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Abstract

This thesis presents some approaches for guided wave based stress monitoring as a part of
Structural Health Monitoring (SHM). SHM systems include different levels, from damage
detection to prognosis, however, this work is focused on detection and on an estimation of
the actual stress. The proposed stress monitoring strategies are based on different statistical
and signal processing approaches such as Principal Component Analysis and Residuals.
These techniques are applied on signals of elastic guided waves generated and sensed via
Piezoelectrical (PZT) or Magnetostrictive transducers. Transducer devices are chosen in this
work to generate longitudinal, flexural and torsional guided waves in cylindrical specimens,
since their high performance, low energy consumption, weight and reasonable price. In order
to guarantee the efficacy of the proposed techniques, they are tested in laboratory by emulating
real installations and abnormal conditions. Experimental tests revealed that temperature
and bonding layer between the PZT and the specimen influence on the performance of the
monitoring scheme by changes in the guided wave propagation. Thus, the temperature effect
on guided wave propagation was examined by checking the sensitivity of the PCA-based
proposed approach. Then, a temperature compensation strategy is applied to improve stability
and robustness of the scheme for structures subjected temperature changes.

On the other hand, since the acoustoelasticity effect is predominant in the propagation
of stressed guided waves, it was observed its incidence on the dispersion curves by using a
SAFE method (Semi-Analytical Finite Element) to generate stressed dispersion curves via
Effective Elastic Constants (EEC).

Finally, as a consequence of some observations in the experimentation stage, it is proposed
a scheme for monitoring the supports rigidity in pipelines based on a guided waves energy
leakage perspective. The proposed approaches may promise the ability and capability of
being implemented in different fields such as aerospace and gas/oil industry.
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Chapter 1

Introduction

1.1 Research Motivation

According to [10], "Structural Health Monitoring (SHM) is the integration of sensing and
possibly also actuation devices to allow the loading and damaging conditions of a structure
to be recorded, analyzed, localized, and predicted in a way that nondestructive testing
(NDT) becomes an integral part of the structure and a material". Some of the benefits
obtained by implementing SHM systems are breakdowns avoidance, reduction of time
and maintenance costs, continuous remote diagnosis and economic benefits in terms of
operational life extension.

On the other hand, the high demand of energy has increased the attention on Oil and Gas
industries; particularly, exploration, production and consequently transportation of hydro-
carbons. Monitoring of extracting, transportation, storage and refining facilities is highly
complex, but it is an essential and fundamental task. Pipelines in service are continuously
affected by different factors such as: corrosion, erosion, chemical attack, stress, fatigue,
extreme climate conditions. Therefore, it is imperative to develop and implement fast and
accuracy tools for pipeline monitoring to improve both safety and environmental aspects.

Structural monitoring usually involves the use of either NDT techniques or SHM. Some
NDT methods as ultrasonic thickness gauging, radiography, eddy current, thermography, and
magnetic flux are commonly used for testing pipes but they are time demanding for covering
the whole installation.

Nowadays, screening of pipelines by using guided waves is gaining attention. This tech-
nique is fast, accurate and costly effective. The use of this high-covered scheme can identify
potential areas of discontinuities or abnormal conditions, enabling the accomplishment of a
reliable detection and reduction of monitoring costs.
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The presence of mechanical stresses in pipelines has great influence in their operation in
issues such as strength, expected operational life and dimensional stability. Some stresses
in the pipeline are developed during service and they are difficult to identify and diagnose
because they can unexpectedly appear and turn into invisible due to the apparent absence
of an external load (such as the associated with the loss of rigidity between the support and
ground).

Stress in a structural element can be measured by using either non-destructive or destruc-
tive methods. Destructive methods are based on measuring the strain relaxation (change of
length), when a part of an element in service is removed. This method is expensive in real
installations due to the high costs that represent the production stoppage. On the other hand,
the use of strain gauges is one of the most common non-destructive methods to measure
relative surface stress.

Strain gages are limited to determine stress changes i.e. the variation of the stress respect
to the initial stress condition (after the sensor is attached to the element). Thus, they cannot
be directly used to measure, for example, residual stresses introduced in the manufacture or
the stress state of a previously without instrumentation structure. Additionally, the use of the
strain gauge is limited to determine the strain in a specific position, which is a disadvantage
when the specimen is subjected to variable stress in magnitude and position, as the case
of a pipeline with bending. Finally, strain gages are highly sensible to the condition of the
adhesive layer used to attach the strain gage to the surface of the pipe .

In general, some of the current limitations in the available techniques for monitoring
stress are: low depth level, relative stress measurement, high sensitivity to other variables and
restricted use in field due to the nature of the required equipment. Thus, a suitable alternative
is the use of low-frequency ultrasonic guided waves or simple named guided waves.

Ultrasonic testing is one of the most widely used methods for Non-Destructive Evaluation
(NDE) and SHM. Traditional ultrasonic testing, based on bulk waves, is performed locally
on specimens by examining the information contained by the wave traveling across large
structural components, where high sensitivity to small discontinuities in the material and
quite time consuming are presented.

Otherwise, guided wave inspection is a recent growing technique, which is non-invasive
and economically affordable capable of examining long lengths of pipes from a single location
[95]. Generally, guided waves are launched at one spot location using a circumferential
actuator around the pipe and they are partially reflected when they encounter discontinuities
(such as welds, branches, drains, corrosion patches and any material discontinuity).

The interaction of guided waves with material discontinuities in pipes is a complicated
physical phenomenon, which has not been totally described for all of the possible instances
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encountered in industrial applications. One of them is the presence of stress in pipelines
or cylindrical specimens which is a more complex phenomenon due to is not a material
discontinuity, is a volumetric alteration of the propagation path lacking reflections and mode
conversion.

Although, the guided waves present a different response to stress compared with the
rest of the material alterations, it is expected variations of the guided wave field in presence
of it, which can be mainly tracked under two approaches. The first one is based on the
Acoustoelastic Effect (AE) that involves the evaluation of guided wave velocity change,
and the second one relies on observing particular features in the waveform attributed to the
propagation in a medium under stress, which can be detected by statistics tools.

Some recent works in fault detection or detection of abnormal conditions by implementing
statistical tools can be found in [30, 12, 104, 42, 103, 82]; they involve experimentally
validated statistical algorithms on different structures such as pipelines, laminate plates,
aircraft sections and composite materials. Some of them were performed in CODALAB,
host research group, with a considerable background and research works in statistical-based
monitoring schemes.

On the other hand, some challenges still persist in the understanding of the guided waves
applied to condition monitoring, in [95] some specific challenges are identified :

1. Modeling accuracy is critically dependent on accurate input parameters. These parame-
ters often are difficult to obtain – (especially for anisotropic and viscoelastic properties,
interface conditions, and defect characteristics)

2. Signal interpretations are often difficult (since multi-mode propagation and mode
conversion with special test structure geometric features)

3. Sensor robustness to environmental situations like: temperature, humidity, stress,
mechanical vibrations, shock, and radiation

4. Adhesive bonding challenges for mounting sensors and sustainability in an SHM
environment

5. Merger of guided wave developments with energy harvesting and wireless technology

This thesis aims on contributing to challenges 2,3,4; focused on the case of guided
waves propagating in a medium subjected to mechanical stress, where specific results will be
detailed throughout this document.

In summary, this thesis is focused on developing stress monitoring schemes in cylindrical
structures by employing guided waves, statistical data-driven models, signal-based detection
and wave features, in order to improve the overall condition identification performance.



1.2 Objectives 4

1.2 Objectives

The main objective of this thesis is to propose a monitoring scheme based on guided waves
for the detection of different stress levels in cylindrical structures. This aim is achieved
tracking wave propagation features in the sensing signal attributed to the guided wave field
variations and changes in the transducer operation due to the presence of mechanical stress
in the structure (waveguide). In this study, longitudinal and flexural modes are generated by
piezoelectrics transducers, while torsional modes are generated by means of magnetostrictive
actuators. Mechanical stresses in the specimen under investigation are detected by means of
a statistical tool (Principal Component Analysis) and signal processing (Residuals) both of
them in the time domain. Due to the acoustoelasticity effect, that governs the dynamic of
stressed guided waves, an important part of this thesis is devoted to analyze the influence of
this effect in the proposed monitoring scheme and mainly in the dispersion curves.

1.2.1 Main Objective

To propose a robust methodology founded on statistical and signal-based schemes for monitor-
ing mechanical stress in cylindrical structures using the piezo-actuation and magnetostriction
principles. The proposed monitoring schemes are numerically and analytically studied
and experimentally validated in pipes and rods under recreated environmental and process
conditions.

1.2.2 Specific Objectives

• To implement the suitable setup to launch longitudinal, flexural and torsional waves by
piezoelectrics and magnetostriction transducers.

• To propose statistical features for monitoring stress level in cylindrical structures based
on changes of the guided wave field.

• To evaluate the effect of different coupling layers in the guided wave propagation along
a pipeline in terms of the transmitted energy and mode conversion.

• To propose a data-driven based stress monitoring approach for cylindrical waveguides,
robust to varying room temperatures using non axisymmetric guided waves modes in a
PCA framework.

• To validate the proposed methodology in a dedicated pipe and rod test rig, where stress
scenarios are created and tested.
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• To study the acoustoelasticity effect in the propagation of stressed guided waves since
an analytical, numerical and an experimental perspective.

• To propose a computational scheme for determining the dispersion curves of stressed
waveguides.

1.3 Outline of the contribution

This thesis is devoted to present a new approach for monitoring stress variations in cylindrical
structures. To achieve this goal, a series of statistical and signal processing techniques are
presented to detect and classify different stress levels in structures based on features associated
with the guided wave propagation. The new indices to stress detection or stress estimation are
based on different statistical and signal approaches such as Principal Component Analysis
(PCA), Root means square (RMS), time delay and peak position. The indices are validated
and tested on different cylindrical structures such as steel pipe tubes and rods. Additionally,
it is studied the sensitivity to the room temperature of the implemented indices for stress
monitoring and when this effect may mask the presence of stress, it is attenuated using an
appropriate temperature compensation method.

Next, an approach to calculate the dispersion curves in a waveguide in presence of stress,
based on Effective Elastic Constants (EEC), is presented and compared with previous works.
The dispersion curves are generated using a Semi-Analytical Finite Element (SAFE) frame
in order to simplify the determination of dispersion curves. Otherwise, torsional waves
obtained by the magnetostriction principle are used to study numerically, analytically and
experimentally the effect of the stress in the wave propagation and some concluding remarks
are made. Finally, a new scheme for pipeline support stiffness monitoring based on the
energy leakage and mode conversion of the fundamental torsional mode is proposed and
experimentally validated.



Chapter 2

Theoretical research overview

2.1 SHM principles and concepts

In general, SHM refers to the use in situ of non-destructive sensing and analysis of system
response features –in time, frequency or modal domains – with the purpose of detecting
changes, which may indicate damage, abnormal condition or degradation. The diagnosis
is achieved by configuring, in a proper way, three major components: Sensor system, data
processing system and health evaluation system.

The monitoring system inputs correspond to acquired signals from sensors (acceleration,
strain, and displacements) which may catch the dynamical response of the system. In this
sense, many types of sensors have been used such as accelerometers, optical fiber, electro-
magnetic systems, PZT devices, among others. The PZT and magnetostrictive technology
has shown promising results since their low cost, reliability, wide frequency response range
and good electromechanical coupling features. Once physical measurements are acquired,
the data processing system provides specific features with enough information to predict the
current structural condition.

On the other hand, the structural health evaluation system must incorporate models with
the capability of discriminating between healthy and abnormal states. In the literature three
detection schemes are reported: signal-based, model-based and non-traditional-based [100].
Signal-based methods use signal features associated with the system response for a specific
state. Variations with respect to a reference signal may be interpreted as an abnormal
condition. Model-based methods propose to correlate experimental scenarios measurements
with analytical or numerical models in order to identify the current structural state. Finally,
the non-traditional methods apply pattern recognition algorithms such as genetic algorithms,
neural networks, combined with digital signal processing techniques such as wavelet analysis,
Wigner-Ville transforms among others in order to detect abnormal structural conditions.
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On the other hand, it is common to classify condition-based algorithms in performance
levels, which refers to the degree of the diagnosis goal [29]. These levels are: level 1
(Detection), level 2 (Location), level 3 (Quantification) and level 4 (Prognosis). In this
research, the stress detection and its location are equivalent because stresses are a volumetric
phenomenon. Thus, the proposed monitoring schemes belong to a combination of level 1 and
level 2 because the stress detection is the result of features obtained when the guided wave
propagation is in a stressed waveguide to which implies a location process. In addition, after
an appropriate setting, an estimation or quantification of the likely stress can be obtained

2.2 Statistical Models

The utilization of statistical models belongs to non-traditional detection schemes, which
recently has gained the researchers’ attention thanks to the progress in capturing, saving and
data processing. Statistical models of the monitored structure is often used, even when the
physical process being modeled is or not deterministic or with high analytical complexity.

Statistical models are based on pattern recognition technique, whose goal is the classi-
fication of objects into a number of categories or classes. The pattern recognition method
classifies data (patterns), in this case wavefields, based on either a priori knowledge or on the
statistical information extracted from the patterns. The patterns to be classified are usually
the groups of measurements, defining points in an appropriate multidimensional space. The
measurements used for the classification are known as features and can be organized in vector
or matrices.

The features vector generation is determined by the system under monitoring, and the
features selection is critical for the success of the classification system. There are two types
of pattern recognition: supervised and unsupervised. For supervised pattern recognition,
training data for each class are available for the classifier design, while for unsupervised they
are not available. For the unsupervised pattern recognition problem, the goal is to cluster
"similar” feature vectors by unraveling their underlying similarities [17]. In this thesis a
monitoring scheme based on an supervised pattern recognition problem is considered for
guided wave fields affected by stressed conditions.

According to Konishi and Kitagawa [62], there are three usages for a statistical model:

• Predictions

• Extraction of information

• Description of stochastic structures
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In this work, a statistical model PCA-based is obtained to represent the nominal structural
condition in the monitored cylindrical structure. This is acquired based on the extraction of
statistically significant information from the propagation of low frequency ultrasound signals
along the structure. Once the model is obtained, different structural conditions can be tracked
by comparing the current state with the obtained from the statistical model. Although the
statistical methods are relatively straightforward to implement, their main drawback is that
they do not provide any well-defined description of the associated damage mechanism or any
change in the mechanical parameters of the structure under investigation.

The statistical indices PCA-Based (T 2 and Q), used in this work as stress features, are
typically the so-called non-parametric statistical condition indices. These are not related
with the absolute structural parameters since they measure the deviation from the baseline
signature or condition. Therefore, it is assumed that the greater the abnormal condition, the
greater the resulting condition index.

On the other hand, in many situations, incipient damage and high order damage may
lead to statistical indices values of the same order of magnitude than the caused by external
disturbance such as temperature or changes in the bonding layer. Consequently, the particular
“threshold value” demanding an alarm could vary between structures. Therefore, it is needed
robust statistical indices to avoid positive falses [101].

2.3 Guided Waves and Bulk Waves

The ultrasonic waves are part of the Non Destructive Techniques (NDT) and it involves the
use of bulk waves and guided waves. Ultrasonic bulk wave propagation refers to waves that
encounter no boundaries, like waves traveling in infinite media, as shown in Figure 2.1a.
Thus, bulk waves propagate by shearing and longitudinal stresses in the bulk of the material
and correspond to a type of non dispersive waves, where their velocity is constant with the
frequency. On the other hand, guided waves are a special type of ultrasonic waves working
at the low part of the ultrasonic frequency range. They propagate either at the boundaries
(Surface waves) or between the boundaries of the waveguide, see Figure 2.1b. A waveguide
is the physical structure over which mechanical waves are confined in their propagation.

Guided waves and bulk waves are measured using traducers in two possible configurations:
pulse-echo when the emitter is used also to receive the ultrasonic signal and pitch-catch
when the receiver and the emitter are two different units. Ultrasonic waves, bulk and guided
waves are affected by discontinuities in the propagation medium, changes in the acoustic
impedance and internal variations of the medium, which produces changes in the wave´s
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a) Traditional bulk waves with normal beam  b) Guided waves generated by an angle beam wedge 
 

Fig. 2.1 Comparison between bulk wave and guided wave

pattern expressed by mode changes, velocity changes, attenuation, etc. These variations can
be considered as symptoms associated with changes in the waveguide.

Although bulk wave techniques are spread out and used extensively, the guided waves
have some advantages such as [95]:

• Inspection over long distances since the suitable guided wave presents low attenuation
and can propagate even in the kilometers range.

• Although the actuator is located in a single probe position, the guided waves provide
an image of the entire cross-section area of the waveguide under investigation.

• The suitable guided wave can provide greater sensitivity to discontinuities than standard
localized normal beam ultrasonic inspection.

• The ultrasonic guided wave analysis techniques allow inspection of hidden, submarine,
coated, subterranean and encapsulated structures.

• Guided wave propagation and inspection are cost-effective because the inspection is
simple and rapid. The inspection can be performed without removing of insulation or
coating along of a pipe or device, except where the transducer is located.

Bulk and guided waves behave differently but they are actually governed by the same
wave equations. The difference in the mathematical solution of the two types of waves is
due to the boundary conditions. For the bulk waves, the solution does not depends on the
boundaries because they travel without any border interaction. On the other hand, guided
waves propagate as a result of the interaction between the bulk waves and the boundaries of
the waveguide producing reflection, refraction and mode conversion.
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There are two fundamental characteristics of guided waves propagation. The first one is
the presence of different propagating modes for a certain frequency. The type and quantity of
propagation modes are determined by the shape and size of the waveguide cross section, the
material properties and the boundary conditions of the waveguide. The second is the existence
of dispersion, which is the nonlinear relationship between wavenumber and frequency. As
a consequence, signals with a significant bandwidth are distorted, because their spectral
components propagate at different phase speeds, as they travel along the waveguide. Thus,
the composition of guided waves varies with distance and time or with wave velocity and
frequency. The dispersion is expressed in wave velocity dispersion curves such as the phase
velocity versus frequency and the group velocity versus frequency.

Based on the geometry and material properties of the medium, the analytical model used
to determine the dispersion curves provides the resonance´s modes that satisfy the boundary
conditions of the wave propagation. Each resonant mode determines how the guided waves
propagate. As a result the guided waves are dependent of the wavelength and frequency, the
propagation is only possible for certain combinations of frequency and wavenumber.

There are a number of methods to obtain the dispersion curves for guided waves. The
methods can be roughly classified in the following approaches: numerical, experimental,
analytical and a combination of numerical and analytical. Numerical methods are based on
Finite Elements (FE) analysis in time domain. Experimental approach uses time-frequency
representations techniques such as Two-Dimensional Fourier Transforms (2DFFT), for the
case of the phase velocity dispersion curve and Short Time FFT (STFFT) and Wavelet
Transform for the case of group velocity dispersion curve. The analytical approach are
supported by the wave equations. Finally, Semi-Analytical Finite Elements (SAFE) gather
numerical and analytical approaches. All of them are computational expensive and time
consuming.

An analytical study of the guided waves propagation is very complex and it results in an
estimation of the actual behavior of the wave in terms of velocity of propagation, activated
modes, profile of propagation, attenuation, etc. For the case of hollow cylindrical waveguide
dispersion curves, they are usually generated under a non-stress, isotropic considerations,
which are farther of the real monitoring conditions.

The presence of external mechanical stresses in a material causes modification of its
structural morphology and its mechanical and acoustic behavior. Then, the propagation of
guided waves are modified in terms of velocity and attenuation. Under stress, these two
quantities depend on the direction and polarization of the waves as well as on the direction of
the applied stress [14]
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2.4 Dispersion in guided waves

The dispersion phenomenon in the propagation of waves is due to frequency-dependent
velocity variations. Experimentally and analytically, under some conditions, it can be
observed a difference between the velocity of a group of waves (Group velocity) and the
velocity of the individual waves (Phase velocity). The group velocity, Vgr, is the velocity at
which a guided wave packet travels at a given frequency while the phase velocity, Vp, is the
velocity at which the individual peaks within that packet travel. Phase and group velocities
are related to each other through the following equation:

Vgr =Vp +ξ
dVp

dξ
, (2.1)

where ξ is the wavenumber (ξ = ω/V ) or relationship between angular frequency, ω , and
the propagation velocity V . The physical effect of dispersion is the space distortion in time
of the excited modes by a signal of finite duration as they propagate from the source. Even
though pulse shape changes can be observed, the basic premise of wave propagation in
lossless media in a waveguide is that the energy is conserved [95].

The relation between frequency and velocities of phase and group is determined by the
dispersion curves. In other words, these curves are a plot of the wavenumber-frequency
relations.The dispersion curves are the solutions (roots) of an eigenvalue equation that
represents the stress-free condition in the boundaries of the waveguide. The roots which
satisfy this condition are a couple of pair of (ω,ξ ) values that can be re-expressed as a
coordinate in the Vp − f or Vgr − f dispersion curves.

Now, when an ultrasonic pulse is launched in a specimen, a spectral content (bandwidth)
is carried by the excitation pulse. This range of frequencies may involve several phase or
group velocities. As a example of the dispersion effect, in Figure 2.2, it can be seen, a Vp- f
curve, where only one propagation mode and the excitation pulse bandwidth are represented .
As shown, the bandwidth frequency content produce different phase velocities. Thus, inside
of the excitation pulse, several phase velocities develop a deformed wavepacket as the guided
wave is propagating as shown in Figure 2.3.

Figure 2.3 shows, in time domain, the effect of the dispersion in a 3 cycle toneburst with
a centre frequency of 150 kHz monitored after (0.3m,0.5m,0.7m and 1m) of propagation in
plate of Alum-6061 of 2 mm of thickness)
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2.5 Guided waves in a hollow cylinder

The use of ultrasonic guided waves in the exploration of cylindrical specimens such as pipes
and tubing is receiving much attention recently. GWs provides the possibility of examining a
large volume of material from a single position in specimens with complex configurations
such as underground, coated, or under insulation, concrete, etc.

Guided waves in cylindrical waveguides may propagate in circumferential or axial
directions. The guided wave field can be described by solving the governing wave equations
based on the boundary conditions, dimensions and material properties of the specimen under
investigation.

The study of guided waves in hollow cylinders started back in the nineteenth century.
Pochammer in 1876 and Chree in 1889 first investigated the propagation of the guided waves
in a free bar. A more extend and complete study of harmonic waves in a hollow circular of
finite extent is performed in the mid of the twenty century by [39].

