

5π/12 0.3307 0.3173 4.22%

Table 3.8: Comparison of results against the experiments of Shosho and Ryan [14],
where Fr is the Froude number and EFr is the relative error.
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Figure 3.12: Sketch of the evolution of the Froude number over dimensionless time
t∗ = tg1/2D−1/2 for the tested inclinations, compared against results of Shosho and
Ryan [14].

Further results are presented in the following figures. First, the final 3D bubble
shapes are shown in Fig. 3.14. This figure shows how the average diameter of the
bubble is reduced as the inclination increases, leading to a growth in the bubble length.
Additionally, the distance between the bubble and the wall is reduced as the inclination
angle increases. Similarly, the bubble nose gets closer to the wall as the channel is
inclined. The lateral region opposite to the wall remains practically parallel to it.

Fig. 3.15 depicts the pressure fields of the different studied inclinations. As seen
in this figure, the range of variation of the pressure is similar for the different angles.
Moreover, the illustrations show how the pressure isosurfaces have a tendency of being
perpendicular to the gravity vector.
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Figure 3.13: Evolution of the terminal Froude number over dimensionless time t∗ =
tg1/2D−1/2 for the tested inclination angles, compared against the results of Shosho
and Ryan [14].

Furthermore, Fig. 3.16 shows the streamlines for all inclination angles in the XY
plane. In the vertical case (Fig. 3.16a), a pair of elongated counter-rotating vortices
are found inside the bubble. The symmetry of this configuration is lost as the tube is
inclined. The vortex at the far side of the wall is still formed, while the one close to the
wall opens up reducing its size and moving downward.

Finally, Figs. 3.17-3.21 depict the streamlines and the Y-component of the vorticity
field in the X Z plane at three different elevations of y-axis. The placement of these
elevations is obtained by dividing the bubble’s total length into four parts. Fig. 3.14
shows these positions for the different inclination angles, labeled as Y1, Y2 and Y3 in
order of increasing height. The variation range of the vorticity is within the same order
of magnitude in all inclination angles and all elevations, although it slightly increases
with the inclination angle. For the vertical case (Fig. 3.17), the streamlines present a
well-defined configuration of counter-rotating vortices along the bubble perimeter. This
axis-symmetric arrangement is vanished as the inclination angle increases. In general,
for the inclined cases (Figs. 3.18-3.21), two regions of opposite vorticity can be found
in both sides of the bubble. This configuration becomes increasingly clear when the
inclination rises. The lowest elevation Y1 seems more perturbed and asymmetric due to
the effect of the instability of the rear end. Secondary vortices appear at the perimeter
of the tube in some specific configurations (e.g. see Fig. 3.20a). The Y3 plot seems
similar for the different inclination angles (see Figs. 3.18c, 3.19c, 3.20c and 3.21c),
presenting an asymptotic-like pattern starting at the right side of the tube and going
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(a) (b) (c)

(d) (e)

Figure 3.14: Three dimensional shape of the tested cases in the study of tube incli-
nation:(a) 0, (b) π/6, (c) π/4, (d) π/3 and (e) 5π/12. Labels Y1, Y2 and Y3 mark the
elevations at where streamlines and the vorticity field are analyzed in Figs. 3.17-
3.21.

to the centre of the bubble. This behaviour is consistent with results reported by [20].
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(a) (b) (c) (d) (e)

Figure 3.15: Pressure fields (in Pa) for all inclination angles studied: (a) 0, (b) π/6, (c)
π/4, (d) π/3 and (e) 5π/12.

(a) (b) (c) (d) (e)

Figure 3.16: Streamlines in XY plane for all inclination angles studied: (a) 0, (b) π/6,
(c) π/4, (d) π/3 and (e) 5π/12.
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(a) (b)

(c)

Figure 3.17: Streamlines and vorticity field (s−1) in X Z plane at the three different
elevations (a) Y1, (b) Y2 and (c) Y3, corresponding to the 0 inclination case.

(a) (b)

(c)

Figure 3.18: Streamlines and vorticity field (s−1) in X Z plane at the three different
elevations (a) Y1, (b) Y2 and (c) Y3, corresponding to the π/6 inclination case.
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(a) (b)

(c)

Figure 3.19: Streamlines and vorticity field (s−1) in X Z plane at the three different
elevations (a) Y1, (b) Y2 and (c) Y3, corresponding to the π/4 inclination case.

(a) (b)

(c)

Figure 3.20: Streamlines and vorticity field (s−1) in X Z plane at the three different
elevations (a) Y1, (b) Y2 and (c) Y3, corresponding to the π/3 inclination case.
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(a) (b)

(c)

Figure 3.21: Streamlines and vorticity field (s−1) in X Z plane at the three different
elevations (a) Y1, (b) Y2 and (c) Y3, corresponding to the 5π/12 inclination case.

3.4 Conclusions
In the present work, an Arbitrary Lagrangian-Eulerian approach to optimize the com-
putational domain in Taylor bubbles problems have been posed, within a conservative
level set framework. The method was used to perform a deep study of the Taylor bubble
problem.

By using an optimized domain, the efficiency of the simulation can be notably im-
proved, due to the fact that it is no longer necessary to solve regions far from the
vicinities of the bubble, which are not of interest in rising bubble problems. The
method is based on a moving grid that follows the ascent of the buoyant bubble. It
showed a proper numerical stability and a good performance. The only noteworthy
disadvantage of this method is that it needs using open boundaries (namely, inflow
and outflow), which usually requires a careful numerical treatment, as explained in
Sec. 3.2.4. In effect, the formulation and the placement of the open boundaries (spe-
cially the outflow) are burdensome factors to be taken into account in designing these
boundaries. Those difficulties were handled by taking into account the conclusions
obtained in Sec. 2.4 and 2.5 about the design and placement of these boundaries.

The previous method was used to tackled the challenging problem of the three di-
mensional Taylor bubble. To the best knowledge of the authors, this problem has not
been previously addressed by using a CLS method. An in-depth study was carried out,
including the sensitivity analyses with respect to the initial shape of the bubble, the
initial volume of the bubble, the flow regime and the inclination of the channel. All
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the aforementioned tests have been compared with both experimental and numerical
studies available in the literature, finding a very good agreement.
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Bubbles and drops

evolving through complex

geometries

Main contents of this chapter have been published in:

E. Gutiérrez, F. Favre, N. Balcázar, A. Amani and J. Rigola Numerical approach to study
bubbles and drops evolving through complex geometries by using a level set - moving mesh -
immersed boundary method, Chemical Engineering Journal 349 (2018), 662-682

Abstract. The present chapter proposes a method to study problems of drops and bubbles
evolving in complex geometries. First, a conservative level set (CLS) method is enforced to han-
dle the multiphase domain while keeping the mass conservation under control. An Arbitrary
Lagrangian-Eulerian (ALE) formulation is proposed to optimize the simulation domain. Thus,
a moving mesh (MM) will follow the motion of the bubble, allowing the reduction of the compu-
tational domain size and the improvement of the mesh quality. This has a direct impact on
the computational resources consumption which is notably reduced. Finally, the use of an Im-
mersed Boundary (IB) method allows to deal with intricate geometries and to reproduce internal
boundaries. The resulting method is capable of dealing with full unstructured meshes. Differ-
ent problems have been studied to assert the proposed formulation. In particular, the following
problems have been addressed: a 2D gravity-driven bubble interacting with a highly-inclined
plane, a 2D gravity-driven Taylor bubble turning into a curved channel, the approach of a 3D
drop towards a solid plane, the 3D passage of a drop through a periodically constricted channel,
and the impingement of a 3D drop on a flat plate. Good agreement was found for all these cases,
which proves the suitability of the proposed CLS+MM+IB method to study this type of problems.
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4.1 Introduction
The motion of drops and bubbles in complex geometries is of fundamental importance
in many scientific and engineering applications. To cite a few examples, chemical re-
actors generally involve many drop-wall collision processes [1], and its understanding
could seriously determine the efficiency of the reactor. The field of microfuidics [2] and
lab-on-a-chip concept are fed from the knowledge of the behaviour of bubbles and drops
evolving through microgeometries. Additionally, the oil extraction processes could ul-
timately be reduced to the evolution of a slug flow through constricting solids.

The motion of bubbles and drops in unbound mediums has attracted significant
scientific attention in the last decades (see Tryggvason et al. [3] for an extensive nu-
merical review). On the contrary, the literature about bubbles/drops evolving through
complex geometries is far more limited. A meaningful distinction within these prob-
lems is stressed here, depending on the relation between the secondary phase and the
surrounding geometry. On the one hand, the solid could constrict the bubble or drop,
and its trajectory is somehow predetermined by the own shape of the solid. On the
other hand, the bubble/drop could freely evolve in an unbounded media, whereas the
present solids alter its motion, but in an unconstrained manner. The border between
both types of cases is diffuse, and the classification of a specific problem in one group
or the other can be ambiguous. See Fig. 4.1 for a graphical interpretation of both types
of problems.

In order to face both types of problems, different approaches have been proposed
in the literature. Experimental procedures usually isolate the basic phenomenon to
macroscopically study the motion of the secondary phase. See [4–7] for some valu-
able experimental works. Additionally, the problem of drops or bubbles evolving in
complex geometries can also be addressed theoretically by simplifying the governing
equations to extract analytical conclusions (see e.g. [8, 9]). Finally, some valuable nu-
merical approaches have been conducted to solve the aforementioned problem [10–13].
Tab. 4.1 compiles some of the outstanding works present in the literature, highlighting
the method used to solve the problem and the relationship between drop/bubble and
geometry.

When facing this type of problems by using a numerical approach, three paramount
issues should be addressed in order to satisfactorily solve the case study:

1. The fluid interface must be computed accurately while conserving integral prop-
erties.

2. The computational cost should be kept within reasonable bounds.

3. The solid geometries, which could be complex and intricate, should be repre-
sented effectively and robustly.
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Reference (year) Nature of study
Problem description
[Constrained / Unconstrained ]

Worthington [5] (1876) Experimental
Qualitative analysis of the impact of
a gravity-driven falling drop against a
horizontal plane. [U]

Hemmat and Borhan [4]
(1996) Experimental

Motion of buoyancy-driven drops
in periodically constricted tubes. [C]

Hills and Chèty [14]
(1998) Experimental

Gravity-driven rising Taylor bubble
in a concentric annulus tube. [C]

Zhao et al. [15] (1998) 2D Numerical (LS)
Gravity-driven drop flowing
through an asymmetric funnel. [C]

Aleinov et al. [16] (1999)
3D axisymmetric
Numeric (LS)

Ejection of a ink drop from
a constricting nozzel. [C]

Klaseboer et al. [8]
(2001)

Experimental and
theoretical

Gravity-driven rising bubble
impinging on a horizontal plate. [U]

Olgac et al. [17] (2006)
3D axisymmetric
Numeric (FT)

Motion of buoyancy-driven drops
in periodically constricted tubes. [C]

Podvin et al. [9] (2008)
Experimental and
theoretical

Interaction of a bubble with a
plane at different inclinations. [U]

Deen et al. [10] (2009) 3D Numerical (FT)
Bubbles impacting against a
single sphere or an array of them. [U]

Protière et al. [18] (2010) Experimental
Passage of a 2D Taylor bubble
through a cylindrical obstacle. [C]

Roudet et al. [19] (2011) Experimental
Pressure-driven slug flow in
meandering millimetric square
channels. [C]

Pozrikidis [20] (2012) 2D Numerical (FT)
Passage of a viscous liquid through
a bifurcation. [C]

Liu et al. [6] (2015)
Experimental and
3D numerical (LB)

Drop falling against curved surfaces. [U]

Maitra et al. [7] (2014) Experimental
Drops impacting superhydrophobic
textures. [U]

Gupta et al. [11] (2014) 2D Numerical (LB)
Squeezing mechanism in a
droplet formation device. [U]

Misra et al. [21] (2016)
3D axisymmetric
Numeric (VoF)

Gravity-driven rising bubble passing
through a circular orifice. [C]

Izbassarov and
Muradoglu [22] (2016)

3D axisymmetric
Numeric (FT)

Pressure-driven drop through
a sudden contraction and expansion. [C]

Baltussen et al. [23]
(2017) 3D Numerical (VoF)

Interaction of a gravity-driven
rising bubble with a cylindrical
solid. [U]

Table 4.1: Literature summary for bubbles/drops motion through complex geome-
tries, ordered by year of publication. Here “LS” refers to “Level Set method”, “FT”
to “Front-Tracking method”, “LB” to “Lattice-Boltzmann method”, and “VoF” to “Vol-
ume of Fluids method”.
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Regarding the first item, there are two main groups of methods to deal with mul-
tiphase domains. On the one hand, the interface between fluids could be reproduced
by using a Front-Tracking method [24]. These techniques accurately describe the mul-
tiphase flow, although their implementation may be burdensome due to the need of
recomputing the mesh at each time step. On the other hand, the eulerian methods
represent the multiphase domain by a continuous (though sharp) change of proper-
ties. Those methods include volume-of-fluid (VoF) techniques [25], level set (LS) meth-
ods [26, 27] and hybrid procedures (CLSVoF) [28]. Level set approaches have the ad-
vantage of precisely calculating the geometrical properties of the interface (i.e. normal
and curvature). However, they present mass conservation drawbacks. On the contrary,
the volume-of-fluid methods inherently conserve mass, but at the expense of a trou-
blesome process of computing geometrical properties of the interface. Hybrid methods
solve the two issues present in the above-mentioned techniques, but the computational
cost significantly increases. In the present work, we propose a methodology based on a
conservative level set (CLS) formulation for unstructured meshes, first reported by Bal-
cázar et al. [29]. The CLS formulation dramatically reduces the mass conservation error
in comparison with a standard level set method. This technique has been thoroughly
verified [30,31].

Further efforts have been reported in the development of conservative level-set
methods, e.g. the level set remedy approach based on sigmoid function [32], and the
accurate conservative level-set method [33]. In the present CLS formulation [29], in-
terface normals are computed using a least-squares method on a wide and symmetric
nodes-stencil around the vertexes of the current cell [29]. These normals are then
used for an accurate computation of surface tension, without additional reconstruc-
tion of the distance function, as in geometrical volume-of-fluid/level-set methods [28]
or fast-marching methods [33]. Moreover, most computational operations are local.
Therefore this method is efficiently implemented for parallel platforms [29, 34]. The
CLS method has been designed for general unstructured meshes [29]. Indeed, the grid
can be adapted to any domain, enabling for an efficient mesh distribution in regions
where interface resolution has to be maximized [28,29,31,34,35], which is difficult by
using structured grids. Furthermore, a TVD flux-limiter scheme [29] is used to ad-
vect the CLS function, avoiding numerical oscillations around discontinuities, whereas
the numerical diffusion is minimized. Finally, the present finite-volume formulation is
attractive due to its simplicity and the satisfaction of the integral forms of the conser-
vation laws over the entire domain [29].