The simplest model of the guided waves in cylindrical waveguides is derived restricting
the wave propagation to a homogeneous and isotropic medium. Based on Newton´s second
law and the conservation of the mass for a volume in an elastic solid it is possible to derive
the Euler´s equation of motion as follows,

ρ

(
∂ 2u
∂ t2

)
= ∇ ·σ , (2.2)

where u = u(r,θ ,z) is the displacement field in cylindrical coordinates, ρ is the material density
and σ is the stress tensor; which can be expressed in terms of the strain tensor ε using the
Howke´s Law, as:

σ =Cε, (2.3)

where C is the stiffness tensor. For an isotropic, homogeneous, linearly elastic material, the
theory of elasticity demonstrates that it is possible to reduce the 21 components of the C
tensor to two constants (λ ,µ) which are the Lamé constants [6]. The density ρ and Lame
constants λ and µ determine the bulk wave velocities in the material. If the strain tensor is
expressed in terms of displacement, Hookes law simplifies to the following equation:

σ = λ I∇ ·u+µ
(
∇u+u∇

T) . (2.4)

Combining Equation (2.3) and Equation (2.4) yields Naviers´s linear differential equation
of motion for isotropic elastic medium (Wave equation)
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µ∇
2u+(λ +µ)∇∇ ·u = ρ

(
∂ 2u
∂ t2

)
. (2.5)

Because the cylinder considered here is isotropic, Helmholtz decomposition can be
utilized to simplify the problem: The displacement field u can be split into the rotational
component ∇×H and an irrotational component ∇Φ in this way:

u = ∇Φ+∇×H, (2.6)

where Φ is a scalar potential and H is an equivoluminal vector potential. In general ∇H =

g(r, t) where g is a function of the coordinate vector, r = (r,θ ,z) and the time t [109]. The
function g can be chosen arbitrarily due to the gauge invariance of the field transformations.
This means that the potentials are not unique, but it can always select them so ∇H = 0.
Making the equivoluminal vector potential a zero-divergence vector implies that the field is
solenoidal (i.e. there are no sources or sinks of energy within the region) and provides the
necessary additional condition to uniquely determine the three components of u (ur,uθ ,uz)
from the four components,(Φ,Hr,Hθ ,Hz), of the two Helmholtz potentials (Φ,H) [39]. By
using Helmholtz potentials, the Navier’s equation of motion, Equation (2.5) yields:

∇

[
(λ +2µ)∇

2
Φ−ρ

(
∂ 2Φ

∂ t2

)]
+∇×

[
µ∇

2H −ρ

(
∂ 2H
∂ t2

)]
= 0. (2.7)

A sufficient condition for this equation to holds is that both terms vanish, which leads to
the standard scalar and vector decoupled wave equations:

CL∇
2
Φ =

∂ 2Φ

∂ t2 , (2.8)

CT ∇
2H =

∂ 2H
∂ t2 , (2.9)

where CL and CT are the velocity of the longitudinal and shear waves respectively, which can
be expressed in terms of Lame´s constants (λ ,µ) as follows:

CL =

√
λ +2µ

ρ
(2.10)

CT =

√
µ

ρ
(2.11)

The potentials H and Φ have the following formats in cylindrical coordinates:
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∇
2
Φ =

∂ 2Φ

∂ r2 +
1
r

∂Φ

∂ r2 +
1
r2

∂ 2Φ

∂θ 2 +
∂ 2Φ

∂ z2 (2.12)

H⃗ = Hr
−→er +Hθ

−→eθ +Hz
−→ez (2.13)

∇
2H⃗ =

(
∇

2Hz −
1
r2 Hr −2

1
r2

∂Hθ

∂θ

)
−→er +

(
∇

2Hθ −
1
r2 Hθ −2

1
r2

∂Hr

∂θ

)
−→eθ +∇

2Hz
−→ez

(2.14)
Assuming a harmonically oscillating source, the solutions for the Equation (2.7) is:

Φ,H = Γ1 (r)Γ2 (θ)Γ3 (z)e−i(ξ r−ωt), (2.15)

where ξ is the wavenumber (vector), and Γ1(r), Γ1(θ) and Γ1(z) describe the field variation
in each spatial coordinate. Assuming that the wave does not propagate in the radial direction
(r) and that the displacement field varies harmonically in the axial (z) and circumferential
(θ) directions, Equation (2.15) can be written as:

Φ,H = Γ1 (r)e−i(mθ+ξ r−ωt), (2.16)

where m is the circumferential order or angular wavenumber. If m = 0 the mode is axisym-
metric, i.e. without dependence on the θ -direction. The axisymmetric modes are divided into
torsional n modes T (0,n), which only involve the θ component, and longitudinal n modes
L(0,n), with both radial and axial components. L(m,n) are named flexural modes and they
require the three coordinates to describe its field.

Using Equation (2.16) in Equation (2.7); it is possible to derive a system of Bessel
differential equations to describe the displacement field. The canonical solution of this set of
differential equations are Bessel functions (Bn) which their argument determine the order of
the function.

The Bessel functions order basically describes the evolution of the function as its argument
is increasing. Now, the order of the Bessel functions are determined by the relation between
the bulk wave wavenumber k and the corresponding propagating guided wave wavenumber
ξ . Bessel’s ordinary functions Jn(x) and Yn(x) are employed for real arguments, and the
modified Bessel functions In(x) and Kn(x) for purely imaginary arguments.

The displacement field u which is function of (Bn,r,k,ξ ,m) is the base to formulate
the uncoupled stress fields (σrr, σrθ , σrz) via strain tensor, the resulting stress expressions
depend on (δBn,r,ξ ,k,m). Now, the set of stress equations is expressed as a linear weighted
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Bessel’s equations. In general, the set of stress equations can be simplified written in a matrix
shape as follows:

[σi] = [C] [Ai] , (2.17)

where σi is comprised by (σrr, σrθ , σrz), C is a function of (δBn,k,m,ω,ξ ) and Ai is a
weighted vector.

In the case of an isotropic single layer pipeline. The boundary conditions specify that
the traction part of the stress tensor is null in both surfaces of the tube (σrr = σrθ = σrz = 0)
and two gauge invariance condition equations at r = rint and r = rext , which leads to the
following matrix eigenvalue equation, as follows:

C11 C12 · · · C18

C21 C22 · · · C28
...

... . . . ...
C81 C81 · · · C88




A
B
...

B3

=


0
0
...
0

 (2.18)

Equation (2.18) is named the frequency or characteristic equation of the waveguide, and
its roots (ω,ξ ), eigenvalues, determine the propagated modes. Among all of the eigenvalues,
there are real eigenvalues for propagating guided wave modes and complex eigenvalues
including pure imaginary eigenvalues for the evanescent modes. The eigenvalues lead to
dispersion curves and the eigenvectors to the wave profile in the waveguide cross-section.
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Fig. 2.4 Sample dispersion curves of one-inch schedule 40 steel pipe including all of the lon-
gitudinal and torsional modes, including axisymmetric modes L(0,n),T (0,n)(n = 1,2,3, . . .)
and non-axisymmetric modes L(m,n)(m = 1,2,3, . . . ,n = 1,2,3, . . .)
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Figure 2.4 illustrates an example of phase velocity dispersion curves for a cylindrical
specimen. In this figure, it can be noted the presence of longitudinal, flexural and torsional
modes. As is presented in the Figure 2.4, for any excitation frequency exists a possible set
of modes that can be activated and produce a multimode propagation. Thus, a single mode
activation is a challenge in cylindrical specimens.

The real parts of the eigenvectors lead to displacement distributions for every eigenvalue.
The energy distributions in the r−direction are wave profiles and the energy distributions in
the θ −direction are called angular profiles, as showed in Figure 2.5 and Figure 2.6.

Neither the cylindrical waveguides properties nor the group number or mode n affects
the angular profiles of a single mode. Figure 2.5 shows that the same mode n at different
frequency have similar wave profile. Figure 2.6 illustrates the angular profiles of the wave
modes with 2th-4th circumferential orders. However, the real propagating angular profiles
of a wave group highly depend on the properties of the hollow cylinder and the excitation
conditions.

In Figure 2.6 it can be concluded that while the angular profile of 2nd circumferential
order provides high ultrasonic energy concentrations around of 0º,90º, 180º and 270º, the
remainder areas are blind to the ultrasonic investigation, e.g. in the range between 120º and
150º. Therefore a complete scan of the cross-section of a cylindrical specimen requires the
launching of several guided waves with different circumferential orders.

   

     (a     (b               (c 

Fig. 2.6 Angular profiles of the (a) 2nd (known as axisymmetric modes), (b) 3rd , and (c) 4th

modes in a mode group n (n=1,2,3, . . . ).
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2.6 Acoustoelasticity Effect

2.6.1 Acoustoelasticity in bulk waves

The first efforts to explain the propagation of stressed waves were back in 1937 with the
Murnaghan work [84]. He published “Finite Deformations of an Elastic Solid“. In this work,
Murnaghan presented a model of the linear elastic theory, including finite deformation in
elastic isotropic materials, describing the variation of the bulk velocities whilst the waveguide
is subjected to an initial static stress field. The Acoustoelastic Effect is a non-linear effect of
the constitutive relation between mechanical stress and finite strain in a material of continuous
mass which yields bulk velocities dependent of the stress state of the material. This new
model includes the Third-Order Elastic Constants (TOEC) or the acoustoelastic constants.
Hughes and Kelly [57] determined that in addition to the Lamé constants (λ and µ), three
additional constants, in the case of Murnaghan constants, l,m,n are required to describe the
wave propagation in isotropic materials subject to uniaxial stress. Once the values of l,m,n
of a particular material specimen are determined, any experimental measure of one of the
bulk velocities reveals the stress at which the specimen is subjected to.

TOEC highly depend on the material internal structure i.e. by the material processing.
Therefore, degree, depth, and location of any possible residual stresses produced by the
processing influence the acoustoelastic properties. Three major difficulties are impeding
the advancement of the use of the acoustoelasticity for stress monitoring by using bulk
waves [102]. First, the Acoustoelastic Effect is small, typically about of 0.001% per MPa of
applied stress, for metals. These small variations impose high precision in experimentation.
Second, the inherent or induced preferred orientation of crystalline grains (anisotropy) affects
acoustoelasticity. The third major problem is the unknown influence of localized plastic
deformation or residual stresses.

TOEC are determined experimentally by measuring acoustic phase velocities and then
analytically solving a system composed by a set of equations. Each equation describes a
particular bulk velocity in a predefined direction and polarization as a stress function. Hughes
and Kelly [57] experimentally determined the TOEC of polystyrene, iron, and Pyrex glass.
For isotropic media subject to uni-axial stress in direction 1, σ11 (2 and 3 are the other two
perpendicular directions), the velocities of elastic waves are derived using the following
equations [68]:

ρc2
11 = λ +2µ +

σ11

3K

[
2l +λ +

λ +µ

µ
(4m+4λ +10µ)

]
(2.19)
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ρc2
12 = ρ0c2

13 = µ +
σ11

3K

[
m+

λn
4µ

+4λ +4µ

]
(2.20)

ρc2
22 = λ +2µ +

σ11

3K

[
2l − 2λ

µ
(m+λ +2µ)

]
(2.21)

ρc2
21 = µ +

σ11

3K

[
m+

λn
4µ

+λ +2µ

]
(2.22)

ρc2
23 = µ +

σ11

3K

[
m− λ +µ

2µ
n−2λ

]
, (2.23)

where ρ is the mass density, ci j is the velocity of the wave propagating in direction i (x,y,z)
and polarized in direction j, σ11 is the normal stress in direction 1, (λ ,µ) are the Lamé´s
coefficients, (m,n, l) are the Murnaghan´s coefficients and K = λ + 2µ

3 is the compressibility
modulus in terms of Lamé´s coefficients [59]. For the case of a homogeneous and isotropic
infinite solid subjected to a uniaxial stress (σ ), the bulk velocities of longitudinal CL and
shear waves CT , propagating in the same direction as the applied stress, can be written in the
first-order approximation of Equations (2.24) and (2.25), respectively, as [13]:

Cσ
L =

√
λ +2µ

ρ

{
1+

σ

2(λ +2µ)(2λ +2µ)

(
λ +µ

µ
(4λ +10µ +4m)+λ +2l

)}
(2.24)

Cσ
T =

√
λ

ρ

{
1+

σ

2µ(3λ +2µ)

(
4λ +4µ +m+

λn
4µ

)}
(2.25)

Expressions inside curlic brackets represent the effect of the stress on the bulk velocity
(acuostoelastic effect). Now, if σ = 0 in Equations (2.19....2.23 or 2.24 and 2.25), the resulting
equations are the stress-free equations for CL and CT respectively, Equations (2.10 and 2.11).
Therefore, the term which contains σ in the RHS in Equations (2.19..2.23 or 2.24 and 2.25)
constitute the variation of the bulk velocity due to the stress. So, the previous equations can
be expressed as a general linear equation as:

cσ
i j = c0

i j
(
1+Ai jσ11

)
, (2.26)

Where cσ
i j is the velocity of wave propagating in direction i and polarized in direction j

in a medium under uni-axial stress σ11, c0
i j is the wave velocity in the stress free medium

or bulk velocity and Ai j are the acoustoelastic constants term which depend on Lamé´s
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coefficients and Murnaghan´s coefficients. The initial velocities c0
i j obtained using, Equations

(2.10 and 2.11).
As can be noted, in Equations (2.10 and 2.11) the bulk velocities in the stress-free case

depend on material density ρ and the Lame´s constants which are function of the material
elastic constants: Young’s Modulus (E) and Poisson ratio (ν) as follows:

ρC2
L = κL = λ +2µ =

E (1−ν)

(1+ν)(1−2ν)
, (2.27)

ρC2
T = κT = µ =

E
2(1+ν)

, (2.28)

The subscripts L and T in Equations (2.27 and 2.28) represent longitudinal and transversal
or shear waves, respectively. As presented by [102], Equations (2.10 and 2.11) can be used
to explore the effect in the velocity of elasticity or density when they are no longer treating
as constants (non linearity effect) by expanding for small finite perturbations at a fixed static
stress, producing the following equation:

∆c
c

=
1
2

[
∆κL,T

κL,T
− ∆ρ

ρ

]
, (2.29)

where

∆κL,T

κL,T
=

[
∆E
E

]
ν=cte

(2.30)

and,

∆ρ

ρ
=

[
∆V
V

]
M=cte

=
(

εy

ν
−2εy

)
(2.31)

where ∆V is the volumen variation, εy is the strain in y−direction and ν is the Poisson´s
ratio. Equation (2.29) represents the normalized propagation velocity changes in a bulk wave
when Young´s modulus and material density are no longer considered constants. In the case
of uniaxial stress in x− direction (the selection of x is arbitrary) within the elastic range,
a change in density is expected by the stress-strain behavior. So, as it can be inferred, a
change in density produce a slight different value of acoustic bulk velocity (density effect).
The density effect is represented by the second term in the RHS in Equation (2.29) while the
first term estimates the effect of the Young´s modulus change by the stress, elasticity effect.

In summary, variations in the ultrasonic bulk velocities, CL and CT in presence of stress
depends on the stress effect over the Young‘s modulus, the Poisson ratio and the strain
perpendicular to the applied stress (density effect). Now, the influence of environmental
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conditions such as temperature in the Young‘s’ modulus also suggests variations in the bulk
velocities. The sum of these effects produce also variations in the generated guided waves
due to bulk waves are the foundation of them.

In [102] a static stress of 350 MPa was applied to a plate of 7075-T651 Aluminum, for
waves with particle motion normal to the tensile stress, it was found that the density effect
accounts around 25% of the velocity increase. Therefore, the major effect to the change of
the bulk velocities can be attributed to the variation of the elastic term, first term in the RHS
in Equation (2.29). The density effect and the elasticity effect have little influence for waves
with particle motion parallel to the applied stress.

2.6.2 Acoustoelasticity in guided waves

Although the Acoustoelasticity effect only predicts the change of ultrasonic bulk velocities,
CL and CT , as shown in Equations (2.24) and (2.25). These velocities are used to compute
the guided wave phase and group velocities. Therefore, it can be inferred the stress influence
in the guided waves.

Some recent works have shown how mechanical stress in the waveguide influences the
wave field of the GWs. Thus, a new subject of research has been gaining the attention, the
study of the stressed guided waves. Under this condition, the velocity is no longer only
frequency dependent but also stress dependent. Some recent works have been studying the
velocity variations of GWs when they propagate in specimens subjects to stress, such as
[14, 13], where the longitudinal mode L(0,1) is used to track the variations of the phase
velocity in a rod subject to stress. In [19], a finite element technique for modeling the
dispersion characteristics of guided waves in a waveguide of arbitrary cross section subjected
to axial load is presented. Here, it is analytically demonstrated that the change in velocity is
proportional to the strain and decreases as the frequency increases. The dispersion curves for
a plate are determined in [35] by assuming that the specimen under uniaxial stress becomes
unstressed anisotropic and the fourth order tensor is used in the resulting wave equation.

Few works in the literature are reported using the acoustoelasticity of the guided waves for
stress monitoring [36, 97, 85, 83, 13]. Most of them have used a linear analytical expression
of acoustoelasticity, it which the variation of the guided wave velocity is expressed as a linear
function of the applied stress, defining the parameters via experimentation. This approach,
although is practical, is highly time consuming, demand much experimentation and its main
drawback is the specificity of the model obtained, that is, is only strictly valid for the studied
specimen at the test conditions.

As mentioned early, the relation between phase and group velocities and frequency
are typically depicted in the dispersion curves. Such curves are computed for unstressed
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samples based on the eigenvalues obtained of the stress equations assuming zero stress at the
boundaries. The presence of stress in the propagation path yields variation in the velocity of
the guided waves as it was demonstrated in some works [18, 71, 70, 69, 35]. So, it can be
concluded that it must exists a specific dispersion curve for each applied stress.

2.7 Review of Ultrasonic Stress Monitoring Techniques

Guided waves have been used as a tool for stress estimation based on the velocity change of
the propagated pulse. Most of the works reported in literature are focused on measuring the
Time Of Flight (TOF) or phase shift to determine phase and group velocities and comparing
them with a knowledge base. Di Scalea and Rizzo [23] present a method based on guided
waves for stress monitoring in seven-wire steel strands. In this research, a substantial
increase in stress measurement sensitivity is accomplished by adding the effect of strand
elongation. Chaki et al., in [14, 13] report the use of the relative phase velocity change of
the longitudinal mode L(0,1) for estimating the stress levels in a prestressed steel strands
by means of an analytic model and an acoustoelastic calibration curve. The analytical
model depends on the material properties, waveguide diameter and probing frequency. In
[110], the stress in bolted connections is investigated by comparing several methods based
on the acoustoelasticity effect (TOF, velocity ratio and mechanical resonance frequency
shift). They found small velocity changes in presence of stress variation, which demands
a high sampling rate and consequently an increased cost. In [97] the homogeneous biaxial
stresses are assessed for an aluminum plate by measuring phase velocity changes on multiple
propagation directions using a single mode at a specific frequency. Experimental results
indicate that phase velocity changes can be closely approximated by a sinusoidal function
with respect to propagation angle, where every sinusoidal coefficient can be estimated with
a single uniaxial loading experiment. However, this approach is not practical since a great
experimental effort is required to define the sinusoidal function and it is highly sensitive to the
material microstructure. Finally, in [71], the SAFE method is used to analyze the influence
of axial load on the wave propagation in a rail. Although it is possible to measure the phase
shift caused by axial load changes, the sensitivity to changes in elastic modulus due to
temperature changes is of a larger magnitude. They concluded the necessity of compensating
or eliminating external effects, mainly propagation changes due to temperature variations, in
order to achieve a robust estimation of the stress.
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2.8 Finite element method for analyzing guided waves

The finite element method (FEM) is a widely used numerical approach for solving dynamics
problems such as wave propagation and vibration. FEM avoids the analytical solution of
complex differential or integral equations providing accurate and computationally efficient
solutions. To achieve a correct FEM simulation, a very well understanding of the physical
problem is required, i.e. limitations, constrains, assumptions, etc. So, once a solution is
found, a verification stage must be conducted to check correct selection of the model and the
solution process. FEM may be combined with analytical analysis or other numerical methods
to achieve optimum solutions such as SAFE method (Semi-analytical Finite Element Method)
discuss in a chapter ahead.

The information required to solve a field problem such as the guided wave propagation are
specimen geometry, materials and its properties, external loads (excitation) and boundaries
conditions. FEM approach is based on the division of the entire waveguide into small and
discrete elements with simple loading and boundary conditions reducing the whole problem
to a simple element problem. After that, an information coupling scheme is used to propagate
the element solutions until covering the total specimen.

A FEM simulation requires the following stages [95]:

1. Physical phenomena analysis

2. Mathematical Modeling: determining mathematical models, geometries, governing
equations, and appropriate FEM solving approaches (Explicit and implicit)

3. Discretization: dividing the studied geometry into a mesh of finite elements

4. Preliminary analysis: having some analytical results, experience, or experimental
results for comparison.

5. Finite element analysis:

(a) Preprocessing: inputting data of geometry, material properties, boundary condi-
tions, etc.

(b) Numerical calculation: deciding interpolation functions, obtaining a matrix to
describe the behavior of each element, assembling these matrices into a global
matrix equation, and solving this equation to determine the results.

(c) Postprocessing: listing or graphically displaying the solutions.

6. Validation of results: verification of the simulation contrasting the FEM solution with
preliminary analysis or experimental results.
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In the case at hand, the simulation of the propagation of GWs, FEM represents a numerical
calculation approach based on the principle of virtual work as follows:∫

δε
T

σdv = δuT PdV+δuT
ΦdV, (2.32)

where,
ε = strain tensor;
σ = stress tensor;
u=displacement vector;
δu= first variation of displacement u
V= Total volume of the body
P= Body force in V
S= Total surface of the body
Φ= Surface traction vector on S.
Once the waveguide is discretized by a mesh of finite elements, all of the loading

functions are applied to the nodes of each element instead of on the surface or in the volume.
In guided wave propagation, the external load represents the source of excitation. Therefore,
an interpolation function is needed to determine values of all of the variables inside the
elements. The interpolation function is named shape function.

Wave propagation is a dynamic problem. The governing equation of FEM for an un-
damped dynamic problem is:

Mü+Ku = F, (2.33)

which can be considered as generalized Newton’s second law. Here M is the mass matrix,
K is the stiffness matrix, F is the equivalent element force load vector, ü is the acceleration
vector and u is the displacement vector.

For the case of a harmonic solution with circular frequency ω and without external force
the governing equation, Equation (2.33), can be simplified as:

(K−ω
2M) = 0, (2.34)

where both M and K are positive definite. In this thesis, the FE method has been used
mainly for wave propagation simulation using a time marching explicit scheme. In the time
marching scheme, the solution process takes place over a small time step ∆t. The solution
of the dynamic equations will give displacement, velocity and acceleration histories. The
solution process is repeated for N time steps until the total time T = N∆t is reached. The



2.8 Finite element method for analyzing guided waves 26

solution time is directly proportional to the number of degrees of freedom in the model,
which is usually very high for wave propagation problems [45].

Explicit schemes solve the Equation (2.34) only at the beginning of the increment ∆t . In
this scheme the mass matrix is diagonalized, thus the accelerations at time zero are calculated
quite simply by using the net mass and force acting on each element [22]. This scheme does
not require any large matrix inversion. The accelerations are integrated twice to obtain the
displacement after a time step ∆t. To produce accurate results, the time increments must
be quite small so that the accelerations are nearly constant during the increments [22].This
technique minimizes memory usage and generally reduces the overall processing time [90].

In order to adequately model a wave propagation, it is necessary the appropriate spatial
and temporal discretization of the finite element model in order to guarantee the convergence
to the correct solution.

2.8.1 Spatial discretization

In order to assure guided wave dynamics capture, an appropriate element length, le is required.
In [79] is recommend 20 nodes per wavelength (λ ). Thus, this recommendation can be
expressed as:

le =
λmin

20
, (2.35)

where λmin is the shortest wavelength of interest, because the proportionality between velocity
and wavelength (λ =V/ f ), the CT , which is the lowest velocity, provides λmin. So, the final
criterion can be expressed as [32]:

le =
CT

20 f
(2.36)

2.8.2 Time resolution

The integration time step, ∆t, is the step size for which Equation (2.34) is solved (time
resolution). An adequate integration time step, ∆t, is very important for the accuracy of
the solution. In general, the accuracy of the model can be increased with increasingly
smaller integration time steps. With long time steps, the high-frequency components may
not be resolved accurately enough. On the other hand, too small time steps imply high
computational cost. Therefore, a compromise in the ∆t selection must be found. A common
criterion is using at least 20 points per cycle of the highest frequency results[99].This rule is
expressed as:
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∆t =
1

20 fmax
(2.37)

2.8.3 General procedure for FEM simulation of guided waves

In this section a brief step by step procedure is presented to model guided waves in isotropic
hollow cylinders using a commercial FEM package.

1. To create a part (type: deformable with its respective sections)

2. To define isotropic elastic material properties: mass density, Young’s modulus, Pois-
son’s ratio

3. To define and assign section properties

4. To assemble the model

5. To create node sets (Actuator,Sensor)

6. To configure the analysis

• Create the step with type of procedure: Dynamic−Explicit

• Introduce the time period (usually in µs)

• Define the incrementation (Time step) according to Section (2.8.2)

7. To setup the output database (Field Output Request): displacement, velocity, stress
fields for set "Sensor"

8. To product the guided wave excitation do the following:

• Create a tabular amplitude (time versus amplitude) data for the modulated pulse
at the excitation frequency

• Create a mechanical load (Concentrated force or distributive) applied in the
appropiate direction with the magnitude defined in the previous item.