When facing the problem of a bubble/drop evolving in complex geometries by using
DNS methodologies, the computational resources consumption should be a topic of major
concern. This is because the need of enough resolution to represent real geometries, to-
gether with the high-demanding process of solving the Navier-Stokes equations. With
the exception of basic configurations, a decision should be taken regarding this point.
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An option is to work under a 2D or axisymmetric hypothesis [11, 22]. However, if a
full 3D approach is sought, a domain optimization method becomes mandatory (e.g.
non-inertial reference frame, periodic domain, etc.). In the present work, we enforce
a moving mesh (MM) technique to deal with small simulation domains. This Arbitrary
Lagrangian-Eulerian (ALE) formulation is based upon the work of Estruch et al. [36].
The mesh follows the motion of the bubble/drop. Under those circumstances, the simu-
lation domain can be limited to the important regions of the problem (i.e. the bubble/-
drop and its surroundings). This allows a great saving of computational effort, together
with other benefits (see Sec. 4.4). The drawback of this technique is introducing open
boundary conditions at the domain limits, hindering the enforcement of solid condi-
tions. The synergy with the immersed boundary method (introduced below) provides a
workable solution to this inconvenience.

In the past few years the Immersed Boundary (IB) method has gained a special in-
terest as an alternative to the body-conformal mesh methods. The IB methods highly
simplify the mesh generation process, as they allow the use of cartesian meshes and
the inclusion of moving and/or deforming bodies. In the present framework the IB

method constitutes an efficient and simple way to include solid boundaries in the DNS

simulations. The boundary condition is imposed by the modification of the discretized
Navier-Stokes equations, generally by including a forcing term. Depending on how this
forcing term is defined, the IB method is classified into two categories [37]: continuous
forcing approach and the discrete forcing approach. The original IB method introduced
by Peskin [38] in 1972 constitutes a continuous approach. In that work, the immersed
boundary is represented by a series of Lagrangian markers linked by springs, which
exert a singular force on the fluid by a discrete approximation to the Dirac delta func-
tion. This approach has been applied to numerous problems, e.g. biological flows with
elastic boundaries [38–41]. It has also been used to represent rigid boundaries by in-
creasing the stiffness of the body [42]. However, this approach can lead to stability
problems. The discrete forcing approach was introduced by Mohd-Yusof [43] in a spec-
tral method and applied by Fadlun et al. [44] using a finite difference approach. In this
case, the forcing is defined in the discrete space by imposing the boundary condition in
the solution. This process can be seen as a reconstruction procedure. In fact, in [44] the
forcing is not evaluated explicitly. Numerous variants of this approach have been pro-
posed, such as the direct forcing approach [45, 46], the ghost cell method [47, 48] and
the Cartesian cut-cell method [49, 50]. The discrete forcing approach allows a sharp
representation of the immersed boundary, and is well suited for rigid boundaries. For
these reasons, a discrete forcing approach has been taken in the present work.

When an IB method is combined with a CLS method, the mass fluxes at the faces
in the vicinity of the solid must be carefully computed to have an accurate convective
term, and to ensure that the bubble/drop does not penetrate into the solid regions. The
IB method is based on a velocity field reconstruction. However, due to the nature of
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the fractional step method, the boundary condition is imposed to the predictor velocity.
Therefore, an error is made as a result of performing the projection step after imposing
the non-slip boundary condition. In this methodology, the solid boundaries are not
impermeable and mass flux can pass through them. Thus, in the present formulation
this undesirable effect is avoided by imposing a boundary condition to the pressure field
using a cut cell based discretization [50,51] only to the Poisson equation as in [52].

In light of the foregoing, the present work proposes a new insight to face prob-
lems where a bubble or drop is evolving through an arbitrary geometry (constricting
or non-constricting). The method is a combination of a CLS technique to deal with the
multiphase domain, an ALE framework to optimize the size of the simulation domain,
and an IB method to represent the embedded solids. To the best of our knowledge,
this work is the first approach to multiphase DNS problems combining a CLS technique,
a dynamic mesh framework and an IB method. The resulting method is capable of
dealing with full unstructured meshes, which greatly increases the versatility of this
methodology.

The chapter is organized as follows: Sec.4.2 presents the mathematical description
of the proposed CLS+MM+IB method. The numerical treatment of these equations is
then addressed through Sec. 4.3, followed by a discussion on the applicability of the
method (Sec. 4.4). Then, results of the validation and verification cases are presented
in Sec. 4.5. Finally, conclusions are summarized in Sec. 4.6.

4.2 Mathematical formulation
In the present section, the mathematical foundation of the proposed CLS+MM+IB method
to solve multiphase flows in complex geometries is presented. The equations to be
solved are the Navier-Stokes equations with the hypotheses of incompressible flow,
Newtonian fluids, no mass transfer at the fluids interface, Arbitrary Lagrangian-Eulerian
framework, constant surface tension coefficient σ and embedded solids. Those equa-
tions are given by the conservation laws of mass and momentum, as follows:

∇·v= 0 (4.1)

∂

∂t
(
ρv

)+∇· (ρv (v−vdomain)
)=−∇p+∇·µ

(
∇v+ (∇v)T

)
+ρg+σκnδΓ+ΨIB (4.2)

where t is the time, v is the velocity vector, vdomain is the domain velocity, p is the
pressure, g is the gravity acceleration, σ is the constant surface tension coefficient,
κ and n are respectively the curvature and the unit normal vector of the interface
between fluids, δΓ is the Dirac delta function located at that interface, and ΨIB is
an extra source term introduced by the immersed boundary method (see Sec. 4.3.2).
Finally, ρ and µ are the fluid density and viscosity, respectively. These properties are
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constant within each fluid. Thus, they can be expressed as a single property with a
jump discontinuity at the interface, yielding the following equations:

ρ = ρ1H+ρ2 (1−H) (4.3)

µ=µ1H+µ2 (1−H) (4.4)

Subscripts 1 and 2 refer to the suspending fluid and secondary phase, respectively; and
H is the Heaviside function with its discontinuity located at the fluids interface. H is
equal to zero in the secondary phase, and equal to 1 in the suspending fluid.

4.2.1 Interface capturing
Equations from 4.1 to 4.4 close a non-continuous problem, due to the jump of properties
located at the interface and the surface tension source term of the momentum equation
(Eq. 4.2) acting only at that interface. However, aiming to avoid numerical instabilities
at the interface, a continuous treatment of the fluids properties is more convenient. A
conservative level set (CLS) method, as introduced by [29] in the context of unstructured
grids, is used to tackle with the fluid interface. Therefore, the interface is implicitly
represented by an indicator function φ, defined as:

φ (x, t)= 1
2

(
tanh

(
d (x, t)

2ε

)
+1

)
(4.5)

Here d (x, t) is the signed distance function, and ε is a parameter to control the thick-
ness of the interface between fluids. This interface can be located by obtaining the
φ= 0.5 isosurface.
By means of the level set function, Eqs. 4.3 and 4.4 can be expressed as follows:

ρ = ρ1φ+ρ2
(
1−φ)

(4.6)

µ=µ1φ+µ2
(
1−φ)

(4.7)

The solution of the Navier-Stoke equations (Eqs. 4.1 and 4.2) provides the velocity field
v used to advect φ. This transport equation can be written as follows:

∂φ

∂t
+∇·φ (v−vdomain)= 0 (4.8)

Note that this equation slightly differs from the advection equation used in previous
chapters. The reason is that now the velocity of the mesh is not anymore constant
within the domain, so it cannot be removed from the divergent operator. After advec-
tion, a reinitialization step is needed to complete the calculus of the level set function.
In this step, the interface is compressed seeking to maintain a constant thickness, as
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it tends to widen in the advection process due to numerical diffusion [53]. Therefore,
the following differential equation is computed:

∂φ

∂τ
+∇·φ(

1−φ)
nτ=0 =∇·ε∇φ (4.9)

This equation is advected in pseudo-time τ. On the one hand, the term φ
(
1−φ)

nτ=0
compresses the level set function along the unit normal vector n, aiming to sharpen the
interface. On the other hand, the diffusive term ∇·ε∇φ ensures that the characteristic
thickness of the profile is proportional to ε= 0.5h0.9, where h is the grid size computed
as the cubic root of the cell volume [29].

4.2.2 Surface tension treatment
By implementing an appropriate surface tension model, a twofold goal is sought. First,
the calculus of the curvature κ, and second, the application of the pressure jump to
the fluid domain. With this aim, a CSF model [54] has been adopted. This technique
enables the conversion of the singular term σκnδΓ into a volume force:

σκnδΓ =σκ
(
φ

)∇φ (4.10)

where κ
(
φ

)
and n are given by:

κ
(
φ

)=−∇·n (4.11)

n= ∇φ∥∥∇φ∥∥ (4.12)

Here, ∇φ is computed by means of a least-square method [29].

4.3 Numerical solution
The set of equations posed above has been discretized onto a collocated grid arrange-
ment. A finite-volume method has been enforced, according to [29]. The diffusion terms
of the governing equations (Eqs. 4.2 and 4.9) are discretized by using a Central Differ-
ence (CD) scheme. In addition, a superbee flux limiter for unstructured meshes [29] is
applied to the convective term of the advection equation (Eq. 4.8), and a CD scheme is
used for the convective term of the momentum equation (Eq. 4.2). For time discretiza-
tion, a 3-step-third-order accurate TDV Runge-Kutta scheme [55] is enforced in the
advection and reinitialization equations (Eqs. 4.8 and 4.9). Finally, both compressive
and diffusive terms of the reinitialization equation (Eq. 4.9) are discretized by using a
CD scheme [29].
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The pressure-velocity coupling is solved by means of a Fractional Step method [29,
56–58]. Momentum equation (Eq. 4.2) is computed in two steps:

ρvp −ρnvn

∆t
=∇· [ρvn (

vn −vn
domain

)]+∇·µ
(
∇vn +∇Tvn

)
+ρg+σκ∇φ+ΨIB (4.13)

For the sake of simplicity, this equation has been discretized using an explicit Euler
scheme, although an explicit Adams-Bashforth scheme has been used for computations.
Superscript “p” refers to predictor variables, n to the current time step, and n+1 to the
following one. The next step of the method is the calculation of the following expression:

vn+1 = vp − ∆t
ρ

∇pn+1 (4.14)

By adding the continuity equation (Eq. 4.1), the following Poisson equation is ob-
tained to solve the pressure field:

∇·
(

1
ρ
∇pn+1

)
= 1
∆t

∇·vp (4.15)

The discretization of this equation leads to a linear system, which is solved by means of
a preconditioned conjugate gradient method. Cell-face velocity is calculated according
to [29, 58], in order to avoid pressure-velocity decoupling and to fulfill the incompress-
ible constraint. This cell-face velocity is used to advect the CLS function in Eq. 4.8, and
momentum in Eq. 4.2.

4.3.1 Mesh movement and boundary conditions
The mesh is moved following the evolution of the bubble/drop. Thus, to an observer
standing on the mesh, the bubble/drop will be always around its initial position (al-
though its shape may change). The first consequence of this approach is the need of
open boundaries at the domain limits. Consequently, inflow or outflow conditions are
imposed at the boundary faces of the fluid domain.

The inflow boundary condition imposes a null velocity vector at the corresponding
boundary, and a zero gradient condition for the pressure. The outflow boundary condi-
tion is a combination of a convective boundary condition and the formulation proposed
by Davis and Moore [59]. The reader is referred to Sec. 2.4 for further notes on the
formulation of the outflow boundary condition.

To determine whether a specific boundary face is inflow or outflow, the following
dot product is evaluated: vG ·nbf , where vG is the velocity of the bubble/drop centroid
G (see App. A), and nbf is the outward unit normal vector to the boundary face. If the
value of this dot product is positive, it means that the bubble/drop is moving towards
this face. Thus, the boundary face should be an inflow. Otherwise the boundary face
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under consideration is set as outflow. It is worth emphasizing that both conditions
inflow/outflow collapse into the same formulation in the limit case where the afore-
mentioned dot product is close to 0 (see Sec. 2.4). It is also worth to mention that in
cases with long distances between the bubble/drop centroid and the boundaries (where
the fluid velocity near the domain limits is close to zero), the treatment of the inflow
and outflow becomes less important, and even free-slip conditions could work well (see
e.g. [12]).

Additionally, when an Arbitrary Lagrangian-Eulerian approach is adopted, the
mass flux through a face f needs to be modified as follows [36]:

ṁmodified
f =

∫
S f

ρ (v−vS) ·ndS ≈ ρ f (v ·n) f S f −ρ f (vS ·n) f S f (4.16)

where subscript f denotes that the corresponding variable is evaluated at face f , and
vS is the surface velocity whose outward unit vector is represented by n. Linear in-
terpolation between nodes is used when a certain variable is unknown at a specific
face (e.g. for the density ρ). The term (vS ·n) f S f represents the volume swept by the
CV face f per unit of time. As no deformation is allowed, the movement of the mesh
is a combination of a linear translation and a rotation from the bubble/drop centroid
G. Therefore, if the term vS is evaluated at the centroid of the face, the error in the
calculation of the swept volume is first order accuracy. For some particular cases, it
is possible to compute the exact swept volume. See App. B for a detailed derivation
on how to compute this volume. The cells volumes remain unchanged due to the na-
ture of the mesh movement, which combined with the accurate calculation of the swept
volume ensure the accomplishment of the so-called Space Conservation Law (SCL) [36]:

d
dt

∫
ΩCV

dΩCV +
∫

S
vS ·ndS = 0 (4.17)

where ΩCV is the volume of the moving cell, and S is its closed surface. Note that the
first term of this equation is strictly zero because ΩCV is constant, and the second term
is also zero because it is computed exactly as explained above. Therefore, the SCL is
ensured and the mass conservation is procured.

The definition of the translation and rotation of the mesh is not imposed by the
physic, but should be coherent with the evolution of the bubble/drop within the domain.
Two main scenarios can be identified (see Fig. 4.1):

1. When the bubble/drop is evolving in an unconstrained domain where its trajec-
tory can not be easily predicted in advance. In this case, the linear velocity of
the mesh vdomain is taken equal to the bubble/drop velocity vG. Additionally, its
angular velocity ωdomain is taken equal to the one that the bubble/drop velocity
vector has: ωdomain = dα

dt where α is the angle rotated by the velocity vector of the
bubble/drop. The centre of rotation is the bubble/drop centroid G.
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2. When the bubble/drop is evolving in a tube or, in general, in a constricting geom-
etry generated by the extrusion of a curve through a driving curve. Note that the
extruded curve could vary along the driving curve. The only requirement is that
the driving curve should be unequivocally defined. In this case, the linear veloc-
ity of the mesh is taken equal to the projection of the bubble/drop velocity onto
the driving curve. Consequently, vdomain = (vG · n̂t) n̂t, where n̂t is the tangent
vector of the driving curve at the projection of the centroid of the bubble/drop G
onto the driving curve (namely G

′
). In addition, the angular velocity of the do-

main ωdomain is equal to the one that the tangent vector n̂t of the driving curve
has: ωdomain = dn̂t

dt . The centre of rotation is the point G
′
. Fig. 4.2 sketches this

geometrical configuration.

The first approach described above should be able to tackle the second situation.
However, the distinction seems desirable in order to get a more natural movement of
the mesh in cases with a constricting geometry. It is also intended to avoid an in-
stance where the mesh does not cover the whole cross section of the pipe. See Sec. 4.5.2
for cases with both implementations. Regarding the second scenario, there are some
further considerations to be taken into account. The formulation presented above as-
sumes the analytical description of the driving curve as known. In some situations (e.g.
in industrial applications) this issue constitutes a limitation, as the tubular geometry
of the problem might not be analytically described. In this case, two alternatives are
proposed: the use of the general approach for unconstrained geometries, and the cal-
culation of a “predicted” driving curve by interpolation between points of the tubular
geometry. An additional problem is establishing the shape and the dimensions of the
fluid domain. The longitudinal length is set by the physics of the problem (see Sec. 2.5).
However, the lateral distance must be kept as small as possible in order to save re-
sources, but it should be enough to cover the whole transversal section of the tube
during the whole simulation. There is no straightforward solution for this issue, al-
though it is analytically approachable for easy geometries (see e.g. the case presented
in Sec. 4.5.2).

4.3.2 Immersed boundary treatment
The forcing termΨIB in Eq. 4.13 is included to enforce the non-slip immersed boundary
condition. It affects the nodes in the vicinity and the interior of the immersed bodies. If
the solid moves with respect to the mesh, the nodes are classified at every iteration into
three categories: interior, forcing and exterior points (see Fig. 4.3). The interior points
are those falling within the immersed body. The forcing points are those outside the
solid, which meet one or both of these conditions: (i) the node has a neighbour which is
inside the object, (ii) their cell-volume is cut by the immersed boundary. The remaining
nodes are the so-called exterior points.
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(a) (b)

Figure 4.1: Two main scenarios may appear when studying the evolution of bub-
bles/drops in complex geometries: (a) an unconstrained situation, in which the ge-
ometry does not determine beforehand the movement of the bubble/drop; and (b) a
constrained situation where a tubular geometry forces the movement of the bubble/-
drop following a driving curve.

To classify the nodes, a signed distance field ϕ (x, t) is defined as the minimum
distance from the node position to the immersed boundary. In order to be able to han-
dle any geometry, the immersed boundary is represented by an unstructured surface
mesh, composed by a series of triangles in stereo-lithography (STL) format [60]. To cal-
culate the minimum distance between a particular node of the mesh to the Immersed
Boundary, the closest triangle is found and the closest point of that triangle is com-
puted. Finally, the sign of the distance is defined using the outpointing normal vector
of that particular triangle, given positive values for internal nodes and negative for the
external ones.

Once the nodes have been classified, the source term is calculated. This source term
is zero in the exterior points, and it is evaluated with the following expression for the
rest of the nodes [61]:

ΨIB = ρV−ρvn

∆t
−

{
∇· [ρvn (

vn −vn
domain

)]+∇·µ
(
∇vn +∇Tvn

)
+ρg+σκ∇φ

}
(4.18)

where V is the desired value of the velocity field. For a prescribed movement of the
body, the velocities V of the interior points are directly calculated from their coordi-
nates. However, in order to compute the velocities of the forcing points, some approx-
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vG vdomain

G G'

n̂t

Driving curve

Figure 4.2: Geometrical objects needed to define the mesh movement in problems
with a constricting geometry. G is the bubble/drop centroid, G

′
is its projection onto

the driving curve of the pipe, vG is the velocity of the bubble/drop centroid, n̂t is
the unit tangent vector of the driving curve at G

′
, and vdomain is the velocity of the

computational domain.

ΓS

ΩS

ΩF

Figure 4.3: Example of the control volumes intersected by an object. (ΩS) is the solid
region, (ΩF ) is the fluid region, and (ΓS) is the solid-fluid interface. The nodes are
classified as: (♦) exterior points, (•) forcing points, and (N) interior points.
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imations have to be used, as by definition these nodes are outside the object. In this
particular case, V is computed by means of a second-order interpolation among the lo-
cal velocity of the solid, and the predictor velocity vp

ΨIB=0 of neighbour nodes calculated
when ΨIB = 0. The reader is referred to the work by Favre et al. [61] for further details
about the calculation of ΨIB.

Due to the nature of the fractional step method, in the present formulation of the IB
method the boundary condition is imposed to the predictor velocity. Some inaccuracy
is introduced in the solution, because the projection step is performed after imposing
the non-slip boundary condition. As a result of this procedure, some mass flux may
pass through the solid boundaries, which does not affect the accuracy of the solution
but can produce unphysical results, e.g. a particular fluid-phase could penetrate into
an immersed body. This undesirable effect can be avoided by imposing a boundary
condition to the pressure field using a cut-cell based discretization [50, 51] only to the
Poisson equation, as in [52]. A cut-cell is a cell with some of its volume at the fluid
region and some at the solid region. Two types of cut-cells can be distinguished: those
with the node in the fluid region (generally called “regular cut-cells”), and those with
the node in the solid (called “small cut-cells”, because the fluid fraction of it could be
arbitrarily small). Both types of cells are shown in Fig. 4.4.

A f
F
=a f

F A f=A f

A f
F
=a f

F A f <A fsolid

A f
F
=a f

F A f <A f

k

nb

nb

nb

A IB

δd IB

Figure 4.4: Definition of regular cut-cells and small cut-cells. The blue dot-dash
lines denote the regular cut-cells, and the red dash lines mark the small cut-cells.
Some of the faces of a cut-cell are divided into a fluid-face and a solid-face, where
AF

f represents the surface of the fluid-face. The surface of the solid-fluid interface
contained within the cut-cell is indicated here as AIB. Finally, δdIB is the distance
between the node of the cut-cell and the solid-fluid interface.

The finite-volume discretization of the Poisson equation for a generic cell k is written
as:
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ṁp
IB + ∑

f ∈F (k)
ṁp

f = ∆t

(
(pn+1

IB − pn+1
k )

AIB

δdIB
+∑

f

(
pn+1

nb − pn+1
k

) aF
f A f

δd f

)
(4.19)

vn+1
k = vp

k −
∆t
ργVk

(
pn+1

IB nF
IB AIB +∑

f
pn+1

f nF
f aF

f A f

)
(4.20)

ṁn+1
f = ṁp

f −∆taF
f A f

(pn+1
IB − pn+1

k )

δd f
(4.21)

where the superscript “p” denotes that the corresponding variable is a “predictor” one,
F (k) is the set of faces of cell k, aF

f = AF
f /A f is the fluid surface fraction of face f

and γ = V F
k /Vk is the volume fraction of cell k. The subscript IB refers to the section

of the immersed boundary intersected by cell k called ∂IB, AIB is its surface, δdIB is
the distance between the node of k and ∂IB, and pIB is the pressure at that location.
The subscript nb refer to the face-neighbour of k, and δd f is the normal-projected
distance between the nodes k and nb. Superscript F in the normal vectors nF

IB and
nF

f indicates that those vectors point to the fluid region. For the cells that are not cut
by an immersed boundary, all the coefficients aF

f and γ are equal to 1. Therefore, the
discretization corresponds to the classic second-order spectro-consistent scheme [62]

However, small cells are treated with a different approach. As they can be arbi-
trarily small, the use of the same approach as for the regular cut-cells could lead to an
ill-conditioned pressure Poisson equation. Small cut-cells can also cause viscous sta-
bility problems. Therefore, the so-called “virtual cell merging technique” is used in the
present work. It was first proposed by Meyer et al. [63] for the momentum equation,
and adapted by Seo and Mittal [52] for the pressure Poisson equation. It consists of
modifying the independent term of the Poisson equation. First, the independent terms
b(k) = ∑

f ṁP
f are computed for every cell, including the small ones. Thus, the term

bsmall of each small cell is transferred to its regular neighbours. This means that the
term bnb of each regular neighbour is incremented by a fraction of bsmall . Given a
small cell, the fraction of bsmall which is transferred to each regular neighbour is pro-
portional to the fluid surface shared with that neighbour. Once this transfer is done,
the independent terms of the Poisson equation corresponding to the small cells become
zero. The reader is referred to [64] for a detailed study of the IB implementation.

4.3.3 Time step
In order to obtain a suitable time step at each iteration, a CFL condition is enforced.
Therefore, the following condition is obtained by comparison of the different terms of
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the momentum equation (Eq. 4.2):

∆t =CCFL ·min

(
h

‖vn‖ ,
h2ρn

µn ,

√
h
g

,
(ρ1 +ρ2

4πσ

)1/2
h3/2,

h
‖vdomain‖

)
(4.22)

where CCFL is a safety constant (CCFL ≈ 0.1). It is worth noting that the source term
from the immersed boundary method (namely, ΨIB) does not additionally restrict the
time step. At this point, the effect of the embedded body has already been taken into
account in the calculus of the velocity field. Therefore, the convective restriction (first
term of the left-hand part of Eq. 4.22) already includes the effect of the IB method on
the time step.

4.3.4 Calculation algorithm
Alg. 1 summarizes the calculation procedure needed to advance from the current time
step tm to the next one tm+1. This procedure has been implemented in a parallel in-
house c++/MPI code called TermoFluids [65].

Algorithm 1 CLS+MM+IB method
repeat:

1: Compute ∆t (Sec. 4.3.1)
2: Advect φ (Eq. 4.8)
3: Reinitialize φ (Eq. 4.9)
4: Update ρ, µ, κ and n (Eqs. 4.6, 4.7, 4.11 and 4.12)
5: Evaluate ΨIB (Sec. 4.3.2)
6: Compute vp (Eq. 4.13)
7: Solve the Poisson equation to obtain p (Eq. 4.15)
8: Compute the velocity at the faces [29]
9: Calculate the vdomain (Sec. 4.3.1)

10: Move the mesh
11: Update mass flow by imposing the SCL (Eq. 4.16)
12: Move the solid (if needed)

until t > tend

Fractional
step method

Mesh
movement

4.4 Discussion on the method
The proposed approach exploits some striking features of the comprising methods.
First, the CLS method allows dealing with multiphase domains, while keeping the mass
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error under control [29]. Second, the dynamic mesh technique enables using small com-
putational domains, covering only the important regions of the problem (see. Ch. 2).
Finally, using an IB method leads to representing intricate solids which do not conform
the mesh shape (see Sec. 4.3.2). Furthermore, the synergy among those methods brings
additional benefits:

• It is possible to reproduce internal boundaries (i.e. solid and free-slip conditions)
in an ALE framework working with open boundaries.

• Long temporal evolutions can be studied with no need of increasing the size of
the mesh, e.g. problems involving infinity domains (i.e. tubes).

• The mesh quality is homogenised, regardless of the geometry. That avoids the
worsening of the mesh quality due to the potential need of reproducing certain
intricate geometries.

• The method greatly facilitates on-the-go testing and parametric studies. This is
because, in general, a modification of the geometry or flow conditions does not
imply a change of the mesh.

• Since the bubble/drop stays steady at a specific location within the computational
domain, the mesh can be improved by refining the important regions of the prob-
lem (e.g. the interface between fluids). This notably complements the increased
versatility achieved by working in a full unstructured framework. In general
terms the global benefit is similar to the one obtained by using an adaptive mesh
refinement technique.

• By using the proposed CLS+MM+IB method, the obtained solution of a specific mul-
tiphase problem conserves the mass, as all of the consisting methods are mass-
conservative (i.e. CLS method [29], ALE methodology [36], and the IB method
explained in Sec.4.3.2).

• The method allows to modify geometrical conditions during the simulation. This
is particularly useful when studying the impact of bubbles/drops against objects.
In the analysis of these problems, terminal conditions in the motion of the bub-
ble/drop are usually assumed. With the proposed method, by placing the solids
out of the fluid domain, free motion conditions are initially applied to the motion
of the drop/bubble. When this drop/bubble achieves its steady state, the solid is
positioned in the appropriate place. Otherwise, the initial distance from the bub-
ble/drop centroid to the solid could not be enough to achieve the terminal velocity,
or it could be excessive entailing unnecessary computational expenditure.

There are also some few drawbacks to keep in mind when considering the proposed
method:
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• The CLS+MM+IB method does not easily deal with multiple bubbles/drops prob-
lems, or cases involving break-up. Complications arise in defining the mesh
movement, as it is specified based on the velocity of a bubble/drop centroid (see
Sec. 4.3.1). This criterion becomes obsolete in cases with multiple bubbles/drops,
and it should be revised. Cases with large deformations could also be problem-
atic, since the drop/bubble might get too close to a domain boundary.

• The boundary condition design becomes troublesome due to the inherent pres-
ence of open limits. Both the formulation of these boundaries and their place-
ment within the domain require a careful treatment. See Ch. 2 for a detailed
discussion on this issue.

• When dealing with constricting geometries, a minimum domain is desirable (al-
though not essential) in order to save computational resources. The domain di-
mensions should assure that the computational domain covers the whole transver-
sal section of the pipe throughout the complete simulation. However, the sizing
of this minimum domain is not straightforward. See Sec. 4.3.1 for further notes
on this topic.

4.5 Results and validation
In the present section, some studies are conducted in order to assert the validity and
accurateness of the proposed CLS+MM+IB method presented above. First, in order
to capture the particular potentialities of the method, we designed one pair of two-
dimensional experiments, which involve complex geometries, mesh translation and
mesh rotation. Reference results are obtained by running the same case within a
static mesh, and without employing immersed boundaries. This last approach is the
usual way to proceed when facing multiphase DNS problems. In these reference cases,
although the mesh resolution is kept constant, the fluid domain is the same as the
physical domain. Therefore, much bigger meshes are needed. By proceeding this way,
the particularities of the presented method can be successfully evaluated in compar-
ison with the general approach for multiphase DNS in complex geometries, providing
a consistent way to make measurable comparisons. In addition, a clear discussion on
the simulation times and the resource consumption can be drawn. After these cases,
three three-dimensional problems are presented. By doing so, it is intended to validate
the proposed method in full 3D configurations. In these cases, the obtained results are
compared with those found in the literature.
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4.5.1 Two-dimensional gravity-driven bubble approaching an
inclined plane

In this section, we propose the study of the passage of a bouncing bubble through
a highly-inclined plane. This case is very convenient to accomplish the goals of the
present section, due to the following reasons. First, it involves a clear-cut rotating
process which allows the evaluation of the rotational mesh mechanism. Second, the
well-defined boundary treatment and the fact that the flow regime has been exten-
sively studied [66] allow us to focus attention on the phenomenology of the bubble-wall
interaction. Finally, it is affordable to simulate the same problem with the complete do-
main, without moving the mesh or using immersed boundaries. This is very useful for
the sake of comparison, as differences in the obtained results can be attributed exclu-
sively to particularities of the proposed CLS+MM+IB method. This comparison technique
has been broadly used in CFD, e.g. when validating a new LES formulation against a
DNS case.