• It is also possible to generate guided waves using displacement of the boundary
conditions instead of the load

9. To mesh the part or instance

• Apply the element type to the part or instance according to the specimen dimen-
sions (2D or 3D)
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• Seed the mesh by size using the criterion mentioned in Section (2.8.1)

10. To create and submit the job

11. To check results setting the Visualization mode



Chapter 3

Guided waves generation

3.1 Introduction

This chapter deals with some of the suitable transducers for the guided waves generation in
cylindrical waveguides. There are several different methods for exciting ultrasonic waves,
including piezoelectricity, electrostriction, magnetostriction, electromagnetic (EMAT), laser
generation, etc. Among them, the piezoelectric effect is by far the most widely used [16].
Thus, at first, the chapter is devoted to give a general overview of the PZT subject and intro-
duce the important parameters when piezoelectric materials are used to generate ultrasonic
transducers. Next, the influence of the adhesive layer (couplant) in the transmission of the
ultrasonic energy from/to the PZT is investigated experimentally and in the Section 3.2.2 it is
formulated an analytical simplified PZT model to determine the relationship between the
quasi-static mechanical strain in the PZT (external stress) and the generated electric signal
when the transducer acts as a sensor.

PZT transducers are used in the early stages of this research for their convenient low cost,
easy excitation, and low weight. Besides, as it will be demonstrated ahead in this chapter, for
their capability to generate a rich signal in wavepackets, which will be helpful for providing
data as inputs to statistical tools. As it was proven with the Normal Mode Expansion Method,
the single excitation of a PZT attached to the pipe yields the activation of several longitudinal
and flexural modes, generating a characteristic signal, appropriate to track slight wave field
changes in the PCA-based monitoring scheme.

On the other hand, while longitudinal modes are commonly used in pipelines monitoring,
torsional modes are preferred because they offer less wave attenuation than other family
modes due to leakage energy is small. When the waveguide is in mechanical contact with
fluids, part of the ultrasonic energy may be transmitted to the fluid via normal and shear
stresses. For this reason, next in this research, the torsional guided waves are explored in the
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search of a robust stress monitoring scheme adequate for industrial applications. Nowadays,
several setup are available to generate torsional guided waves, however the ones based on
the magnetostriction offer advantages for its low cost, no couplant layer required , and easy
implementation. For these reasons, a magnetostrictive transducer is implemented in last part
of this research.

3.2 Piezoelectrics

Piezoelectrics (PZTs) are very common transducers for SHM applications. They can be
roughly divided in two categories: embedded or surface-bonded, as shown in Figure 3.1. In
general, PZTs are inexpensive, light and available in very fine thicknesses (microns order)
making them an option for integration into structures when the weight and space are issues. In
addition, for its low cost is an attractive alternative for SHM applications such as permanent
pipelines monitoring in-situ.

Fig. 3.1 Surface bounded PZT

PZTs operate on the piezoelectric and inverse piezoelectric principles that couple the
electrical and mechanical behavior of the material. An electric charge is yielded on the
surface of the piezoelectric material when it is strained. The contrary effect also occurs, i.e.
mechanical strain in the PZT in response to an applied electric field (polarization). Therefore,
they can be utilized as both actuators and sensors. The most commonly available materials
are lead zirconium titanate ceramics (known as PZT) and polyvinylidene fluoride (PVDF),
which is a polymer film [94]. Piezoelectric ceramics transform mechanical energy into
electrical energy and vice-versa in a number of modes as shown in Figure 3.2.

• thickness and length
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Fig. 3.2 Basic piezoelectric transduction in (A) thickness and length, (B) radial, (C) thickness
shear, and (D) bending modes. The arrows represent the direction of polarization and the (+)
and (-) are the applied field
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• radial

• thickness shear

• bending modes

Configurations are normally selected to produce the desired actuation or sensing vibra-
tional mode. Typically, the controlling dimension is chosen to a specific resonance frequency
of interest. Other dimensions are chosen to minimize other vibrational modes near the
frequency of interest, to a specific aperture size, or to accommodate the desired actuation or
sensing area. In the case of thin disc PZTs (usually the diameter is at least 10 times thickness)
exist two modes of vibration: radial and thickness modes, both poled through thickness, as
presented in Figure 3.3. The vibration mode is controlled mainly by the relation between
diameter and thickness and the excitation frequency.

Fig. 3.3 Modes of vibration of PZT poled through 3-direction

PZTs can operate in pitch-catch, pulse-echo or could be positioned into the structure
as sensor networks or arrays, which would be permanently wired and interrogated at will.
Spatially distributed arrays of piezoelectric can be used to generate or receive specific wave
fields (modes). Arrays of sensors can be excited with a slight phase difference producing an
ultrasonic beam formed through the constructive interference of the wave fields generated
by the actuators. The beam angle could be adjusted by changing the relative phase of the
elementary signals [44].

3.2.1 Influence of the coupling layer on guided wave propagation

To transmit ultrasonic energy, the transducers should be attached to the structure under
exploration with a substance named couplant. The couplant layer has aimed to avoid air
cavities and improve the acoustic impedance, enabling an efficient ultrasonic transmission.
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The propagated wavefield strongly depends on some properties of the coupling layer i.e.
viscosity, Young modulus, adhesive curing time and thickness. Variations in the coupling
layer yields different wave patterns due to variations in the propagation modes and the
transmitted energy.

In [91], it is stated the effect of adhesive thickness and its modulus on the performance
of adhesively bonded piezoelectric elements. Experimental results showed the dependence
of the electromechanical impedance and the resonant frequency with the thickness as well
as the amplitude of the sensor signal. In the case of the adhesive modulus a more sensitive
affectation of the impedance and amplitude is found at high frequency. Besides, results found
by [27] showed a better repeatability of the wave pattern for a less viscosity of the couplant in
spite of a lesser transmitted energy. The repeatability is evaluated using the average standard
deviation of a set of signals for each studied couplant. On the other hand, [20] compared
several couplants in a concrete arrangement used in a monitoring scheme. They proposed
the plasticine as alternative due to its feasibility to remove it from the material. Although,
superglue (cyanocrylate) always provided the best quality signals, when the practical factors
were considered, plasticine was found to be the better performing couplant material overall.

In this thesis, several couplants (hair gel, glycerin, honey, vaseline, and cyanoacrylate)
typically used in ultrasonic tests [91, 27, 20], are evaluated in a pipe test bench to study
transferred ultrasonic energy and their frequency content. Thus, In order to prepare the
specimen for testing some previous tasks have to be performed at the surface where the PZT
will be installed:

• The surface should be sanding with sandpaper number 400 and 200 to avoid disconti-
nuities due to rough surfaces and impurities in the specimen.

• the specimen should be degreasing by using acetone

For the case of the cyanoacrylate, the PZT is attached to the pipe just by putting a
constant pressure on the exterior surface of the PZT during the cyanoacrylate curing process.
Meanwhile, the rest of the couplants are attached to the pipe with a constant external force
during the process of emitting and capturing the signals. In our case, it was used a permanent
magnet to exert pressure on the top face of the PZT

The complete system (PZTs, couplants and cylindrical waveguide) frequency response
was carried out using a sinusoidal signal sweeping in the range of frequency between 20
KHz and 200 kHz to determine the bandwidth. A picoscope 2208A is used as function
generator to supply an electric pulse signal to the piezoelectric to produce the guided wave.
The frequency response for each studied couplant is shown in Figure 3.4. In this figure is
showed that cyanocrylate presents the greater amplitude with a PZT resonant frequency
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Fig. 3.4 Frequency response for the studied couplants
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Fig. 3.5 Power Spectral density of the captured signals for the tested couplants
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around of 113 KHz. The transmitted signal by the emitter is a modulated Hann window
sine of 5 peaks as shown in Eq. 3.1. In addition, the power spectral density (PSD) of the
couplants are presented in Figure 3.5

A =
1
2

sin2π f t
[

1− cos
(

2π f t
5

)]
, (3.1)

where, f is the frequency of the wave carrier. A comparison of the captured signals in
samples domain for every couplant is shown in Figure 3.6. The captured signals has been
amplified 70 times and filtered out before the acquisition by the picoscope.

acquisition by the picoscope. This is achieved by using a charge amplifier implemented with 
J-FET technology. 

Figure 4: Guided wave propagation using different couplants in the same waveguide 
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Fig. 3.6 Guided wave propagation using different couplants in the same waveguide

Figure 3.6 compares the guided waves amplitude generated by PZTs by using a different
couplant layer with the same thickness. Based on the experimental results it can be con-
cluded that among the studied couplant materials, cyanoacrylate offers high transmissibility
compared with others for the studied test conditions.

3.2.2 The PZT effect in the captured guided wave under stress

This section presents an analytical study on the effect of the applied external stress to the pipe,
and consequently to the attached PZT, in the sensor electric signal. Because piezoelectric
materials can work as dynamic strain sensors, the effect of the stress in such transducers
must be considered. The constitutive relations for piezoelectric materials, under small field
conditions are [16] :

S = sET+dT E, (3.2)

and
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D = dET+ ε
TE, (3.3)

where S is the strain, sE is the fourth order elastic compliance tensor at electric field constant
or

(
∂S
∂T

)
E

, T is the stress, dT is the piezoelectric strain coefficients for direct effect,
(

∂S
∂E

)
T

,

dE is the piezoelectric strain coefficients for converse effect,
(

∂D
∂T

)
E

, E the applied external

electric field, D the electric displacement or charge density and εT the dielectric permittivity
under constant stress.

3.2.3 Numerical subscript notation

Since now, the following subscription notation is utilized. Three orthogonal axes are repre-
sented by subscript values 1 – 3. By convention, axis 3 is the direction of polarization of the
PZT. A reduced subscript notation is used in which subscripts 4 – 6 indicate stress or strain
in shear form about axes 1 – 3, respectively. This is illustrated in Figure 3.7.

Fig. 3.7 Axis notation for polarized piezoelectric ceramics

In reduced subscript notation, electromechanical quantities can have two numerical
indices. The first indicates the electrical direction and the second indicates the mechanical
direction.

3.2.4 A simplified PZT electro-mechanical model

In this thesis, it is utilized thin and light PZTs to produce longitudinal and flexural guided
waves in pipes. In order to simplify PZT study and based on the symmetry, the analysis were
performed in the plane 1-3 as shown in Figure 3.8. Radial mode is considered as actuation
mode so the disc expands and contracts dynamically in the plane 1− 2, under a uniform
alternating electric field E3, which is applied in direction “3”. The disc is bounded to the
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pipe in a line aligned in direction 1, so no effect in direction “2” is considered. For sake of
simplicity, vibration is adopted to be infinitesimally small with no damping. Additionally, the
disc is assumed to has zero displacement in the midpoint. Under these assumptions and using
the previously described subscripts, Equations (3.2 - 3.3) can be expressed as Equations
(3.4 - 3.5) [101]

Fig. 3.8 Interaction model of PZT and the pipe

D3 = ε
T
33E3 +d31T1 (3.4)

S1 = d31E3 +
T1

ȲE
, (3.5)

where S1 is the strain in direction 1, d31 is the piezoelectric strain coefficient, T1 the axial
stress in direction 1 and YE is the Young´s modulus of elasticity at constant electric field, εT

33

is the electric permittivity in “3” direction of the PZT under a constant stress. If the PZT is
used as sensor E3 = 0, then Equation (3.4) is reduced as follows:

D3 = d31T1, (3.6)

where T1 can be substituted by YE S1 using the Hooke´s Law. Now, using a capacitor parallel
model, the charge density can be expressed as:

D3 =
εT

33V
h

, (3.7)

where V is the voltage across the PZT terminals and h is the PZT thickness. So, combining
Equation (3.6) and Equation (3.7), the voltage of the PZT can be expressed in terms of the
strain as:
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V =
S1d31hYE

εT
33

, (3.8)

or:

V = S1k, (3.9)

where

k =
d31hYE

εT
33

. (3.10)

Therefore, the voltage across the PZT terminals due to a dynamic strain varies linearly
in a proportion of k, where k depends on geometric, electric and material factors. Hence,
variations in the voltage signal in an isothermal condition are exclusively attributed to the
strain.

Thus, in a stress monitoring scheme based on PZT in a pitch-catch configuration, the
magnitude changes of the induced voltage across the PZT terminals are yielded by the sum
of two strains: the finite deformation due to homogeneous stress in the elastic area S1,static.
and the dynamic perturbation superimposed on the stress state, wave propagation, S2,dynamic.
Both of them affect the amplitude of the sensed signal, see Equation (3.11). The different
sources of guided wave energy variation mentioned above are difficult to isolate and quantify.
The magnitude of the induced voltage V in the PZT terminals is modified if the static strain,
S1,static is for compression or tension loads. For the case of tension in the material, the strain
is positive and the voltage will be positive if d31 is positive, for the case of compression, the
sign is opposite and for the induced small strain when the guided wave is propagating.

V =
(
S1,static +S2,dynamic

)
k (3.11)

As a conclusion, the external loads in the waveguide will be transmitted to the PZT via
mechanical coupling with the consequent strain generation in the PZT. This strain is added to
the dynamic strain generated in the waveguide by the guided wave propagation influencing
the generated voltage in the PZT sensor.
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3.3 Magnetostrictive Transducers

3.3.1 Magnetostriction principle

Magnetostriction is a coupling phenomenon which yields the change in shape of materials
under the influence of an external magnetic field, as a result of the small magnetic domains
rotation. This re-orientation causes internal strains (S = ∆L/L) in the material. The strains
can produce elongation in the direction of the magnetic field, positive, or shortening in
the opposite case. Magnetostriction is a reversible material feature. In the absence of
the magnetic field, the material shape returns to its original dimensions. This effect is
proportional to the magnitude of the magnetic field and after all the magnetic domains have
become aligned with the magnetic field the saturation point is reached.

The size-changing effect is called the Joule effect, this effect is mainly used in magne-
tostrictive actuators. On the other hand, the Villari effect refers to the reverse phenomenon i.e.
any change in dimensions of a ferromagnetic material induces a magnetic field. This effect
is produced when a mechanical stress is imposed on a specimen yielding a change in the
magnetic flux density which flows through the sample as a result of the creation of a magnetic
field. The change in flux density can be detected by a pickup coil and is proportional to the
level of the applied stress. The Villari effect is reversible and is used in sensor applications.

Finally, when a ferromagnetic material is subject to a perpendicular static magnetic field
to a dynamic field, a shearing deformation is developed in the material; this phenomenon is
called the Wiedemann effect. The developed shearing deformation created by the Wiedemann
effect results in a torsional wave in the cylindrical waveguide.

Magnetostrictive transducers operate in accordance with the magnetostrictive principle.
They have been used to produce and measure ultrasonic waves at frequencies ranging between
roughly 20 kHz and 1–2 MHz for nondestructive testing (NDT) of waveguides such as pipes
and plates [61]. In general, exists a number of transducers and experimental settings that use
magnetostrictive phenomena to generate and measure elastic waves in waveguides. For the
sake of brevity, it will only refers to transducers that use thin magnetostrictive patches or strips
which are bonded with waveguides. In this case, the magnetostrictive effect mainly occurs
in the patch. Elastic waves can, therefore, be excited and measured in both ferromagnetic
and non-ferromagnetic waveguides if magnetostrictive patch transducers are employed, See
Figure 3.9.

To derive a linearized magnetostrictive constitutive relations, the magnetic field vector H,
the magnetic-flux-density vector B, the mechanical strain tensor S, and the stress tensor T
have to be considered. Since a energy perspective and considering an adiabatic process the
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Fig. 3.9 Configuration of magnetostrictive patch transducer

infinitesimal tensor of the Gibbs free energy produces the following relation between strain
and magnetic field and also between magnetic flux density and stress [61]:

∂Si j

∂Hk
=

∂Bk

∂Ti j
= dijk (i, j,k = 1,2,3), (3.12)

where d is called the piezomagnetic coefficient. When a material exhibits magnetostrictive
behavior, Equation (3.12) states that there is always coupling between mechanical and
magnetic fields. Therefore, S and B are functions of both T and H. Using Equation (3.12)
and the definitions of compliance s (inverse of the elasticity tensor) and permeability µ , the
magnetostrictive constitutive linear equations for small or infinitesimal changes in the field
variables (S,T,H,B) can be expressed as:

dS = sdT+dT dH, (3.13)

dB = ddT+µdH, (3.14)

when the magnitude of the applied dynamic field is small compared with a static bias field,
the following linearized constitutive relations Equation (3.15) and Equation (3.16), which
result from Equation Equation (3.13) and Equation (3.14), can be used:

BD = dTD +µHD, (3.15)

where the subscribed quantities with D are related to the applied dynamic magnetic field. The
villari effect is modeled by Equation (3.15), where BD is the dynamic magnetic induction,
d the magnetostrictive constant, TD symbolizes the stress change, µ is the permeability at
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constant mechanical stress σ and HD is the dynamic magnetic field. Meanwhile the Joule
effect can be represented by following equation

SD = sTD +dT HD (3.16)

where SD is the dynamic mechanical strain, s the compliance coefficient at constant
field strength H, TD is the stress change, HD is the dynamic magnetic field and dT is
the magnetostrictive constant at constant stress. The magnetic field strength, H, could be
calculated by using Equation

H = IN, (3.17)

where I is the current and N is the number of coil turns. Due to the fact that the axis of a
typical cylindrical waveguide is usually in line with the direction of magnetization, only
the axial component needs to be considered. Therefore, d, µ and s can be treated as scalar
quantities for simplification.

In the transducer application, magnetic energy is converted into mechanical energy. The
efficiency of the energy converting process is governed by the magneto-mechanical coupling
factor. The value of this factor usually varies between 0.5 and 0.7. In applications where only
the longitudinal elongation is of interest (for standard actuator applications) the only material
properties of interest are all relate to the longitudinal axis. This mode is called 33-mode and
the magneto-mechanical coupling factor is called k33. The magneto-mechanical coupling
factor is given by equation [86]:

k2
33 =

d2
33

µT
33

·EH . (3.18)

In this equation, EH is the Youngs modulus at constant value of magnetic field, the mag-
netostrictive coefficient d33 is the slope of the strain versus magnetic field in the characteristic
curve (S−H):

d33 =
dS
dH

. (3.19)

Under quasi-static condition (continuous excitation under a sinusoidal alternating current),
assuming zero pre-stress and assuming a linear relationship between the strain and the
magnetic field, the strain is given by:

S33 = d33H3. (3.20)
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Equation (3.20) can be used to estimate the dynamic strain produced by an oscillating
magnetic field H as it is required in the experimental stage of this work

3.3.2 Generation of torsional modes by Magnetostrictive principle

In this work, the fundamental torsional mode is generated and captured by using the mag-
netostriction principle. One advantage of this cost-effective method of transduction is the
fact that coupland is no required between the specimen and the transducer [58]. On the
other hand, magnetostriction principle provides a better performance to varying temperature
environments compared to the piezoelectricity-based transducer, mainly for the absence of
couplant. In the literature, it is reported that the temperature influence in the propagation of
guided waves for a range (from 20 ºC to 200 ºC) generates a drop in amplitude (9 db) [107].
The basic configuration of the transducer is illustrated in Figure 3.10 and the real one used in
the experimentation is depicted in Figure 3.11 . The set is comprised of two parts. The first
one is a solenoid coil which provides a dynamic magnetic field to the pipe or measures the
induced magnetic field through the propagation of the torsional guided wave in the waveguide.
The second one, is a magnetostrictive strip which supplies a residual circumferential bias
static field. The residual magnetization of the strip is obtained rubbing it with a magnet
in the circumferential direction. Thus, the most critical component of a magnetostrictive
system is the magnetostrictive material (ferromagnetic strip) used to transform electrical
energy into mechanical and vice versa. Its transduction efficiency in both acquisition and
transmission mode depends mainly on its physical properties. As a consequence, these
physical parameters must be considered to select the right ferromagnetic material to be used
in magnetostrictive transducers. For this reason, a magnetostrictive probe was acquired from
Guided Wave Analysis LLC company. The MsS probe consists of amorphous cobalt–iron
alloy strips (0.15 mm thick), which have lower eddy current loss and larger magnetostriction
[58]. The solenoid coil was constructed of enameled wire of 0.32 mm of diameter (28 aws)
copper wound around the strip with 50 turns along its width, a system with an Arbitrary
Wave Generator (AWG) and amplifiers was used to excite the coil with the modulated pulse.
In general, to create a torsional stress, a helical magnetization is induced in the ferromagnetic
strip through the following procedure:

1. A bias magnetization (H0), static magnetic field, in the strip is induced in circum-
ferential direction through the passage of a permanent magnet as shown in Figure
3.12.
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2. A second alternate magnetic field HD of lower magnitude than H0 is created in axial
direction by the current flowing into a coil that surrounds the pipe circumference at the
strip position as seen in Figure 3.13.

3. Finally, the combined magnetic fields generate an applied alternate helical field that
according to the Villari effect will create torsional vibrations via shear stress.

 

Pre-magnetized 
FeCo Strip 

Solenoid coil 
(Dynamic field) 

Dynamic Field 

Fig. 3.10 Schematic representation of the magnetostrictive transducer

Fig. 3.11 Magnetostrictive transducer used in the experimentation

3.3.3 Single mode generation of T(0,1)

A key element of the inspection system is the selection and exploitation of a single mode.
In general, an excitation source can excite all of the modes which exist within its frequency
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Fig. 3.12 Induced static magnetic field "H0" in the FeCo strip
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Fig. 3.13 Dynamic magnetic field "HD" in the specimen
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bandwidth. Therefore, although troublesome to achieve, it is essential to design the trans-
ducers and the signal to excite only the chosen mode. In some experiments covers by this
thesis, the chosen mode for excitation in the inspection system is T (0,1). This mode is very
attractive because is non-dispersive over a wide bandwidth, so the signal shape and amplitude
are retained as it travels.

The T (0,1) mode consists of an axisymmetric torsion of the pipe and it can only be
produced by shearing stresses (circumferential motion). In order to only excite this mode,
some aspects must be considered.

• At low excitation frequency, the possibility to generate longitudinal and flexural modes
is reduced.

• As the flexural modes are not axisymmetric, they can be avoided when the transducer
elements are arranged axisymmetrically.

• Excitation frequency must be chosen below or equal to 50 kHz because the cutoff
frequencies of the lowest longitudinal and flexural modes in the dispersion phase
velocity curve are above.

• Due to that the dynamic magnetic field imposed over the pipe is smaller than the bias
magnetic field, it is not expected a meaningful magnitude of longitudinal modes.

• In the group velocity dispersion curve, Figure 3.14, it can be noted the presence of
two curved branches, L(0,1) and L(0,2) longitudinal modes. According to [116], The
L(0,1) mode has a "low-pass" type cutoff behavior with cutoff occurring at a frequency
given as flowpass, and the L(0,2) modes has a “high-pass” type cutoff behavior with
cutoff occurring at a fhighpass, as expressed in Equation (3.21) and Equation (3.22).

flowpass =

√
E/ρ

2πRmean
(3.21)

fhighpass =
1

(2πRmean)

√
1+

d2 (2+µ)E
6R2

mean (1−µ)(1−µ2)ρ
, (3.22)

where d and µ are the half-thickness of the pipe wall and the Poisson ratio respectively,
Rmean is the mean radius of the pipe, and the relation

√
E/ρ is the rod velocity, where

E and ρ are elastic modulus and density of the material respectively.

There is a frequency range between flowpass and fhighpass where L(0,1) and L(0,2)
cannot propagate, which is called "Dead zone". Reemplazing the values (E=210 GPa,
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Fig. 3.14 Dispersion curve for A-106, 1" schedule 40

ρ = 7800, kg/m3, µ = 0.33 and Rmean = 15.86) in Equations (3.21 and 3.22) a range
frequency between 55-60 KHz is determined. The same range can be graphically
identified in Figure 3.14.

• The width coil should be small or equal to half the wavelength of the target wave mode
at an excitation frequency; otherwise, the vibration caused by the wire at the end of
the coil will offset each other, reducing the vibration intensity of the expected guided
wave mode [56].

Based on the previous considerations and the recommendations of the magnetostrictive
transducer provider, a excitation frequency of 50 kHz was chosen. For this frequency a
wavelength of 6.5 cm is calculated. Thus, according to the provider the strip has to be smaller
than a 1/3 of the wavelength at the excitation frequency. Therefore, a strip and coil of 2 cm
of width are used for T (0,1) generation.