Therefore, the problem has been solved by using two methods: a traditional ap-
proach, with the complete domain and ordinary boundaries, and the CLS+MM+IB method.
Fig. 4.5 sketches the geometrical configuration and initial set up of both cases, show-
ing the distances from the bubble to the boundaries. It is worth noting that an in-
creased left lateral distance is needed for the case of moving mesh, as the bubble could
move beyond the initial left distance to the wall after bouncing (and in fact it does).
Distances from the bubble to the inflow and outflow when solving the problem with
the proposed CLS+MM+IB method are overestimated in comparison with those obtained
with the method proposed in Ch. 2. Thus, a smaller domain would actually be capable
of capturing the physics involved in the problem. However, with the aim of minimizing
the discrepancies among methods caused by this reason, bigger distances were chosen.
Physical properties are determined by the following dimensionless numbers:

ηρ = ρ1

ρ2
, ηµ = µ1

µ2
, Eo = gd2 (

ρ1 −ρ2
)

σ
, Mo = gµ4

1
(
ρ1 −ρ2

)
ρ2

1σ
3

(4.23)

where d is the initial bubble diameter, and ηρ and ηµ are the density and viscosity
ratios, respectively. Eo is the Eötvös number and Mo is the Morton number. In the
present problem, ηρ = 10, ηµ = 10, Eo = 9.0 and Mo = 6·10−4. This flow regime coincides
with that of the well-known benchmark case first studied in [66].

In both methodologies, the employed meshes are full unstructured and composed of
triangular control volumes. In order to ensure the mesh independence of the obtained
results, several cell sizes h are tested. In particular, three different meshes are used for
both the case with full domain and the one with moving mesh. The chosen resolutions
are d/15, d/23 and d/30. Therefore, the meshes are labelled from M1 to M3 in increasing
order of resolution, adding the subscript “FD” for the full domain case, and “MM” for
the moving mesh case.
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Figure 4.5: Outline of the initial set-up of the problem of a bubble bouncing through a
highly-inclined plane. Simulation domains are highlighted in shaded boxes for both
the complete domain case and the one with the moving mesh.

Two integral quantities are chosen to assess the aforementioned mesh resolutions.
The first one is the average dimensionless velocity in the sliding state

∥∥∥v∗
sliding

∥∥∥ =∥∥vsliding
∥∥ /

√
dg, which is computed from the moment when the bubble starts interact-

ing with the wall. This moment is determined as the point where the lateral velocity
vbubble,x ceases to be negligible compared to the vertical one vbubble,y: vbubble,x/vbubble,y >
0.05, which happens at dimensionless time t∗ = t

√
g/d approximately equal to 1.8. Fur-

thermore, the variation of the bubble shape is evaluated in terms of the circularity ζ2D ,
which compares a perfect circular bubble against the actual one (see App. A for details
on how to compute it). The value of the average circularity in the sliding stage (defined
as explained above) is denoted by ζ2D,sliding. Tab. 4.2 summarizes these integral val-
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ues for the different tested resolutions. It shows that the mesh convergence has been
already achieved for meshes labelled as M2. Therefore, a resolution of h = d/23 seems
enough to accurately reproduce the physics of the problem.

Furthermore, the proposed CLS+MM+IB method presents also a good performance
concerning the mass conservation. By using this method, the obtained final mass error
EV for the meshes M1, M2 and M3 is respectively 1.12 ·10−11, 6.64 ·10−12 and 5.78 ·
10−12. Finally, the convergence rate has been computed by using the results of the
sliding velocity shown in Tab. 4.2. Result of the finer mesh has been taken as reference
value. Therefore, the obtained value of the convergence rate is 1.23.

Case Mesh
∥∥∥v∗

sliding

∥∥∥ ζ2D,sliding E∥∥∥v∗
sliding

∥∥∥ Eζ2D,sliding

Full domain
M1FD (h = d/15) 0.5413 0.8580 2.64% 1.89%
M2FD (h = d/23) 0.5519 0.8452 0.74% 0.37%
M3FD (h = d/30) 0.5560 0.8421 – –

CLS+MM+IB

M1MM (h = d/15) 0.5488 0.8580 2.20% 2.13%
M2MM (h = d/23) 0.5398 0.8470 0.52% 0.82%
M3MM (h = d/30) 0.5370 0.8401 – –

Table 4.2: Integral results and mesh independence study for the problem of the pas-
sage of a bouncing bubble through a highly-inclined plane. Here h is the charac-
teristic cell size,

∥∥∥v∗
sliding

∥∥∥ is the absolute value of the sliding velocity, ζ2D,sliding is
average circularity in the sliding stage, E∥∥∥v∗

sliding

∥∥∥ is the relative error of the absolute

value of the sliding velocity referred to the case with denser mesh, and Eζ2D,sliding is
analogously the relative error of the average circularity in the sliding stage.

Further results are presented below, comparing those of M3 meshes. First, the evo-
lutions of the dimensionless velocity components v∗y = vbubble,y/

√
dg and v∗x = vbubble,x/

√
dg

are presented in Fig. 4.6a and 4.6b, respectively. In these figures, it is clearly shown
the oscillatory nature of the velocity evolution. The bubble speeds up from rest with
almost null lateral velocity, until it starts interacting with the solid. In this bouncing
stage, its velocity fluctuates around an average value remaining fairly constant with
a very light increase. This oscillatory trend is also observed in the evolution of the
dimensionless minimum distance from bubble centroid to the left wall d∗

min = dmin/d,
which is plotted in Fig. 4.6c. This figure shows that the first stage of the bubble ascent
is characterized by a slight increase in the distance to the wall. This is caused by the
constriction effect of the left lateral wall, that tends to expel the bubble. After this pe-
riod, this distance drops sharply. Finally, the evolution of the circularity ζ2D is plotted
in Fig. 4.6d, showing a clear fluctuating pattern around 0.85 approximately. All these
plots show that the proposed CLS+MM+IB method provides reasonably good agreement
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in comparison with the reference data.
Finally, a comparison between profiles evolution is presented in Fig. 4.7, together

with the bubble trajectory. This image highlights once more the oscillatory nature of
the bubble path. During the bouncing stage, the bubble loses its symmetry, and it
alternatively elongates towards right and left. Again, CLS+MM+IB method yields nearly
indistinguishable results from the reference method.

The very small deviations between the results of both methods arise for three rea-
sons. First, the mesh rotation makes the lateral distance from bubble centroid to the
right boundary to vary slightly along the simulation, causing small disturbances in the
velocity field. Second, the used open boundaries in the CLS+MM+IB method may also
affect the far field. And third, the treatment of the IB and MM methods intrinsically
introduce a small numerical error in the obtained results [36].

The great advantage of the proposed CLS+MM+IB method is the resources consump-
tion savings. Tab. 4.3 summarizes some performance data to give an idea of those
savings. In particular, simulation times are much lower compared with the case with
a complete mesh (approximately one third). Furthermore, it is worth noting that the
longer the simulation is, the more notable these differences are.

Mesh label tsim,MM/tsim,FD NMM/NFD
M1 0.58 0.53
M2 0.55 0.49
M3 0.53 0.46

Table 4.3: Resources consumption comparison of the problem of a bubble approach-
ing a highly-inclined plane. Here, the results of the proposed CLS+MM+IB method are
compared against those obtained by using a standard approach with the complete do-
main. tsim,MM/tsim,FD represents the ratio between simulation times and NMM/NFD
the ratio between total mesh sizes.

4.5.2 Two-dimensional gravity-driven Taylor bubble through a
curved channel

In the present section, the 2D problem of an elongated bubble rising in a curved chan-
nel is addressed. The channel whereby the bubble evolves has a curved part connecting
two straight sections: a vertical one and an inclined one. This case is particularly con-
venient to validate the rotating mesh process in constricting geometries (see Sec. 4.3.1).
Therefore, the mesh does not exactly follow the motion of the bubble, but slides over the
driving curve of the pipe. The results of the proposed CLS+MM+IB method are compared
against a numerical simulation run using the complete domain, i.e. without immersed
boundaries and moving mesh. As was stated in the section above, this way of compar-
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Figure 4.6: Result of the 2D problem of a bubble approaching an inclined plane.
The graphs show (a) the vertical dimensionless velocity v∗y = vbubble,y/

√
dg (b) the

lateral dimensionless velocity v∗x = vbubble,x/
√

dg, (c) the dimensionless minimum
distance d∗

min = dmin/d from the bubble centroid to the wall, and (d) circularity ζ2D .
Those magnitudes are plotted against dimensionless time t∗ = t

√
g/d, for the mesh

resolution h = d/30 (meshes M3FD and M3MM).
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(a) (b)

Figure 4.7: Profiles evolution in the problem of a bubble approaching a highly-
inclined plane, for (a) the full domain case and (b) the CLS+MM+IB case. Successive
profiles are plotted each 1.85 dimensionless time units.

ing models provides a clear process to discern the deviations caused by the use of a
moving mesh and an immersed boundary method.

Fig. 4.8 sketches the initial setting up of the numerical experiment, as well as the
mesh dimensions for both cases. As shown in this figure, the initial shape of the bubble
is a two-dimensional cylinder with two hemispheres. The diameter d of the initial
bubble is equal to 0.8D, where D is the diameter of the pipe. The length of the initial
bubble is 1.1534D, giving rise to an equivalent total volume equal to πD2/4. The mesh
width in the proposed CLS+MM+IB method is equal to the diameter of the pipe D plus a
value e given by:

e =
(
RΥ− d

2

)
−

√(
RΥ− d

2

)2
−h2

i ≈ 0.292D (4.24)
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where RΥ = 4.5D is the turning radius of the driving curve, and hi = 1.5D is the chosen
distance from the bubble centroid to the inlet. This assures that the mesh is able to
cover the whole transversal section of the pipe during its ascent. Eq. 4.24 is a particular
expression for circular turns, and it should be expressly revised in any other case. See
Sec. 4.3.1 for further notes on the calculus of this distance. Additionally, distances from
bubble centroid to inlet and outlet are set based on the indications given in Sec. 2.5.

Different mesh resolutions are tested in both the case with the complete domain,
and the case with moving mesh. Thus, three different meshes are used in each case,
namely from M1 to M3 in order of increasing resolution. These meshes are unstructured
and composed of triangular control volumes. The chosen resolutions are D/50, D/75,
D/100.
For this problem, dimensionless numbers characterizing the flow regime are defined as
follows:

ηρ = ρ1

ρ2
, ηµ = µ1

µ2
, Eo = gD2ρ1

σ
, Mo = gµ4

1

ρ1σ3 (4.25)

Here ηρ = 756.02, ηµ = 4597.70, Eo = 100.0 and Mo = 0.015. Note that the definition
of those dimensionless numbers differs from the one given in Eq. 4.23 for the previous
problem. The chosen slug flow regime has been broadly studied, starting from the
original work by Bugg and Sad [67].

Some integral magnitudes are shown in Tab. 4.4 in order to assert the adequateness
of the different meshes tested. Two integral values are shown in that table. On the one
hand, the dimensionless sliding velocity

∥∥∥v∗
sliding

∥∥∥ = ∥∥vsliding
∥∥ /

√
D g is presented for

the different mesh resolutions. This value is obtained by averaging the dimensionless
bubble velocity during the inclined ascent, i.e from dimensionless time t∗ = t

√
g/D

approximately equal to 12.6. On the other hand, the shape of the bubble is evaluated
in terms of the deformation parameter ∆ = (L−B) / (L+B) in the sloping part of the
ascent, where L is the length of the bubble from nose to tail, and B is its average
transversal length. The results comparison shows that h = D/75 seems a reasonable
resolution to accurate reproduce the ascent of the Taylor bubble.

By using the CLS+MM+IB method, the mass error EV is kept under control. For
the meshes M1, M2 and M3, the obtained values of this magnitude at the end of the
simulation are respectively 8.72 ·10−13, 2.78 ·10−13 and 1.33 ·10−13.

Additional results of the current problem are shown in Fig. 4.9, for M3 meshes.
First, the vertical component of the dimensionless velocity v∗y = vbubble,y/

√
D g is plotted

against dimensionless time t∗ = t
√

g/D. This magnitude rises from zero to a terminal
value, which is slightly modified due to the change of the channel inclination. On
the other hand, the evolution of the lateral dimensionless velocity v∗x = vbubble,x/

√
D g

shows a similar behaviour. It presents two clearly distinct sections: one before the pipe
elbow, and another one after the pipe elbow. In the first one, this velocity component
is close to zero. In the passage of the bubble through the elbow, an adaptation region
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Figure 4.8: Outline of the initial set-up of the problem of a Taylor bubble evolving in
a curved channel. The initial length of the bubble is set to 1.1534D in order to get
a 2D volume of the bubble equal to πD2/4. Simulation domains are highlighted in
shaded boxes for both the complete domain case and the one with the moving mesh.
The mesh width in the moving mesh case is equal to D+ e, where e ≈ 0.292D.

is identified. Here, v∗x = vbubble,x/
√

D g rises and eventually stabilizes in the inclined
zone. Both methods provide very close results.

Finally, Fig. 4.10 sketches the profiles evolution for both methods. In the corre-
sponding image of the proposed CLS+MM+IB method, the positions of the mesh at each
time instant are also represented. The figure shows the well-defined rotation process of
the mesh, following the driving curve of the channel. All of these results suggest that
the CLS+MM+IB method is certainly capable of reproducing the physics of the problem
with enough level of accuracy. Small differences are explained in terms of the presence
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Case Mesh
∣∣vsliding

∣∣ ∆ E|vsliding| E∆

Full domain
M1FD (h = D/50) 0.2104 0.2646 0.32% 4.74%
M2FD (h = D/75) 0.2109 0.2722 0.10% 2.02%
M3FD (h = D/100) 0.2111 0.2778 – –

CLS+MM+IB

M1MM (h = D/50) 0.2014 0.2528 1.93% 5.72%
M2MM (h = D/75) 0.2025 0.2590 1.41% 3.39%
M3MM (h = D/100) 0.2053 0.2682 – –

Table 4.4: Integral results and mesh independence study of the problem of a Taylor
bubble rising in a pipe with a change in its inclination. Here h is the characteristic
cell size,

∣∣vsliding
∣∣ is the absolute value of the sliding velocity (in the inclined section),

∆ is the deformation parameter at the sloping part, E∣∣vsliding
∣∣ is the relative error of

the absolute value of the sliding velocity referred to the case with denser mesh, and
E∆ is analogously the relative error of the deformation parameter at the inclined
section.

of open boundaries and numerical issues (e.g. the meshes, although sharing the same
resolution, are not identical).

In a reference to the resource consumption comparison, the proposed CLS+MM+IB

method performs much better than a traditional DNS approach with a complete domain.
Tab. 4.5 presents a comparison among simulation times and mesh sizes. Note that if
the physical domain were bigger, those savings would be much more notable.