3.4 Effect of the source conditions in the wave field in hol-
low cylinders

Guided waves propagating in the axial direction in a hollow cylinder may involve longitudinal
and torsional waves. It has been demonstrated from an analytical point of view, the existence
of a doubly infinite number of modes i.e. infinite torsional modes, infinite longitudinal
modes and doubly infinite number of flexural modes[39]. The doubly infinite propagation
modes have proven orthogonal to each other, therefore they are called normal modes [95]. In
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hollows cylinders, flexural modes are non-axisymmetric modes. The longitudinal waves have
dominant particle motions in either radial and/or axial directions and the torsional waves
have dominant particle motions in the θ direction, as shown in Figure 3.15. The generation
of different modes depends on the waveguide and the source loadings conditions. Among
the different modes, axisymmetric modes (L or T ) are preferred because of their uniform
circumferential energy distribution. On the other hand, the acoustic field of non-axisymmetric
modes are complex and the volumetric energy distribution is non-uniform.

Fig. 3.15 Cylindrical guided waves modes

Now, the excitation of axisymmetric or non-axisymmetric modes is controlled by source
loading. For an axisymmetric source loading is expected axisymmetric modes such as longi-
tudinal and torsional. Contrary, if the source is non-axisymmetric only non-axisymmetric
modes are excited such as the flexural. The generated guided wave is the result of the super-
position of a multiple number of guided waves modes. Non-axisymmetric source loading is
preferred in certain circumstances e.g.

• When only a specific portion of the pipe is accessible

• When existing a limited number of actuators

• When it exists economical limitations

Several reasons have motivated the experimental and analytical study of the propagation
of non-axisymmetric guided waves, in [98], it has listed the main motivations: The presence
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of non-axisymmetric reflections due to irregular acoustic discontinuities, mode conversions,
difficulties in generating only axisymmetric modes, etc.

When non-axisymmetric guided waves are propagating, it is need to know in advance the
acoustic field and the energy distribution to evaluate the guided waves capabilities to explore
the volume under monitoring. Therefore, some considerations must be considered in issues
such as:

• Excitation central frequency

• Number and type of actuators

• Actuators dimensions

• Gap between actuators

All the previous items are indispensable to determine the wave field to assure an energy
wide coverage of the specimen under test.

The appropriate selection of the guided wave modes is one of the main tasks in the
setup of the monitoring scheme based on guided waves. In a cylindrical waveguide with
guided waves propagating in the axial direction, the ultrasonic field of a normal mode can
be represented by two indices n and m, where m is circumferential order and n is the index
of mode group. As mentioned above, three families of modes can be configured in the
tubing, longitudinal, flexural and torsional. When m = 0, the acoustic field of the modes are
axisymmetric along the cylinder circumference i.e. Longitudinal modes L(0,n), and torsional
modes T (0,n). Otherwise, the modes are non-axisymmetric, flexural modes F(M,n).

When the loading force is applied in the axial or radial directions of the waveguide,
only longitudinal and flexural modes can be generated. On the other hand, torsional modes
are excited by applying shear stresses (θ −direction) by using Electromagnetic Acoustic
Transducers (EMATs) and contact shear wave transducers.

The different modes present in a cylindrical waveguide can be observed in the dispersion
curves. In Figure 3.16 and Figure 3.17, are shown the group and phase velocity dispersion
curves for a 1” A.106, Sch 40 pipe. In these figures, for convenience not all the modes have
been showed and labeled. Some general observations can be done from these figures:

• For a specific frequency exists multiple numbers of guided wave modes, all of them
with different velocities.

• As frequency increases, the number of modes is also increasing and the group-phase
velocity difference between the flexural modes and the longitudinal mode of the same
family n becomes smaller
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• The phase velocities of the flexural modes are always larger than of longitudinal modes

3.4.1 Superposition principle applied to guided waves propagation

Guided waves propagating in finite structures is a kind of linear problem bearing two
important properties: different propagation modes are orthogonal to each other and they
behave in a linear fashion. Since the modes are orthogonal, the combination of modes that
produces a given displacement field is unique. Likewise, a combination of modes can be
converted into a unique displacement field. The linear behavior of the guided wave modes
allows each mode to be studied separately and then later combined using the superposition
principle [90].

Isolation of a particular mode o group of modes is one of the challenges in the implemen-
tation of a monitoring scheme based on guided waves. Axisymmetric loading in a specific
bandwidth can produce a well-defined guided wave in time domain. This type of propagation
can facilitate the localization of acoustic discontinuities in the explored volume. In the case
of non-axisymmetric propagation, the superposition principle is used to determine the set
of propagation modes in the guided wave. Amplitudes of each individual mode can be
calculated by using the Normal Mode Expansion method (NME) [98, 67, 66, 24].

When the loading force is applied in the axial or radial directions of the cylindrical
specimen, the field generated can be represented by the superposition of axisymmetric lon-
gitudinal modes L(0,n) and non-axisymmetric flexural modes F(m,n), all of them with
different amplitudes and velocities. If cylindrical coordinates are used in the representation
of the different wave fields i.e. displacement, stress and strain (u,ε,σ ) and the propagation
is axial in the Z −direction, the longitudinal modes are only functions of the radial coordi-
nate and the flexural modes are a function of both radial and angular coordinates. Stress,
displacement and velocity fields can be expressed in a general form as follows:

Vf = ∑R f
m
n (r)ei(mθ+ωt−ξ nz), (3.23)

where Vf represents the total displacement, stress or velocity (u, σ or v) fields in cylindrical
coordinates f , which are independent of the cylinder axial direction z and time t, the function
R f

m
n (r) denotes the amplitude of each arbitrary L(m,n) propagation mode, i.e. n mode of the

m circumferential order, ω is the angular frequency and ξ n is the wavenumber of the n mode.
Therefore, all wave fields (u, v or θ ) can be described as the weighted sum of the contributions
of the different activated modes L(m,n), e.g. σr = A2

3 (r)ei(2θ+ωt−ξ 3z)+A4
1 (r)ei(4θ+ωt−ξ 1z),

where σr is the resulting sum of the radial stress of the L(2,3) and the L(4,1) modes.



3.4 Effect of the source in the wave field 51

3.4.2 The Normal Mode Expansion Method

The Normal Mode Expansion (NME) method can be used to analyze the multimode propaga-
tion of guided waves since this method provides the amplitude of any generated waveguide
due to the application of prescribed (time-harmonic) surface tractions or stress. Based on
the NME method, the amplitude coefficients for all of the generated harmonic modes are
obtained. Due to the difference of phase velocities for different modes, the superimposed total
wavefield varies with propagating distances and hence develop specific particular particle
displacement distribution patterns (angular profile). This profile will change with the propa-
gation distance. This varying non-axisymmetric angular profile of guided waves represents
a non-uniform energy distribution around the hollow cylinder cross-section and thus has
an impact on the inspection capability of guided waves [67]. To apply this technique in
acoustic, it is needed to develop a procedure for expanding arbitrary acoustic waveguide field
distribution as superposition of orthogonal waveguide modes.

The amplitude factor of the generated guided wave harmonics am
n can be estimated via

NME method. To use this method an orthogonality relation between the waveguide modes
should be verified and the complex reciprocity relation must be considered. In [24] and [6]
demonstrated the perpendicular character of modal fields of different circumferential orders
for u ,σ and v propagating along a circumferential waveguide, e.g. σ1

1 ∗σ2
3 are orthogonal

over the cross section of the cylinder; where σ1
1 is the stress field of the first mode of the first

circumferential order and σ2
3 is the stress field of the third mode of the second circumferential

order. In addition, [6] established the proof of orthogonality of guided wave modes in lossless
waveguide using the complex reciprocity relation in piezoelectric media, as follows:

∇ · [−v∗2 ·σ1 −σ
∗
2 · v1] = 0 (3.24)

Thus, the orthogonality relation between two modes M(m,n) and M(l,s) (M represents
either longitudinal mode L or torsional mode T ) can be verified via power estimation as
follows:

Pm lns =−1
4

∫∫
D
(v∗mn · T̂ls + v∗ls · T̂mn) ·−→ez dV = 0 m ̸= l or ξ

m
n ̸= ξ

l
s (3.25)

where D indicates the cross-sectional area of the cylinder and v∗ and T̂ are the velocity
and stress fields of the mode. The asterisk denotes complex conjugation.
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Once the orthogonality proof is done, it can proceed with the NME technique. The aim
is estimate the aM

n of each of the modes generated in the cylinder due to a specific external
excitation on the boundaries of the waveguide.

For the guided wave generator element shown in Figure 3.18, the loading condition is as
follows:

τθ =

{
P1 (θ)P2(z)eiξ m

n zêθ |z| ≤ L, |θ | ≤ α r = b
0, |z|> L, or |θ |>α, r = b

(3.26)

where b is the outer radius, P1(θ) describes the angular variation and P2(z)eiξ m
n z describes

the axial variation of the guided wave mode n of circumferential family m with the applied
shear loading. The shear transducer loading is assumed to only produce shear stresses in the
θ direction. Such a partial loading can generate a group of torsional modes T (m,n) resulting
from the match between the loading condition and modal wave structures. The amplitude
factor of each generated mode propagating in the +z-direction, am

n can be calculated using a
normal mode expansion (NME) method as described in [24] using the following expression:

   

L 

α 
ri 

rext 

Actuators 

Fig. 3.18 An ultrasonic wave generator is loaded on a hollow cylinder with inner radius ri
and outer radius rext = b. The axial length of the loading is L and the circumferential length
is α .
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am
n =−Rm∗

nr (b)e−iξ m
n z

4Pmm
nn

∫ −α+2π

−α

Θ
n
z (nθ) p1 (θ)dθ

∫
α

−α

p2 (z)e−iξ m
n zdz, (3.27)

where the superscript * denotes a complex conjugate, Rm
nr denotes the amplitude velocity of

the n propagated mode with m circumferential order or the radial component value of the
wave structure of mode L(n,m) at the outer surface of the cylinder r = b. The term PMM

nn is
the power flow carried by the mode L(n,m) across the cross section D of the cylinder defined
by:

Pmm
nn =−1

4

∫∫
D
(vm

n ∗ ·T m
n + vm

n ·T m
n ∗) · êz dσ (3.28)

where vm
n and T m

n are the particle velocity vector and stress tensor of mode L(n,M),
respectively. It can be clearly seen from Equation (3.27) that the amplitude factor of a
generated guided wave mode is determined by three parts [95]:

1. Rm∗
nr (b)e

−iξ m
n z

4Pmm
nn

2.
∫−α+2π

−α
Θn

z (nθ) p1 (θ)dθ

3.
∫

α

−α
p2 (z)e−iξ m

n zdz

The first term is the ratio between the outer surface wave structure value and the power
flow of mode L(n,m). This relation describes the excitability of mode L(n,m) for source
loading in radial direction. This form arose when it is assumed pressure loading conditions.

The second term describes the effect of the circumferential loading distribution in the
excitation of circumferential orders. This term is the inner product of the circumferential
distribution of mode L(n,m) and the loading, which represents the likelihood of the loading
and mode L(n,m) in the circumferential direction.The better these two distributions match
each other, the greater the potential that the mode L(n,m) will be accurately generated.
Notice that for axisymmetric source loading the inner product in the circumferential direction
vanishes except for n = 0 producing only axisymmetric modes.

Likewise, the third term describes how similar the traction distribution in the z-direction
is compared to that of mode L(n,m). The more similar they are to each other, the greater
chance that the mode will be accurately generated.

To summarize, Equation (3.27) describes the similarity between distributions of the
source and the mode L(n,m). The better they match each other, the greater chance that the
mode will be generated. Now, for the case at hand, experimentation was realized using an
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axial loading by a nonaxisymmetric transducer distribution (only one PZT adhered to the pipe
external surface, covering around of 2° of the pipe perimeter) and a circumferential loading
for the case of the magnetostrictive transducer (surrounding whole pipe perimeter). At it
was predicted by the second term of Equation (3.27), magnetostrictive actuator generated
the axisymmetric fundamental torsional mode T (0,1). Contrary, non-axisymmetric loading
PZT actuator produced a wavefield rich in overlapped wavepacket. Thus, next, a study of the
effect of partial loading in the generation of m circumferential orders is provided.

Now, in the case of the PZT, only the second term provides valuable information because
the loading array distribution only contribute to the excitability of circumferential orders. In
order to study to estimate the amplitude of the generated modes due to the application of
prescribed (time harmonic) surface tractions, the NME is implemented in a Matlab script.
Now, the effect of the actuators configuration in the wave field is reduced to the contribution
of the second term of Equation (3.29), which is explicitly expressed as [24]:

< θ
m
r , p1 >=

4ap0Sin
(mα

2

)
m

I
2−1

∑
η=0

Cos
(

m(2η +1)π

I

)
(3.29)

Where θ m
r is the angular characteristic function for m circumferential family modes, p1

is the applied surface loading condition, α the angular extent of the actuators, a is the inner
radios, m the circumferential order, I is the number of PZTs equally spaced elements.

For the studied case here, which involves a finite-sized transducers array which produces
shear traction on the outer surface of the cylinder i.e., tangential to the surface, and vanishes
outside of the given region, see Figure 3.18 and Equation (3.26), the use of the NME provides
some results presented in Figures 3.19-3.20.

As shown in Figures 3.19-3.20 smaller partial loading and small number of traducer
equally spaced will make the higher order modes (circumferential orders) have larger am-
plitudes and also a wave field rich in wavepackets. While undesirable whether the main
target is to estimate the time of flight of the propagated wave it may result very appropriate if
statistical tools are implemented.

The results presented in Figures 3.19-3.20 can be extended to the experimental tests
performed in this thesis with only one PZT attached to the pipe, providing a tangential
loading in z direction. Although the analysis is derived for a tangential loading in θ direction,
a similar conclusion can be inferred in the case of longitudinal and flexural modes.

Finally, in the case of the magnetostrictive transducer, used in the second part of this
thesis, which is adhered around the whole perimeter of the pipe, the second term of Equation
(3.29) is reduced to
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Fig. 3.19 Amplitude factors of axisymmetric and non-axisymmetric modes for torsional
family at 100 kHz excited in a 1” Sch 40 pipe by applying in one traducer at 2°,10°,90° and
180° partial loading.
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Fig. 3.20 Amplitude factors of axisymmetric and non-axisymmetric modes for torsional
family at 100 kHz excited in a 1” Sch 40 pipe by applying in 10 traducers at 10° partial
loading and two transducer at 90° partial.
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< θ
0
r , p1 >= p0(4αa), (3.30)

where only axisymmetric torsional modes are generated i.e. T (0,1)



Chapter 4

Stress monitoring using PZTs in
cylindrical structures

4.1 Introduction

As mentioned in the introduction chapter many structures are exposed to load changes caused
by environmental and operation conditions (i.e. temperature and external force variations)
which may produce stress variations. This condition can affect the system integrity and a
catastrophic condition could be present. So, for some cases, it is imperative to continuously
trace variations of the stress condition, where the most widely used transducer is the strain
gage. Strain gages presents some limitations such as:

1. High influence of the adhesive layer on its performance.

2. Its focus on stress measurement is limited to the coupling point.

3. Pre-stresses are not exposed once the sensor is attached to the specimen

On the other hand, ultrasonic guided waves, unlike bulk waves and other available NDT
methods, have the ability of propagating along relative long distances over the waveguide,
preserving its sensitivity to structural condition changes. Thus, guided waves are used for
damage detection, damage localization and material characterization.

As mentioned in the Chapter 3, among the suitable transducers to generate guided
waves, PZTs are gaining the attention by their light weight and low price. In this research,
experimental tests were performed with thin disk PZTs attached to the pipe and excited by
a modulated pulse, where a complex wave pattern rich in wavepackets (longitudinals and
flexurals) is produced due to the combination of dispersion, multimode propagation and
wavefront overlapping.
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As above mentioned, analytical studies and experimental tests have shown that Acoustoe-
lasticity effect also have influence in the guided wave velocity producing slight wave pattern
changes. However, this method is slightly sensitive to the microstructure effects like grain
size [88], texture and structure [1], [102] and operational conditions such as temperature
variations [77] and sensor coupling [64].

When guided waves are compared for different stress states at the same temperature,
phase shifts are mainly attributed to traveling distance changes of the guided wave (actuator-
sensor) and to velocity changes due to the acoustoelasticity effect. Based on the previous
phenomena, estimation of stress in a waveguide could be achieved by measuring the Time
Of Flight (TOF) of the guided wave among piezoelectric transducers. However, this is a
complex task for the following reasons:

1. TOF changes are small in the stressed specimen or waveguide. For example, for metals,
TOF variation is less than 0.001 per MPA of applied stress [80], which demands high
precision in the experimentation

2. The presence of dispersion, multimode and, wavefront overlapping, due to the waveg-
uide shape, difficulty the estimation of TOF.

Thus, when the structure is subjected to stress, the stress effect in the propagated signal is
difficult to perceive because small changes in the total wave pattern are not readily detected.
Therefore, in the case of guided waves generated by PZTs in cylindrical waveguides, stress
monitoring tasks adopting only the wave observation, without any signal processing tool,
would be impractical. Basically, the main reason is because the propagated signal are strongly
overlapping making it impossible to specifically observe wave changes (velocity variations)
in the individual wavepackets. Additionally, it is also found variations in the amplitude of
the captured signal due to an induced voltage in the PZT by an additional strain exerted by
the applied stress

The main goal of this chapter is to monitor stress changes in cylindrical waveguides by
using ultrasonic guided waves (Longitudinals and Flexurals) generated by PZT’s transducers.
Firstly, a time domain approach to detect stress changes in hollow cylinders using guided
waves is investigated. The proposed scheme makes uses of the subtract method for stress
level estimation. Residuals are generated by signal subtraction of the reference signal, at
nominal condition, from the current signal.

Secondly, since tracking the variations of wave velocities due to stress are very sensitive
to external factors such as temperature, a statistical approach PCA-based initially at room
temperature is proposed, attending on the experience of the research group where this thesis
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is involved. PCA provides a nominal statistical model of the structure from which any
condition deviated from the nominal model can be detected via statistical indices.

Finally, while results of each stress scenario demonstrated the feasibility and potential
of using these formulations in the evaluation of the bending stress in hollow cylinders at
room temperature, the temperature varying conditions inclusion meaningfully reduce the
performance of these schemes. For this reason in the last part of this chapter, a modified
scheme is proposed based on an extended statistical PCA-model, in which is contained the
underlying temperature influence.

4.2 Experimental Setup

In order to cover a wide range of stress distributions acting in cylindrical waveguides, experi-
mental tests were conducted on two different steel specimens (solid and hollow cylinder);
each one is subjected to different stress profiles over the cross-section of the waveguide. For
the case of the rod (solid cylinder), the axial stress is applied perpendicular to the cross-
section producing an uniform stress distribution. In the case of the pipe (hollow cylinder),
the generated normal stress distribution produced by the pipe bending will vary linearly with
the radius, yielding compression and tension stresses in the same cross-section.

4.2.1 Steel Rod

A 12.7 mm (1/2”) diameter, 0.4m length, AISI 1020 steel rod (E = 200 GPa and µ = 0.29) is
instrumented with two PZT’s, separated by 0.4 m, in a pitch-catch configuration, (see Figure
4.1a). The specimen is subjected to stress by a servohydraulic, MTS universal machine mod
810 (see Figure 4.1b). The stress nominal condition is determined by the unload condition
while stressed scenarios are setup with tension and compression axial loads increasing in
magnitude from 5 to 10 kN in steps of 1 kN, where each step belongs to a different stress
scenario, named S1, S2, and so on consecutively until S6 (25% of the yield stress). The
studied stresses in the specimen are in the lower part of the stress-strain diagram, which
usually is the expected work zone for an element in a structure.

4.2.2 Hollow Cylinder

A 25.4 mm (1”) diameter, 6m length, schedule 40, A-106 (E = 210 GPa and µ = 0.33),
hollow cylinder is supported at the free ends by fixed supports. In this case, it is decided
to applied flexion loads to the specimen. The different stress conditions are produced by
changing the magnitude of the load in the middle length of the cylinder, L

2 , as shown in the
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(a) Schematic representation of the rod (b) Experimental mock up of the rod

Fig. 4.1 Rod test bench.
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Figure 4.2a. The nominal condition is determined by considering the absence of deflection
in the middle length L

2 of the cylinder. Under this condition the cylinder is experimenting
a negative bending moment and develops an internal stress of 5.96% of the yield strength.
Now, the magnitude of the load is changing while the pipeline deflection is increasing in
steps of 0.01 m up or down of the original axis position (baseline). Every 0.01 m of deflection
constitutes a different stress scenario, in total seven scenarios are studied: five concave
upwards deflections and two concave downwards. Concave up deflections are denominated
D1 for 0.01 m, D2 for 0.02 m and so on consecutively until D5 for 0.05 m (21.5% of the
yield strength), concave down deflections are denominated D6 for 0.01 m and D7 for 0.02m
up of the baseline. Changes in the load magnitude at the L

2 position in the cylinder produce
axial stresses. So, a simplified but sufficient analytical model is used to track variations
in the normal stress because of force variations. Under this scenario the cylinder can be
treated as a beam with constant cross-sectional area in which loads, weights and reactions,
are applied perpendicular to its axis. It is assumed that the loads and the reactions are in a
simple plane (x,y plane). Given the applied loadings, beams develop an internal shear force
V and bending moment M that, in general, vary from point to point along the axis of the
beam (cylinder). An expression, invoking the Bernoulli-Euler model for beams, in which
the cross section plane initially perpendicular to the axis of the cylinder remains plane and
perpendicular to the neutral axis during bending, can be derived (see Equation (4.1)). This
expression provides an estimation of the axial stress along the cylinder length x−coordinate
for all different scenarios considered in the experimental part of this study. At this point, it
is noted that the maximum bending stress for a specific longitudinal distance is in the outer
distance (exterior radius).

∂ 2

∂x2

(
σmax

C

∫
A

y2dA
)
+q = 0 (4.1)

where the integral represent the moment of inertia of the cross sectional area about the
neutral axis, σmax is the maximum stress, C is the exterior radius and q is the distributed
force. Based on the Equation (4.1), an estimation of the maximum stress, in MPa, along the
hollow cylinder can be determined as follows: (Nominal = 12.5; D1 = 9.33; D2 = 17.95;
D3 = 26.8; D4 = 36.2; D5 = 45.6; D6 = 24.4; D7 = 36.3 MPa).

4.2.3 Influence of the Transducer Configuration on the Guided Wave
Propagation

Guided waves in this study are generated by thin disks of ceramic material (PZTs) configured
in radial mode. PZTs are attached to the testing specimens through an adhesive layer of
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(a) Schematic representation of the pipe

(b) Experimental mock up of the pipe

Fig. 4.2 Pipe test bench.
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cyanoacrylate, after a preparation of the surfaces and a settling time of the couplant layer.
Among the suitable couplant materials cyanoacrylate has showed high repeatability with
low ultrasonic impedance [93]. For the two studied specimens, the excitation pulse of the
partially loading PZT attached to the specimen is a 100 KHz, five cycles Gaussian-modulated
sinusoidal (See actuated signal in Figure 4.3). The excitation frequency is chosen to match
the resonant frequency of the available PZT transducer. The contact area between PZT and
the surface is around of two degrees. In consequence, the distribution of the acoustic field
generated by the PZT in cylindrical waveguides diverges circumferentially, besides guided
waves propagation depends on factors as mode, frequency, cylinder size, propagation and
distance [66]. In addition, in the case of the studied waveguides due to a high ratio of wall
thickness respect to internal radius, the cylinder contour dominates at very low frequency
(wall thickness is far less than the wavelength) yielding a characteristic wave pattern, with a
lot dispersion, as a result of the superposition of several guided waves, see the sensed signal
shown in Figure 4.3.
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Fig. 4.3 Example of actuated and captured signals in a steel pipe φ = 25.4 mm.

According to the normal mode expansion method [98], longitudinal and flexural modes
(L(0,1),F(1,1),F(1,2),F(2,1)) should be generated by non-axisymmetric surface loading
as shown in the dispersion curves depicted in Figures 4.4 and 4.5 [9]. On the other hand, the
contour effect generates a lot of wavepackets. Therefore, the wave pattern is rich in modes
and wavepackets. Although this type of wave pattern is undesirable for TOF estimation and
consequently for localization, it provides the opportunity to implement statistical tools, e.g.,
PCA. On the other hand, observing an example of the sensed signal for the pipe experiment, as
shown in Figure 4.6, slight variations in the phase shift are nonlinear and almost unnoticeable
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changes in the amplitude of the waves for different stress scenarios (UND = 12.5, D1 = 9.3,
D2 = 17.9, D3 = 26.8, D4 = 36.2 MPa). Thus, a simple conventional velocity measurement
is a complex task because different velocity variations for the same stress are expected for
each propagation mode, as shown in Figure 4.6b. This complexity and nonlinear behavior
encourages the use of a statistical tool as PCA to detect any slight changes in the wave
produced by different conditions of propagation.