Mesh label tsim,MM/tsim,FD NMM/NFD
M1 0.67 0.65
M2 0.65 0.61
M3 0.59 0.56

Table 4.5: Resources consumption comparison of the problem of a Taylor bubble
turning in a curved pipe. Results of the proposed CLS+MM+IB method are compared
against those obtained by using a standard DNS approach with the complete domain.
tsim,MM/tsim,FD represents the ratio between simulation times and NMM/NFD the
ratio between total mesh sizes.

4.5.3 Three-dimensional gravity-driven falling drop against a
plane surface

The problem of a drop falling against a plane is addressed in the present section. As
reference case, we chose one of the cases studied by Han and Tryggvason [68]. In par-
ticular, the one corresponding with the following dimensionless numbers (see Eq. 4.23):
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Figure 4.9: Result of the 2D problem of a Taylor bubble turning in a curved pipe.
The graphs show (a) the vertical dimensionless velocity v∗y = vbubble,y/

√
D g (b) the

lateral dimensionless velocity v∗x = vbubble,x/
√

D g. Those magnitudes are plotted
against dimensionless time t∗ = t

√
g/D, for the mesh resolution h = d/100 (meshes

M3FD and M3MM).

ηρ = 1.15, ηµ = 1.0, Eo = 12.0, and Ohd = 0.0466, where Ohd = µ2/
√
ρ2dσ is the Ohne-

sorge number, and d is the initial droplet diameter. These parameters give rise to a
very homogeneous flow regime, with a slow and straight movement of the drop. We
chose this simple regime in order to simplify the study case in this first approach to a
three-dimensional problem.

A sketch of the initial arrangement is presented in Fig. 4.11. The initial shape of
the drop is a sphere with diameter d. The initial distance from the drop center to the
solid is set to 12d. We used that value since, based on previous studies available in
the literature [13], it is enough in order to assure that the drop achieves its steady
state before interacting with the solid. The lateral distance from the drop centroid to
the lateral boundaries is fixed to 5d, since it gives rise to enough accurate results, as
studied in [69]. The values of the distances from the drop to the inlet hi = 2.9 and to
outlet ho = 5.1 are founded on a compromise between domain size and disturbance of
the solution due to the proximity of the boundaries to the drop. See Sec. 2.5 for further
notes about the setting of these magnitudes.

We used an unstructured mesh composed by tetrahedral control volumes. The drop
will stay steady at its initial position. Therefore, we designed a mesh with a dense core
of radius equal to d, and a radial exponential growing in the size of the control volumes
(see Fig. 4.11b). A mesh independence study is included in the results description,
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(a) (b)

Figure 4.10: Profiles evolution in the problem of a Taylor bubble turning in a curved
pipe. Results correspond to (a) the full domain case and (b) the CLS+MM+IB one.
Successive profiles are plotted at 0, 11.9 and 20 dimensionless time units.

where the meshes presented in Tab. 4.6 are used.
Results of the problem are summarized below. First, a comparison of the dimension-

less terminal velocity U∗
T =UT /

√
dg and the deformation parameter ∆= (L−B)/(L+B)

at the falling state is presented in Tab. 4.7, where L is the average length of the bubble
and B is its average width. Good agreements were found in those results, specially for
the finer mesh M3, with errors of less than 5% in both magnitudes in comparison with
reference data [68]. Furthermore, Fig. 4.12a shows the time evolution of the dimen-
sionless velocity in comparison with the reference data [68]. It can be seen from this
figure that the proposed method properly capture the time in which the drop achieves
to the solid (at a dimensionless time t∗ = t

√
g/D of around 45).

The time evolution of the vertical distance from the drop center to the plane surface
is plotted in Fig. 4.12b. The last part of this evolution reveals that the the mesh M3 is
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(a) (b)

Figure 4.11: Initial arrangement and mesh configuration for the Gravity-Driven
falling drop problem.

.

Mesh name Mesh size hmin hmax
M1 1.4 ·105 d/10 1.5d
M2 4.1 ·105 d/16 d
M3 9.1 ·105 d/22 0.8d

Table 4.6: Description of the meshes used in the Gravity-Driven falling drop problem,
where hmin is the cell size in the core of the mesh and hmax is the maximum cell size.

the sole one capable to maintain a constant distance from the drop interface to the
wall. This shows that the coarser meshes do not properly capture the interaction of the
bubble with the plane, even though the falling behaviour is accurately reproduced.

The mass conservation is evaluated in Tab. 4.8 by means of the percentage change
in the drop volume. This table shows that, in that sense, the proposed CLS+MM+IB

method behaves better than other methods available in the literature. This may be
attributed to the smaller numerical errors of the CLS method, to a proper design and
placement of the open boundaries, and to a better resolution in the regions of interests.
Note also that the references use axisymmetric solvers.

Streamlines and vorticity fields are plotted in Figs. 4.13 and 4.14b, obtained by
using the results from M3 mesh. First, Fig. 4.13a shows the streamlines and the vor-
ticity field in a plane perpendicular to the surface toward which the bubble heads for.
A single vortex is observed in the wake of the bubble, close to the bubble interface.
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Case U∗
T ∆ EU∗

T
E∆

Present work (M1) 0.2958 0.4466 2.38% 13.03%
Present work (M2) 0.3029 0.4677 0.03% 8.92%
Present work (M3) 0.2983 0.4885 1.56% 4.87%

Muradoglu and Kayaalp [13] 0.306 — 1.00% —
Han and Tryggvason [68] 0.303 0.5135 — —

Table 4.7: Summary of achieved results at the falling steady state (t∗ = 35.0), where
U∗

T =UT /
√

dg is the dimensionless terminal velocity, ∆ is the deformation parame-
ter, EU∗

T
is the relative error of the dimensionless terminal velocity referred to the

results of [68], and E∆ is analogously the relative error of the deformation parameter.

Case EΩ2

Present work (M1) 3.24 ·10−6%
Present work (M2) 8.99 ·10−7%
Present work (M3) 1.70 ·10−7%

Muradoglu and Kayaalp [13] 1.2%
Han and Tryggvason [68] 0.4%

Table 4.8: Comparison of the percentage of change in the drop volume Ω2 by means
of its relative error EΩ2 , showing that the proposed method presents lower errors
than reference data.

Fig. 4.13b shows that this vortex moves upwards and losses intensity when the bubble
is closest to the solid. Additionally, two low-intensity counter-rotating vortices appears
on the periphery of the bubble. Figs. 4.14a and 4.14b show the streamlines and vortic-
ity fields in a plane parallel to the floor, through the center of the bubble. Both graphs
highlight the fact that the problem is intrinsically axisymmetric. Moreover, a clear
pattern of low-intensity counter-rotating vortices can be observed in the vicinities of
the interface, for both states.

Finally, the profiles evolution is presented in Fig. 4.15 in comparison with the refer-
ence data [68]. Those profiles were obtained by using the mesh M3. As can be observed
in that graph, results from the present method qualitatively match the reference re-
sults. Note also that, for the mesh M1, the implicit axisymmetric of the problem is not
properly reproduced, and results do not seem enough accurate in terms of the instan-
taneous shapes of the drop.
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Figure 4.12: Falling drop problem results for the tested method. The graphs show (a)
dimensionless terminal velocity U∗

T and (b) axial coordinate from the solid y∗ = y/d
over dimensionless time t∗ = t

√
g/d, for the different mesh resolutions tested.

4.5.4 Three-dimensional gravity-driven buoyant drop in a con-
stricted circular channel

In the present section, we analyze the motion and evolution of a drop as it passes
through a periodically constricted pipe. The proposed CLS+MM+IB method is enforced to
tackle this problem in a full three-dimensional domain. Some of the advantages of the
proposed method are clearly highlighted in this problem. First, a three-dimensional
approach is only computationally affordable by using a domain optimization method,
i.e. the moving mesh technique in this case. Any method involving the complete 3D
domain would be prohibitive in terms of the DNS, as the physical domain needs to be
very long to collect average data in the periodic motion of the drop. Additionally, the
use of an immersed boundary method allows a simple mesh generation process, as well
as facilitates parametric studies or geometrical modifications (e.g. in the wavelength or
amplitude of the constrictions). A classical approach would have required a complete
re-meshing process when varying the original conditions, while the present method-
ology would just need a redefinition of the surface mesh (STL) of the solid, with no
changes in the fluid mesh.

Numerical data of Olgac et al. [17] is taken as reference, which in turn is based on
the experimental work of Hemmat and Borhan [4]. On the basis of these references, the
set-up sketched in Fig. 4.16 is used in the present study. The pipe is trivially generated
by radial extrusion of a sinusoidal curve. Therefore, the wavelength λ is set to 4D,
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(a) (b)

Figure 4.13: Streamlines and vorticity field (s−1) in XY plane (a) in the steady falling
state (t∗ ≈ 31.0) and (b) when the drop is closest to the solid (t∗ = 44.85)

.

where D is the average pipe diameter, and the amplitude A is set to 0.07D. The drop
initial axial position is chosen to be at the point of maximum tube diameter D+2A. A
drop dimensionless diameter is defined as k = d/D, where d is its dimensional diameter.
In this experiment, k is set to 0.78. Distances from drop centroid to inlet (1.8D) and
outlet (2.2D) are chosen considering the notes given in Sec. 2.5. Those distances assure
that the presence of the open boundaries does not disturb the motion of the drop.

The simulation domain is cylindrical, with a diameter equal to D +2A. This size
guarantees that the mesh covers the whole transversal section of the solid throughout
the ascent. This domain has been meshed using unstructured triangular prisms. The
meshes have been generated by a constant step extrusion of a two-dimensional grid
along the cylinder axis, being h the step size, and also the characteristic size of the
triangular elements of the extruded grid. Three different meshes have been considered,
labelled from M1 to M3 in increasing order of mesh resolution h. This resolution has
been set by dividing the pipe average diameter D into 22, 30 and 39, respectively.
See Tab. 4.9 for a complete description of these meshes. The simulation domain is
moved following the ascent of the drop as explained in Sec. 4.3.1. Nevertheless, for
this particular case the procedure explained in that section for constricting geometries
collapses in a linear translation, due to the intrinsic axisymmetric of the problem.

The flow regime is characterized by the dimensionless numbers given in Eq. 4.25.
Therefore, ηρ = 1.200, ηµ = 0.7565, Eo = 270.9 and Mo = 6.539. These flow conditions
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(a) (b)

Figure 4.14: Streamlines and vorticity field (s−1) in X Z plane (a) in the steady falling
state (t∗ ≈ 31.0) and (b) when the drop is closest to the solid (t∗ = 44.85)

.

are obtained when using a two-phase system composed by Diethylene glycol-glycerol
(63.8wt%) as suspending fluid and UCON −285 as drop fluid [17]. It corresponds to
the system labeled as DEGG12 of the references [4,17].

Results are expressed in terms of dimensionless quantities. Time and velocities are
made dimensionless using the following reference values, respectively:

tref =
2µ1(

ρ1 −ρ2
)

gD
; vref =

(
ρ1 −ρ2

)
gD2

4µ1
(4.26)

For distances, λ= 4D is taken as reference magnitude.
The average dimensionless terminal velocity of the drop

∣∣∣v̄∗
drop

∣∣∣ has been taken as
reference value to measure the accurateness of a specific simulation. Tab. 4.10 shows
the value of this magnitude for the different meshes tested, as well as a comparison
against reference data. Additionally, mass error EV is kept under control for the three
tested meshes (M1, M2 and M3). The obtained values for this magnitude at the end of
the simulation are respectively 6.83 ·10−8, 2.44 ·10−8 and 4.74 ·10−9.

Further outcomes of the current study are presented in subsequent figures. First,
a comparison among profile shapes are presented in Fig. 4.171. In this figure, results
form the present work are compared with those by Olgac et al. [17] and Hemmat and

1Right column of Fig. 4.17 was reprinted from Chemical Engineering Communications, 148-150, M.
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Figure 4.15: Comparison of the evolution of drop profiles of the present work (mesh
M3) against results of [68] obtained by using a Front-Tracking method. The gap be-
tween successive drop profiles represents the distance the drop falls at a fixed time
interval, and the last time instant corresponds with t∗ = 38.30. Note that, for the
reference results, some intermediate profiles were suppressed from those punished
in [68], in order to make the evolution coherent with the chosen vertical initial posi-
tion.

Borhan [4]. Those profiles are plotted when the drop is in its periodical steady state,
and when it is passing through the minimum transversal section of the pipe (throat)
and the maximum one (expansion). The snapshots are qualitatively in good agreement
with the reference data. Slight disagreements are explained based on the ambiguity of
locating the drop at a specific axial position, as the profile shape notably changes in a
very tight range.

Time evolutions of the dimensionless velocity v∗
drop and risen distance y∗ are de-

picted in Fig. 4.18 for the different tested meshes. A well-defined oscillatory behaviour
is observed in the rising steady state. The drop speeds up during the expansion pas-
sage, and slows down while approaching the throat. The mesh convergence behaviour
is clearly seen in these graphs. Additionally, Fig. 4.19 sketches some geometrical mag-

Hemmat and A. Borhan, Buoyancy-driven motion of drops and bubbles in periodically constricted capillary,



124 §4.5 Results and validation

𝜆𝜆 

𝐴𝐴 

𝐷𝐷 

2.2𝐷𝐷 

𝐷𝐷 + 2𝐴𝐴 

1.8𝐷𝐷 

𝑟𝑟 
𝑦𝑦 

𝒈𝒈 

Figure 4.16: Initial set-up of the problem of a drop rising in a periodically constricted
circular channel. Here, D is the average pipe diameter, d is the initial drop diameter,
λ is the wavelength of the corrugations and A is their amplitude. The shaded grey
box represents the simulation domain.

nitudes throughout a single period of corrugation, in comparison with reference data
of [4]. Note that there is a discrepancy in the reference for the dimensionless drop diam-
eter k. In [4] this parameter is set to k = 0.73, and the chosen one in the present work
is k = 0.78. The dimensionless distance ŷ∗ indicates the axial position of the advancing
drop meniscus, varying from 0 to 1 (from a specific throat to the next). In Fig. 4.19,
the deformation parameter ∆ determines the ratio of the perimeter of the deformed
drop profile to that of the equivalent spherical drop. Additionally, the dimensionless
drop length L∗ is defined as the maximum axial drop distance. Those magnitudes were

p. 371, Copyright 1996, with permission from Taylor & Francis.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17: Comparison of the profile shapes among different results. Graphs (a)
and (d) correspond to the present work, (b) and (e) to Olgac et al. [17], and (c) and
(f) to Hemmat and Borhan [4] 1. The snapshots of the first row correspond to the
moment when the drop is passing through the channel throat, and those of the second
row correspond to the moment when the drop is located at the expansion section.
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Mesh label Mesh size
Cells per

plane Nplanes h

M1 1.1 ·105 1290 84 D/22
M2 3.9 ·105 2744 132 D/33
M3 5.9 ·105 3872 156 D/39

Table 4.9: Description of the meshes used in the problem of a drop passing through
a periodically constricted pipe, where Nplanes is the number of planes in which the
vertical axis is divided.

Results
∣∣∣v̄∗

drop

∣∣∣ E∣∣∣v̄∗
drop

∣∣∣
Present work M1 6.686 ·10−3 26.07%
Present work M2 7.832 ·10−3 13.40%
Present work M3 8.558 ·10−3 5.37%
Olgac et al. [17] 9.648 ·10−3 6.68%

Hemmat and Borhan [4] 9.044 ·10−3 –

Table 4.10: Integral results of the problem of a drop rising through a periodically
constricted channel, in comparison with reference data [4,17].

∣∣∣v̄∗
drop

∣∣∣ is the average
dimensionless terminal velocity of the drop, and E∣∣∣v̄∗

drop

∣∣∣ is the relative error associ-

ated with that magnitude, in comparison with the reported results of Hemmat and
Borhan [4].

found to be periodic in the steady ascent of the drop. Despite the aforementioned dis-
crepancy in the dimensionless drop diameter k, results are in reasonable agreement
with those of [4], and overall trends are very well represented.

Furthermore, Fig. 4.20 depicts the streamlines and the vorticity field in a plane con-
taining the y-axis of the corrugated channel. In that figure, four states of the periodic
steady motion of the drop are presented: the drop passing through the throat, passing
through the expansion, and the upward and downward intermediate states. When the
drop is at the throat, it presents an elongated mushroom shape (Fig. 4.20a) with a vor-
tex at the rear end of the drop, close to the point of minimum distance between the drop
interface and the wall. As the drop rises and expands, the drop tail becomes narrower,
acquiring a bullet shape (Fig. 4.20b). Likewise, the vortex shifts towards the nose of
the rising drop. This vortex reaches maximum intensity in the expansion (Fig. 4.20c),
where the drop shape becomes elliptical. Finally, at the early stage of the constriction
(Fig. 4.20d), the drop tail begins to widen, and the vortex recovers its initial position at
the rear end of the drop.
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Figure 4.18: Evolution of (a) dimensionless drop velocity and (b) dimensionless ax-
ial position of the centroid of the drop, against dimensionless time t∗, for the three
different meshes tested in the present work.

4.5.5 Three-dimensional gravity-driven unconstrained drop im-
pinging on a horizontal plane

The last problem considered to validate the proposed CLS+MM+IB method is the 3D ap-
proach of a drop against a horizontal rigid plane. The study of this problem is relevant
in fields as mineral flotation, sprays or cooling of nuclear reactors. It constitutes a
very interesting problem to solve with the proposed methodology, as some of the main
advantages discussed in Sec. 4.4 are plainly shown here. The experimental work by
Klaseboer et al. [8] is taken as reference. In this paper, twelve flow conditions are
tested, studying the trajectory of the drop when approaching the plane at its terminal
velocity. We chose one of those experiments, and we simulated it by using the outlined
CLS+MM+IB methodology.

By using the proposed method, only a small computational domain around the drop
is taken. Initially, the drop is at rest, and the horizontal solid is placed far away from
the drop, outside of the simulation domain. When the drop achieves its steady state,
the solid is suddenly moved at the upper limit of the computational domain. This
procedure constitutes a major improvement in comparison with other DNS approaches
to this problem. With the proposed CLS+MM+IB method, the distance which the drop
travels before impinging on the wall is unimportant, as it can be dynamically set during
the simulation. This feature facilitates the carrying out of parametric studies, and the
easy modification of the flow conditions (e.g. the inclination of the solid or its geometry).
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Figure 4.19: Evolution of (a) deformation parameter ∆, and (b) dimensionless length
L∗ throughout a single period of corrugation for the different mesh resolutions tested
in the present work. Results are compared against those by Hemmat and Borhan [4].
The position of the drop is controlled by the dimensionless distance ŷ∗, which indi-
cates the axial position of the advancing drop meniscus.

The initial arrangement of the problem is sketched in Fig. 4.21, and the mesh con-
figuration is shown in Fig. 4.22. Initially, the drop is spherical-shaped with a diameter
equal to d. The initial distance from the drop to the plane yplane is set to a high value
(e.g. yplane = 100d). The plane is suddenly moved from that position to the upper limit
of the domain at the moment when the drop achieves its terminal state. The motion of
the drop within the domain is unbounded until the interaction with the plane starts.
In order to assure this condition, distances form the bubble to the boundaries are cho-
sen based on the notes given in Sec. 2.5. By doing this, we aim to find a compromise
between domain size and disturbance of the solution.

Flow regime has been set by choosing the following dimensionless numbers (see
Eq. 4.23): ηρ = 1.1547, ηµ = 1.6949, Eo = 0.1502 and Mo = 3.066 · 10−11. This flow
regime corresponds to the system labeled as 1 in the work of Klaseboer et al. [8].

The employed meshes are fully unstructured and composed by tetrahedral control
volumes. The location of the drop will remain steady within the simulation domain,
as the mesh is moved following its ascent. This behaviour can be exploited during the
mesh design process. Therefore, the used meshes have a dense core of a diameter equal
to d around the initial position of the drop, with a characteristic cell size of hmin. A
radial exponential growth is imposed over the cell sizes, reaching the maximum value
hmax at the borders (see Fig. 4.22). Tab. 4.11 summarizes the meshes employed in the
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(a) (b)

(c) (d)

Figure 4.20: Streamlines and vorticity field (s−1) in a plane containing the y-axis
of the channel. Different instants are obtained through the periodic steady motion
of the drop, at (a) the throat, (c) the expansion, and (b) and (d) the upward and
downward intermediate points.
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Figure 4.21: Initial arrangement of the problem of a drop impinging on an immersed
horizontal wall. d is the drop initial diameter and yplane is the initial distance from
drop centroid to the solid plane.

present study. Those meshes are obtained by varying hmin and hmax sizes.

Mesh label Mesh size hmin hmax
M1 5.5 ·105 d/25 d/3
M2 9.0 ·105 d/35 d/4
M3 1.8 ·106 d/45 d/5

Table 4.11: Description of the meshes used in the problem of a drop impinging on
a horizontal plane, where hmin and hmax are the minimum and the maximum cell
sizes, respectively.

Velocities are made dimensionless by means of the reference value
√

dg. For the
time, the reference magnitude is

√
g/d. Finally, distances are made dimensionless by

using the initial drop diamiter d as reference value.
The dimensionless terminal distance d∗

final from drop centroid to the wall at the
final steady point has been taken as the reference integral result to assert the mesh
independence. Tab. 4.12 shows a comparison of the obtained results.

Further results are presented in subsequent figures. Fig. 4.23 shows the time
evolution of some magnitudes of the problem. First, the dimensionless distance d∗
from the drop centroid to the plate has been represented against dimensionless time
t∗ (Fig. 4.23a). Results include those obtained with the three tested meshes, as well as
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Figure 4.22: Mesh configuration of the problem of a drop impinging on an immersed
horizontal wall.

Results d∗
final Ed∗

final
Present work M1 0.4645 4.05%
Present work M2 0.4694 3.02%
Present work M3 0.4841 –

Table 4.12: Integral results for the problem of a drop rising and impacting against a
solid horizontal plane. The magnitude d∗

final represents the dimensionless terminal
distance from drop centroid to the wall, and Ed∗

final
is the relative error associated

with this distance, in comparison with the results obtained by using the finer mesh.

those of Klaseboer et al. [8]. Present results are in good agreement with the reference
data. When studying the impact of drops/bubbles against obstacles, the mass conser-
vation error becomes a paramount concern. This is because the immersed boundary
method should work properly when acting together with the chosen interface tracking
technique. To evaluate this issue, Fig. 4.23b represents the evolution of the mass er-
ror EV , defined as the relative error of the volume of the drop V2 in comparison with
the initial one (see App. A). This error remains on the order of 10−8 throughout the
simulation (which is a considerable small value).

Finally, some snapshots of the impinging process have been plotted in Fig. 4.24.
The velocity and the pressure fields are represented over successive time instants from
the moment when the drop achieves its terminal velocity. In the rising state, the drop
is roughly spherical (Fig. 4.24a). The velocity of the drop remains almost unaltered
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Figure 4.23: Evolution of (a) dimensionless distance from the drop centroid to the
plate and (b) mass error, against dimensionless time t∗, for the three different
meshes tested in the present work. Results are compared against those of Klase-
boer et al. [8].

at the time instant represented in Fig. 4.24b, without noticing the presence of the
plate. This reveals that the effect of the immersed wall becomes evident only when
the distance from the drop centroid to the wall is very small. The drop lightly tends to
acquire an oval shape from the moment where it starts interacting with the wall. The
velocity of the drop is dramatically reduced when the drop reaches the wall (Fig. 4.24c),
and eventually changes its direction (Figs. 4.24d and 4.24e). At the final stage of the
simulation, the velocity of the drop remains close to zero, slightly hovering around this
value (Fig. 4.24f). It is worth noting that the obtained velocity fields are not exactly
axisymmetric, causing small lateral deviations. This issue stresses the importance of
using a full 3D approach to overcome this problem.

4.6 Conclusions
In the present chapter, a coupling between a conservative level set (CLS), a moving
mesh (MM) and an immersed boundary (IB) methods has been proposed to address
problems of drops and bubbles evolving in complex geometries. First, the CLS method
assures a correct representation of the multiphase domain, while the mass error is
kept under control [29]. Second, the Arbitrary Lagrangian-Eulerian formulation (i.e.
the dynamic mesh) constitutes a robust domain optimization method for bubbles/drops
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Figure 4.24: Velocity field and pressure field at different time instants. The pressure
field is plotted over the drop surface, and the velocity field is represented in a plane
containing the vertical axis. The first image is plotted when the terminal velocity is
achieved. Successive images are plotted each t∗ ≈ 3.1. The velocity of the centroid of
the drop is also represented with a red arrow (not to scale). In these plots, the size of
the plate has been reduced to fit the images.
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problems, as shown in previous chapters. It allows the use of a small domain covering
only the important regions of the problem, i.e. the current position of the drop/bubble
and its surroundings. Otherwise very long domains may be needed in order to leave
enough space for the bubble/drop to evolve. Finally, geometrical challenges can be ad-
dressed by using the IB method, which constitutes a versatile and robust method to
represent intricate solids which do not conform the grid shape.

The proposed method presents some synergetic advantages for the study of bub-
bles/drops. First, the mesh design process is greatly improved. The control volume
sizes are homogenised, and the mesh can be refined at the important regions of the
problem as the bubble/drop remains steady within the domain. Moreover, the method
greatly facilitates conducting parametric studies, due to the fact that in general there
is no need to modify the mesh when a slight variation in the geometry is applied. The
IB method also allows to represent solid boundaries within a moving domain. This
would otherwise be impossible due to the inherent need of open boundaries (i.e. inflow
and outflow) in the moving mesh approach. Finally, it is worth noticing that the use
of a framework which supports full unstructured meshes increases the applicability of
these features.

Results of the validation cases confirmed the aforementioned ideas. First, a couple
of 2D cases were studied in order to be able to compare the results with the same case
run with a complete domain. By doing this, differences in the obtained results can
be attributed solely to the particularities of the proposed CLS+MM+IB method. Those
results indicate a reasonable agreement, with slight differences mainly caused by the
presence of the open boundaries in the proposed method. Result comparisons for 3D
cases yield a good level of agreement between reference results (mostly experimen-
tal) and the ones in the presented method. Apart from the accurateness tests, the
result section highlights some important features of the method. First, the differ-
ences between simulating a drop/bubble through a non-constricting geometry (cases
in Secs. 4.5.1, 4.5.3 and 4.5.5), and through a constricting one (cases in Secs. 4.5.2 and
4.5.4). In particular, the rotational mesh process is clearly illustrated in the problems
solved in Secs. 4.5.1 and 4.5.2. The capability of solving long physical domains with
sort computational domains is plainly stressed in the problem presented in Sec. 4.5.4.
In this case study, the average results were computed after a significant elapsed com-
putational time. The improvement of the design mesh process is well represented in
the problems studied in Sec. 4.5.3 and 4.5.5. The region of the bubble/drop and its
surroundings are meshed with a high resolution, whereas the regions far from the
bubble/drop are coarse-meshed. This adaptability is highlighted throughout all these
cases. For example, a change in the inclination of the oblique paths of the problems
presented in Secs. 4.5.1 and 4.5.2 would only require a simple deformation of the solid.
No change in the mesh or code is needed. The versatility of the method also comes into
relief when studying the problem presented in Sec. 4.5.5. In this case study, a rising
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drop is impacting with an object (a plate). With a classical approach, the distance from
the initial drop position to the solid would be a paramount magnitude. It should be
reasonably long to assure that the drop reaches the plate at its steady state, but also
as short as possible in order to save computational resources. This problem is avoided
by using the proposed CLS+MM+IB approach. In this case, the drop starts rising freely,
and when it is provided that it has achieved its steady motion, the plate is placed at
the computational domain limit.
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5

Conclusions and future

research

The present chapter aims at summarizing the work developed in the context of this
PhD thesis. Additionally, some further work is outlined below, aiming to establish the
following goals to be addressed within the present research line.

5.1 Concluding remarks
The present work developed a method to study bubbles and drops in an Arbitrary La-
grangian Eulerian formulation. The use of dynamic meshes makes possible the un-
coupling of the computational domain from the physical domain. Therefore, the mesh
is no longer subordinated to the geometry of the problem, which drastically increases
the versatility of the solver. Some challenging problems, like the Taylor bubble problem
studied in Chap. 3, are easily approachable by using the proposed technique. Moreover,
the integration with an Immersed Boundary method provides an effective and versatile
way to reproduce inner and intricate boundaries that do not conform the mesh shape.
All these improvements were implemented on an in-house code called Termofluids, in
the context of a finite-volume discretization, unstructured meshes and a conservative
level set (CLS) multiphase treatment.

The main initial motivation of this work was reducing the computational expendi-
ture in rising bubble problems, due to the use of long domains to capture the whole
ascent of the bubble. Therefore, in chapter 2 several Domain Optimization Methods
(DOMs) were presented. First, two DOMs based on periodic boundaries were introduced:
the fringe zone and the buffer zone methods (Secs. 2.2.1 and 2.2.2, respectively). These
techniques aim at reinitializing the perturbation that the bubble leaves when it moves
in order to successfully use a periodic domain. To do this, the fringe zone method en-
forces an additional source term in the momentum equation (Eq. 2.2.1), and the buffer
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zone method uses a region of high viscosity to dampen the bubble disturbances. On the
other hand, two DOMs based on open boundaries were formulated. First, a moving mesh
method was proposed. By using this method, the mesh follows the motion of the bubble,
and therefore small domains covering only the important regions of the problem can be
enforced. In a similar way, with the non inertial reference frame method the dynamics
of the bubble are analyzed from an observer on the bubble. Both methods require a
careful setting of the boundary conditions. With that purpose, a new outflow boundary
condition was implemented (see Sec. 2.4). Additionally, a study on the placement of the
domain limits was carried out in Sec. 2.5, providing some recommendations on how to
size the computational domain. Afterwards, the proposed DOMs were tested in two and
three dimensional benchmark cases. We selected the moving mesh method as the one
with better performance.