Non-axisymmetric source loading is preferred in certain circumstances, for example
when only a specific portion of the pipe is accessible, when there exists a limited number of
actuators and for economic reasons. The PCA-based algorithm is programmed in Matlab,
and a picoscope 2208 is used as DAQ system. A total of 100 experiments were performed
and recorded for each stress scenario. The baseline model is obtained by using only 70
experiments, while 30 remaining are used for model validation. The principal components
were determined by means of the baseline model, where 60 were retained for a 99.8% of data
variability.
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Fig. 4.4 Group velocity dispersion curve for the rod.

4.3 Signal-based stress monitoring approach

4.3.1 Introduction

In SHM schemes, a symptom represents a specific characteristic expressed by a signal
resulting from a certain condition in the system. Symptoms of abnormal conditions are
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Fig. 4.6 Nonuniform variations of phase shift and amplitude for different scenarios.
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manifested as deviations of a nominal value evaluated by subtracting the current state to the
baseline obtained in the structure nominal condition.

In our case, signal subtraction approach relies on the possibility of estimating the struc-
ture condition based on gathered information from the variation observed in the captured
ultrasonic signals over time. The assessment of the specimen condition is permanently
governed by the residual signal left after subtraction. Residuals are obtained by the simple
subtraction of a baseline signal obtained from the structure in a pre-established nominal
condition from a signal captured from the structure in operating conditions.

The subtraction approach also relies on the hypothesis that the recorded signal is stable if
damage or abnormal condition is not present. If the perfect subtraction between the current
signal and the baseline signal were possible to achieve, the presence of an abnormal condition
could be deduced from the observation of changes in the residual of the subtraction. In a
real inspection problem, where perfect subtraction is not achievable, the occurrence of a new
condition can be detected only when the residual of the new condition is sufficiently higher
than the residual after subtraction in the nominal condition. Besides abnormal conditions,
many other factors may also exert influence on residuals [105].e.g.

• Changes in temperature

• Loading conditions in the waveguide

• Instrumentation drift

• Boundary conditions

• Structural changes

• Other environmental conditions

These influences are undesirable because they may result in a misjudgment of the
condition of the system (false alarm). The scope of this work, it is limited to study residuals
produced by the presence of loading conditions in the waveguide. Other external factors are
beyond of this work and it is left to a future work.

The subtraction approach for the problem at hand is considered because the propagated
signal presents a complex wave pattern as a consequence of dispersion, multimode propaga-
tion and wavefront overlapping, see Figure 4.7. Basically, the propagated signal is strongly
overlapping making it difficult to perceive wave changes (velocity variations) in the individ-
ual wavepackets. Therefore, adopting only time domain wave observation without signal
processing tools would be impractical.
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Fig. 4.7 Propagated signal in the pipe

4.3.2 Basic principle

In order to gain a better insight on how guided wave signals are influenced by stress variation,
it is followed the analytical approach proposed in [21]. Partial differentiation of time t with
respect to σ at constant temperature T in the expression t = d/v, where d is the distance
between actuator and sensor and v is the propagation velocity, yields .[

∂ t
∂σ

]
T
=

1
v

∂d
∂σ

− d
v2

∂v
∂σ

. (4.2)

Using the constitutive relation (Hooke´s law) σ = Eε ,where E is the Young´s modulus
and ε is the strain, the following relation is obtained:

∂d
∂σ

=
d
E
, (4.3)

and,

∂v
∂σ

= k, (4.4)

where k is the coefficient of change in phase velocity with stress, the relation given by
Equation (4.2) can be written as: [

∂ t
∂σ

]
T
=

d
v

[
1
E
+

k
v

]
. (4.5)

Since k/v is generally significantly greater than 1/E, in Equation (4.5), it can be con-
cluded that the main contribution to the time shift due to stress variations is given by the
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change in the wave velocity with the stress i.e. Acoustoelasticity effect. Furthermore, the
time shift is directly proportional to the propagation distance d and since the propagation
velocity v appears in the denominator of Equation 4.5, faster modes would be less affected
than the slower ones.

Now, when two harmonic signals are subtracted, a new signal emerges with a new
amplitude and peak value. Because it is expected changes in velocity by the acoustoelasticity
effect and thus time shifts, simulations of shifted time signals are performed to analyze the
obtained residual signal.

As it can be inferred, a variation of velocity between the subtracted signals will produce
peak positions different to the peak position of the reference signal. In addition, the obtained
residual peak magnitude is also influenced by the time shift between the two signals.

In order to grasp a better understanding of the velocity change effect in the subtraction
approach. Let us consider three modulated pulses S0(t), S1(t) and S2(t) that have propagated
at three different stresses (σ0,σ1 and σ2) for a distance d with velocities v0@σ0 , v1@σ1 and
v2@σ2 respectively, where (v1@σ1 > v0@σ0 > v2@σ2) all of them slightly different from each
other due to the acoustoelasticity effect.

Signal S0(t) can be considered as the baseline and S1(t) and S2(t) as current signals at
different stressed scenarios. Due to the presence of different stresses, the arrival times of
S1 and S2 signals will differ by δ t and −δ t. Our aim is to relate the difference in the pulse
arrival time to the change in stress of the structure and the residuals behavior. For the sake of
simplicity, only stress and deformation in axial-direction are considered. In addition, [105]
proposed an expression to estimate the residuals magnitude of 2 shifted pulses by δ t with
equal magnitude (u0) and frequency ( f ), generated by a Hanning window, as follows:

RMax = |S1 (t)−S0 (t)|= 2π f u0δ t. (4.6)

Simulations showed that Equation (4.6) is only strictly valid for δ t < 0.5T , where T
represents the period of the signal. Besides, for the same time interval, they reveal residual
peak values located ahead in time with respect to the S0 peak value for VS1 >VS0 >VS2 , as
presented in Figure 4.8.

As a conclusion, when δ t < 0.5T and the magnitude of each of the subtracted pulses is
the same, the residual peak location does not provide accurate information about the velocity
relationship between the current pulse and the reference pulse, i.e. if velocity is increasing or
decreasing with respect to the reference signal. Additionally, in Equation (4.6), the residual
magnitude is proportional to the δ t in both directions, no matter if the signal is delayed or
advanced.
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Fig. 4.8 Schematic of the δ t = 0.1T and residuals signals for a 5 cycle Hanning pulse signals

Now, when δ t = 0.5T , the residual peak value of the subtraction between S2 and S0

coincides in time with the S0 peak value, The acquired residual signal by the subtraction
between S1 and S0 produces a residual peak location forward of the reference peak value, as
shown in Figure 4.9.
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Fig. 4.9 Schematic of the δ t = 0.5T and residuals signals for a 5 cycle Hanning pulse signals

Last, when δ t > 0.5T , the residual peak value of the subtraction between S1 and S0, R1

signal, is located to the left of the S0 peak value and the residual peak value of R2 is ahead of
the S0 peak value, as noted in Figure 4.10.

As a general conclusion, from simulations of pulse velocity variations between waves with
the same magnitude in the three studied cases i.e. ( δ t < 0.5T , δ t = 0.5T and δ t > 0.5T ),
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residual time location and its magnitude do not provide enough information to estimate
magnitude and direction of the velocity change when a unique pulse without dispersion is
analyzed. Now, as mentioned above, Acoustoelasticity effect produce slight variations of
velocity, so it is expected small time shift much lesser than 0.5T . However, experimental
tests at different room temperatures revealed values of δ t greater than 0.5T . For this reason,
subtraction approach is not robust for detecting the different levels of stress in a varying
temperature environment.

Furthermore, for studied experimental cases in this thesis, where the propagated signal
is complex comprised by different wavepackets (multimodal propagation) with the com-
bined effects of dispersion, material elongation and wavefront overlapping, the subtraction
approach must be complemented with some signal processing techniques. In our case, based
on the experience of previous works of CODALAB, correlation is proposed as the suitable
preprocessing step to improve discrimination tasks. In addition, extra signal features (resid-
uals RMS and the current position of the peak value with respect to the nominal position)
showed suitable capabilities for discerning among the different stressed scenarios at room
temperature.
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signals

4.3.3 Subtraction-based stress monitoring approach

This section presents the proposed stress monitoring scheme applied to a pipe subject to
bending stress, based on a subtraction approach at room temperature. The guided wave
propagation in a specimen under stress compared with the wave in the nominal condition
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experiences changes in amplitude and shift. An initial reference time trace, S0(t), containing
guided wave signals is captured from the hollow cylinder. For the purposes of this analysis, it
is assumed that this time trace contains just one signal resulting from the nominal condition.
In the reference time trace, the signal from the structural feature corresponds to wave
propagation over a distance d at velocity v in the time window (t). Later, the presence of
stress in the structure has changed and another time trace, S1(t), is recorded at the same (t)
with a different acoustoelastic velocity v(σ) and an elongated distance de(σ). The purpose
of this analysis is to estimate the residual signal when S0(t) is subtracted from S1(t) at the
same room temperature. In this proposal, to improve the residual sensibility a normalized
auto correlation of the current signal, rxx, and a cross correlation between the current sensed
signal S1(t) and the nominal sensed signals S0(t), rxy, are used instead of the raw signals.
Examples of these signals are presented in Figures 4.11,4.12 and 4.13. Autocorrelation and
cross correlation are calculated as follows:
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Fig. 4.11 Autocorrelation.

rxx(n) =
1
N

N

∑
n=0

S0(n)S0(n− t), (4.7)

rxy(n) =
1
N

N

∑
n=0

S0(n)Si(n− t), (4.8)

where N is the number of signal samples, t is defined in the interval (−N ∗Ts,(N −1)∗Ts).
Then, residuals Ri, as presented in Equation 4.9, are the difference between the nominal auto
correlation, Equation (6.14), and the different stressed cross correlation scenarios, Equation
(6.15).
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Ri (n) = rxx (n)− rxy (n) , (4.9)

where i denotes the stressed scenarios. Based on the residual signal, two features for stress
monitoring are defined, the RMS value of Ri, Equation (4.10), and the current position of
the peak value with respect to the nominal position, named Reference Time (RT ), Equation
(4.12). The latter feature allows to discriminate between concave upwards and concave
downwards cylinder deflection.

VRMS =

√√√√ 1
2N −1

N−1

∑
t=−N

|Ri(t)|2, (4.10)

(Ai, pi) = max[Ri(t)], (4.11)

RT = pi − p0, (4.12)

where A(i) is the maximum residual value of signal Ri and pi is the time position of this
value and p0 occurs in the peak of the auto-correlation R0. The average correlation for each
studied scenarios is calculated using 100 experiments. The studied experiments correspond
to four concave upwards deflections emulating a loss of supports rigidity and two concave
downwards scenarios. Each scenario is obtained changing the deflection of the middle part
of the pipe in the test bench, as was mentioned in Section (4.2.2). Figure (4.14) presents
the studied scenarios in the plane RMS−Rt at room temperature (22ºC). Every scenario
studied correspond to a different level of bending stress in the pipe, which is labeled with the
absolute value of the maximum normal stress which can be located in a cross-section along
of the distance covered by the guided wave.

4.3.4 Discussion

While the stress estimation and its resolution is not as accurate as the obtained ones using,
e.g. dedicated strain gauges, the proposed supervised scheme to estimate bending stress has
the benefit of not requiring extra sensors; if guided wave transducers are already in place
as part of a structural health monitoring system or in the case of lack of them it is required
only a couple of PZTs. Therefore, this method is of particular interest for estimating bending
stresses by using the same instrumentation and captured signals that the utilized ones for in
situ imaging of damage.
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Fig. 4.14 Residual RMS and RT for the stressed scenarios.

As shown in Figure 4.14, the scatter plot RMS−RT is able to discriminate not only
the different stresses but also the hollow cylinder bending shape at low room temperature
variation. The RMS value tends to growth with the increase of the absolute stress magnitude
for both shapes of bending i.e. concave upwards and concave downwards, but the RMS
value rise is in different proportion for each bending shape. It should be noted that the
measurement of absolute stress levels requires reference data taken in the unloaded case
before implementing this approach in the field. On the other hand, the RT value is close to
zero for the bending concave downwards. Thus, not a meaningful time shifting is expected
of the correlated signal for this type of bending.

One limitation of this approach is the assumption that there are no other contributions
to time shifts than stress variations. Though this assumption may be reasonable in the
laboratory, it may not hold in a realistic operating environment where temperature changes
can be expected simultaneously with stress variations. Therefore, in the next section, a new
robust scheme PCA based is proposed which it will incorporate room temperature changes.

4.4 PCA-based stress for non-varying temperature condi-
tions.

4.4.1 Introduction

The next two sections deal about stress monitoring schemes founded on black box modeling
using statistical tools: The first is devoted to present a stress monitoring PCA-based scheme
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at slight variations of the room temperature. Next, as a result of analytical studies and
experimental tests, it is realized the high influence of temperature in the proposed scheme
performance. Thus, stress estimation under varying temperature conditions is tackled using a
system extended base of knowledge, as a reference or nominal data, to derive the nominal
structure model based on PCA.

The multivariable nature of the stress influence in the wave pattern is experimentally
evident comparing signals with respect to a different stress state. It is found varied time shifts
for the different wave packets that component the propagated wave captured as a result of
different changes in velocity for each propagating mode. Thus, a multivariable statistical
tool such as Principal Component Analysis (PCA) can be used as a data-driven modeling
approach offering a suitable alternative to track changes in the guided wave produced by
the stress. PCA has been previously applied for extracting structural damage features [115];
detection of nonlinearity effects in structural integrity monitoring of offshore jacket-type
structures [78], and a simplified solar array system [54]; dimensionality reduction of multiple
sensor arrays in structure damage classification [17]; evaluating progressive cracks in a steel
sheet and turbine blade of an aircraft [81]; evaluating the tensile stress in a rod [92]; and
distinguishing abnormal condition [55].

4.4.2 Theoretical Framework

4.4.2.1 Principal Components Analysis (PCA)

PCA is used in this approach as a data driven modeling technique in order to represent the
wave pattern at different structural stress conditions in a new reduced space. This statistical
tool has been extensively applied for extracting structural damage features and to discriminate
features from damaged and undamaged structures [41, 55, 81].

The main objective of PCA is to distinguish between the most relevant dynamics changes
of the system, the redundant information and signal noise. This objective is essentially
accomplished by defining a new coordinate space where the variance is maximized and
correlation between variables is minimized. In other words, the objective is to find a linear
transformation orthogonal matrix P ∈ MI×K(R) for transforming the original data matrix X
into the form:

T = XP ∈ MI×K(R). (4.13)

where the matrix P contains the principal components of the data set or loading matrix and
the matrix T is the transformed or projected matrix onto the principal component space, also
called scores matrix. The columns of P are the eigenvectors of the covariance matrix CX
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organized in descending order of its associated eigenvalue. In this way,

CXP = PΛ, (4.14)

where
CX =

1
K −1

XT X ∈ MI×K(R), (4.15)

and Λ is a diagonal matrix that contains the eigenvalues λi, i = 1,2, . . . ,K.
The eigenvector with the highest eigenvalue is the most representative component for

the data with the largest quantity of information. Geometrically, the jth-column vector (t j)
of the transformed data matrix T is the projection of the original data over the direction of
vector p j ( jth principal component). The projected data in the new space are uncorrelated
and have maximal variance, thus it can be potentially the best representation of the process
features. Since eigenvectors are ordered according to variance, it is possible to reduce the
dimensionality of the data set X by choosing only a reduced number, ρ < K, of eigenvectors
related to the ρ highest eigenvalues. In this way, given the reduced matrix P̂ ∈ MK×ρ(R),
the score matrix is defined as

T̂ = XP̂ ∈ MI×ρ(R). (4.16)

T̂ can be projected back onto the original K-dimensional space to obtain a reconstructed data
matrix as follows:

X̂ = T̂P̂T ∈ MI×·K(R). (4.17)

The difference between the original matrix X and the reconstructed one X̂ describes the
unrepresented variability in the projections and it is defined as the residual error matrix E as
follows:

E = X− X̂

= X− T̂P̂T

= X−XP̂P̂T ,

so

E = X
(

I− P̂P̂T
)
∈ MI×K(R) (4.18)

For simplicity, the caret is removed from the reduced matrices (T̂ and P̂) in the rest of the
thesis. If Equations (4.16) and (4.18) are analyzed in terms of experimental trials, it can be
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obtained that:
tT
i = xT

i P ∈ Rρ , i = 1, . . . , I (4.19)

and
eT

i = xT
i
(
I−PPT) ∈ RK, i = 1, . . . , I (4.20)

where, xT
i ∈RK denotes the vector of the ith experimental trial (ith row of the original matrix

X), vector tT
i is the projection of xi onto the first ρ principal components (ith row of the score

matrix T) and eT
i is the residual error of the ith experimental trial (ith row of matrix E).

4.4.2.2 PCA Based indices

One well-known PCA statistical index used to distinguish abnormal behavior in a process is
the Q-statistic or Square Prediction Error (SPE)-statistic.This index uses the residual error
matrix E to represent the variability of the data projected on the residual subspace. The
Q-statistic is based on the assumption that the underlying process follows approximately
a multivariate normal distribution, where the first moment vector is zero. Therefore, this
index denotes that events are unexplained by the reduced model. In other words, it is a
measurement of the difference, or residual, between a sample and its retrieved version by
using the reduced model. The Q-statistic of the ith experimental trial is defined as the sum of
the squared residuals of each variable as follows:

Qi = ∥ei∥2 = eT
i ei =

K

∑
ℓ=1

e2
i,ℓ (4.21)

= xT
i
(
I−PPT)(I−PPT)T

xi (4.22)

= xT
i
(
I−PPT −PPT +PPT)xi (4.23)

= xT
i
(
I−PPT)xi (4.24)

where ei,ℓ ∈ R denotes the ℓth element of the vector ei, ℓ= 1, . . . ,K.
PCA studies also include Hotelling’s T 2-statistic index. This statistical index is a gen-

eralization of Student’s t-statistic that is used in multivariate hypothesis testing. It denotes
the inner change of principal component model. T 2-statistic of the ith experimental trial is
defined by the averaged sum of its projection into the new space as follows:

T 2
i =

ρ

∑
r=1

t2
i,r

λr
= tT

i Λ
−1ti (4.25)

= xT
i
(
PΛ

−1PT)xi ∈ R,
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where ti,r ∈ R denotes the rth element of the vector ti –the projection onto the rth principal
component or rth score of the i experimental trial–; and λr ∈ R is the rth eigenvalue. T 2-
statistic only detects variations in the plane of the first ρ principal components which are
greater than what can be explained by the common-cause variations. In other words, the
T 2-statistic is a measure of the variation in each sample within the PCA model. Normally,
Q-statistic is much more sensitive than T 2-statistic. This is because Q is very small and
therefore any minor change in the system characteristics will be observable. T 2 has great
variance and therefore requires a great change in the system characteristic to be detectable.

4.4.3 Methodology

This section presents the contribution of this work in the field of stress monitoring in
cylindrical structures, experimentally validated in a stressed and piezo-actuated steel rod and
tube. The proposed methodology for stress monitoring based on PCA consists of two stages:
(i) modeling and (ii) stress monitoring (see Figure 4.15).

Fig. 4.15 General scheme of the proposed PCA based stress monitoring.

4.4.3.1 Modeling

In this stage, a statistical data driven model for the nominal condition of the piezo-actuated
specimen is constructed by using PCA. The next steps are followed:

1. A set of I experiments are conducted on the specimen at nominal condition (residual
or initial stress). The experiment consists of exciting the specimen by a PZT, via a
modulated pulse at a single probe position and capturing the guided wave by a PZT,
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at a point distant from the excitation, such that the interest zone is covered. This
measurement is repeated several times (experimental trials). The collected data are
arranged as follows:

X =


x11 x12 . . . x1k . . . x1K

. . . . . . . . . . . . . . . . . .

xi1 xi2 . . . xik . . . xiK

. . . . . . . . . . . . . . . . . .

xI1 xI2 . . . xIk . . . xIK

=


x1

. . .

xi

. . .

xI

= (v1|v2| . . . |vk| . . . |vk) (4.26)

This X ∈ MI×K(R) is the vector space of I ×K matrices over R, which contains
information from K discretization instant times and I experimental trials. Each row
vector (xi) represents measurements from the sensor at a specific ith trial. In the same
way, each column vector (vk) represents measurements at the specific kth discretization
instant time in the whole set of experiments trials.

2. Cross correlation analysis is applied between the acting and sensing signals of the I
experiments to eliminate noisy data trends.

3. The correlated signals are arranged in the matrix X̃ for I experiments of 2K-1 samples,
conducted on the same scenario in order to consider noise and variance due to the
stochastic nature of the technique.

4. The matrix X̃ is normalized by considering each column as a measured variable and
normalized to mean zero and variance equal to one for the I experiments. This step
minimizes bias and scale variance effects. The Equations (4.27)–(4.29) are used for
the mentioned preprocessing.

µ j =
1
I

I

∑
i=1

xi j, j = 1, ...,(2K −1) (4.27)

µ =
1

I(2K −1)

I

∑
i=1

2K−1

∑
j=1

xi j (4.28)

σ =

√√√√ 1
I(2K −1)

I

∑
i=1

(2K−1)

∑
j=1

(xi j −µ)2 (4.29)

where µ j is the mean of the experimental trials in the same column of X̃ , and µ and σ

are the mean and standard deviation of all elements of X̃ .
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Thus, a normalized cross-correlated undamaged matrix x̃ is obtained in a new reduced
space of coordinates with minimal redundancy and whose elements correspond to the scaled
values of the raw data according to:

x̃i j =
xi j −µ j

σ
, i = 1, ..., I, j = 1, ..,(2K −1) (4.30)

Then, a baseline statistical model is obtained, which consists of a linear transformation
(P) extracted from the singular value decomposition of the covariance matrix x̃, according to
that described in the previous section.

4.4.3.2 Monitoring

The monitoring stage consists of representing the currently acquired signals into the PCA
space by means of the Q-Statistics using Equation (4.16). The monitoring principle consists
of relating changes in the guided wave produced by the presence of stress with changes in
the Q-Statistics index. In this phase, several experiments are conducted over the steel rod and
the tube under load conditions, in order to discriminate different stress states by computing
the Q-Statistics index and comparing it with the baseline values. The general procedure for
detecting and distinguishing stresses on structures based on PCA is depicted in Figure 4.15.

4.4.4 Experimental Results

Several stressed scenarios were sequentially applied on the two specimens (steel rod and hol-
low cylinder) during a fixed time window. Then, a DAQ and signal processing is implemented
to compute the magnitude of the Q-statistics index for each sequential trail.

4.4.4.1 Rod

In the case of the rod, stresses were applied by using a MTS equipment. Experimental
results are illustrated in Figure 4.16 where, it is depicted the Q-statistic index (Q-index)
by each stress scenario (40 MPa, 47 MPa, 55 MPa, 64 MPa, 72 MPa and 79 MPa). It is
observed different relations between stress and Q-index: one for compression and the other
for tension conditions. It can be seen also an increasing Q-index with the absolute stress in
both conditions.

These results can be attributed to: (i) the different phase shift in the wavepackets, produced
not only for the change in distance between the PZTs as a result of the deformation but also
for the acoustoelasticity effect, and (ii) an amplitude variation of the sensed signal due to the
induced voltage across the PZT terminals. This voltage is yielded by the sum of two strains:
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the one produced by the stress applied to the specimen which is transmitted to the PZT via
an adhesive layer, and the latter produced by the dynamic perturbation (guided wave). These
two reasons affect the pattern wave in different ways for each load configuration. In other
words, for the same stress, the Q-index value is different for compression and tension.

This observation suggests the limitation of the proposed technique to distinguish tension
and compression stresses. However, in many real applications, due to the mechanical system
configuration in terms of loads, the information of the type of stress can be established a
priori or considered redundant.

Absolute stress for the studied scenarios (MPa)

30 35 40 45 50 55 60 65 70 75 80

Q
-S

ta
ti
s
ti
c
s

0

1000

2000

3000

4000

Tension

Fig. 4.16 Q-statistic for different tension stress scenarios in the rod.

4.4.4.2 Hollow Cylinder

In the case of the hollow cylinder, each stress scenario is well defined by applying different
forces in the L

2 position with a consequent normal stress generation function of the distance
by bending. Experimental results are similar to the presented in the rod case. Figure 4.17
depicts the Q-index by each stress scenario. It is also observed different relations between
stress and Q-index: for concave up and for concave down conditions. It can be seen also an
increasing Q-index with the absolute stress in both conditions. It is also observed that the
Q-index for the D6 and D7 scenarios (Concave down) present a decrease regarding the trend
of the concave up scenarios. This behavior may be attributed to reasons described in the rod
case and also to a wider stress range along the propagation path of the guided wave. Figures
4.18 and 4.19 illustrate the difference between the maximum and the minimum stress for
each scenario, e.g., D4 exhibits σmax = 36.22 MPa and σmin = 35.12 MPa (∆σ = 1.1 MPa),
in contrast D7 has σmax = 36.29 MPa and σmin = 17.39 MPa (∆σ = 18.9 MPa). Clearly, a
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large difference means a guided wave propagation in some structure regions with much less
stress than used to identify the scenario (σmax), so Q-index shows a consistently increment in
magnitude with the stress even in a nonuniform stressed waveguide. Similarly, as shown in
the rod case results, the proposed technique is not able to distinguish between concave up
and concave down bending.
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Fig. 4.17 Q-statistic for all studied scenarios for the hollow cylinder.
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Fig. 4.19 Stress difference by each studied scenario.

4.4.5 Discussion

In this section, a PCA based methodology for monitoring stress conditions at room tempera-
ture using PZTs is proposed and experimentally validated in two cylindrical specimens: a
solid cylinder (steel rod), subject to a pure axial load, and a hollow cylinder (pipe), subject to
bending. The proposed methodology is not intended to estimate stress absolute values, but
instead it is able and suitable to track stress variations with respect to a nominal stress state.

The effectiveness of the proposed monitoring scheme was demonstrated to yield stress
features indicators and to discriminate different stress scenarios. PCA technique, in particular
the Q-index, is a good tool for detecting the presence of different stress conditions, by
comparing the current index values with the nominal value via a threshold.

In a structure subjected to stress, stress variations cause changes in the arrival time
of the signal due to the elongation or shortening of the path between actuator and sensor.
Additionally, a change in the wave velocity is also expected due to the acoustoelasticy effect.
Both mentioned effects produce a slight phase shift in the received wavepacket, which were
verified by means of the experimental tests. Besides, these experiments revealed variation in
amplitude for the different stress scenarios.

In general, in a stress monitoring scheme, PZT-based in a pitch-catch configuration,
magnitude changes in the induced voltage across the PZT terminals (i.e., amplitude of the
captured signal) are yielded by the sum of the strains due to applied stress and the microstrains
produced by the guided wave propagation. All these changes of the ultrasonic guided wave
by propagating in a stressed medium can be easily tracked using the proposed methodology.
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Specifically, the studied scenarios in the steel rod and the pipe covered the first part of
the elastic region of the specimen (not damaged yet). In this region, the proposed strategy
was clearly able to distinguish variations in the stress conditions with enough capability to
discriminate among them. However, it does not distinguish whether the specimen is subject
to tension or compression (rod case), nor the type of bending (pipe case).

Although, the proposed methodology is able to recognize different stress scenarios,
the estimation of the applied stress magnitude requires further experimentation in order to
determine the appropriate statistical relation. However, in the case of the rod, changes in
the stress are with regard to the unstressed condition, hence it can provided a close absolute
value of the actual stress once the type of load, tension or compression, is known beforehand.
Therefore, the studied index constitutes a base for implementing a classifier algorithm to
differentiate stress structural conditions.

4.5 PCA-based stress monitoring for varying temperature
conditions

4.5.1 Introduction

In this section, a PCA-based robust stress monitoring scheme is proposed. Robustness in this
section refers immunity to changes of temperature to estimate the stress condition. Although
formerly it was demonstrated high capabilities of the PCA-based scheme to estimate external
mechanical stresses, all the experimentation was performed at room temperature. Since tem-
perature influences in material properties, the geometry of the waveguide and the transducers;
whichever monitoring scheme based on wave field pattern recognition substantially reduces
its effectivity in estimating the actual conditions when changing environmental conditions
such as temperature are present. Experimental and numerical simulations of the guided wave
propagating in materials under different temperatures have shown significant variations in the
amplitude and the velocity of the wave [21, 40, 43, 74, 30, 48, 3, 111]. This condition can
jeopardize the discrimination of the different stress scenarios detected by the PCA indices.
Thus, it is proposed a methodology based on an system extended knowledge base, composed
by a PCA statistical model which cover the nominal state at different discrete temperatures to
produce a robust classification of stress conditions under variable environmental conditions.
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4.5.2 Temperature effect on guided waves propagation

Several studies have been achieved to realize the effect of temperature on SHM schemes and
the potential side effects on signal-based or model-based monitoring approaches. The side
effects of this condition are the result of:

• Changes in properties of:

1. Piezoelectric transducer (elastic properties, piezoelectric constants)

2. Bounding layer

3. The structural substrate (elastic properties, density).

• Thermal expansion affecting geometrical parameters in all component of the monitor-
ing scheme such as:

1. Thickness

2. Length

There are many reported effects of temperature fluctuation in the guided wave. The first
effect and probably the most noticeable is the amplitude variation. In general, it is reported a
magnitude reduction when the temperature is increasing [40]. In addition to the amplitude
reduction is also found a velocity decrement (increase time of arrival) as the temperature is
raising [102].

The main causes of the effects previously mentioned are explained considering the
significant parameters in the guided wave propagation i.e. the Young´s moduli, piezoelectric
properties, thermal expansion. In general, a significant decrease in the Young modulus with
increasing temperature causing a reduction in velocity. The piezoelectric constants as cited
in Section (3.2.4), Equation (3.4), in particular the piezoelectric strain constant d31 and
the piezoelectric voltage constant g31, vary significantly with the temperature. While d31

constant is associated with the actuation, the g31 constant is associated with the piezo-sensor
sensitivity. The thermal expansion produces alterations in the geometric parameters and a
change of length in the path of propagation, causing a translation of the received signal in
time. In [21], it is presented an analytical model of the variation of the arrival time TOF or
δ t with respect to the temperature δT , see Equation (4.31).

δ t =
d
v

(
α − k

v

)
δT, (4.31)

where α is the coefficient of thermal expansion of the waveguide material, typically on the
order of 10−5 0C−1 for metals, d is the distance between actuator and sensor and v is the
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wave velocity. The relationship between wave velocity (due to changes in stiffness) and
temperature can be written as δν

δT = k, where k is typically of the order on 10−1 ms−1C−1.
Based on the relations reported by Equation (4.31) and the magnitude order of the variables
in it, we can infer that the change in velocity due to changes in temperature is the dominant
effect rather than the thermal expansion of the structure. In addition, the term d in Equation
(4.31) may assume the proportionality of time shift with distance between emitter and
receptor.

As a conclusion, because the proposed stress monitoring depends on features associated
to the wave pattern; temperature varying conditions in the system substantially alter the
recorded waveform and its effects can jeopardize any intent to detect stress variations in the
structure. Experiments have shown nonlinear changes of amplitude and velocity along the
propagated wave. In Figure 4.20, it can be observed different time windows of the same
captured guided wave along the pipe for different temperatures. As noted in Figure 4.20,
different time delays and amplitude changes with respect to the reference state (28 °C) are
present for each window. So, all analytical intent to estimate the temperature effect over the
wave is a complex task.
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Fig. 4.20 Non-linear behavior in amplitude and velocity of the guided waves in presence of
different temperatures for different time windows.

In some conditions, the temperature varying effect in the propagated wave can be highly
relevant and influence directly the monitoring result. In [21], it is observed variations in
the wavepacket attributed to the temperature more pronounced that the abnormal studied
condition. Thus, temperature robustness is an obligate requirement of practical applications
SHM schemes based on guided wave pattern recognition.
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4.5.3 Temperature effect on the PCA-Based stress monitoring scheme

Experimental test are performed to verify the effectiveness of the proposed scheme under
different room temperatures. The baseline is obtained at 25°C room temperature and no
special preprocessing is applied to the captured signal. Four different stressed scenarios
are experimentally studied (D1= 1 cm, D2=2 cm, D3= 3 cm and D4= 4 cm of downwards
deflection of the middle part of the pipe). The entire initial tests are performed twice to check
repeatability letters D and P are used to identify the different test rounds. In Figure 4.21 can
be observed the different configured clusters in the (T 2 −Q) space for each tested scenario at
room temperature. Every cluster is clearly distinguishable of each other for the same stress
conditions at room temperature.
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Fig. 4.21 Validation of the proposed methodology at room temperature (25°C) without an
extended baseline.

On the other hand, in Figure 4.22 is given the temperature effect on the couple (T 2 −Q),
by using the implemented PCA-Based monitoring scheme, in a temperature range between
25°C and 50°C. As presented in Figure 4.22, the configured clusters pertaining to different
temperatures at nominal load condition (No deflection in the middle part of the pipe) are
further (bigger values of T 2 −Q coordinate) compared with the index values that belong
to the stress region at room temperature of 25°C. While for the maximum studied stress
condition (4 cm of deflection in the middle part of the pipe) the Q− index is around 40
at 25°C room temperature, the Q− index for a normal condition (no deflection) at room
temperature of 50°C reports a Q− index around 1250. Therefore, any attempt to detect a
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T3=50°C

stressed condition under a different room temperature can produce a false alarm by using the
implemented monitoring scheme.

4.5.4 Modified PCA-Based stress monitoring scheme

The challenge of the modified methodology is to discriminate between temperature variations
in an unloaded specimen and changes in stress, in a temperature-varying environment.
The difficulty arises because both produce the same signature in the wave, i.e. changes in
amplitude and velocity. In fact, in some of the experimentally studied cases, room temperature
variations produce changes (amplitude and velocity) in the wave field more pronounced
than the stressed condition being monitoring. This behavior results in bigger values of the
proposed statistical indices, T 2 and Q.

The proposed PCA-based robust stress monitoring scheme has the same structure that
the previous explained in Section (4.4.3). Only some changes are needed to increase the
approach robustness to temperature variations. For the sake of brevity, changes in the scheme
steps are just enumerate as follows:

1. A XT matrix which superscript T stands for each room temperature is assembled
using the normalized cross-correlation between the launched and captured signals.
To improve the signal-to-noise ratio, 100 signals are captured and recorded for each
scenario of stress condition. Captured signals or experiments are rows in the XT matrix
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2. An extended baseline,XExt , i.e. a bigger X matrix containing the wave pattern for
a discrete range of temperatures between 24°C and 38°C, is assembled as shown in
Figure 4.23. Thus, XExt column size now is XT column size times the number of
discrete wave pattern at different temperature added to the extended baseline.

3. The couple (T 2-Q) statistical indices is determined in the post-processing stage.
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Fig. 4.23 Schematic representation of assembly of the X matrix

In the diagnosis stage, the X matrix for the current state signal is projected onto the PCA
model obtained using the extended baseline. Projections onto some of the first components
are obtained and the indices (T 2, Q) for the stressed scenarios are calculated and compared
with the baseline values. Values of the couple (T 2 −Q) for each scenario studied are shown
in Figure 4.24, shapes and colors represent different conditions of the pipe under test. In
order to verify inference capabilities, the room temperatures used to create the XExt matrix
were different to the room temperatures in the diagnosis or validation stage. In Figure 4.24,
it is shown the result for the different stressed scenarios at different room temperatures. The
results are obtained after the implementation of the preprocessing and using an extended
base of knowledge.

4.5.5 Discussion

Comparing the configured statistical index clusters for different temperatures at different
stresses scenarios in Figure 4.24, it can be noted, they are grouping around a limited and
defined region. A substantial improvement is appreciated estimating the stressed condition in
a varying temperature environment with respect to the scheme without the preprocessing and
the extended knowledge base.

As a conclusion, the proposed monitoring scheme, based on an extended data matrix XExt

including data (wave patterns) at different room temperatures; as an input to generate the
statistical model of the nominal condition, is effective unmasking the temperature effect in
the statistical indices. Some slightly variations are presented in the diagnosis stage under
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Fig. 4.24 Statistical PCA indices at different stress conditions and at different room tempera-
tures (28°C, 30°C, 33°C and 38°C)

different surroundings temperatures. In order to assure an appropriate monitoring, the same
piezo-actuation (PZT couple) must be maintained in the range of temperatures used in the
setting stage. The guided wave pattern is highly dependent of the PZT parameters and
the characteristics of the adhesive layer. In addition, although the proposed alternative is
suitable in the temperature range presented, higher temperatures significantly influence the
performance of the proposed monitoring scheme. Thus, a more extended research has to be
done searching for a less sensitive to high temperatures monitoring scheme.



Chapter 5

Dispersion curves of uniaxially stressed
plates by combining Effective Elastic
Constants and SAFE Method

5.1 Introduction

As mentioned in previous chapters, dispersion curves are required to characterize the propa-
gated guided wave pattern at a certain frequency. The exact trace of the dispersion curves is
obtained by using transcendent equations assembled by either the transfer matrix or the global
matrix methods [72]. Recently, the Semi-Analytical Finite Element (SAFE) method has
been proposed to compute rapidly and efficiently the dispersion curves for any constant cross
section specimen. SAFE has been used to analyze wave modes in cylindrical waveguides
[118, 50, 47, 75], to calculate leaky lamb waves [51], to obtain the dispersion curves in a
pipe elbow [52] and in materials with viscoelastic properties [7].

The influence of stress on guided wave propagation is relevant to both nondestructive
evaluation and structural health monitoring because of changes in received signals due to
both the associated strain and the acoustoelastic effect. The dispersion curves in stress-free
isotropic and anisotropic specimens have been widely studied and they can be adequately
described based on the theory of elasticity. However, this formulation is insufficient to
describe wave propagation in specimens under stress since small non-linearities in the stress-
strain relationships become significant, which can be described by using the acoustoelasticity
approach. The available literature devote to study the dispersion curves for stressed waves is
limited. Nowadays, it is restricted to two main research lines: One, is devoted to consider
that dispersion of propagating waves becomes directionally dependent in presence of load.
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Under this consideration, stressed wave propagation is studied as an anisotropic problem
using in this case the Christoffel equation and the fourth order tensor in the resulting wave
equation. This approximation is followed by [36],[35],[37]. The second one approach has
been considered by [69],[70],[71], [76] and it uses an extension of the Semi-Analytical Finite
Element (SAFE) method applying the full strain–displacement relation due to initial finite
strains in the structure. Then, the wave equation is derived in linearized incremental form,
where the pre-stressed configuration is considered to slightly deviate from the corresponding
unstressed one. In these researching works have been demonstrated a proportionality between
the stiffness matrix, required to describe the effect of axial load and the mass matrix, which
makes the use of existing software (stress-free) trivial to obtain the dispersion curves for
waveguides under stress.

In this chapter, it is proposed the use of effective elastic constants (EEC) in a SAFE
framework to calculate the stressed guided wave dispersion curves, considering the anisotropy
effect present when an unidirectional load is applied in an isotropic plate. In the context
of studies on ultrasonic wave propagation in stressed media (acoustoelasticity), a classic
formalism can be considered (second order) by replacing the elastic constants with EECs for
which the influence of stress is taken into account [28].

Then, the isotropic specimen subject to loading in one direction is studied by proposing
an equivalent stress-free anisotropic specimen. This approximation facilitates determining
the dispersion curves by using the well-studied numerical solution for the stress-free cases.
Finally, numerical data available in literature were used to validate the proposed methodology,
where it could be demonstrated its effectiveness as approximated method.

5.2 SAFE Analytical Model

In SAFE methodology, the waveguide is discretized over the cross section, while in an
analytical solution is considered or given in the wave propagation direction. Based on a
variational scheme by inserting the kinetic and potential energies into Hamilton´s equation, a
system of linear equations can be constructed with the circular frequency and wave number
as unknowns under stress-free condition. The unknowns can be solved using standard
eigenvalue routines. Therefore, SAFE approach allows computing dispersion curves in
waveguides with complex cross sections, such as: multilayered laminates [38] and rails
[71, 53, 2], where it is often computationally complex to solve analytical solutions. For
semi-infinite waveguides, SAFE has a better performance compared with the traditional FEM
due to only the constant cross-section is considered, which reduces the computational cost.
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Additionally, SAFE does not have missing roots problem, found in matrix methods, when
dispersion curves are computed [60].

In our case, SAFE methodology is derived for an isotropic, homogeneous, and stress-free
plate assumed as an infinitely wide waveguide, where the wave propagates along direction x
with wavenumber ξx and circular frequency ω , see Figure 5.1. Since, the cross-section of
the plate lies in the y− z plane, the analysis is formulated as a two-dimensional problem in
the plane strain formulation. Thus, the harmonic displacement (u), stress (σ ) and strain (ε)
field components in cartesian coordinate at each point of the waveguide are expressed by
Equation (5.1)

 

Ω 
d 

y 

x 
z 

Fig. 5.1 Schematic representation of the plate.

u = [ux uz]
T ,σ = [σx σz σxz]

T ,ε = [εx εz γxz]
T . (5.1)

The constitutive equation is expressed as follows:

σ = Eε, (5.2)

where, E is the elasticity matrix (real symmetric matrix for isotropic specimen) defined by
the following equation:

E =
2G

(1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 (1−2ν)/2

 , (5.3)

where G is the shear modulus and ν the Poisson´s ratio. The strain-displacement relationship
can be compactly written as follows:
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ε = Lu, (5.4)

where L is a three-dimensional differential operator defined as Equation (5.5) for the plate

L =

[
∂x 0 ∂z

0 ∂z ∂x

]T

. (5.5)

Thus, the compatibility equations can be written as Equation (5.6):

ε =

[
Lx

∂

∂x
+Lz

∂

∂ z

]T

u, (5.6)

where

Lx =

[
1 0 0
0 0 1

]T

, Lz =

[
0 0 1
0 1 0

]T

. (5.7)

5.2.1 Equations of motion

Cross-section waveguide dynamic is formulated using an energetic approach by inserting
the kinetic and potential energies into Hamilton’s equation. Although, energy balance must
contain dissipative terms, in this analysis the conservative form of Hamilton’s principle is
used. The variation of the Hamiltonian of the waveguide, which vanishes at all material
points, is

δH =
∫ t2

t1

δ (Φ−K)dt = 0, (5.8)

where Φ is the strain energy and K is the kinetic energy. The strain energy is given by

Φ =
1
2

∫
V

ε
TCεdV , (5.9)

where the upper script T means a transpose vector and V is the volume. The result of this
equation represents the elastic energy transmitted by the excitation source and propagated
along the waveguide via stress tensor. The kinetic energy is given by

K =
1
2

∫
V

u̇T
ρu̇dV, (5.10)

where ρ is the mass density and the dot represents a time derivative. By integrating by parts
the kinetic term, Equation (5.8) can be written as
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t2∫
t1

∫
V

δ

(
ε

T
)

CεdV+
∫
V

δ

(
uT

)
ρüdV

dt = 0. (5.11)

5.2.2 Finite Element Scheme

The cross-sectional domain of the plate, Ω, can be represented by a system of mono-
dimensional finite elements with domain Ωe, due to the simplification attributed to the
waveguide symmetry. The displacement expressions, discretized over the element domain,
can be written in terms of the shape functions Ni(z) and the nodal unknown displacements,
(Uxi,Uyi,Uzi), in cartesian coordinates. Such shape functions are considered in this formula-
tion as unidimensional, isoparametrics and quadratics.

ue
(x,z) (x,z, t) =

[
k

∑
i

Ni (z)U(x,z)i

]e

e−i(ξ x−ωt) = N(z) f ee−i(ξ x−ωt), (5.12)

where

N(z) =

[
N1 0 N2

0 N1 0
0 N3 0

N2 0 N3

]
f e = [Ux1 Uz1 Ux2 Uz2 Ux3 Uz3]

T , (5.13)

with N1 = η2

2 − η

2 , N2 = 1−η2 and N3 = η2

2 + η

2 represented in the local coordinates η

∈ [−1,1]. Consequently, the Jacobian |J| is equal to l/2, where l is the length of the element.
For a maximum frequency of interest, the mesh criterion of [31] indicates the maximum
element length, L < 2πCT/βωmax , where CT is the shear bulk wave velocity and β is 4 for
the case of quadratic elements.

The strain vector in the element can be represented as a function of the nodal displace-
ments:

ε
e = (B1 + iξ B2) f ee−i(ξ x−ωt), (5.14)

where B1= Lz(∂N/∂ z), B2= LxN.
By considering adiabatic wave propagation, the weak form of the governing balance

equation can be obtained by applying Hamilton’s principle and adding up the contributions
of every element as in the standard FE method. Indicating by nel the total number of
cross-sectional elements, the discrete form of the Hamilton formulation of Equation (5.11)
becomes
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t2∫
t1


Nele⋃
e=1

∫
Ve

δ

(
ε
(e)T

)
Cε

(e)dVe+
∫
V

δ

(
uT

)
ρüdV

dt = 0 (5.15)

The substitution of Equation (5.14) into the strain energy term of Equation (5.15) with
some manipulations produces

∫
Ve

δ

(
ε
(e)T

)
Cε

(e)dVe =
∫

Ωe

δ

[
f (e)

T (
BT

1 − iξ BT
2
)]

C(B1 − iξ B2) f (e)dΩe

= δ f (e)
T
∫

Ωe

[(
BT

1 CB1 − iξ BT
2 B1 + iξ BT

1 B2 +ξ
2BT

2 CB2
)]

f (e)dΩe

(5.16)

As for the element kinetic energy contribution in Equation (5.15), by using the dis-
placement expressions of Equation (5.12) and simplifying the harmonic terms ei(ξ x−ωt) the
following can be written∫

Ve

δ

(
u(e)

T
)

ρ ü(e)dVe =−ω
2
δ f (e)

T
∫

Ωe

NT
ρNq(e)dΩe (5.17)

Substituting Equations (5.16-5.17) in Equation (5.15) yields:

t2∫
t1

{
Nele⋃
e=1

δ f (e)
T
[
K1

(e)+ iξ K2
(e)+ξ

2K3
(e)−ω

2M(e)
]

f (e)
}

dt = 0 (5.18)

The generalized SAFE governing equation for a stress-free structure is obtained as:

[
ξ

2K3 + iξ K2 +K1 −ω
2M

]
U = 0, (5.19)

where

K1 =
Nelem

∑
e=1

1∫
−1

BT
1 CB1 |J|dη , (5.20)

K2 =
Nelem

∑
e=1

1∫
−1

BT
1 CB2 |J|dη −

1∫
−1

BT
2 CB1 |J|dη , (5.21)

K3 =
Nelem

∑
e=1

1∫
−1

BT
2 CB2 |J|dη , (5.22)
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M =
Nelem

∑
e=1

1∫
−1

NT
ρN |J|dη , (5.23)

where, K1,K2,K3 are the global stiffness matrices and M is the global mass matrix, superscript
T denotes the matrix transpose, Nelem is the total number discretized elements across the
waveguide thickness d and U is the vector of global displacements (and also the eigenvectors)
at particular circular frequency ω .

The estimation of dispersion curves is tackled by sweeping the wave number ξ in a
set of real values. Thus, the eigenfunction can be solved as a standard eigenvalue problem
in ω(ξ ). Real, purely imaginary and complex eigenvalues are obtained, however only the
real one values (that correspond to the propagating waves) are considered. In this case, the
number of eigenvalues ω(ξ ) obtained is the number of total Degrees Of Freedom (DOF)
of the system, N. Thus, N propagating modes (ξm,ωm) are determined for each UN cross
sectional wave structure. The phase velocity of the propagating N mode can be computed
by Cm

p = ω/ξ m, while the group velocity Cm
gr can be calculated using modal properties for

conservatives materials and it is defined as follows:[49].

Cm
gr =

ψm
L K,ξ ψm

R

2ωmψm
L Mψm

R
, (5.24)

where ψM
L and ψM

R are the mth left and right eigenvectors of the eigenfunction, K,ξ is
(2ξ K3 +K2) and M is the mass matrix.