Once validated, the proposed CLS+MM method was used to solve the challenging
problem of the Taylor bubble. This problem is important to understand many phenom-
ena presented in industrial applications, like oil extraction or microfluidics. A complete
study of this problem was presented in Chap. 3, including mesh independence stud-
ies, description of the velocity field, time evolution, profiles evolution and streamlines
maps. Additionally, particular attention was paid to the sensitivity of the problem to
several physical issues, i.e. the initial shape of the bubble, the initial volume of the
bubble, the flow regime and the inclination of the channel.

The next step was to adapt the CLS+MM method to complex geometries (see Ch. 4).
With that purpose, an Immersed Boundary (IB) technique was adopted. This ap-
proach allows to handle complex geometries by representing them by triangular sur-
face meshes. These bodies do not have to conform the grid shape, and they could be
arbitrarily intricate and complex. The resulting CLS+MM+IB method has a direct impact
on the computational resources consumption, as well as on the versatility and flexibil-
ity of the simulations. Several two and three dimensional problems were addressed
in order to assess the proposed formulation. Good agreement was found for all these
cases.

5.2 Future research
The current section introduces some ideas that can be taken as reference in order to
push the boundaries of the research presented in this PhD thesis. Therefore, in our
view, those topics constitute the natural extension of earlier achievements, and some
of them are already under development in the context of the CTTC.

The CLS+MM+IB method to simulate bubbles and drops in complex geometries is
the final achievement of the this thesis, and constitutes the result of all previous work
done in this context. Therefore, some ideas on further improvements of this method are
given in the subsections below. Before that, some paragraphs are devoted to explain
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the further work that could be conducted in some related topics of the thesis, i.e. the
Taylor bubble study and the improvement of other domain optimization methods.

In relation to the Domain Optimization Methods (DOMs) presented in Ch. 2, those
based on periodic boundary conditions (i.e. the fringe zone and the buffer zone meth-
ods) still need further improvements to constitute a real alternative. In this sense,
these methods need a careful process of setting the defining parameters of the fringe
or buffer zone (namely, s, b, ∆ and λmax). The first step to achieve a versatile method
would be to study how these parameters are affected by the domain size and/or the
flow regime. By performing a parametric study followed by a regression analysis, each
of those parameters might be formulated as a function of the conditions of the prob-
lem. In this way, sufficiently precise values could be selected beforehand, thus saving
simulation time. In relation to the buffer zone method, it has the additional disad-
vantage of presenting large simulation times, due to the reduction of the time step
as a consequence of the high values of viscosity in some regions of the domain. This
problem could be straightforwardly addressed by using an implicit method to solve the
fractional step method.

Regarding the Taylor bubble problem, while there has been marked improvements
in the solution of this problem, challenges remain. First, further configurations could
be solved, involving not only straight tubes, but also circular pipes, helical, meander-
ing, etc. There is a huge lack of studies about these configurations available in the
literature. The method presented in Ch. 4 is capable of solving those problems in a
wide range of flow conditions. Furthermore, by coupling that method with an energy
solver (see for instance [1]) the heat transfer resulting from the passage of a Taylor bub-
ble could be analyzed. Additionally, the problem of a Taylor bubble rising in inclined
pipes in scenarios where the suspending fluid is not stagnant is a problem of huge rel-
evance for the industry (for instance, in oil extraction processes). That problem could
be addressed with the tools presented through the present thesis.

Regarding the enhancement of the CLS+MM+IB method to simulate bubbles/drops
in complex geometries, there are two main groups of task to be developed. On the one
hand, once the method has proven effective, its potential could be released to seed some
light in different problems of great importance for the industry, e.g. the sudden expan-
sion or contraction of a Taylor bubble, the evolution of a micro-drop inside a porous
media, the interaction of bubbles with textured surfaces, etc. On the other hand, some
improvements in the formulation of the method could still be carried out, in order to
increase even further the versatility of the method. Those actions deserve a particular
attention, and they have been treated separately in the subsequent subsections.
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5.2.1 Dynamic readjustment of the distances from the bubble/-
drop to the boundaries

The study presented in Sec. 2.5 about the placement of the inlet and outlet boundary
condition can be improved. Indeed, considering the boundary treatment presented in
Sec. 4.3.1 the concept of fixed boundaries becomes obsolete. In that section, we pro-
posed a generalized concept of “open boundary”, which homogenizes every boundary of
the computational domain and applies particular conditions depending on the relation
between the unit normal vector to the boundary face and the bubble/drop velocity. With
this formulation, a new approach to compute the distance from the bubble/drop to the
boundaries would be needed. Two main ideas are proposed (see Fig. 5.1):

• An optimal distance Dopt = F ·d from a generic boundary face F to the bubble/-
drop centroid can be predicted. Here, F is a generic fitting function and d is the
initial diameter of the drop/bubble. This distance Dopt assures that the solution
is minimally upset (i.e. the velocity of the bubble/drop is perturbed by less than
a small threshold value). By running a parametric study and performing a re-
gression analysis, a function F = F

(
v∗⊥

)
the can be fitted. This function should

depends on the dimensionless projection of the velocity of the bubble/drop v∗⊥ over
the unit normal vector to the face. By proceeding this way, each boundary face
will have a value of Dopt associated, and therefore an optimal position for the
bubble/drop can be obtained.

• The procedure explained in the item above may allow the motion of the drop/bub-
ble within the computational domain. Therefore, by deforming the mesh, an opti-
mal distribution of the cell sizes can be obtained, in order to increase the accuracy
of the simulation in the important regions of the problem.

5.2.2 Domain sizing
In the present PhD thesis, we always have used rectangular meshes in two-dimensional
problems, and cylindrical ones in three-dimensional problems. Nonetheless, these
shapes may not be the most efficient configurations. Thus, it seems necessary to carry
out a detailed study on this topic. Without this study, the large effort made through-
out this thesis on the optimization of the proposed method would not seem to be fully
complete.

For problems of drops/bubbles evolving in non-constricting geometries (i.e. those
in which the solid does not determine the trajectory of the drop/bubble beforehand),
we propose to carry out a parametric study depending on the flow regime. For each of
these cases and depending on the instant velocity of the bubble/drop, the cells that are
not “aware” of the presence of the bubble/drop can be identified by filtering the velocity
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(a) (b)

(c) (d)

Figure 5.1: Sketch of the mechanism to change the distance from bubble/drop cen-
troid to the boundaries.

field (e.g. applying a threshold of the 1% of the velocity of the drop/bubble). Therefore,
an optimal domain for that specific time instant can be obtained and, thereafter, global
conclusions on the shape of the domain depending on the regime could be draw by
considering all the time instants of the simulation and the selected flow regime.

For problems of drops/bubbles in constricting geometries (i.e. tubular solids), the
suggested procedure to find the optimal domain shape is different from the one pre-
sented in the previous paragraph. In this case, we propose to follow a semi-analytical
approach in order to optimize the dimensions of the mesh. The challenging issue here
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is to assure that the mesh is of sufficient width to cover the whole transversal section
of the tube throughout the complete simulation (see Fig. 5.2). Therefore, given the
driven and the driving curves of the pipe, this issue is essentially a problem of calculus
of variations.

(a) (b)

Figure 5.2: Sketch of two instants of an example case, where the width of the mesh
fails to cover the whole transversal section of the domain.

5.2.3 Deformability of the solids
So far, the solids are treated as rigid bodies, i.e. no deformation is allowed. However,
in a real scenario, the motion of the fluids within the domain may alter the position or
shape of the solids (see Fig. 5.3). For instance, an overpressure in a specific region of a
flexible tube might cause an increase of the transversal area. Additionally, the passage
of a bubble by a valve is conditioned by the elastic properties of the boundary walls.
Those cases have a crucial importance in many engineering and biomedical cases, for
example in the study of embolisms, oil extraction, micro-fluids, etc.

Modeling the deformation of the immersed bodies represented by triangular surface
meshes (STL files) is a topic which falls within the broad field of the fluid-structure
interaction. Some progresses have been already done in the study of bubbles/drops
evolving through flexible geometries [2–4]. Nevertheless, to the author’s knowledge,
there are no previous works on this topic using a DNS conservative level set formulation,
nor an immersed boundary method.
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(a) (b) (c)

Figure 5.3: Sketch of the elastic impact of a drop against a flexible surface.

5.2.4 Contact angle model
The dynamics of a secondary phase in full-contact with a solid is an important phe-
nomenon for many industrial applications, such as cooling of nuclear reactors, sprays
and piping. It is well-known that the surface characterization in terms of its physical
properties constitutes a crucial factor to determine the behaviour of the drop when in-
teracting with that surface. Some of these properties include roughness, ion affinity,
and patterns that could be "drawn" over the surface.

The usual approach to simulate that complex phenomena in DNS methodologies is
modeling a macroscopic magnitude: the contact angle between fluids and solid. So
far, the method developed in this thesis is not able to simulate a generic full-contact
between phases, and only a contact angle condition of 90 degrees can be imposed, as it
is inherent in the Neumann boundary condition.

Therefore, a suitable contact angle model is needed to generalize the method pre-
sented in previous chapters. In this regard, some progresses have already been done
within the scientific community. There are already some valuable works that aim to
shed some light on the modeling of the contact angle phenomenon. Albadawi et al. [5]
proposed a robust model to impose contact angle conditions in a VoF formulation. The
model of Sussman [6] has the concomitant advantage of avoiding locating the triple
line in order to impose the contact angle boundary condition. Yokoi et al. [7] success-
fully validates the Sussman’s model, and extended it to further situations. Considering
the particularities of our method, the model of Sussman seems the most suitable start-
ing point, since it is formulated within a single fluid method, and using an Immersed
Boundary approach.

5.2.5 Coalescence and break-up
As discussed in Sec. 4.4, the method developed through this thesis is not able to deal
with problems where two or more bubbles/drops coexist. This is because the motion
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: Sketch of the coalescence of two bubbles using an extended technique of
the CLS+MM+IB approach.

of the mesh is defined in terms of the velocity of the centroid of a single bubble/drop.
Therefore, in cases with multiple drops/bubbles, this criterion becomes obsolete.

However, the fact of working with multiple bubbles/drops is feasible in the context
of the CLS+MM+IB method developed in this thesis. The idea is to take advantage of
the auto-meshing tools and the software devoted to interconnect different simulation
domains (e.g. the NEST code developed at CTTC). By proceeding in this way, coalescence
could be study by running two independent simulations, and “merge” both computa-
tional domains at some point of the simulation. Fig. 5.4 sketches this process. Similar
ideas could be applied to problems involving break-up.
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A

Calculations of

bubble/drop properties

The kinematic properties of a single bubble/drop are computed as explained below.
The following expressions are directly given in their discrete form. The position of the
bubble/drop centroid G is computed as follows:

xG =
∑

n xnφnV n∑
nφ

nV n (A.1)

where subscript n denotes that the corresponding variable is evaluated at the node n
under consideration. V is the volume of the corresponding CV, x is the position vector of
its centroid, and φ is the level set function. In addition, the velocity of the bubble/drop
is given by:

vG =
∑

n vnφnV n∑
nφ

nV n (A.2)

The total volume of the secondary phase V2 can be computed as:

V2 =
∑
n
φnV n (A.3)

Here the integral is computed on the complete domain. Additionally, bubble/drop ac-
celeration aG can be expressed as:

aG = dvG

dt
(A.4)

In order to discretize the previous equation, a second order finite difference scheme is
used

aG =
dtm−1 (

dtm−1 +dtm)
vm

G − (
dtm +dtm−1)2 vm−1

G + (dtm)2 vm−2
G

dtm ·dtm−1
(
dtm +dtm−1

) (A.5)
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where superscripts indicate the time iteration corresponding to each variable. The
accuracy of this formula is consistent with other schemes used to discretize the govern-
ing equations. For the first time step, a first order finite difference scheme is needed,
because it is not possible to apply the second order formula.

Finally, in two dimensional problems, the circularity ζ2D measures the deformation
with respect to a perfect circular bubble/drop. It is computed as:

ζ2D =πd
∑

n
∥∥∇φ∥∥n V n∑
nφ

nV n (A.6)

where d is the bubble/drop initial diameter. The integral is computed on the complete
domain. the sphericity ζ3D is defined for a three-dimensional bubble/drop; this yields:

ζ3D = πd2∑
n
∥∥∇φn

∥∥V n (A.7)



B

Exact calculation of the

swept volume for moving

mesh methods

In the current appendix the exact volume swept by the mesh faces while deforming
is calculated. Based on [1], a first order error is obtained for the calculation of this vol-
ume. That work proposed an approach based on a linear interpolation of the position of
the vertices. In some CFD methodologies, this approach could reduce the order of accu-
racy of the overfall algorithm. A straightforward improvement of this technique would
be to use an interpolation scheme of higher order. However, when the mesh is being
moved following a driven curve, the exact path of each vertex is known. Therefore, an
exact calculation of the swept volume of the faces can be computed.

In the following sections, we present an algorithm to compute the deformation of the
vertices of a mesh trough a given curve. Furthermore, particular remarks have been
put forward for some specific cases, i.e. extruded meshes, two-dimensional meshes, 2D
and 3D cylindrical mesh curved along a circumference.

Throughout the present PhD thesis, a Conservative Level-Set (CLS) method is used
to deal with the multiphase flow. This technique is focused on solving the mass conser-
vation issue, one of the classical problems of the standard Level-Set (SLS) approach.
Thus, to be consistent with this formulation a special care should be taken in the mass
flow update process of the moving mesh method. This step is needed to properly imple-
ment any dynamic mesh method. Therefore, under some assumptions, an exact mass
update process is going to be developed, aiming to minimize the mass error resulting
from moving the mesh.
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B.1 Moving the mesh through a curve
Given an arbitrary mesh M and a driving curve Γ, a precise description of the move-
ment of a vertex V ∈ M along the curve Γ is sought. We assume that the curve Γ is
analytical, but if it were given in a discrete form (as a set of points), the procedure de-
scribed below is still applicable after interpolation among points (see for instance [2]).

A global inertial reference frame OXY Z is used. The mesh is going to be deformed
each time step in order to follow the bubble rise. The distance ` that the bubble rises
each time step is defined as:

`= vG ·dt (B.1)

where vG is the velocity of the centroid G of the bubble, and dt is the current time step.
Distance ` coincides with the distance that the mesh moves.