5.3 Dispersion curves using EEC for a uniaxial stressed
structures

As it has mentioned across this thesis, acoustoelasticity is a nonlinear phenomenon that
explains velocity changes in bulk waves (longitudinal and shear) as a function of applied
stress, based on the continuum theory for small disturbances. The linearization of the relation
between stress and strain is no longer valid for the case of ultrasound propagation in a media
subject to stress and with finite deformations [37].

For the linear case, only the second order elastic constants λ and µ are needed as
parameters to describe the linear constitutive relation stress-strain in an isotropic medium.
However, for nonlinear characterization, additional Third Order Elastic Constants (TOECs)
have to be added to the constitutive relation.
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Stress tensors can be defined relative to different configurations. The Cauchy stress
tensor, for example, describes the stresses relative to the present configuration while the
Kirchhoff (or the second Piola-Kirchhoff) stress tensor Ti j describes the stresses relative to
some reference configuration, in our case with respect to a Lagrangian frame which contains
the finite deformation.

So, the relation between strain energy function U , and stress is used to express the
nonlinear relation between stress-strain, where this function is expressed as a power series in
strains as follows [35]:

U =C(2)
i jklEi jEkl +C(3)

i jklmnEi jEklEmn + . . . , (5.25)

where E is the Lagrangian strain tensor and C(2),C(3), .. are increasing order tensors and
correspond to the coefficient of the power series expansion. The stresses are related to the
strain energy

Ti j =
∂U
∂Ei j

, (5.26)

where Ti j is the second Piola-Kirchhoff stress tensor, combining Equation (5.25) and Equation
(5.26) yields the non-linear stress-strain relation :

Ti j =C(2)
i jklEkl +C(3)

i jklmnEklEmn + . . . . (5.27)

As mentioned before, C(2)
i jkl is the second order constants for the linear case, and C(3)

i jklmn
represents the third order elastic constants, for the case of isotropic materials. Henceforth,
the second Piola-Kirchhoff stress tensor produces the suitable stress-strain relation to describe
the wave propagation in a stressed waveguide.

Ti j can be represented in terms of the Murnaghan constants l,m and n [84]. The Ti j tensor
is the foundation of the EEC to tackle the influence of the acoustoelasticity in the propagation
of guided waves [11, 28, 35]. The definition of the EEC tensor results of the equation of
motion for incremental displacement. Following the derivation of [37],[28] and referring to
Figure 5.2, three deformation states are defined. Following the notation used by [28], the
unstressed frame is called the “natural state.” The position of a material point is given by the
position vector x whose “natural coordinates” are x(x1,x2,x3,). “The initial state” is a finite
deformation (applied or residual) in static equilibrium is then given by the position vector
x̄, whose initial coordinates are x(x1,x2,x3). Finally, when a dynamic perturbation (wave
propagation) is applied at the initial state, the point material reach the third state called the
“final state”. The position of the material point is then defined by the position vector x̃ whose
“final coordinates” are x̃(x̃1, x̃2, x̃3). A common Cartesian frame (ξ1,ξ2,ξ3) is used to refer
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to the position of material points of any of the three states. Deformation between different
states i.e. natural to initial, natural to final and initial to final, are given by ui, u f and u as
follows:

ui (ξ ) = x− x,
u f (ξ , t) = x̃− x,
u(ξ , t) = x̃− x.

(5.28)

The procedure to determine the equation of motion for the incremental displacement
is widely explained by [37]. Here, it is only described the steps to establish this relation
and the final result. First the incremental strain tensor in a Lagrangian frame is obtained
subtracting initial and final strain tensor. This incremental strain tensor is related to the
Second Piola-Kirchoff stress tensor via constitutive equation yields the incremental stress
tensor in terms of the second and third order elastic constants, as noted above. Subtracting
the equation of static equilibrium (pre-deformation) and the equation of motion for the final
state, the equation of motion for the incremental displacement is obtained. The final equation
in tensor notation is expressed as follows:

Ai jkl
∂ 2uk

∂x j∂xl
= ρ

0üi, (5.29)

where u is the incremental displacement of the material particle (that is, the displacement due
to the wave motion only), ρ0 is the density of the unstressed material and Ai jkl is a tensor
that depends on the symmetry of the material and describes the relation between second and
third order elastic constants and the strains. The coefficients of Ai jkl are the summation of
4th order stiffness tensor plus the infinitesimal strain tensor associated with the initial strains
(those due to the applied stresses). In [35], based on the analysis of Ai jkl , it is stated that
variations of the wave velocity depend on the initial stress value and the initial displacement
gradient ∂ui/∂ξ . So, for the case of stress-free wave motion the equation of motion is given
by,

Ci jkl
∂ 2uk

∂x j∂xl
= ρ

0üi, (5.30)

where Ci jkl is the stiffness tensor of second order. Comparing the equation of motion for
incremental displacement in natural coordinates, Equation (5.29), with the equation of
motion relative to a stress-free medium, Equation (5.30), it is found that they are equivalent.
The similarity between these equations allows treating a stressed material as an unstressed
material with a new stiffness tensor (Ca

i jkl). This new tensor considers the disturbances related
to the presence of stress [28]. This description regards the following formalism:
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Fig. 5.2 Coordinates of a material point at natural (x), initial (x̄) and final (x̃) configuration of
a predeformed body [28]

Ca
i jkl =Ci jkl +δCi jkl, (5.31)

where, Ca
i jkl is the tensor which contains the EEC, Ci jkl is the tensor of the second order

elastic constants for a stress-free material and δCi jkl is the disturbance related to the presence
of applied or residual stress. Thus, the particular symmetry of second-order elastic constants
(Ci jkl=C jlik) is no longer valid for Ca

i jkl . Since, EEC allows the use of the second order
approach to describe the guided wave propagation in the case of stressed materials or, in
other words, the wave propagation in a stressed specimen can be considered as a the wave
propagation in a stress-free material presenting a stiffness matrix different from those of an
unstressed material.

In bulk waves analysis, the Christoffel equation provides a set of eigenequations whose
eigenvector defining the wave polarization direction. Now, an interesting conclusion of using
the Christoffel equation in the acoustoelasticity frame can be obtained by comparing the
eigenequation in the two scenarios, i.e. The eigenfunction which satisfy the guided wave
modal propagation ui =Uiei(ξ η jη j−ωt), where ξ is the wavenumber, η j is the propagation
unit vector, can be written for the stress-free propagation as presented by Equation (5.32)
and for the stressed propagation as shown in Equation (5.33) follows:

(
Ci jklηkηl − v2

δil
)

Ul = 0, (5.32)
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(
Ca

i jklηkηl − v2
δil

)
Ul = 0, (5.33)

where v corresponds to the ultrasonic wave phase velocity, ηkηl are the direction cosines of
the normal to the wavefront and Ui =Ulδil , where δ is the Kronecker delta. Comparing the
Equations (5.32 and 5.33), it can be concluded a new symmetry with respect to ultrasonic
wave propagation emerge due to a different stiffness tensor in the Christoffel equation. As it
should be inferred the velocity behavior will be different in direction of the externally applied
stress compared with other directions. Finally, the Ca

i jkl terms proposed by [28] are listed in
appendix A of this thesis.

5.4 Numerical validation

In order to validate the proposed approach, dispersion curves obtained by [35] for an alu-
minum isotropic plate (ρ = 2800kg/m3) of thickness d = 6.35 mm with material constants in
GPa, l =−252.2;m=−324.9;n=−351.2;λ = 54.9; µ = 26.5, were used. It is a benchmark
data from an analytical model based on the acoustoelasticity principle and the Christoffel
equation. Figure 5.3 illustrates the used plate Cartesian frames, while Figure 5.4 shows the
dependence of phase velocity on the direction of propagation, by comparing the S1 modes
about 600 kHz, propagating at varying angles with respect to the x1’. Herein, analytical
solution by [35] is represented by solid lines while the proposed approach by markers.
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Fig. 5.3 Plate’s Cartesian frames.

Figure 5.5 presents the dispersion curves for the S1 mode about 600 kHz by applying
different stresses values in order to observe the variations of phase velocity respect to the
applied load, where all curves are at an angle of φ = 45°. Moreover, Figure 5.5 presents the
deviation of S1 mode between the proposed scheme and the previous analytical solution in
the case of different applied stresses.
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Fig. 5.4 Comparison of angle dependence of S1 mode for an uniaxial load of 120 MPa.
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Fig. 5.5 Comparison of stress dependence of S1 mode for an uniaxial load at φ = 45°.
Analytical solution by [35] is represented by solid lines while the proposed approach by
markers
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As stated by [35] and corroborated in the estimated dispersion curves using the approach
proposed, when different wave modes are propagating in the stressed specimen, they could
have different phase velocity variation with respect to stress-free condition at the same
frequency. Thus, a different wave pattern is expected instead of the same pattern in different
time trace.

According to Figure 5.4, the dispersion curves of S1 mode (represented by markers)
computed by means of EEC approach, for a load of σ11 = 120 MPa, are close to the
analytical solution proposed by [35]. However, this should not be generalized since the
deviation of EECs from the theoretical model depends on the mode and frequency range
under consideration [35].

In the case of the stress dependence Figure 5.5, it can be observed a good agreement in
the range of analyzed dispersion curves between analytical model based on anisotropy, and
combined EEC´s and SAFE proposed model.

5.5 Discussion

As a conclusion, an approximate method for computing dispersion curves of guided waves,
phase and group velocity, in homogeneous, prismatic and isotropic specimens under stress
based on SAFE and EEC is proposed in this chapter. The main contribution of the proposed
approach is accounting for the presence of stress in the waveguide by using EEC as stiffness
matrix in a SAFE scheme.

The proposed methodology was validated for a plate on several propagation angles at
constant load in order to verify the influence of the direction of the applied load in the
variation of the velocity in a different direction. Finally, it is studied the behavior of the phase
velocity at different load conditions, for the same propagation angle. All the information is
gathered and a good agreement is obtained with the published results of [35].



Chapter 6

Support stiffness monitoring in
cylindrical structures

6.1 Introduction

This chapter is devoted to propose a support stiffness monitoring scheme, based on the wave
field interaction of the fundamental torsional mode with a support with different stiffnesses.
The main motivation of this study was to develop a monitoring tool capable of detecting
stiffness loss in pipelines supports, allowing corrective actions to prevent the presence of large
mechanical stresses in pipelines avoiding a risky condition for persons and facilities. The
capability of early detection of support stiffness loss can improve the integrity management
of pipelines and consequently provides safe conditions, assures an effective maintenance and
an economic benefit.

Supports integrity inspection presents several challenges, e.g. mechanical stress variations
are produced along the pipeline when the support loads are changing. Therefore, any suitable
support monitoring scheme should be focused on determining the variation of the axial stress
condition in the pipe or any other feature that revels varying load conditions in the supports
since load variations measurement in the support itself is difficult, impractical and often
prohibitively expensive. Additionally, this abnormal condition can appear suddenly as result
of terrain movements or soil weakening by variations in the soil’s water content.

Among the suitable techniques to evaluate supports integrity i.e. cracks [96], corrosion
[4], contact loads [19, 33], the ultrasonic based is gaining attention. The successful of
detecting abnormal load condition at support spots relies on the capability to discriminate
the variation of the ultrasonic guided wavepacket between the support on a normal load
condition (even in presence of discontinuities i.e. corrosion or notch reflected signals) and in
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abnormal condition (lack of rigidity foundation in the support). Consequently, it is essential
to estimate changes influence in the support load condition in the guided wave; few works
have been reported on this subject. The effect of clamped supports on the propagation of the
torsional mode T (0,1) is studied in [19] by means of simulation and experiments. The focus
of this study was the attenuation caused by the presence of rubber gaskets in the support and
its consequences on the detectability of discontinuities located after the support. Moreover,
a growth of the reflection produced by the support is found, as the tightness of the clamp
support increase, for the T (0,1) mode. In [112] and [113], the interaction of the torsional
mode T (0,1) with a longitudinal welded support in a pipe is modeled using FEM. Energy
leakage from the pipe to the support via transmission and mode conversion are detected. The
mode T (0,1) is used in [114] to evaluate the effect of a longitudinal support welded on the
wavepacket propagation in a pipe using both simulation and experimental methods. It is
determined that reflected signals by the longitudinal welded support are much greater than
reflections from other discontinuities beyond the support.

The interaction of the fundamental torsional mode with simple supports is studied
by experimental tests and analytical methods, finite elements and Semi-Analytical Finite
Elements (SAFE) [33]. A SAFE analysis establishes which modes can propagate in a stress-
free pipe. They concluded that exist a mode conversion from T (0,1) into a suitable mode
which is propagated along that supported section. The reflection coefficient for the support
will be then high where there is no mode similarity to T (0,1) in the region around the
support.

As mentioned above, variations of the normal stress in pipelines can be attributed to
the changes in the supports load conditions. Therefore, tracking stress variations along the
pipe in a region close to the support should provide information of the support integrity.
Presence of stress in the structure affects damage localization in the case of using methods
that utilize elastic wave propagation. Wave propagation velocity decreases with increasing
stress [87]. The study of the guided wave propagation in stressed specimens is mainly
based on the acoustoelasticity effect (stress dependence of acoustic bulk wave velocities
i.e. shear and longitudinal velocities). The foundation of the acoustoelasticity theory can
be endorsed to the Murnaghan [84] and Hughes and Kelly [57] works in the middle part
of the last century. Since, part of the research has been aimed to the determination of the
acoustoelastic guided wave dispersion curves [36, 71, 69]; others are devoted to determine
the load condition or the residual stress of the specimen based on the velocity change
of the guided waves[18, 97, 85, 14, 117]. On the other hand, an investigation of wave
propagation in double cylindrical rods based on Hertz contact theory and considering the
effect of prestressing found that at low frequencies, group velocity of torsional-like modes
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are very sensitive to the variation of prestress [65]. In [26] the effect of stress applied
perpendicular to the propagation-direction on guided wave propagation is accounted for
through nonlinear elasticity and finite deformation theory (Acoustoelasticity). Emphasis
is placed on the stress dependence of the energy velocity of the S0 lamb modes. For this
purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is
derived. It has been investigated by [106] the transfer of energy inside a multi-wire cable with
a SAFE method. An energy transfer parameter has been proposed in order to determine the
power flow distribution inside the cable and the exchange of energy between wires. Based on
this parameter, a new compressional mode excited with an axial excitation of the central wire
mainly localized inside the central wire has been found. Finally, some specific engineering
applications such as bolted structural connections, grouted tendons and steel stands, have
been object to monitoring using the acoustoelasticity effect of guided waves[110, 8, 15, 23].

In summary, previous research works have been focused on the study the influence of
the support material changes (cracks, pinholes, corrosion, contact loads) in the guided wave
propagation and how the presence of the support in the propagation path affects the detection
of material discontinuities in the waveguide under investigation. The work presented here is
focused specifically on formulate a methodology to monitoring changes in the load condition
in the support. To do that, it is needed an understanding of how the mode T (0,1) interacts
with simple supports under varying support load conditions. Experimental and numerical
tests reveal a greater effect of the energy leakage instead of velocity changes as a result of
the Acoustoelasticity effect.

6.2 Axisymmetric torsional guided waves propagating in
cylindrical waveguides

In order to develop an axisymmetric wave propagation model for torsional guided waves, cer-
tain assumptions are needed. The model assumes that the cylindrical system is geometrically
axisymmetric, infinitely long, stress-free in the boundaries for some specific directions and
surrounded of vacuum. The material is elastic, homogeneous and isotropic (Its mechanical
and thermal properties are the same in all directions). The waves will be assumed to be
continuous, the frequency real (transients effects are no considered), and the energy is finite
and constant. The solutions to motion equation will only be sought explored for guided
waves, which are propagated axially.

Three guided waves modes can be developed in cylindrical systems: longitudinal (L),
flexural (F) and torsional (T). Although the formers (L and F) are widely used in Structural
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Fig. 6.1 Schematic representation of the cylindrical waveguide.

Health Monitoring (SHM) applications, they are strongly affected by an acoustic coupling
between these modes and the surroundings. On the contrary, the latter does not.

The torsional modes are characterized mainly by a displacement primarily in the θ -
direction. The axisymmetric torsional mode corresponds to an uniform azimuthal displace-
ment in θ -direction (angular displacement) of the entire cylindrical waveguide; the higher
order torsional modes exhibit a more complicated behavior. However, the angular displace-
ment is not constant through the radius of the cylinder. Different locations through the radius
of the cylinder can twist in different directions and nulls of displacement can exist. Figure 2
depicts cylindrical θ and z directions.

The guided waves propagation model is based on the combination of Euler’s equation
of motion and the generalized Hooke’s law. Both relations yield the Navier’s displacement
equation of motion as follows:

(λ +2µ)∇(∇ ·u)+µ∇× (∇×u) = ρ

(
∂ 2u
∂ t2

)
, (6.1)

where u is the displacement vector, ρ is the mass density per unit volume and λ , µ are
the Lame’s constants. The resulting Navier’s equations constitute a system of three partial
differential equations of second-order, where (λ +2µ)∇(∇ ·u) considers the dilatation
(compressional) portion and, µ∇× (∇×u) the rotational (equivoluminal) portion of the
model. These two terms are decoupled and individually belong to a wave equation of the
scalar field Φ and the H vector field as follows

C1∇
2
Φ =

∂ 2Φ

∂ t2 , (6.2)
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C2∇
2H =

∂ 2H
∂ t2 , (6.3)

where C1 and C2 are the longitudinal and shear bulk velocities respectively. Since Equation
(6.1) is separable in cylindrical coordinates, the solution may be divided into the product of
functions of each one of the spatial dimensions in cylindrical coordinates as:

Φ,H = ΓΦ,H (r)ΓΦ,H (θ)ΓΦ,H (z)ei(kr−ωt), (6.4)

where k is the wavenumber vector, and ΓΦ,H (r) , ΓΦ,H (θ), and ΓΦ,H (z) describe the field
variation in each spatial coordinate. Assuming that the wave does not propagate in the radial
direction (r) and that the displacement field does not vary in the θ -direction either z-direction
except for the harmonic oscillation described by the wavenumber as follows

Φ,H = ΓΦ,H (r)eipθ ei(ξ z−ωt), (6.5)

where ξ is the component of the complex vector wavenumber in the z-direction, p is referred
to as the circumferential order; which must be a whole number, since only propagation in the
direction of the axis of the cylinder is considered and the field variables must be continuous in
the angular direction. Recalling from Equation (6.1) and Hooke’s law, the field variables such
as displacements and stresses can be expressed in terms of potential functions, which can be
numerically solved (see [95, Viola and Marzani, 6, 46] for more details on this subject).

On the other hand, the family of torsional modes results when only the uθ displacement
is assumed to exist (ur,uz = 0). Such a displacement field is obtained only if rotational
potential function in z, hz ̸= 0. Then, for sake of brevity, only the expressions for uθ , hz,
and the stress (σrθ as boundary condition), are used in forward to study the axisymmetric
torsional modes as follows [46].

hz (r) =C1Jp(β r), (6.6)

uθ = hz′ (r)cos(pθ)ei(ξ z−ωt), (6.7)

σrθ = µ

[
−
(

2hz′′ −β
2hz

)]
, (6.8)

β
2 =

ω2

C2
2
−ξ

2, (6.9)

where Jp is the Bessel function of the first kind an order p, r is the cylinder radius, and C1 is
a constant. The family of Bessel functions Jp represent standing waves. For the case of the
axisymmetric modes, p=0, and by using the property of Bessel functions J0’ (x) =−J1(x),
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the corresponding uθ can be expressed as follows.

uθ =−∂hz

∂ r
= (C1β )J1 (β r)ei(ξ z−ωt). (6.10)

The frequency equation for the torsional modes may be obtained by using the boundary
condition σrθ |rext

= 0, for the studied case only σzz ̸= 0, in this way[
β

2a2J0 (βa)−2βaJ1 (βa)
]
−
[
β

2b2J0 (βb)−2βbJ1 (βb)
]
= 0. (6.11)

Noting that this equation belongs to the dispersion equation for the torsional waves
propagating in the axial direction of a cylinder of inner and outer radius a and b respectively.
The lowest axisymmetric torsional mode, the first root of Equation (6.11), is β = 0, in which
involves the rotation of each transverse section of the cylinder as a whole about its center,
is not adequately described by the Bessel equations [5]. This mode corresponds to the zero
order torsional modes -T (0,1)- and, therefore from Equation (6.9), and considering β = 0 it
is obtained that

ω = ξC2. (6.12)

Considering the previous result and the phase velocity definition, let state the following
relation:

Vp =
ω

ξ
=C2. (6.13)

The last expression shows that T (0,1) propagates at a constant phase velocity equivalent
to the bulk shear velocity of the material. The T (0,1) mode is preferred in pipeline monitoring
for two main reasons: (i) it propagates non-dispersively at the shear velocity of the medium
and, (ii) since the fluid layers do not support shear waves, the T (0,1) propagates solely in
the steel wall of the pipe with no energy leakage to the fluid and no attenuation. On the other
hand, The zero order torsional modes can be expressed analytically in a similar fashion as
the ’SH’ modes in a plate.

6.3 Experimental Setup

The pipe test bench described in Section (4.2) is again used in this chapter. Variations in the
support’s loading will produce an increment in the normal stress along the pipe. This test
mock up is implemented to emulate a failure or a change in the loading support conditions.
In the proposed methodology, a scheme of two magnetostrictive collars in a pitch-catch
configuration is adopted to produce the T (0,1) torsional mode.
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Fig. 6.2 Launched and captured T (0,1) pulses

The waveguides are excited with a sinusoidal pulse of 5 cycles Gaussian-modulated
at 32 kHz via magnetostrictive actuator (see Figure 6.2). The magnetostrictive actuator
is composed by two elements wrapped around the pipe; a thin FeCo alloy strip (adhered
to the pipe by epoxy) to yield a circumferential magnetic field and, an electromagnetic
coil with an alternate current flowing in circumferential direction used to produce an axial
magnetic field. The combined action produces a helicoidally strain pulse along the pipe.
Therefore, torsional guided waves are generated by axisymmetric surface loading. In order
to launch only the T (0,1) mode, a tunning process is performed through an appropriate
selection of the excitation frequency and wide of the strip (See Figure 6.3). The torsional
guided wave propagates along the pipe and it is captured 1.5 m. ahead of the actuator with a
magnetostrictive sensor. As it is expected, the velocity of propagation was very close to the
shear velocity for the material of the pipe 3200 m/s). No other modes were detected in the
tests. A picoscope 2208 is used as DAQ system.



6.3 Experimental Setup 112

Fig. 6.3 Magnetostrictive transducer used in the experimentation

The experiments were conducted in such a way that it replicates a common real pipe
under a simplified loading and support conditions. Variations in the stiffness are emulated by
changing the magnitude of the variable support. First the nominal condition is determined
considering the absence of deflection with respect to the vertical (g-direction) in the middle
variable support. Under this condition the middle part of the pipe (L/2) is experimenting
a negative bending moment and the pipe develops an internal stress of around 5% of the
yield strength, under this scenario the load in Newtons between support and pipe is 92.2 N
(reference stiffness). The magnitude of the load applied for the variable support to the pipe
is decreasing for D1 −D4 scenarios for deflections in gravity direction and is increasing for
D6 −D9 in opposite direction. In this way, D1 belongs to a deflection of 10 mm downwards
(74.1 N), D2 to 20 mm (57.03 N), D3 to 30 mm (39.46 N) and D4 to 40 mm (21.9 N).
Similarly, D6 belongs to 10 mm upwards (109.75 N), D7 to 20 mm (127.3 N), D8 to 30 mm
(143.9 N) and D9 to 40 mm (160 N). The test are configured in such way that the stresses
correspond to an incipient strength condition (< 30% of yields strength). The variation of
the deflection yields an increase in the magnitude of the bending moment in the middle part
of the pipeline, as shown in Figure 6.4.

Figure 6.4 provides an estimation of the normal stresses along the pipe (z−direction),
expressed in terms of percentage of yield strength, generated by bending. The maximum
bending stress in a cross-section for a specific position along the pipe axis is located at the
outer distance (the exterior radius) which means the pipe’s surface is the area under highest
stress.

So, as shown in Figure 6.4, changes in the supports reaction will produce a distributed
normal stress response along the path of propagation. In fact, the longitudinal normal stress
varies from point to point along the pipe’s axis, and linearly with the radius, passing from
tension to compression in the neutral axis or cylinders center; reaching a maximum normal
stress value at the outmost distance from neutral axis or external radio. As shown in Figure
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Fig. 6.4 Stress variation along the pipe subject to different reaction forces in the support

6.5, the wave structure obtained by using the GUIGUW software [9], the maximum azimuthal
displacement component of the torsional wave expressed in the wave structure matches the
maximum azimuthal axial stress obtained in pipes cross-section. Changes from tension to
compression in a specific cross section in the cylinder must produce variations of phase
velocity of T (0,1) in the same plane. Therefore, different phase velocities around of V0

for the same cross-section may result when the torsional mode is propagating in a bending
pipe. On the other hand, variations in the guided waves velocities can also be attributed to a
thickness reduction of the waveguide produced by corrosion or erosion. Nevertheless, these
discontinuities slowly appear in the waveguide in a much greater time scale compared to
the most probable scenario of unexpected change in the supports reaction. Therefore, any
suddenly change in the TOF of the wave can be interpreted as a modification in the stress
condition in the waveguide.

6.4 Experimental Results

This section provides the results of the experiments carried out under the conditions described
above. One hundred tests were conducted by each scenario and the propagated torsional
wave were captured. As an example, in Figure 6.6 it is shown one of the captured signals for
the scenarios D3 and D1.

Contrary, to the expressed by the acoustoelasticity effect, variations in the pipe’s stress
are not enough to produce any significant change in the TOF of the torsional guided wave
under the test experimental conditions, not even the material elongation effect is observed.
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Fig. 6.5 Sample wave structure of Uθ for T (0,1) at 32 kHz in a 1" sch. 40 pipe.

Considering the DAQ sampling frequency (18 MHz), the frequency of the signal (32 KHz)
and the velocity of the torsional wave (around 3200 m/s), the minimal change of velocity
that can be detected is 0.38 m/s (without considering noise), which represent a capability
to detect phase velocity variations around of 0.012%. The inability for detecting ∆(TOF)

may be attributed to the phase velocity in a specific pipe cross-section for a bending pipe is
radius dependent due to the linear stress distribution in r, going from tension to compression
or vice versa at the same cross section, i.e. the magnetostrictive sensor is capturing at the
same time, torsional waves propagating at different phase velocities, in the case of tension
stresses Vσ <V0 and Vσ >V0 for compression stresses.
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Fig. 6.6 Captured fundamental torsional signals for D3 and D1

On the other hand, as it is expected, no dispersion is observed in the captured torsional
wave. So, only amplitude changes are observed in the wavepackets when they are compared
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in time domain. The variations in the wave amplitude, which can be interpreted as energy
variations, could be attributed to the fact that the interaction between the torsional guided
wave and the support has been altered. Although the experimental tests reveals tiny amplitude
changes in the captured signal, the abnormal condition to be monitored, a decrease of the
support stiffness, produces an anomalous behavior in the guided wave, i.e. an increase of the
transmitted pulse magnitude.

In order to create a feature associated to the amplitude variation of the captured signal
as a result of the acoustic coupling between pipe and support, an auto correlation of the
incident signal, rxx, and a cross correlation between the current sensed signal S1(t) and the
incident signals S0(t), rxy, are used instead of the raw signals to produce a relation between
both signals. Autocorrelation and cross correlation are calculated as follows:

rxx(n) =
1
N

N

∑
n=0

S0(n)S0(n− t), (6.14)

rxy(n) =
1
N

N

∑
n=0

S0(n)Si(n− t), (6.15)

where N is the number of signal samples, t is defined in the interval (−N ∗Ts,(N −1)∗Ts).
Then, the Root Mean Square Deviation (RMSD) is

calculated as:

RMSD =

√√√√√ N

∑
i=1

(Gi − re f )2

N
, (6.16)

where Gi is a scalar calculated using the peak values of the correlated signals:

Gi =
max(rxy)

max(rxx)
. (6.17)

Gi denotes the peak value of the current scenario, re f is the peak value of the averaged
signal (100 experiments) at nominal condition, (no deflection in the pipe at the center). Since
only magnitude changes are expected in this monitoring scheme, RMSD is proposed to
evaluate the supports rigidity. In Figure 6.7, it can be seen the RMSD values for the different
scenarios. Now, ten runs were averaged and presented in Figure 6.8 and finally, Figure 6.9
presents the relation between force and RMSD for the different cases.

Although D6 to D9 are improbable scenarios in a real installation, deflection opposite to
the gravity, here, they are used to determine in a wide perspective how the torsional guided
wave interacts with the reaction force exerted by the simple support. Variations in α are the
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Fig. 6.7 RMSD for the studied scenarios

result of change in the contact conditions or the magnitude of the supports force. Clearly,
as the magnitude of the supports reaction decrease, the amplitude of the wave captured by
the sensor increase. This result can be explained from an energy perspective, in which, a
reduction of the force between the pipe and the support produce a decrease of the transmitted
energy to the supports material and therefore, a greater wave refraction.

6.5 Finite Element modeling analysis

Considering the previous results: a very small acoustoelastic effect and a change in the
amplitude of the wave, in the following numerical analysis it is investigated the support
influence in the pipe, T (0,1) propagation by means of FEM simulations. This analysis has
been restricted to the transmission of ultrasound energy to the support. Thus, the FEM does
not pretend the estimate the actual change of the magnitude of the transmitted pulse, its only
aim is to observe the relation between reaction force and SH0 generation. A mode conversion
of T (0,1) transmitted through the support, modeled as a plate, is expected because the
tangential nature of the T (0,1) and the mechanical coupling between the pipe (cylinder) and
the simple support (plate). are adopted.

Since surfaces between pipe and support are rough, a contact interface can be assumed as
a series of parts in contact and voids. Due to the high acoustic impedance of the air, voids act
as reflectors for the ultrasonic waves. Thus, an increase of force will result in a reduction of
the number and size of these voids and, at the same time, an increase of the ultrasound energy
transmitted through the interface. When two surfaces of the same material are in contact,
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Fig. 6.8 Experimental Ten-averaged RMSD values for the studied cases

there are no variations of acoustic impedance in the contact area created by the matching
micro-asperities generating the absence of material discontinuities for the transmission of
the ultrasonic waves [89]. In numerical analysis, a real contact in metallic interfaces (no
perfect) is not an easy task to model, a simple version of the contact area is implemented in
the performed simulations.

A 3D FEM model was built representing a scaled but equivalent version of the experi-
mental setup to reduce the size of the FEM model and consequently the computational cost.
The steel pipe of 1 inch schedule 40 (outer diameter: 33.4 mm and wall thickness: 3.38
mm) is modeled as a hollow cylinder with an axial length of 0.4 m. The simple support is
represented by a steel plate of 6 mm of thickness and with the same material as the pipe,
two boundary conditions in the cylinder constrain the displacement in y−direction of both
extremes of the cylinder. Changes in support stiffness are configured varying the magnitude
of a vertical concentrated force in upward direction situated in the middle part of the plate as
shown in Figure 6.10.

The material properties used for steel were assumed as follows: Density ρ = 7830 kg/m3,
Young’s modulus (E) = 210 GPa and Poisson’s ratio ν = 0.3. To ensure an adequate mesh
refinement level, the minimum allowed inter-nodal length Lmin is calculated. The lowest
phase velocity CT (i.e., transverse or shear wave speed), and consequently the shortest
wavelength establishes the minimum permissible mesh size so spatial aliasing due to the
finite element discretization does not occur [48]. Considering the frequency and the steel
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Fig. 6.9 Experimental results of RMSD versus Reaction force between pipe and support

shear wave velocity, Lmin is calculated as follows:

Lmin =
CT

nmin fmax
=

λmin

nmin
, (6.18)

where, nmin is the number of elements across the smallest wavelength of interest (assumed in
this case as nmin ≥ 10) [73], and fmax the maximum frequency of interest. Considering nmin =

15, fmax = 3200 Hz and CT = 3200 m/s, the minimum element length results, approximately
6.66 mm. Therefore, seeds size of 2 mm can be considered as a sufficient mesh refinement. In
addition, for time domain models solved with an explicit scheme, an adequate integration time
step ∆t assures a more accurate solution. In general, simulation accuracy can be increased
with increasingly smaller integration time steps but punished by a higher computational cost.
So, the time step ∆t has to be smaller than the critical time step ∆tcr which is the transit time
of a dilatational wave through the smallest element in the model can be calculated as follows
[25]:

∆t ≤ ∆tcr =
Lmin

CL
, (6.19)

where CL is the velocity of the dilatational wave. A ∆t of 5ns meets these criterion (Consider-
ing Lmin = 2 mm and CL = 5944 m/s) and it is used to solve the model. A total of 9980 linear
eight node brick element (C3D8) has been used with 52 elements around the circumferential
section of the pipe.

The torsional wave is produced by a shear load at the left end face of the cylinder by
a 5 cycles Hanning-window tone burst of 32 kHz. The model is configured such as the
torsional wave freely propagates along the z-axis for 50 mm until a contact with the simple
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support. A 12 mm contact line is established between the pipe and the support. The whole
length of the pipe model is 0.2 m with a mesh of 9980 C3D8 elements and 104 semi-infinite
CIN3D8 elements. In Figure 6.10, a schematic representation of the simulated geometry
is presented. The latter elements are used at the cylinder right face to avoid reflections
(absorbing boundary) [73]. The torsional wave propagates continuously into the absorption
elements without any reflection.

Fig. 6.10 Schematic representation of the simulated pipe with a simple support

A key aspect of the problem at hand is the surface contact FEM modeling between the
pipe and simple support. This part of the modeling must be exhaustively considered in order
to derive the most realistic acoustic coupling. Nevertheless, it is worth noting that though the
connection between applied force and the transmission of ultrasonic waves from the interface
is qualitatively known, it is not so easy to establish a general quantitative relationship, since
too many parameters (surface roughness, type of material and frequency of incident wave)
influence the phenomena. The acoustic interaction between two bodies in mechanical contact
is a relatively complex model, therefore several simplifying assumptions are made: The
Contact between the two surfaces is assumed to have smooth surfaces, applied normal stress
within the elastic limits of their materials and contact surface be non-conformable.

Now, Considering a portion of pipeline lying on a simple support, represented as a plate,
such as that shown in Figure 6.10. A idealized contact interface (line) occurs between the
two specimens with an extent l along the axial direction of the pipe, a width w along the pipe
perimeter. In Hertzian contact theory, two stiffness must be defined, a normal stiffness Sn

that acts in the radial direction, and a tangential stiffness St that acts in the θ and z directions.
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In order to simplify the use of the Hertzian contact theory the assumption of non-
conformable contact between the two bodies is assumed, i.e. both surface keep their shape
around the contact zone during the contact. In practice, this assumption is not realistic
because under loading, the plate may curve around the pipe, or the pipe may flatten around
the contact zone depending on their stiffness. In such case, the contact model increases its
degree of complexity since the contact stiffness can vary considerably along the interface.
This complex model is beyond to the scope of the study of the acoustic coupling between the
fundamental torsional mode T (0,1) and the SH0 mode of a plate.

Because the contact is assumed to occur in a line, infinitely long cylinders with parallel
axes come into contact; away from end effects, the (2D) Hertzian theory must be used.
Hertzian approach provides the width in the interface of the contact area when a normal
load is applied to the contact surface. Assuming Young’s modulus and Poisson ratio is close
enough in magnitude between the two bodies in contact. The following expression is used to
determine the width of the contact area:

w =

√
8FR∗

eE∗ , (6.20)

where F , also referred as contact loading, is the total normal force by the two bodies are
pressed together along the interface length e, E∗ is the contact module and R∗ is the relative
radius between the two bodies, determined by:

1
R∗ =

1
R1

+
1

R2
. (6.21)

Note, Equation (6.21) is originally expressed for an interface between two cylinders,
where R1 and R2 are, respectively, the radius of the first and second cylinder. Notice, for the
studied case, the contact interface is produced by a cylinder (pipe) of exterior radius R1, and
a plate with R2 tends to infinity. Therefore, The relative radius R∗ is R1. The contact modulus
E∗ for the same material is given by

E∗ =
E

2(1−ν2)
(6.22)

The interface width obtained by Equation (6.20) to simulate contact between the 1" pipe
and the plate of (6x9x20 mm), result be smaller than the gap between nodes (mesh size) used
for the guided wave simulation. So, the interface width is assumed as a line of shared nodes
between the cylinder and the plate.

Contact treatment is internally represented by linear springs between the slave nodes
(plate) and the nearest master segments (pipe). The stiffness of these springs determines



6.5 Finite Element modeling analysis 121

the force that will be applied to the slave nodes and the master nodes. The mathematical
model chosen to enforce the contact compatibility is the penalty method which requires
the estimation of normal and tangential contact stiffness. In [34], it is reported that normal
interface stiffness Sn for contact between two bodies of identical material properties is given
by:

Sn =
πe

2
(

1−ν2

E

)
d∗− 1

E∗

, (6.23)

where,

d∗ = 2ln
(

4d
w

)
−1, (6.24)

d = 2R1. Although, there is a lack of knowledge with respect to the small-scale properties
and the small-scale dynamics of the contact interface, one of the most convenient ways to
establish a realistic value for the tangential stiffness of a contact interface is to use empirical
models such as the one for contact between rough surface using ultrasonic method developed
by [63]

St

Sn
=

2(1−ν)

2−ν
(6.25)

Equation (6.25) describes a constant ratio between tangential and normal stiffness. It is
acknowledged that there is not an effective analytical method to determine contact properties
when the bodies in contact are real. So, here it is assumed values close to the obtained by the
expressions cited above and checking the result against experimental evidence.

Fig. 6.11 Coupling nodes in the simulated contact interface
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Some details of the contact implementation are the following: The interface between
cylinder and plate is performed by a surface-surface contact and their interaction is achieved
using a dynamic coupling between the nodes belonging to the contact line as presented
in Figure 6.11. Discretization of the contact area into elementary units (contact nodes) is
responsible for the contact stress (strain) acoustic transmission of the guided wave from
pipe to support. The node to node discretization is appropriate for ultrasonic transmission
problems because this method is suitable for small deformations and small slip. Although,
both materials are modeled with the same mechanical properties, the pipe is assumed as
master surface and the support as slave. Besides, a linear behavior of the Pressure-Overclosure
relation is assumed.

The Finite Element Analysis (FEA) has been performed to study the effect of the supports
stiffness (plate) in the transmitting potential of ultrasound energy through the contact interface
between the cylinder and plate. T (0,1) mode primarily has a tangential displacement Uθ

which is transmitted by coupling to the plate. As previously mentioned, the frequency
spectrum of T (0,1) has the same shape as for SH waves in a plate. In fact, the torsional
modes for a cylindrical waveguide are considered the analogue of the SH plate modes [46].
Thus, for the studied case is highly likely the generation of SH waves in the support.

The FEM simulation results of the interaction between cylinder and plate when a torsional
guided wave T (0,1) mode is propagating is presented in Figure 6.12. This Figure reveals
that when the T (0,1) mode impinges on the support, some portion of the ultrasound energy
is transmitted to the plate producing SH lamb waves.

Fig. 6.12 Snapshots of T (0,1) mode propagation in a pipe with a simple support
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In Figure 6.13, it is depicted the generated wavepacket in the plate, it is identified as
a SH0 mode by using three different tests. First, the calculation of the phase velocity of
the generated pulse belongs to velocity of the SH0 mode reported in the dispersion curves.
Second, although in Figure 6.13, the generated pulse seems dispersive, variations in the wave
pattern are attributed to plate edge reflections. Shorter time period FEM simulations, (not
showed here) reveals a non-dispersive behavior. Lastly, after several simulations by using
different plate thickness, in all cases the magnitude of the SH0 phase velocity is constant and
equal to the velocity of the shear wave. Therefore, SH0 phase velocity is independent to plate
thickness.
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Fig. 6.13 SH0 generated in the plate for mode conversion of T (0,1)

On the other hand, as long as the contact force between pipe and support is increasing, a
higher ultrasonic energy is transmitted to the plate in the shape of SH0 waves. This fact is
revealed in Figure 6.15; where it is noted an amplitude reduction in the captured pulse for a
node which it is set up as a sensor in the model; for loads which emulate different support
stiffness i.e. (0, 100, 200 and 500 N). Although in Figure 6.15 the zoom view correspond
to the highest peak, the described behavior, decrease of the wave magnitude, is presented
along the simulated T (0,1). So, a reduction of the reaction force between the pipe and the
support by a loss of rigidity in the support foundation produces an increase with respect to a
pre-defined stiffness in the magnitude of the T (0,1) captured pulse located ahead the support
contact area.
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Fig. 6.14 Numerical results of T (0,1) mode captured at 0.12 m of the excitation surface and
at 0.07 m of the interaction point between support and pipe for the nominal condition

6.6 Discussion

The effects of supports external loading, stiffness, on the propagation of torsional guided wave
mode T (0,1) was investigated. Experimental tests were conducted for various magnitudes
of loading in a one-inch sch 40 pipe. Experimental results showed an unnoticeable influence
of pipe normal stress levels, generated by bending, in the velocity of the T (0,1) mode as a
consequence of the acoustoelasticity effect. No change in the TOF were reported among the
different stress levels under loading varying reactions in the supports. FEM simulations of the
effect of the mechanical contact between pipe and support in the propagation of T (0,1) revel
a mode conversion in the interface from T (0,1) propagating in the pipe to SH0 generated
in the support, modeled as a plate. The leakage is identified comparing the magnitude of
T (0,1) propagating with and without mechanical contact with the support. No damping
is considered in both conditions. Experimental results exposed amplitude change of the
captured torsional guided wave for different stiffness in the supports. Although, the setup is
plenty of symmetry (geometry of the waveguide, in loads, in the guided wave propagated, in
the energy and stress distribution in the cross-section) the only asymmetric effect was the
variations in the amplitude of the captured torsional wave. It is noted an attenuation growth
in the transmitted wave for an increment of the supports reaction force, independent of the
shape adopted by the pipe, i.e. concave upwards and concave downwards. Additionally,
scattering, variations in the thickness, notches are absent in the experimentation performed.
Based on these, it can be concluded that the mechanism responsible of the variations of the
magnitude in mode T (0,1) transmitted in a pipe in mechanical contact with a support is the
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Fig. 6.15 Zoom view of the highest pulse of the simulated signals for different loads in the
plate

transmitted ultrasonic energy for the guided wave to the support via mode conversion from
T (0,1) to SH0 in the support. On the other hand, the presence of geometrical and material
acoustic discontinuities in the guided waves such as notches, changes in the dimensions
of the members cross section, corrosion or erosion, produce a reduction of the transmitted
energy due to the interaction of the wave with the discontinuity (scattering, mode conversion,
reflection). For all the cases, the energy reflection and mode conversion will produce a
decrease in magnitude in the wave transmitted past the discontinuity. So, any ultrasound
wavepacket magnitude increment for a pitch-catch configuration located in the path of a
support with nonexistence of an extra ultrasound source must be unequivocally considered as
a loss of rigidity in the support. Besides, the material discontinuities appear in the waveguide
in a much greater time scale compared to the most probable scenario of unexpected change in
the supports reaction. Therefore, it can be proposed a dedicated supports stiffness monitoring
scheme which basis is the tracking of short time amplitude increments of T (0,1) mode
propagated in the path of the support.



Chapter 7

Conclusions and future work

7.1 Concluding remarks

This thesis was focused on developing a stress monitoring scheme, mainly in cylindrical
structures, based on guided waves and using statistical tools (PCA) and signal processing
in time domain (Residuals). In addition, experimentally and analytically the influence of
stress and temperature in the proposed monitoring scheme was investigated. An experimental
setup was implemented by employing two types of actuation principles: piezoelectricity and
magnetostriction. The first one permitted to generate longitudinal and flexural guided waves
in the specimen and the second one, the fundamental torsional mode only.

Initially, mechanical stress monitoring is tackled using an intuitive scheme, the signal-
based approach. Different stress conditions in the specimen under investigation influence the
information carried by the guided wave. Thus, subtracting the actual guided wave from a
reference may provide symptoms of abnormal conditions. Experimental results demonstrate
an additional requirement of post-processing (RMS and the residuals peak location) to obtain
enough information to produce a stress change detection. However, this approach is highly
affected by the temperature, for this reason, it was required to explore a new scheme, more
sophisticated, capable to contain wave field information of the nominal state for different
room temperatures.

Then, PCA is introduced as a promising tool for stress monitoring in cylindrical specimens
(pipe and rod) subject to a stress distribution constant over the cross-section, in the case of
the rod, and to a stress distribution variable with respect to the cross-section and distance
of propagation for the pipe under bending. The launched pulse, although it is variable
with the distance (dispersion), it is rich in information and justify the implementation of a
data-driven scheme. Now, detection of abnormal conditions based on the guided wave pattern
is highly sensitive to the environmental conditions such as temperature. Thus, a temperature
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PCA-based stress robust monitoring scheme is proposed and evaluated by using an extended
base of knowledge which correspond to the guided wave field of the nominal condition
at different temperatures, all of them in a temperature range close to real environmental
conditions. Effective detection and estimation of different stress levels under different room
temperatures was verified at laboratory scale.

In order to exhaustively study the influence of stress in the guided wave propagation
velocity (Acoustoelasticity effect), a new approximate scheme FEM-based was explored to
determine the dispersion curves of stressed guided waves. Results reveal the complexity of
evaluating changes of velocity in the propagation of multimode wave fields due to a distinct
influence of stress in each mode. This result validates the requirement of data-driven tools
for stress monitoring when the guided wave pattern is influenced by dispersion, is multimode
and the wave propagation presents overlapping by the shape of the waveguide.

Next, The influence of changes in the support stiffness on the propagation of torsional
mode T (0,1), generated via a magnetostrictive transducer, was studied. Tests revealed
unnoticeable influence of the generated bending stress condition in the velocity of the
torsional wave transmitted.

Numerical analysis of the mechanical contact between pipe and support showed a mode
conversion from T (0,1) to SH0 and a consequent energy leakage from the pipe to the support
revealed by amplitude reduction with the increment of the contact force in the interface
between pipe and support.

Finally, based on tracking the amplitude of the captured pulse after the support a support
stiffness monitoring scheme is proposed . This monitoring scheme was the initial thesis
motivation. This scheme is inherently robust because all material discontinuities produce an
amplitude decreasing (energy transformation) in the transmitted guided wave. So, T (0,1)
magnitude increment with absent of an ultrasound source must be unequivocally considered
as a loss of rigidity in the support.

7.2 Suggestion for future work

This research work has presented various techniques for stress monitoring using guided waves.
This work has laid the foundation for future investigations to extend the methodologies to
more complicated structures and explore some aspects beyond the scope of this thesis. The
suggestions for future work are listed below:

• Influence of adhesive layer aging in the ultrasonic wave transmitted to the specimen

• Effect of the humidity in a dedicated PCA-based stress monitoring scheme
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• Dispersion curves estimation in cylindrical waveguides using SAFE and EEC

• The use of T(0,1) mode to monitoring mechanical loosen in different cylindrical
structures

• Study of the effect of external mechanical stress in the performance of PZT and
magnetostrictive transducers via FEM simulation

• Investigate energy leakage of the T(0,1) mode into the surrounding material and its
influence in the proposed stiffness monitoring scheme.

• Validation of the proposed stiffness monitoring scheme on an industrial scale
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Appendix A

Expressions for the EEC proposed by
[19]

Ca
11 = k2 + k1 [4λ +10µ +4ν2 +8v3 + k3 (−2µ +ν1 +2ν2)] (A.1)

Ca
22 =Ca

33 = k2 + k1 [k4 + k3 (λ +2µ +ν1 +4ν2 +4ν3)] (A.2)

Ca
44 = µ + k1 [−2µ −2ν3 + k3 (µ +ν2 +2ν3)] (A.3)

Ca
55 =Ca

66 = µ + k1 [2µ +ν3 +(1−2ν)(ν2 +ν3)] (A.4)

Ca
12 =Ca

13 = λ + k1 [λ +ν2 + k3 (ν2 +ν1)] (A.5)

Ca
23 = λ + k1 [−2λ −2ν2 + k3 (λ +ν1 +2ν2)] (A.6)

Where λ and µ are the Lamé constants, ν1,ν2 and ν3 are the Toupin and Berstein con-
stants which are equivalent to ν1 = n,ν2 = m−0.5n and ν3 = 1−ν2 in terms of Mourghanan
(l,m,n) constants.
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