The curve Γ is a sufficiently smooth simple curve (Γ ∈ C3) given in parametric form
as:

Γ≡ r (s)≡−−→
OR = [x(s), y(s), z(s)] (B.2)

Without loss of generality [3], we assume that s is the arc length parameter of the
curve. The Frenet-Serret frame of the driving curve is defined by the tangential t (s),
normal n (s) and the binormal b (s) vectors of Γ, given by the following expressions:

t (s)= dr(s)
ds

; n (s)= 1∥∥∥ dt(s)
ds

∥∥∥ · dt (s)
ds

; b (s)= t (s)×n (s) (B.3)

Now, Π denotes the perpendicular plane to Γ that contains the vertex V to be moved.
Then, the point P defined as the intersection of Π and Γ is easily moved with simply
going through the curve Γ a distance `. The new position of the point P is defined as P ′
and the perpendicular plane to Γ at P ′ is defined as Π′. This geometrical arrangement
is shown in Fig. B.1. The vertex V is forced to be moved in unison with the frame
{t (s) ,n (s) ,b (s)}. This condition is tantamount to saying that a certain fixed line in the
plane Π always coincides with the binormal b of Γ.

Therefore, ones defined the frame {t (s) ,n (s) ,b (s)}, the plane Π can be parametri-
cally represented as:

Π≡Π(
λ,µ

)= r (s1)+λn (s1)+µb (s1) (B.4)

where s1 is the arc length parameter of the curve at the position of P. On the other
hand, plane Π′ is similarly given by:

Π′ ≡Π′ (λ,µ
)= r (s2)+λn (s2)+µb (s2) (B.5)

where s2 is the arc length parameter of the curve at the position of P ′. Thus, the
coordinates of V are given by:

−−→
OV = r (s1)+λ0n (s1)+µ0b (s1) (B.6)
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Figure B.1: Geometrical arrangement of the motion of a vertex V through a driving
curve Γ. Variables with «′»refer to the moved state. P is the intersection point
between the plane Π containing V and Γ. The frame {t,n,b} is the Frenet-Serret
frame. Finally, ` is the distance that the point P is moved.

which allows the calculation of the parameters
{
λ0,µ0

}
, since coordinates of V are

known. Finally, the coordinates of V′ (the moved V) are given by:
−−→
OV ′ = r (s2)+λ0n (s2)+µ0b (s2) (B.7)

and the displacement vector is VV′ =−−→
OV ′−−−→

OV . By following this procedure with each
vertex Vi of the mesh M, the new mesh M′ is easily obtained.

B.1.1 Two dimensional case
The procedure described above can be readily particularized for a two-dimensional sit-
uation, in order to get a more natural formulation. Given an arbitrary mesh M and a
driving curve Γ in the plane OXY , the position of the mesh when it moves a distance `
along the driving curve is sought. The curve Γ is implicitly described as:

Γ≡ F (x, y)= 0 (B.8)

The frame {t,n} is defined as:

t= 1√
F2

x +F2
y

(
Fy
−Fx

)
; n= 1√

F2
x +F2

y

(
Fx
Fy

)
(B.9)
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where Fx and Fy are the partial derivatives of F (x, y).
Now, π is the perpendicular line to Γ that contains the vertex V to be moved, and P

is the intersection point between π and Γ. Then, the point P ′ (the moved P) is obtained
going a distance ` through the curve Γ. The perpendicular line to Γ at P ′ is defined as
π′. The parametric representation of lines π and π′ are:

π≡ r(λ)=−−→
OP +λnP ; π′ ≡ r′(λ)=−−→

OP ′+λnP ′ (B.10)

where nP and nP ′ denote that the normal vector is evaluated at the point indicated in
the subscript. Thus, the coordinates of the vertex V are given by:

−−→
OV =−−→

OP +λ0nP (B.11)

which allows the calculation of the parameter λ0, since coordinates of V are known.
Finally, the coordinates of V′ (the moved V) are given by:

−−→
OV ′ =−−→

OP ′+λ0nP ′ (B.12)

and the displacement vector is given by
−−→
VV ′ =−−→

OV ′−−−→
OV .

B.1.2 Numerical considerations for particular cases
The process described below is computationally expensive. It requires the calculation of
a considerable amount of geometrical parameters for each vertex of the mesh. However,
for some specific meshes and/or driving curves, the procedure explained above can be
optimized in order to get a faster computation. For instance, if the driving curve Γ is
only composed of linear segments, the moving mesh technique is trivially simplified by
just moving each vertices a distance ` along the corresponding linear segment.

Other specific circumstances can give rise to notably simplifications in the cal-
culation algorithm. That is the case with meshes generated by extrusion of a two-
dimensional grid. In this case, the vertices of each layer are moved to the same plane,
so the computation process should be intelligently structured, in order to avoid dupli-
cation of calculations.

The particular case of a cylindrical mesh is study in detail in Sec. B.3, due to its
special relevance in terms of applicability.

B.2 Mass update process
In order to preserve the computational volume in a dynamic mesh framework, the so-
called Space Conservation Law (SCL) should be used [1], giving rise to the following
equation:

ṁmodified
F = ṁF −ρF

ΩF

∆t
(B.13)



157

where ṁmodified
F is the modified mass trough face F, ṁF is the original mass trough face

F, ρF is the density at face F, andΩF is the volume swept by the face F during the time
step ∆t. Fig. B.2 depicts this swept volume by a face in a general movement. The aim in
the present section is to exactly evaluate this swept volumeΩF in the current problem.
In order to do this, the work of Goodman and Goodman [4] is followed, adapting the
formulation to this particular case.

Figure B.2: Volume ΩF swept by a face F in its motion. P is the polygon which
delimit the face F.

As stated, the volume swept by a face F when its vertices are moved following a
driving line Γ is going to be obtained. No self-intersection is assumed in this move-
ment. F is assumed to be plane. A global inertial frame O1X1Y1Z1 and a local frame
O2X2Y2Z2 attached to the face F are taken. For simplicity without loss of generality,
the O2X2Y2 plane is taken to contain the face F. Furthermore, the frame O2X2Y2Z2

satisfy the following condition:
−−−−→
O2R0 is parallel to the binormal vector b(s) of Γ, where−−−−→

O2R0 and the point O2 define a certain fixed line in the O2X2Y2 plane. This obliges the
face F to move in unison with the Frenet-Serret frame of Γ, thus moments of F about
the axes of O2X2Y2Z2 frame are maintained constant (see [4]).

The polygon P which comprises the edges of the face F is defined in O2X2Y2Z2 as:

P ≡ rP (ξ)=−−−−→
O2R1 = [ f (ξ) , g (ξ) ,0] 0≤ ξ≤ M (B.14)

where ξ is the length arc of P and M is the total length of P . Fig. B.3 illustrates the
geometrical arrangement.

S denotes the surface of the solid V generated in the movement of F, and it is
defined by the position vector

−−−→
O1P:

−−−→
O1P =−−−−→

O1O2 +−−−→
O2P (B.15)

or,
S ≡P (s,ξ)= r (s)− f (ξ)n (s)− g (ξ)b (s) (B.16)
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Figure B.3: Geometrical arrangement of the motion of a face F through a driving
curve Γ. O1X1Y1Z1 and O2X2Y2Z2 are auxiliary frames defined in the text. {t,n,b}
is the Frenet-Serret frame. V is the volume swept by the motion of the face F. S is
its lateral surface. Finally, P is the polygon which delimit the face F.

An arbitrary point Q belongs to the surface S if and only if a pair (s0,ξ0) exists,
such that P (s0,ξ0)=−−−→

O1Q, with s1 ≤ s0 ≤ s2 and 0≤ ξ0 ≤ M.
Now, in order to calculate the volume of V , the Gauss Theorem is applied:Ñ

V
∇·PdV =

Ï
S

P ·ndσ (B.17)

where n is an outward unit normal vector, and dV and dσ are the volume element and
the surface element, respectively. Since P is a position vector, ∇·P= 3 and then,

ΩF = 1
3

Ï
S

P ·ndσ (B.18)

In order to calculate this integral, the chosen parameterizations for Γ and P must
be specified, with the objective of maiking n indeed the outward normal vector to the
solid V . This occurs if:

1. The chosen parametrization in (B.14) should describe P counterclockwise as ξ
increases.

2. The global frame O1X1Y1Z1 should satisfy that O1Z1 axis is parallel to the tan-
gent vector t of the curve Γ at s = s1 (initial position).
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3. The following definition is settled:

ndσ= ∂P
∂ξ

× ∂P
∂s

dξds (B.19)

Using Eq. (B.16), the definition of the Frenet-Serret frame (Eq. (B.3)) and the fact
that the frame {t (s) ,n (s) ,b (s)} forms a righthanded orthonormal system, the next ex-
pressions were found:

∂P
∂ξ

=− f ′(ξ)n(s)− g′(ξ)b(s) (B.20)

∂P
∂s

= (1+ f (ξ)κ(s))t(s)+ g(ξ)τ(s)n(s)− f (ξ)τ(s)b(s) (B.21)

where κ(s) and τ(s) are respectively the curvature and the torsion of the curve Γ, de-
fined as:

κ(s)= ||t′(s)|| ; τ(s)=−n(s) ·b′(s) (B.22)

Functional dependencies are suppressed hereinafter for the sake of clarity (i.e. f (ξ)∼ f ,
κ(s) ∼ κ, etc.). By multiplying the expressions obtained in Eqs. (B.20) and (B.21), the
following relationship is obtained:

∂P
∂ξ

× ∂P
∂s

= (
f f ′+ gg′)τt− g′ (1+ f κ)n+ f ′ (1+ f κ)b (B.23)

In light of the foregoing, it is found that:

ΩF = 1
3

Ï
S

P ·ndσ= 1
3

(I1 − I2 + I3 + I4 − I5) (B.24)

where
I1 =

Ï
S

r · t(
f f ′+ gg′)τdξds (B.25)

I2 =
Ï

S
r ·ng′ (1+ f κ)dξds (B.26)

I3 =
Ï

S
r ·b f ′ (1+ f κ)dξds (B.27)

I4 =
Ï

S
f g′ (1+ f κ)dξds (B.28)

I5 =
Ï

S
gf ′ (1+ f κ)dξds (B.29)

Each of these integrals have terms of the form T(ξ)J(s), so we can write:Ï
S

T(ξ)J(s)dξds =
∫ s2

s1

∫ M

0
T(ξ)J(s)dξds =

(∫ M

0
T(ξ)dξ

)(∫ s2

s1

J(s)ds
)

(B.30)
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In addition, it often occurs that the right-side term of Eq. (B.30) is zero, due to the
fact that the polygon P is continuous and piecewise differentiable. Thus, in order to
simplify Eq. (B.24), the following results were found helpful:∫ M

0

(
f f ′+ gg′)dξ= 1

2
(
f 2(ξ)+ g2(ξ)

)∣∣∣∣M

0
= 0 (B.31)

∫ M

0
g′dξ= g(M)− g(0)= 0 (B.32)

∫ M

0
f ′dξ= f (M)− f (0)= 0 (B.33)

∫ M

0
f g′dξ=

∮
P

XdY = A (B.34)

∫ M

0
gf ′dξ=

∮
P

Y dX =−A (B.35)

∫ M

0
f 2 g′dξ=

∮
P

X2dY =
Ï

F
2XdXdY = 2MY (B.36)

∫ M

0
f g f ′dξ=

∮
P

XY dX =
Ï

F
−XdXdY =−MY (B.37)

where X and Y are the Cartesian coordinates in the O2X2Y2Z2 frame, A is the area of
the face F, and MY is the moment of F about the Y2-axis. Besides, the following two
derivations are also needed: ∫ s2

s1

ds = ` (B.38)

∫ s2

s1

r ·nκds =
∫ s2

s1

r · t′ds =
∫ s2

s1

r ·r′′ds =
∫ s2

s1

[(
r ·r′)′−r′ ·r′

]
ds

= r(s2) ·r′(s2)−r(s1) ·r′(s1)−
∫ s2

s1

t · tds = `′−`
(B.39)

being
`′ = r(s2) ·r′(s2)−r(s1) ·r′(s1) (B.40)

By using Eqs. (B.30) to (B.39) in Eq. (B.24), it is found that I1 and I3 are equal to zero,
and:

ΩF = A`− A`′

3
+MY

∫ s2

s1

κ (s)ds (B.41)
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B.3 Particular case: Extruded cylindrical mesh mov-
ing along a circumference

A very common situation that deserves to be particularly studied is an extruded cylin-
drical domain that moves along a circumference. The purpose of the current section is
to rewrite the general formulation in order to make it more manageable for this partic-
ular case. The subsequent derivations are done for a three-dimensional case, but the
particularization for a two-dimensional case is straightforward.

The initial state is defined by a cylindrical mesh M and a driving curve Γ, as is
shown in Fig. B.4. The diameter of the cylinder is D and its height is L y. A global
frame OXY Z is defined, with its origin at the center of the cylinder’s base, and with
the y-axis in accordance with the cylinder’s axis. The curve Γ is given by the following
expression:

s

Figure B.4: Particular case of a cylindrical mesh moving along a circumference

Γ≡ r(s)=
{

(0, s,0) if s < L y(
Rt

(
1−cos

(
s

Rt

))
,L y +sin

(
s

Rt

)
,0

)
if s ≥ L y

(B.42)

where Rt is the turning radius of Γ and s is the arc length parameter. The point C is
the center of the turning circumference, and it is defined by

−−→
OC = (

Rt,L y,0
)
. Now, V is

the vertex of the mesh which is going to be moved to a new position V ′, once the mesh
ascents a distance `. The position vector of V is

−−→
OV = (xV , yV , zV ). If yV +` ≤ L y, the

displacement vector
−−→
VV ′ is given by

−−→
VV ′ = (0,`,0). If, on the contrary, yV +`> L y, the
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displacement vector is given by:

−−→
VV ′ =

(
2||−−→RV ||sin

(α
2

)
cos

(π
2
− α

2
−αt

)
,2||−−→RV ||sin

(α
2

)
sin

(π
2
− α

2
−αt

)
,0

)
(B.43)

where −−→
RV =−−→

OV OXY −−−→
OC (B.44)

αt =∠
(−−→
RV ,−~ı

)
(B.45)

α= `

Rt
(B.46)

The subscript OXY denotes that the corresponding vector has been projected in the z =
0 plane. This projection is given, for a generic vector

−−→
OP, by

−−→
OPOXY =−−→

OP −
(−−→
OP ·~k

)
~k.

Fig. B.5 helps to understand the geometrical process to obtain
−−→
VV ′, showing a graphic

representation of the movement of V in the OXY plane.

Figure B.5: Graphic representation of the movement of a vertex V in the OXY plane.
The reader is referred to the main text for a detailed explanation on every variable.

B.3.1 Swept Volume
As the trajectory of each point of the mesh M is easily obtained, the volume swept in
the movement of a face F is directly computed applying the First Theorem of Pappus-
Guldin [4], once obtained the centroid GF of F.
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In order to calculate this centroid GF of the face F (polygonal), a triangular decom-
position is carried out, followed by a weighted average of the centroids of each triangle,
as explained in [5].
Once the position

−−−→
OGF is known, the volume ΩF swept in the movement of F is given

by:
Ω= A ·α||−−−→RGF || (B.47)

where A is the area of F, and
−−−→
RGF =−−−→

OGF OXY −−−→
OC.
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